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Abstract Recently, a “no inner (Cauchy) horizon theo-
rem” for static black holes with non-trivial scalar hairs has
been proved in Einstein–Maxwell–scalar theories and also in
Einstein–Maxwell–Horndeski theories with the non-minimal
coupling of a charged (complex) scalar field to Einstein ten-
sor. In this paper, we study an extension of the theorem to
the static black holes in Einstein–Maxwell–Gauss–Bonnet-
scalar theories, or simply, charged Gauss–Bonnet (GB) black
holes. We find that no inner horizon with charged scalar
hairs is allowed for the planar (k = 0) black holes, as in the
case without GB term. On the other hand, for the non-planar
(k = ±1) black holes, we find that the haired inner horizon
can not be excluded due to GB effect generally, though we
can not find a simple condition for its existence. As some
explicit examples of the theorem, we study numerical GB
black hole solutions with charged scalar hairs and Cauchy
horizons in asymptotically anti-de Sitter space, and find good
agreements with the theorem. Additionally, in an Appendix,
we prove a “no-go theorem” for charged de Sitter black holes
(with or without GB terms) with charged scalar hairs in arbi-
trary dimensions.

1 Introduction

It is an important question in general relativity (GR) whether
the predictability is lost due to an inner (Cauchy) hori-
zon or not. Recently, Cai et al. established [1–4] a “no
inner (Cauchy) horizon theorem” for both planar and spher-
ical static black holes with charged (complex) scalar hairs
in Einstein–Maxwell–scalar (EMS) theories that suggests
unstable Cauchy horizons in the presence of charged scalar
hairs. A remarkable thing in the proof is its simplicity and
quite generic results which do not depend on the details of
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the scalar potentials and so it’s applicability would be quite
far-reaching.

As the first step towards the classification of all possible
extensions of the theorem, we extended the theorem to black
holes in Einstein–Maxwell–Horndeski (EMH) theories, with
the non-minimal coupling of a charged scalar field to Einstein
tensor as well as the usual minimal gauge coupling [5]. Actu-
ally, since the Horndeski term is a four-derivative term via
the Einstein coupling, it generalizes the recent set-up in [1–4]
into higher-derivative theories. There have been also several
other generalizations of the theorem [6–8].

In this paper, we will consider an extension of the theo-
rem in another important higher-derivative gravity, Einstein–
Maxwell–Gauss–Bonnet-scalar (EMGBS) theories with the
coupling of a charged scalar hair and the Gauss–Bonnet (GB)
term [9], whose equations of motion remain second order
as in the Horndeski case. The organization of this paper is
as follows. In Sect. 2, we consider the set-up for EMGBS
theories in arbitrary dimensions and obtain the equations of
motion for a static and spherically symmetric ansatz. In Sect.
3, we consider the radially conserved scaling charge and “no
scalar-haired Cauchy horizon theorem” for charged GB black
holes. In Sect. 4, we consider the near horizon relations for
the fields and the condition of scalar field at the horizons. In
Sect. 5, we consider numerical black hole solutions with a
Cauchy horizon in asymptotically anti-de Sitter (AdS) space
and find good agreements with the theorem. In Sect. 6, we
conclude with several remarks. In Appendix D, in addition,
we prove a no-go theorem for charged de Sitter black holes
(with or without GB terms) with charged scalar hairs in arbi-
trary dimensions.
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2 The action and equations of motion

As the set-up, we start by considering the D-dimensional
Einstein–Maxwell–Gauss–Bonnet–scalar (EMGBS) action,
up to boundary terms, with a U (1) gauge field Aμ and a
charged (complex) scalar field ϕ,

I =
∫

dDx
√−g

[
1

κ
R + Lm

]
, (1)

Lm = − Z(|ϕ|2)
4κ

FμνF
μν − α(Dμϕ)∗(Dμϕ) − V (|ϕ|2)

+β(|ϕ|2)
(
Rμναβ R

μναβ − 4Rαβ R
αβ + R2

)
, (2)

where Fμν ≡ ∇μAν − ∇ν Aμ, Dμ ≡ ∇μ − iq Aμ with the
scalar field’s charge q, and κ ≡ 16πG. Here, we have intro-
duced Z , V , and β as arbitrary functions of |ϕ|2, as well as
the usual minimal coupling α. Note that the last term is the
(quadratic) Gauss–Bonnet (GB) term [9], which is a topo-
logical, i.e., total-derivative, term in D = 4 for a constant
coupling β so that it does not affect equations of motion and
the local structure of spacetime.

Let us now consider the general maximally symmetric and
static ansatz,

ds2 = −h(r)dt2 + 1

f (r)
dr2 + r2d�D−2,k,

ϕ = ϕ(r), A = At (r)dt, (3)

where d�D−2,k is the metric of (D − 2)-dimensional unit
sphere with the spatial curvatures which are normalized as
k = 1, 0,−1 for the spherical, planar, hyperbolic topologies,
respectively. The equations of motion [Here, we consider
D = 4 case for simplicity but we will discuss about higher-
dimensional cases later, which are straightforward (for the
details, see Appendix A)] are given by,

EAt ≡ 1

κ

(
Z(|ϕ|2)

√
f

h
r2A′

t

)′
− 2q2αr2|ϕ|2At

f

√
f

h
= 0,

(4)

Eϕ ≡
(√

h

f
f αr2ϕ′

)′
+ q2αr2A2

t ϕ

h

√
h

f

+r2

(
1

2κ

√
f

h
Ż A′

t
2 −

√
h

f
V̇

)
ϕ + β̇ϕG = 0, (5)

Eh ≡ 2

κ

(
f − k + r f ′)+ r2V (|ϕ|2) + f αr2|ϕ′|2

+ r2

2h

(
1

κ
Z f A′

t
2 + 2αq2|ϕ|2A2

t

)

+8β̇
[
(k − 3 f ) f ′|ϕϕ′| + 2 f (k − f )(|ϕ′|2

+|ϕϕ′′|)]+ 32β̈ f (k − f )|ϕϕ′|2 = 0, (6)

E f ≡ 2

κ

(
f − k + r f ′

(
h′

h

))
+ r2V (|ϕ|2) − f αr2|ϕ′|2

+ r2

2h

(
1

κ
Z f A′

t
2 − 2αq2|ϕ|2A2

t

)

+8β̇
f

h
(k − 3 f )h′|ϕϕ′| = 0, (7)

where G is the GB density in D = 4,

G ≡ 2√
f h3/2

[
(k − f ) f h′2

−h
(
(k − 3 f ) f ′h′ + 2(k − f ) f h′′) ] . (8)

[The prime (′) and dot (˙) denote the derivatives with respect
to r and |ϕ|2, respectively] Here, (4), (5) are the equations for
the gauge field At and the scalar field ϕ, and (6), (7) are for the
metric functions h, f , respectively. As far as we know, there
is no exact solution for the charged GB black holes (i.e., with
a gauge field At ) with the scalar field’s charge q and the field-
dependent coupling β(|ϕ|2). In this paper, we will consider
numerical solutions of the above non-linear ODE (4) ∼ (7)
by shooting method and study the black hole’s interior space-
time, as well as the exterior space-time. But before that, in
the next section we first study the “no scalar-haired Cauchy
horizon theorem” to see whether it can be extended to the
case with the GB coupling also.

3 No scalar-haired Cauchy horizon theorem

In this section, we consider the “no scalar-haired Cauchy
horizon theorem” for charged GB black holes with a charged
(complex) scalar hair. One of the key ingredients in the proof
of the theorem is the existence of the radially conserved scal-
ing charge,

Q = (D − 2)r D−3

√
f

h

[
1

κ

(
rh′ − 2h − r Z At At

′)

−2(D − 3)

r2 f (rh′ − 2h)
(
(D − 4)β + 4r |ϕϕ′|β̇)

]

+k
∫ r

dr r D−4

{
2(D − 2)(D − 3)

√
h

f

×
[

1

κ
− 4β̇

(
|ϕ( f ′ϕ′ + 2 f ϕ′′)| + 2 f |ϕ′|2

)

−16β̈ f |ϕϕ′|2
]

+ (D − 4)(D − 3)(D − 2)

r
√

f h3/2

×
[
β
(
rh( f ′h′ + 2 f h′′) − 6 f ′h2 − r f h′2)

+4β̇ f h(rh′ − 6h)|ϕϕ′|
]
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+
∑D

n=5(n − 5)(n − 4)(n − 3)

r2
√

f h

× 8β
[
r f h′ + 2(k − 2 f )h

] }
, (9)

where we have recovered the full dimensional dependencies.
1 From the equations of motion (4)–(7), one can prove that Q
is radially conserved, i.e., r-independent, due to a remarkable
relation,

Q′ = 2

√
f

h

[
r

(
h

f
E f

′ + 1

2

h′

f
E f

)

+
(

(D − 2)
h

f
+ r

2

h′

f

)
Eh

+ r

2
h|ϕ′ Eϕ | + 1

2

(
(D − 2)At + r A′

t

) EAt

]
= 0, (10)

where E f = E f r D−4/2, Eh = −Ehr D−4/2, Eϕ =
2Eϕ/

√
f h, EAt = −EAt

√
h/ f represent the (rescaled)

equations of motion for the fields f, h, ϕ, and At , respec-
tively.

For the planar topology, i.e., k = 0, the local charge Q is
the Noether charge associated with a scaling symmetry (for
the details, see Appendix B) [10]. For non-planar topologies,
i.e., k = +1 (spherical topology), or k = −1 (hyperbolic
topology), one can still construct a radially conserved charge
Q by including the non-local parts with space integrals so
that the non-conserved terms from the local parts are exactly
canceled [4–6].

Now, due to the r -independence of the scaling charge Q,
one can consider the charges at the horizons, in particular,
the outer event horizon r+ and the inner Cauchy horizon r−,
if exists, so that we have

(D − 2)

κ

⎡
⎣r D−2+

√
f

h

(
h′ − Z At A

′
t

)∣∣∣∣∣
r+

−r D−2−

√
f

h

(
h′ − Z At A

′
t

)∣∣∣∣∣
r−

⎤
⎦

= −k
∫ r+

r−
dr r D−4

{
2(D − 2)(D − 3)

√
h

f

×
[

1

κ
− 4β̇

(
|ϕ( f ′ϕ′ + 2 f ϕ′′)| + 2 f |ϕ′|2

)

−16β̈ f |ϕϕ′|2
]

+ (D − 4)(D − 3)(D − 2)

r
√

f h3/2

×
[
β
(
rh( f ′h′ + 2 f h′′) − 6 f ′h2 − r f h′2)

1 We thank Yizhou Lu for an earlier collaboration in obtaining the full
dimensional dependencies.

Fig. 1 Typical plots of f (r) and h(r) for a non-extremal charged black
hole with the inner (Cauchy) horizon r− and the outer (event) horizon
r+. Due to the non-vanishing Hawking temperature at the Killing hori-
zon r± with f |r± ∼ h|r± = 0, we have f ′ ∼ h′ > 0 at the outer
horizon r+, but f ′ ∼ h′ ≤ 0 at the inner horizon generally, if exists
(orange, solid line). In the absence of the inner horizon, f ′ and h′ can
have arbitrary values but there is no inner point of f ∼ h = 0 (blue,
dashed line)

+4β̇ f h(rh′ − 6h)|ϕϕ′|]

+
∑D

n=5(n − 5)(n − 4)(n − 3)

r2
√

f h

× 8β
[
r f h′ + 2(k − 2 f )h

] }
. (11)

From the property h′√ f/h|r− ≤ 0 at the assumed inner
horizon r− and for non-extremal black holes with the finite
Hawking temperature or surface gravity ∼ h′√ f/h|r+ > 0
at the outer horizon r+ with f |r± ∼ h|r± = 0, the purely
metric-dependent terms in the left-hand side of (11) are pos-
itive , i.e., non-negative (Fig. 1). Moreover, one can prove
that At needs to be zero at the horizons,

At (r+) = At (r−) = 0, (12)

from the regularity at the horizons with “charged” (complex)
scalar fields [4,5] so that the gauge field terms in the left-hand
side of (11) vanish at the horizons. This regularity condition
is another key ingredient for the proof of the theorem (see
Appendix C for the proof of (12)).

Hence, the left-hand side of (11) is always positive if the
two horizons exist, which is consistent with the relation (11)
only if the right-hand side is also positive: This is a neces-
sary condition (but not sufficient) for the existence of the
inner horizon with the outer horizon (or the existence of the
outer horizon with the inner horizon), from the radial conser-
vation of the scaling charge Q. Otherwise, the assumption of
existence of the inner (or outer) horizon with charged scalar
hairs will not be true, which results in a no-go theorem for
the scalar-haired Cauchy horizon. This is a powerful theo-
rem since it does not depend on the details of scalar potential
V (|ϕ|2), contrary to the usual no-hair theorems.
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In addition, if there is another horizon, exterior to the outer
horizon r+, i.e., the cosmological horizon r++ in asymptot-
ically de Sitter space, one can prove also a no-go theorem
for charged de Sitter black holes (with or without GB terms)
with charged scalar hairs, since (12) can not be satisfied for
both the outer horizon and the cosmological horizon (see
Appendix D for the proof).

Then, for k = 0, one can easily find that (11) can not be
satisfied since the right-hand side is zero which is in contra-
diction to the non-vanishing (positive) left-hand side. This
means “no smooth inner (Cauchy) horizon with the outer
horizon” can be formed for black planes.

However, for k 	= 0, the right-hand side does not have a
definite sign generally with the GB terms (β 	= 0), and so
there is no simple condition for the (non) existence of the
inner (or outer) horizon associated with non-planar topolo-
gies. This implies that, for k = +1 (black holes with spher-
ical topology) or k = −1 (topological black holes with
hyperbolic topology), we may have a Cauchy horizon due
to GB terms, depending on the solutions. For example, if
we consider the D = 4 case, for simplicity, where only
the first integral in the right-hand side of (11) remains, all
the GB terms, except |ϕ( f ′ϕ′ + 2 f ϕ′′)|, are positive for
β̇(|ϕ|2), β̈(|ϕ|2) > 0 so that the no-inner-horizon theo-
rem in EMS theories could apply. However, the excepted
term can cause a problem in applying the theorem because
of the sign-changing behaviors of f ′ at the two horizons
with f |r± ∼ h|r± = 0, i.e., f ′|r+ > 0, f ′|r− < 0, unless
compensated by ϕ, i.e., ϕϕ′|r+ < 0, ϕϕ′|r− > 0, but
ϕϕ′′|r+ , ϕϕ′′|r− > 0. In higher dimensions, we might need
more complicated conditions.

This is in contrast to the EMS (Einstein–Maxwell–scalar)
theories (β = 0) [4] or EMH (Einstein–Maxwell–Horndeski)
theories with a positive coupling γ > 0 to Einstein tensor
[5], where (11) is inconsistent unless k = −1 so that “no
smooth inner (Cauchy) horizon with an outer horizon” can
be formed for k = 0 or k = +1.

However, even with GB terms, we have the general crite-
rion as follows, depending on the integral parts of (11): (a)
if the right-hand side (RHS) of (11) is zero or negative, the
inner (or outer) horizon can not be formed, (b) if RHS of (11)
is positive, the inner (or outer) horizon can be formed but not
necessarily always. We will see that this general criterion is
satisfied by the numerical solutions in Sect. 5.

4 Near horizon relations

In order to find numerical solutions for charged GB black
holes, it is useful to study behaviors of metric functions,
scalar and gauge fields near the horizons. To this end, we
first solve the equation for f (7), which is a quadratic poly-

nomial of f , and obtain

f −1 ≡ eB = −μ(r)±√μ(r)2 − 4ν(r)

2
, (13)

where2

μ(r)

= 2
(
4k|ϕϕ′|β̇ + r/κ

)
A′ + (

r2e−AZ A′2
t + 4

)
/2κ − αr2|ϕ′|2

−αq2r2e−A|ϕ|2A2
t − 2k/κ + r2V

,

(14)

ν(r) = −24|ϕϕ′|β̇A′

−αq2r2e−A|ϕ|2A2
t − 2k/κ + r2V

(15)

by introducing eA ≡ h(r) and eB ≡ f −1(r) for conve-
nience3. Here, we note that the first term in the denominator
∼ e−A|ϕ|2A2

t is finite and may not be neglected at the hori-
zons generally, with e−A → ±∞, At → 0, ϕ = f ini te.
Once the solutions for A(r), ϕ(r), and At (r) are obtained,
the metric function B(r) can be also obtained by (13). The
± roots depend on the topology parameter k and the region
we consider, i.e., the black hole interior r ∈ [r−, r+] or the
black hole exterior r ∈ [r+,∞] or deep interior r ∈ [0, r−].

By substituting eB from (13), the remaining Eqs. (4), (5),
and (6) with the three independent fields A, ϕ, At can be
written as

A′′ = P

S
, ϕ′′ = U

W
, A′′

t = R

Y
, (16)

while B ′ can be written as

B ′(r) = − ν′ + eBμ′

2e2B + eBμ
(17)

for both ± roots of eB . Here, P, S,U,W, R,Y are compli-
cated functions of (r, eB, eA, A′, ϕ′, A′

t , β̇, β̈) whose explicit
expressions are not shown here (for the computational details,
see Appendix E). Since A′′ diverges already at the horizons
and A′′

t is finite for regular solutions with a finite A′
t and the

condition of At = 0 (12) at the horizons, ϕ′′ gives the most
information at the horizons. For the solvability of the infor-
mation, we consider the case where the term ∼ e−A|ϕ|2A2

t
in the denominator of (14) and (15) can be neglected by
considering a rapidly-decaying gauge field at the horizons,
A2
t ∼ hδ (δ > 1), whilst satisfying (12) also. Then, one can

find that

ϕ′′ = C(ϕ, ϕ′, A′
t , T )A′ + O(1) (18)

2 For a real scalar field (q = 0) with the GB coupling β(ϕ), we may
simply replace 2ϕβ̇(|ϕ|2) in our results by β̇(ϕ) [11–13].
3 There is no loss of generality, with eA and eB , in analyzing the black
hole interior as well as the black hole exterior: One can still consider the
black hole interior with eA, eB < 0 by considering eA = −eÃ, eB =
−eB̃ with A = Ã ± iπ, B = B̃ ± iπ , and real functions Ã and B̃.
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and so, in order to have a regular scalar field with a finite ϕ′′
at the horizons, we need

C(ϕ, ϕ′, A′
t , T ) = 0 (19)

at the horizons rH , i.e., A → ∞, A′ → ±∞ (+∞ for r+,
−∞ for r−). Here, T ≡ h′ = eA A′ corresponds to Hawking
temperature (up to a finite factor) and given by

T = κr2Z A′2
t

[
2κr2Z

(
αq2r2e−A|ϕ|2A2

t + 2κk − r2V
)− Q̃2(r)

]
4Q̃2(r)(4k|ϕϕ′|β̇ + κr)

∣∣∣∣∣
rH

,

(20)

by keeping e−A|ϕ|2A2
t term for the sake of completeness,

which will be neglected in the next section for numerical
solutions, for simplicity. (See Appendix E for some relevant
computations and the explicit form of C(ϕ, ϕ′, A′

t , T )) Q̃(r)
is the black hole charge function by integrating the gauge
field equation (4),

Z

κ
e−(A+B)/2r2A′

t = Q̃(r), (21)

Q̃(r) = 2αq2
∫ r

rH
drr2e(B−A)/2|ϕ|2At + Q̃(rH ) (22)

so that we obtain, from (21),

eB = κ2Z2r4
H

Q̃2(rH )
A′
t
2e−A (23)

at the black hole horizons rH : By comparing (23) and the
near horizon expansion of (13) with T = eA A′, one can find
the temperature formula (20).

Then, solving the condition (19), we obtain the condition
of ϕ′|rH at the horizons from a finiteness of ϕ′′|rH . We note
that the condition of ϕ′|rH is important in obtaining numerical
solutions in the next section because it gives the proper initial
condition at the horizons. As we have noted above, we will
consider the rapidly vanishing gauge field At at the horizons
so that e−A|ϕ|2A2

t term in (14), (15), and (20) are neglected
for the solvability of (19).

5 Numerical solutions

In Sect. 3, we have proved that, for the planar topology
(k = 0) of charged GB black holes, the Cauchy horizon
with charged scalar fields can not be formed. However, for
non-planar topologies, i.e., spherical (k = 1) or hyperbolic
(k = −1) black holes, there is no simple condition for the
existence of the haired Cauchy horizons due to the GB term,
except a general criterion on the integral parts of the scaling
charge. In this section, we consider numerical solutions with
the scalar-haired Cauchy horizon for the hyperbolic case as
some explicit examples of our theorem.

In Fig. 2, we first present numerical solutions of the four-
dimensional (D = 4) hyperbolic charged GB black hole in

EMGBS gravity for the choice of the model

β(|ϕ|2) = λ|ϕ|2, V (|ϕ|2) = −6 + m2|ϕ|2, Z(|ϕ|2) = 1

(24)

with λ = 10−10, m2 = −0.183884, and q = 1.5. We choose
the outer horizon r+ ≈ 0.837565833 and the initial condi-
tions at r+ as follows (we have set κ ≡ α ≡ 1):

h(r+) = −10−10, h′(r+) = 1.23278,

At (r+) = 10−10, A′
t (r+) ≈ −0.927989424,

ϕ(r+) = 1.106834110, ϕ′(r+) = −0.165094,

Q̃(r+) = 0.650999915. (25)

Here, ϕ′(r+) and A′
t (r+) are determined by (19) and (20)

by T = h′(r+), respectively. By rewriting the second-order
equations of motion (4), (5), (6) into the first-order forms via
new variables H(r) ≡ h′(r), �(r) ≡ ϕ′(r), E(r) ≡ A′

t (r)
(after replacing f (r) and f ′(r) by (13) and (17), respec-
tively), we numerically solve the six differential equations
(with k = −1) by shooting method, for the variables
(h, H, ϕ,�, At , E) from r = r++ε to r = 104 for the black
hole exterior solution (we set ε = 10−9), and from r = r+−ε

to r = 10−8 for the black hole interior solution. We use
NDSolve of MATHEMATICA with PrecisionGoal
→ 26 and WorkingPrecision → 27.

The code for the black hole interior solution solves the
differential equations up to the inner Cauchy horizon at r− ≈
0.240558232 but does not solve beyond the inner horizon,
due to increasing numerical errors at r−. In order to obtain
the deep interior solution beyond the inner horizon, we need
to consider another set up of the code with now the initial
conditions at r− as follows, which can be determined from
the obtained numerical interior solutions:

h(r−) = 10−10, h′(r−) = −2.33135,

At (r−)=−10−10, A′
t (r−) ≈ 1.868563472,

ϕ(r−) = 1.140835529, ϕ′(r−) = −0.0560344,

Q̃(r−) = −0.137024. (26)

Here, in order to obtain the proper initial conditions of
h′(r−) and ϕ′(r−), we first determine the black hole charge
Q̃ from h′(r−) = −2.328970925, ϕ′(r−) = −537884.8323
which can be read naively from the interior solution, and use
(19) and (20). It is important to note that Q̃ is a quite stable
parameter in the numerical solutions and its first determina-
tion gives the reasonable initial conditions of ϕ′(r−) which
matches well with the interior solution, even with the high
values of naively-read ϕ′(r−) due to numerical errors at r−.

4 We choose the same tachyonic mass (m2 < 0) of the scalar field as
in [4]. Since it satisfies the Breitenlohner-Freedman (BF) bound m2 ≥
−9/4, it would be stable under small fluctuations in the global AdS
background [14].
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Fig. 2 Numerical solutions of the D = 4 hyperbolic charged GB
black hole (k = −1) with the model (24) and initial conditions (25)
in asymptotically AdS space. In the left panel, we plot f (orange),
h (blue), ϕ (green), At (purple), and they show the inner Cauchy
horizon at r− ≈ 0.240558232 as well as the outer event horizon at

r+ ≈ 0.837565833, where all the solutions are smooth. We find At = 0
at the two horizons, in consistent with the condition (12). In the right
panel, we plot r2/ f, 10r2/h, ϕ, At/70, and the solutions reveal the
asymptotically AdS-like behaviors f ∼ h ∼ r2 with ϕ ∼ 0 and a
finite At

By combining all the solutions in three different regions,
we obtain the whole region solution as in Fig. 2 (left panel),
which shows the smooth matchings at the inner and outer
horizons. Here, note that we need to use the ‘+’ root of
f −1 = eB in (13) for the black hole interior solution, and
the ‘−’ root of for the deep interior and black hole exterior
solutions, respectively. The exterior solutions in Fig. 2 (right
panel) show the asymptotically AdS-like behaviors f ∼ h ∼
r2 with ϕ ∼ 0 and finite At . Figure 3 shows the radially
conserved (i.e., constancy) of scaling charge, and its local
and integrand parts which show smooth matchings at the
horizons and so supports well our numerical solutions.

In Figs. 4 and 5, for a comparison, we present numerical
solutions of the corresponding hyperbolic charged black hole
in the EMS case (β = 0) for the same choice of the model

Fig. 3 Plots of the scaling charge Q (purple) together with its local
(blue) and integrand (orange) parts for the numerical solutions in Fig. 2.
The local and integrand parts are smooth at the horizons. We can see
also the radial conservation, i.e., constancy, of the charge Q, across the
horizons

(24) and initial conditions (25), as in [4]. Figure 4 shows
quite good agreements with Fig. 2 which can be considered
as EMS limit (β → 0) so that it can be a consistency check of
our numerical method. Actually, we reproduce the numerical
solutions in [4] (Fig. 3) but without using the complexified
integration to avoid the coordinate singularity at the inner
horizon which can not be applied to our case with GB term,
due to different roots of f −1 = eB (13) in different regions:
There is only one root of eB in (13) without GB term (β = 0)
and one has the same field equations for the whole region.
One difference is the last point of the deep interior solution
where the numerical computation stops, r ≈ 0.0000262,
which is smaller than r ≈ 0.0038097 for Fig. 2 and might
indicate a possible GB effect near r = 0.

In Fig. 6, we present another numerical solution of the
D = 4 hyperbolic charged GB black hole in EMGBS gravity
for the model with

λ = 10−3, m2 = −0.18, q = 2.5. (27)

We choose initial conditions

r+ = 0.91, h(r+) = −10−10, h′(r+) = 2.48104 × 10−8,

At (r+) = 10−10, A′
t (r+) = 10−4,

ϕ(r+) = 0.682, ϕ′(r+) = −0.0918761, Q̃(r+) = 0.65.

(28)

Using the same method as in Fig. 2, we obtain the numer-
ical solutions for the black hole interior and exterior as
shown in Fig. 6. But, in this case no deep interior solution
is found due to higher numerical errors at the inner horizon
r− ≈ 0.132916515. For the exterior solution, we can see the
similar AdS-like behaviors in f (r), h(r), ϕ ∼ 0 and finite At

as in Fig. 2. Figure 7 shows the radial conservation of Q as

123



Eur. Phys. J. C (2024) 84 :168 Page 7 of 13 168

Fig. 4 Numerical solutions of a D = 4 hyperbolic charged black hole
in EMS gravity with the same model (24) and initial conditions (25)
in asymptotically AdS space. This agrees well with Fig. 2 and also the

earlier result in [4], but without the complexified integration to avoid the
coordinate singularity problem at the inner horizon

well as its local and integrand parts with smooth matchings
at the horizons and so supporting our numerical solutions.

In all the numerical solutions, we find that (a) the van-
ishing gauge field condition (12), At (rH ) = 0 and (b) the
general criterion for the existence of an inner Cauchy hori-
zon, i.e., negativeness of RHS in (11) (or integrand of Q
in Figs. 2, 5, and 7) are satisfied. On the other hand, at the
asymptotic boundary (r = 104 in our analysis), we find that
r2/ f ≈ 1, ϕ ≈ 0, r2/h and At approach to finite values with
vanishing derivatives. This indicates the AdS-like behaviors
of f, h ∼ r2, At ∼ 1/r, ϕ ∼ 1/ra with a > 0 5.

6 Concluding remarks

In conclusion, we have studied an extension of the “no
scalar-haired inner (Cauchy) horizon theorem” to the
electrically charged Gauss–Bonnet (GB) black holes in
Einstein–Maxwell–Gauss–Bonnet–scalar (EMGBS) theo-
ries with charged (complex) scalar fields. We have found that
the condition of vanishing gauge field At = 0 at the horizons
from the regularity of equations of motion is unchanged even
with GB coupling. We have computed the radially conserved

5 From the leading terms in large r expansion of the scalar field equation

(5), we obtain a =
(

3 ± √−96λ + 9 + 4m2
)

/2 for the model (24)

(κ, α ≡ 1), which generalizes the BF’s result to GB gravity [14]. Our
numerical solutions correspond to a− ≈ 0.06, a+ ≈ 2.94 (Figs. 2, 4)
and a− ≈ 0.07, a+ ≈ 2.93 (Fig. 6) with the leading power a = a−. The
relatively larger values of the scalar fields (0.0377 for Fig. 2 (or Fig. 3),
0.0048 for Fig. 6) at our largest but finite r boundary will be due to their
slowly-varying behaviors with the leading power of a−. However, there
are some unusual complications in obtaining the full large r expansion,
due to double roots of a, and its consistent asymptotic solution is still
unclear.

Fig. 5 Plots of the scaling charge Q (dots) and its local (solid line),
integrand (dashed line) parts for the numerical solutions in Fig. 4

scaling chargeQ for GB coupling β(|ϕ|2) in arbitrary dimen-
sions D.

From the constancy of scaling charge Q at the outer
and inner horizons, we have obtained the no scalar-haired
Cauchy horizon theorem for k = 0, i.e., “no scalar-haired
inner (Cauchy) horizon for planar (k = 0) black holes”.
For k = 1 (spherical) or k = −1 (hyperbolic) black hole,
a simple condition for the no scalar-haired theorem is not
available due to some terms in the integral part of Q which
do not have definite signs in the black hole interior region,
but one can still consider a general criterion for applying
the theorem, depending on the resulting sign of the inte-
gral part. This means that a Cauchy horizon with non-trivial,
charged scalar hairs might exist even for k = 1, contrary
to Einstein–Maxwell–scalar (EMS) or Einstein–Maxwell–
Horndeski (EMH) theories, as a genuine GB effect.

We have obtained numerical solutions with the inner hori-
zon for k = −1 and in the asymptotically anti-de Sitter space.
For a very small GB coupling parameter λ = 10−10, we have
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Fig. 6 Numerical solutions of a D = 4 hyperbolic charged GB black
hole with the model (27) and initial condition (28). In the left panel, we
plot f (orange), 108h (blue), ϕ (green), 104At (purple), and no solu-
tion is found for the deep interior region due to high numerical errors

at the inner horizon r− ≈ 0.132916515. In the right panel, we plot
r2/ f, r2/(108h), 2ϕ, 104At/45, and they show the AdS-like behaviors
in f , h, ϕ ∼ 0 and finite At as in Fig. 2

Fig. 7 Plots of the scaling charge Q (purple) and its local (blue), inte-
grand (orange) parts for the numerical solution in Fig. 6

obtained a solution covering the whole region of r ∈ [0,∞],
which agrees with EMS solution of [4], but without the “com-
plexification” method to obtain the deep interior solution of
r ∈ [0, r−]. On the other hand, for λ = 10−3, we have
obtained solutions for the inner and exterior regions, i.e.,
r ∈ [r−,∞] from the initial conditions at the outer horizon
r+, but no solution is found for the deep interior region of
r ∈ [0, r−] due to increased errors in finding initial condi-
tions at the inner horizon. We have checked the radial conser-
vation, i.e., constancy of the scaling chargeQ and the general
criterion of the scalar-haired Cauchy horizon in the obtained
numerical solutions.

However, we were not able to find numerical solutions
with the inner horizon for k = 1, which might exist due to
a GB effect. From the no-go theorem for k = 1 in EMS
theories [1–4], we expect that the solution may exist in the
non-GR branch, where the GB coupling is not small. On the
other hand, in Appendix D, we have shown a no-go theorem

for charged de Sitter black holes (with or without GB terms)
with charged scalar hairs.

It would be a challenging problem to obtain the whole
range solutions including the deep interior solutions for a
sizable coupling λ ∼ O(1) also, by controlling the numeri-
cal errors at the inner horizons more efficiently. There is no
known exact charged GB black hole solution with complex
scalar hairs as far as we know. It would be interesting to see
whether some exact haired solutions can be found by con-
sidering some special potential and to study the GB effect on
the interior and deep interior spaces.
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Appendix A: Full equations of motion in arbitrary
dimensions

In this Appendix, we present the reduced action for the gen-
eral static ansatz (3) and full equations of motion in arbitrary
dimensions D, generalizing the D = 4 case (4)–(7) in the
text. First, the reduced action reads, up to boundary terms,

I =
∫

dDx
√−g

(
1

κ
R + Lm

)

= �D−2,k

∫
dtdr

×
[
r D−3

√
f h

{
(D − 2)h

κr

(
(D − 3)(k − f ) − r f ′)

+r f Z(|ϕ|2)
2κ

A′2
t

+αq2r |ϕ|2A2
t − αr f h|ϕ′|2 − rhV (|ϕ|2)

}

+β(|ϕ|2) G1 + |ϕϕ′|β̇(|ϕ|2) G2

]
, (A1)

where

G1 ≡ (D − 4)(D − 3)(D − 2)

×
√

h

f
r D−6( f − k)

[
(D − 5)( f − k) + 2r f ′] , (A2)

G2 ≡ 4(D − 3)(D − 2)

√
f

h
r D−4(k − f )h′ (A3)

are the contributions from the GB term and �D−2,k is the
volume of (D−2)-dimensional hypersurface for a curvature
parameter k. Varying the above action leads to the following
equations for At , ϕ, h, and f

EAt ≡ 1

κ

(
Z(|ϕ|2)

√
f

h
r D−2A′

t

)′

−2q2αr D−2|ϕ|2At

f

√
f

h
= 0, (A4)

Eϕ ≡
(

αr D−2ϕ′ f

√
h

f

)′
+ q2αr D−2A2

t ϕ

h

√
h

f

+r D−2

(
1

2κ

√
f

h
Ż(|ϕ|2)A′

t
2 −

√
h

f
V̇ (|ϕ|2)

)
ϕ

+ϕβ̇(|ϕ|2)
(
G1 − 1

2
G′

2

)
= 0, (A5)

Eh ≡ (D − 2)(D − 3)

κ

(
f − k + r f ′

D − 3

)

+r2V (|ϕ|2) + α f r2|ϕ′|2

+ r2

2h

(
1

κ
Z(|ϕ|2) f A′

t
2 + 2αq2|ϕ|2A2

t

)

+2
√

f h

r D−4

( |ϕϕ′|β̇(|ϕ|2)
h′(r)

G2

)′

− 1

r D−4

√
f

h

(
β(|ϕ|2)G1 − |ϕϕ′|β̇(|ϕ|2)G2

) = 0,

(A6)

E f ≡ (D − 2)(D − 3)

κ

(
f − k + r f

D − 3

(
h′

h

))

+r2V (|ϕ|2) − α f r2|ϕ′|2

+ r2

2h

(
1

κ
Z(|ϕ|2) f A′

t
2 − 2αq2|ϕ|2A2

t

)

+ (|ϕϕ′|β̇(|ϕ|2)H1 + β(|ϕ|2)H2
)G2 = 0, (A7)

where

H1 ≡
√

f

h

[
2(D − 4)h(k − f ) + r(k − 3 f )h′]

r D−3(k − f )h′ , (A8)

H2 ≡ (D − 4)

4r D−2h′

[√
h

f
(D − 5) ( f − k) +

√
f

h
2rh′

]
. (A9)

We note that, for D = 4, there is only the G2 term with a non-
vanishing coefficient β̇(|ϕ|2), whereas for higher dimensions
D > 4, there are both G1 and G2 terms with an arbitrary
β(|ϕ|2). On the other hand, there is no GB contribution for
the lower dimensions, i.e. D = 3, 2.

Appendix B: Computational details of scaling charge
formulas (9) and (10)

In this Appendix, we present computational details of the
scaling charge formula (9) and its radial conservation equa-
tion (10). Let us first start with the action (1) and, for the sake
of computational simplicity, consider the planar metric with
the following coordinate choice,

ds2 = −a(ρ)2dt2 + dρ2 + b(ρ)2dx2
D−2 (B1)

with (D − 2)-dimensional planar metric dx2
D−2. Employing

the same ansatz (3) for the scalar and gauge fields’, it is
straightforward to show that the action (1) is invariant under
the following finite scaling transformations

a(ρ) → λ2−Da(ρ), (B2)

b(ρ) → λb(ρ), (B3)

At (ρ) → λ2−D At (ρ) (B4)

with an arbitrary constant parameter λ > 0. Here, we note
that the radial coordinate ρ as well as the scalar field ϕ is
not transformed and this makes our computation simpler:
If we need a scaling transformation for ρ also, the radial
derivatives for the fields do not simply transform as (B2)-(B4)
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and this makes the computation more complicated. Then, to
find the Noether charge we use a field theory trick where the
global symmetry parameter λ is localized as λ(ρ) and then
the Noether charge is the coefficient of λ′(ρ) in the variation
of the action. The validity of this trick with higher derivatives
and “higher-level” analogs of Noether’s theorem were proved
in [15] and the corresponding Noether charge Q reads from
the coefficient of λ′′(ρ) in the variation of the action.

Computing the transformation of action, we find the con-
served scaling Noether charge [16]

Q = 2

κ
(D − 2)

(
a′bD−2 − abD−3b′)

− (D − 2)bD−2At A′
t Z
(|ϕ|2)

κa
+4β(|ϕ|2)(D − 4)(D − 3)(D − 2)bD−5

×
(
ab′3 − a′bb′2)

+16β̇(|ϕ|2)|ϕϕ′|bD−4b′(ab′ − a′b). (B5)

The radial derivative of (B5) is combination of field equations
which indicates that it is conserved “on-shell”

Q′ = (D − 2)

(
aEa − bEb

(D − 2)
+ At EAt

)
, (B6)

where Ea, Eb, EAt are the field equations of a, b, At , respec-
tively.

Here, it is important to note that the scaling symmetry and
its associated local charge (B5) is valid only for the planar
topology [10]. In other words, if we move onto the spherical
(or hyperbolic) topology with the corresponding metric

ds2 = −a(ρ)2dt2 + dρ2 + b(ρ)2d�D−2 (B7)

and (D − 2)-dimensional spherical (or hyperbolic) metric
d�D−2, one finds that the action (1) is not invariant under the
finite transformations (B2)–(B4) by the k-dependent terms.
However, one can still construct a conserved charge by sim-
ply adding the space integral of all the non-conservation
terms in (B6) with a minus sign [4,5] so that all the non-
conservation terms are canceled. But in this case, the con-
served charge has non-local (i.e. integral) terms as well as
the usual local terms, and so it seems that there is no relation
to the action invariance and it is beyond the Noether’s theo-
rem. Following this idea and a coordinate transformation to
our main metric (3), we find the conserved charge formula
(9) with the radial conservation Eq. (10).

Appendix C: Proof of At = 0 at the horizons for
charged GB black holes with charged
(complex) scalar hairs

In this Appendix, we present a proof of the condition (12),
At = 0 at the horizons rH for charged GB black holes with

charged (i.e., complex) scalar hairs. This is one of the key
ingredients in our “no scalar-haired Cauchy horizon theo-
rem”.

To this end, we first note that ‘qϕAt |rH = 0’ from the
regularity (i.e., no singularities) of the equations of motion
(4)–(7) at the horizons rH . [Here, we consider D = 4 case
for simplicity but the result is unchanged for arbitrary higher
dimensions also] Then, in order to avoid the horizon singu-
larities in (4)–(7) for the charged scalar field (q 	= 0), we
need to consider either (a) At |rH = 0 or (b) ϕ|rH = 0 with
At |rH 	= 0. We will prove that the case (a) is the only possible
condition for hairy black holes with a smooth scalar field ϕ.

Aiming for the proof by contradiction [4], let us first sup-
pose that the case (b) is true. From the smoothness of ϕ, one
can consider the Taylor expansion near the horizons rH ,

ϕ(r) = ϕmδm + ϕm+1δ
m+1 + · · · (C1)

with ϕm ≡ 1
m!ϕ

(m)|rH 	= 0 (m ≥ 1) and δ ≡ r − rH . Simi-
larly, from the smoothness of

√
g ∼ √

f/h at the horizons,
one can consider the metric functions’ expansions,

h(r) = hnδ
n + hn+1δ

n+1 + · · · , (C2)

f (r) = fnδ
n + fn+1δ

n+1 + · · · (C3)

with hn, fn 	= 0 (n ≥ 1). From the smoothness of the scalar
equation (5), we need m ≥ n and then (5) becomes

2αr2
Hϕm

(
q2A2

t |rH + m2 f1h1

)
+ O(δ) = 0, (C4)

by considering the non-extremal black hole, i.e., n = 1, for
simplicity. Then, it is easy to see that there is no way to
satisfy (C4) for the case (b) with ϕm 	= 0 at the leading
order and for the Killing horizons with f1 ∼ h1, up to a
positive factor, from the surface gravity κH ∼ f ′|rH ∼ h′|rH .
Actually, the resulting leading terms in (C4) are the same as
in EMS theories, even though there are GB corrections in
the subleading terms. This proves that the case (b) can not
be correct and the case (a) is the only correct condition.6 All
these proofs are unchanged for any higher value of m ≥ n
and arbitrary higher dimensions D ≥ 4, where (A5) becomes

2αr2
Hr

D−4
H ϕn

[
q2A2

t |rH + m(m + n − 1) fnhnδ
2m−2

]

+O(δn) = 0. (C5)

Appendix D: Proof on general behaviors of At(r) with
At |rH = 0

In this Appendix, we present a proof on general behaviors of
At (r) when the property of At |rH = 0 (12) is satisfied for
charged scalar hairs with q 	= 0.

6 Recently, we became aware of an earlier discussion on the condition
(a) in a different context [17,18].
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Fig. 8 In the left panel, we plot the behaviors of At (r) with extremum
points r∗ and At |rH = 0 at the horizons rH . In the right panel, we con-
sider the generic case with the inner horizon r− and the cosmological
horizon r++, as well as the outer horizon r+. When there is a cosmo-

logical horizon in de Sitter black holes, At (r) can not be zero due to the
monotonicity property in the black hole exterior region r ∈ [r+, r++]
from (D1). But this is in contradiction to the property of At |rH = 0 at
the horizons rH

We first prove that “there is no local extremum of At (r)
for the time-like region with f, h > 0”. In order to prove
this, we first consider a maximum point r∗ where A′

t |r∗ =
0, A′′

t |r∗ < 0 are satisfied. Then, the gauge field equation (4)
becomes

A′′
t |r∗ = 2αq2A2

t |ϕ|2
f Z

∣∣∣∣
r∗

(D1)

at the extremum point r∗ in arbitrary dimensions. 7 If we
consider a positive At (r) in the region starting from rH (Fig.
8 (left), upper curve) with At |rH = 0 (12) (Appendix C),
then it is easy to find that the maximum point r∗ with A′′

t |r∗ <

0 (At > 0) is not possible unless f, h < 0, i.e., the space-
like region since we have assumed charged scalar fields with
q 	= 0 and a non-minimal coupling factor Z(|ϕ|2) > 0.

Similarly, one can also prove that there is no local min-
imum point r∗ with A′

t |r∗ = 0, A′′
t |r∗ > 0 for a negative

At (r) in the region starting from rH with At |rH = 0, unless
f, h < 0 (Fig. 8 (left), lower curve). Our proof is essen-
tially the same as that of [4] but with a simple manner in our
context.

So, we have proved that At can have a local extremum only
in the black hole interior region r ∈ [r−, r+] (Fig. 8 (right)),
in order to be consistent with the condition of At |rH = 0 (12)
for charged scalar hairs. We have confirmed this property
in the numerical solutions for asymptotically anti-de Sitter
space in Sect. 5.

One remarkable corollary is, as noted in Sect. 3, that “there
is no de Sitter (dS) black holes with charged scalar hairs

7 (D1) has no GB effect and it is the same as that of [4]. But,
with the Einstein coupling (constant) γ in Horndeski theories, (D1)

becomes A′′
t |r∗ = 2q2 A2

t |ϕ|2
r2 f Z

[αr2 + γ (k − f ) − γ f f ′]
∣∣∣
r∗

in D = 4,

for simplicity, and we have the same result on the extremum of At if
[αr2 + γ (k − f ) − γ f f ′] > 0 is satisfied.

in EMS or EMGBS theories in arbitrary dimensions” and
it can be simply proved as follows. First, suppose that we
apply the above property on the extremum of At to the black
hole exterior region r ∈ [r+, r++] for the black hole horizon
r+ and the cosmological horizon r++, then one easily find
that At needs to be monotonically increasing or decreasing,
depending on its value in the interior region r ∈ [r−, r+]
(see Fig. 8 (right)). Then, At at the cosmological horizon
r++ will not be vanished but this is in contradiction to the
property of At |rH = 0 (12) for charged scalar hairs. This
proves the above no-go theorem for charged dS black holes
with charged scalar hairs.8 Of course, this does not exclude
the neutral, i.e., real scalar hairs for charged dS or charged
scalar hairs for neutral dS black holes. Another interesting
possibility of evasion of the no-go theorem is the case with
Einstein coupling in Horndeski theories (see footnote No. 4)
if [αr2 + γ (k − f ) − γ f f ′] < 0 is satisfied in the region
r ∈ [r+, r++].

Appendix E: Relevant computations on (19)

In this Appendix, we present the computational details on the
relation (19) in Sect. 4. Here, for the sake of computational
simplicity and practical purpose in the numerical solutions,
we consider the D = 4 case. Let us begin by considering the
functions P, S,U,W, R,Y given in (16)

P ≡ −2αr2eA+4B
(
r2κ

(
2eB + μ

)
V − 4

(
keB − 1

))

+2r2e3B
{

− 2αq2κeBϕ2A2
t

(
αr2eB−16

(
keB−1

)
β̇
)

−A′2
t

(
αr2eB Z − 16ϕ2

(
keB − 1

)
β̇ Ż

)}
+

8 For a more general proof in D = 4, see [19].
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−4eA
{

16κϕ2
(
keB − 1

)(
A′ (keB − 3

)
ν′β̇2

+2e2B A′2 (keB − 1
)

β̇2 + 2αr2e3Bϕ′2β̈ + r2e4B β̇ V̇

)

−eBμ′ [αr3e2B

+8κϕβ̇
(

2ϕA′ (keB − 3
) (

keB − 1
)

β̇ − αr2eBϕ′)]

−8ακrϕϕ′β̇
(
e2B(keB − 1)

(
r A′ + 4

)+ rν′)

+αr2e2B
[
κeBϕ′2 (16

(
keB − 1

)
β̇ + αr2eB

)
+ rν′] }

+eBμ

{
2κeA

[
− 16ϕ2

(
keB − 1

) (
2A′2 (keB − 1

)
β̇2

+2αr2eBϕ′2β̈ + r2e2B β̇ V̇
)

+8αreBϕ
(
r A′ + 4

) (
keB − 1

)
ϕ′β̇

−αr2eBϕ′2 (16
(
keB − 1

)
β̇ + αr2eB

) ]

+4αr2eA+2B
(
keB − 1

)
+ r2eB

×
[

− 2ακq2eBϕ2A2
t

(
αr2eB − 16

(
keB − 1

)
β̇
)

−A′2
t

(
αr2eB Z − 16ϕ2

(
keB − 1

)
β̇ Ż

) ]}
, (E1)

S ≡ 128κϕ2eA+B
(
keB − 1

)2 (
2eB + μ

)
β̇2, (E2)

U ≡ −2κr2eA+3B
(

2eB + μ
)
V − r2e2B

(
2eB + μ

)

×
(

2ακq2eBϕ2A2
t + Z A′2

t

)

+2eA
{
eBμ

[
κϕ′2 (−32ϕ2

(
keB − 1

)
β̈

−16
(
keB − 1

)
β̇ − αr2eB

)

+2eB
(
keB − 1

)]

−2e3B [κϕ′2 (16k
(
2ϕ2β̈ + β̇

)+ αr2)+ 2
]

−2eBμ′ (4κϕ
(
keB − 3

)
ϕ′β̇ + reB

)

−2eBν′ (4κkϕϕ′β̇ + r
)+ 4ke4B

+32κe2Bϕ′2 (2ϕ2β̈ + β̇
)+ 24κϕν′ϕ′β̇

}
, (E3)

W ≡ 32κϕeA+B
(
keB − 1

) (
2eB + μ

)
β̇, (E4)

R ≡ 4ακq2re2Bϕ2At

(
2eB + μ

)

+A′
t

{
Z
[
eB

(
μ
(
r A′−4

)−rμ′)+2e2B (r A′−4
)−rν′]

−4reBϕ
(

2eB + μ
)

ϕ′ Ż
}
, (E5)

Y ≡ 2reB
(

2eB + μ
)
Z , (E6)

where eB, μ, ν are functions of A, ϕ, At and their first radial
derivatives as given in (13)–(15), and (17). Without the gauge
field At , i.e., for neutral GB black holes (Q̃ = 0), the above
results correspond to those of [12] for a real scalar field φ

and the coupling parameter β = f (φ).
By expanding all the above functions and equations in (16)

near the horizons, i.e. taking A → ∞, A′ → ±∞ for r±, we
find the aforementioned constraint (19), C(ϕ, ϕ′, A′

t , T ) ≡
C1/C2 = 0 with

C1 ≡ (
4κkϕϕ′β̇+r

) {
256κ3T 2ϕ3ϕ′2β̇2 (r2V̇−4κkV β̇

)

+16κkTϕ2ϕ′β̇
[

8κrT
(
κV β̇

(
κr2V − 6k

)+ r2V̇
)

+A′2
t

(
r2 Ż

(
κr2V − 2k

)

+2κZ
(
2β̇

(
2 − 3κkr2V

)+ r4V̇
)) ]

+2ακr3Tϕ′ (κr2V − 2k
) (
r Z A′2

t + 4T
)

+ϕ

(
− 8κβ̇

[
r2
(

κkV
(−4T 2 (ακr2ϕ′2 + 2

)

+r2Z2A′4
t + 4rT Z A′2

t

)+ 2κ2r2T 2V 2

+8ακT 2ϕ′2 − Z2A′4
t

)
+ 24T 2

]

+r3A′2
t Ż

(
κr2V − 2k

) (
r Z A′2

t + 4T
)

+κr4V̇
(
r Z A′2

t + 4T
)2
)}

C2 ≡ 2κT

{
− 2αkr4 (r Z A′2

t + 4T
)

+128κ3r3Tϕ2V 2β̇2 (kr − 2κϕϕ′β̇
)

+κrV
(
16κkTϕϕ′β̇

(
αr4 + 32κϕ2β̇2)

+αr5 (r Z A′2
t + 4T

)− 32κrϕ2β̇2 (r Z A′2
t + 20T

))

+64κkϕ2β̇2 (r Z A′2
t + 12T

)− 32ακr3Tϕϕ′β̇
}

(E7)

from the finite ϕ′′ at the horizons. Here, we note that the
results on C1 and C2 depends on the value of the topology
parameter k and where we evaluate, as eB does in (13). In
the above, we showed the negative root case for the k = −1
case and the outer horizon of the black hole interior. Now, by
solving the constraint C1 = 0 (C2 	= 0 generically) in terms
of ϕ′, we find three roots

ϕ′± ≡ D±/D̃, (E8)

D± ≡ 4κrT 2
[
κ
(

16kr2ϕ2β̇ V̇ + 16κkϕ2V β̇2

×
(
κr2V − 6k

)
+ αr4V

)
− 2αkr2

]

+κT A′2
t

[
8kr2ϕ2β̇

(
Ż
(
κr2V − 2k

)
+ 2κr2Z V̇

)

+32κkϕ2Z β̇2
(

2 − 3κkr2V
)

123
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+αr4Z
(
κr2V − 2k

) ]

±
{
κ2T 2

[(
− 8αkr3T + 4κrT

(
16kr2ϕ2β̇ V̇

+16κkϕ2V β̇2 ×
(
κr2V − 6k

)

+αr4V

)
+ A′2

t

[
8kr2ϕ2β̇

(
Ż
(
κr2V − 2k

)

+2κr2Z V̇
)

+ 32κkϕ2Z β̇2
(

2 − 3κkr2V
)

+αr4Z
(
κr2V − 2k

) ])2

−32ϕ2β̇

(
κkV

(
αr4 − 32κϕ2β̇2

)

−2r2
(
α − 4κϕ2β̇ V̇

))

×
[

− 8κβ̇
[
r2
(

2κT 2V
(
κr2V − 4k

)

+Z2A′4
t

(
κkr2V − 1

)

+4κkrT V Z A′2
t

)
+ 24T 2

]

+r3A′2
t Ż

(
κr2V − 2k

) (
r Z A′2

t + 4T
)

+κr4V̇
(
r Z A′2

t + 4T
)2
]]}1/2

, (E9)

D̃ ≡ 32κ2T 2ϕβ̇
(
κkV

(
32κϕ2β̇2 − αr4

)

+2r2
(
α − 4κϕ2β̇ V̇

))
, (E10)

ϕ′
3 = − r

4κkϕβ̇
. (E11)

Here, we have considered a rapidly vanishing gauge field At

at the horizons so that e−A|ϕ|2A2
t term can be neglected to

solve the condition C1 = 0, which is quite involved when
we keep the mentioned term. Note that these solutions are
valid only at the horizons rH , i.e., the outer event horizon

r+ or the inner Cauchy horizon r− and so they can be used
as the initial conditions for the numerical solutions. In our
numerical solutions, we have considered only the positive
root ϕ′+ because it only shows a smooth Einstein limit as
β → 0.
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