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Abstract We present a systematic study demonstrating the
impact of lattice QCD data on the extraction of generalised
parton distributions (GPDs). For this purpose, we use a previ-
ously developed modelling of GPDs based on machine learn-
ing techniques fulfilling the theoretical requirements of poly-
nomiality, a form of positivity constraint and known reduc-
tion limits. A special care is given to estimate the uncertainty
stemming from the ill-posed character of the connection
between GPDs and the experimental processes usually con-
sidered to constrain them, like deeply virtual Compton scat-
tering (DVCS). Moke lattice QCD data inputs are included in
a Bayesian framework to a prior model based on an Artificial
Neural Network. This prior model is fitted to reproduce the
most experimentally accessible information of a phenomeno-
logical extraction by Goloskokov and Kroll. We highlight the
impact of the precision, correlation and kinematic coverage
of lattice data on GPD extraction at moderate ξ which has
only been brushed in the literature so far, paving the way for
a joint extraction of GPDs.

1 Introduction

Generalised parton distributions (GPDs) were introduced in
the 1990s [1–3] and have been since then a very active topic
for theoretical and experimental studies (see e.g. the review
papers [4–6] among others). This interest is fuelled both by
the interpretation of GPDs as 3D number densities of quarks
and gluons within the nucleon [7,8] and by their connection
to the energy momentum tensor (EMT) [2,9].
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A recent study [10] pointed out the large magnitude of
uncertainty underlying the connection between GPDs and
the exclusive processes usually considered to constrain these
objects, such as deeply virtual Compton scattering (DVCS)
[11,12], timelike Compton scattering (TCS) [13] or deeply
virtual meson production (DVMP) [14,15]. More precisely,
the coefficient functions of these processes are not practi-
cally invertible, even when taking into account QCD cor-
rections on a large range of energy scale, and despite the
constraints brought by Lorentz covariance. The results of
[10] were confirmed in [16] for the JLab range of the skew-
ness ξ , defined as half of the momentum fraction transferred
on the lightcone. Accordingly, in this paper, we will con-
sider a range such that ξ ∈ [0.1, 0.5]. In this region, which
constitutes the bulk of the most precise experimental data
on DVCS, QCD evolution provides little help to alleviate
the so-called deconvolution problem. Recently, efforts were
conducted to produce GPD models giving a better account
of the uncertainty associated to the ill-defined extraction of
GPDs from exclusive processes. The study [17] shows that
when all the theoretical properties of GPDs (including pos-
itivity) are taken into account, the deconvolution uncertain-
ties are mostly present in the so-called Efremov-Radyushkin-
Brodsky-Lepage (ERBL) kinematic region.

The ambiguities of the DVCS, TCS and DVMP processes
have led to an on-going considerable theoretical and exper-
imental effort to characterise other exclusive processes with
richer kinematic structure. The best known case is double
DVCS (DDVCS) [18,19] where both the incoming and out-
going photons are deeply virtual. This additional kinematic
degree of freedom allows, at leading order and in a specific
kinematic range, the extraction of the “deconvoluted” GPDs.
A new analysis performed in [20] suggests that DDVCS is
measurable in near-future experiments. Recently, other pro-
cesses have been put forward such as di-photon production
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[21,22], photon meson pair production [23,24], or the more
general single diffractive hard exclusive processes [25,26].

In addition to the experimental inputs, a new source of
information regarding GPDs has emerged through lattice
QCD simulations. Indeed, new formalisms developed in [27–
30] have offered the possibility to connect non-local space-
like Euclidean matrix elements computed on the lattice to
lightlike ones through perturbation theory. We focus here on
two different formalisms. First, the large-momentum effec-
tive theory [28], known as the “quasi-distribution” formal-
ism, has triggered a lot of interest, both in terms of simu-
lation and perturbative computation regarding the so-called
matching kernels. GPD matching kernels have been com-
puted [31,32] and the first lattice QCD studies of GPDs have
been performed [33].

The second formalism, and the one we will be focusing
on through this paper, is known as “short-distance factori-
sation” or “pseudo-distribution” formalism [29]. Based on
a Lorentz decomposition of the Euclidean matrix elements,
it allows the extraction of parton distributions in Ioffe time
ν, that is the Fourier conjugate of the momentum fraction
x . This method was first introduced in [29], and steady pro-
gresses have been done since then, both on the perturbative
matching side [34–36], and on the lattice simulation one (see
for instance [37,38]). The formalism has two advantages:
working with ratios of matrix elements greatly simplifies the
renormalisation procedure and allows an easier extrapolation
to the continuum limit. It also presents continuous matching
kernels. However, this method - like any lattice-QCD attempt
to access lightcone distributions - comes with a difficulty in
the actual reconstruction of the momentum dependence of the
MS distribution. As only a restricted range of Ioffe times can
be probed numerically with acceptable noise levels, the inver-
sion of the Fourier transform to reconstruct an x-dependent
distribution is an ill-posed inversion problem, an imputation
problem. Several attempts have already been performed to
try to handle this specific ill-posed problem [39–41].

The combination of phenomenological and non-local
spacelike lattice inputs on parton distributions has already
been explored in some recent papers, for instance on the
proton PDF [42] and pion PDF [43]. For GPD studies, here
related to deeply virtual Compton scattering (DVCS) at lead-
ing order, the situation is made significantly more compli-
cated due to the higher dimensionality compared to ordi-
nary PDFs. The recent works in [44,45] have associated lat-
tice data with various phenomenological and experimental
inputs, where the authors have mostly considered GPD lat-
tice data at vanishing skewness. An additional difficulty in
offering a framework for the joint study of experimental and
lattice inputs on GPDs is the number of parameters involved.
Indeed, for only two light quark flavours, one needs to model
20 different GPDs – two valence quark distributions, two sea
quark, plus a gluon distribution, repeated for the four helic-

ity combinations H , E , H̃ and Ẽ [45]. This abundance of
functions to extract forced the authors to employ only basic
modelling of the skewness relevant in the small ξ regime.

In the present work, we develop a different strategy to
combine phenomenology and lattice data focusing on mod-
erate skewness. In this domain, lattice computations offer
the perspective of a significant reduction of the uncertainty
associated to the deconvolution problem of the usually con-
sidered exclusive processes. We use a previously developed
GPD model presented in [17] which offers significant flex-
ibility precisely at moderate skewness. It is illusory in the
current state of experimental and lattice data to perform a
satisfactory flavour and helicity decomposition with this kind
of flexible model. Therefore, instead of adjusting it on actual
experimental and lattice results, we assume that the flavour
and helicity decomposition has been obtained already. On the
experimental side, we use the phenomenological information
encoded in the Goloskokov and Kroll (GK) model [46–48],
whereas on the lattice side, we generate mock lattice data.
Some tension between lattice and experimental data is hinted
at in [42] and [45], whereas [43], using short-distance fac-
torization, states that when taking into account all sources
of systematic uncertainty, lattice and experimental data are
generally compatible. We therefore use this assumption in the
study, which offers the possibility to merge phenomenology
and lattice inputs thanks to a Bayesian reweighting proce-
dure. This procedure offers advantages with respect to a new
fit. First it is far cheaper in terms of computing time, allowing
us to explore many more cases in terms of correlation in the
data, level of noise or kinematic coverage compared to what
a full refit would allow. Then it offers an intuitive way of
assessing the reduction of uncertainties including new data.
Finally, in a realistic case, real lattice and experimental data
might be in tension, and bayesian reweighting can highlight
such discrepancies in a more obvious way than what sim-
ple χ2 in a full refit would. Indeed, a fit will try to meet
the conflicting datasets halfway, and average out a bit the
discrepancies.

Summarizing, we probe in this paper whether experimen-
tal data which suffers from a deconvolution problem and lat-
tice data which suffers from an imputation one can be com-
bined advantageously. For this first study, we disregard the
evolution properties of GPDs and thus the matching kernels
between pseudo-Ioffe distributions and GPDs. The impact of
the perturbative QCD corrections is left for future works.

In Sect. 2, we briefly review key aspects of GPDs and their
connection with Ioffe-time distributions. We also revisit the
main characteristics of the flexible GPD model introduced in
[17]. In Sect. 3, we show how the model is adjusted to a phe-
nomenological parametrization so as to reproduce the main
experimental features of a GPD extraction. Section 4 is ded-
icated to the generation of the set of mock lattice QCD data.
We introduce in Sect. 5 the reweighting procedure to com-
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bine our mock lattice QCD data to the GPD model. Finally,
we discuss the results of the reweighting in Sect. 6, and con-
clude.

2 Kinematics and GPD modelling

2.1 Definition and properties of GPDs

GPDs can be formally defined as the Fourier transform of
non-local matrix elements evaluated on a lightlike distance
z− [4]:
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∫
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2π
eixp

+z−
〈
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(
− z
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)
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m
u(p1), (1)

where we have restricted here our definition to the unpolar-
ized quark GPD in a nucleon whose mass is labelled m. We
also omitted the Wilson line in the definition of the operator,
that needs to be added when working in gauges other than
lightcone one. The average momentum of the incoming and
outgoing hadronic states |p1〉 and |p2〉 is defined as:

p = p1 + p2

2
, (2)

while x is the usual lightcone momentum fraction defined as:

x = k+
1 + k+

2

2p+ (3)

with k+
1,2 the incoming and outgoing momentum of the struck

quark. The total four-momentum transfer squared t is given
by:

t = (p1 − p2)
2 (4)

and the skewness ξ is defined as:

ξ = p+
1 − p+

2

2p+ . (5)

GPDs have to obey several properties which play a crucial
role in their modelling. First, the forward limit of GPDs is
given in terms of PDFs, such that:

Hq(x, 0, 0) = q(x)
(x) − q̄(−x)
(−x) (6)

where q(x) is the unpolarised quark PDF of flavour q and

 the Heaviside step function. GPDs are also connected to
electromagnetic form factors (EFFs) through:
∫ 1

−1
dxHq(x, ξ, t) = Fq

1 (t), (7)

where Fq
1 is the contribution of the quark flavour q to the

Dirac EFF. GPDs have to obey the so-called polynomiality
property, stating that their Mellin moments are polynomials
in ξ of a given order [49,50]:

∫ 1

−1
dx xnHq(x, ξ, t) =

[ n
2

]∑
i=0

ξ2i Aq
n,2i (t)

+ mod(n, 2)Cn(t)ξ
n+1, (8)

where [. . . ] is the floor function and mod(n, 2) is 0 for n even,
and 1 otherwise. The polynomiality property is understood as
a consequence of the Lorentz covariance of GPDs, and can be
systematically implemented thanks to the Radon transform
[51–53] in the double distribution formalism [50]. Finally, let
us highlight that GPDs are also constrained by the so-called
positivity properties [54–57], the most classical one being
given by:

∣∣Hq(x, ξ, t)
∣∣ ≤

√√√√q
(
x+ξ
1+ξ

)
q

(
x−ξ
1−ξ

)

1 − ξ2 . (9)

Respecting all these constraints at once represents a challenge
for the phenomenology of GPDs.

GPDs can also be expressed as a function of the Ioffe
time parameter ν = p · z [58], which is the Fourier conjugate
of the average momentum fraction x . The relation between
Ĥ(ν, ξ, t) and H(x, ξ, t) is thus given by [34]:

Ĥq(ν, ξ, t) =
∫ 1

−1
dxeixνHq(x, ξ, t) (10)

In the following, we drop the “hat” on Ĥ(ν) as the explicit
dependence in ν or x is enough to indicate whether we work
in Ioffe time or momentum space.

As we have mentioned before, non-local matrix elements
computed on the lattice are Euclidean, so the distance z
between the operators defining the GPD is spacelike (z2 < 0)
contrary to the lightlike distance z− used in the usual light-
cone definition of parton distributions. As a result, Ioffe-
time pseudo-distributions computed on the lattice, once the
continuum limit has been appropriately taken, are functions
M(ν, ξ, t, z2), which can be matched perturbatively to the
MS scheme to yield the Ioffe-time distributions such as
H(ν, ξ, t, μ2) (see [34,36]). Matching from z2-dependent
pseudo-distributions to μ2-dependent MS distributions is
only a minor correction at small Ioffe time, which we will
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neglect in this paper.1 This effect should however be properly
accounted for in further studies.

In the following, for simplicity we limit the scope of
our study to the singlet sea quark GPD Hq(+)(x, ξ, t) =
Hq(x, ξ, t) − Hq(−x, ξ, t). Imposing this parity property
means that we will only study the imaginary part of H(ν).
We also ignore the t-dependence of GPDs and the entan-
glement between t and ξ which splits the kinematic domain
between physical and unphysical regions, to work with t = 0
all along. This choice is made to primarily focus on the decon-
volution of the x and ξ dependence helped by lattice data.
The implications of the t dependence are left for a future
work.

2.2 GPD modelling with artificial neural networks

Our study is based on methods recently developed in [17],
where the use of artificial neural network (ANN) techniques
in a direct modelling of GPDs was implemented for the
first time. This new way of modelling has been designed to
address the problem of model dependence and implementa-
tion of the theoretical constraints one encounters in the GPD
phenomenology, but also to facilitate a future inclusion of
lattice QCD information. To keep our article self-consistent
and self-contained, we remind now important details on ANN
GPD modelling.

Our GPD model based on ANNs significantly differs from
a textbook implementation of machine learning techniques
(see e.g. Ref. [59]). The reason for that is the desire to fulfil
in the architecture of the neural network a set of theory-
driven constraints for a valid GPD model. These constraints
are among others linked to the parity properties of GPDs, the
polynomiality property (8) and known limits like (6). The
positivity constraints (9) are not guaranteed at the level of the
architecture of the network, but rather enforced numerically
during the training procedure.

The model proposed in Ref. [17] is built in the double
distribution space involving variables β and α. The relation
with the GPD H in momentum space is given by the Radon
transform:

H(x, ξ, t) =
∫

d� F(β, α, t), (11)

where d� = dβ dα δ(x−β −αξ) and |α|+|β| ≤ 1. In (11),
F(β, α, t) is called a double distribution and is the object we
will model. The benefit of using the double distribution space
is an automatic fulfilment of the polynomiality property by
the resulting GPD H(x, ξ, t).

1 Observe for instance the minute effect of matching between figures 5
and 7 of [38]. It is noticed in this paper, and highlighted in its figure 6, that
the matching kernel contains two parts of almost equal magnitude and
opposite sign responsible for the rather small effects of the matching.

To achieve a satisfactory flexibility and reproduction of
known limits, our double distribution model is composed of
three parts:

(1 − x2)FC (β, α) + (x2 − ξ2)FS(β, α) + ξFD(β, α).

(12)

Let us address successively the role of each term in (12). The
first one,

FC (β, α) = f (β)hC (β, α)
1

1 − β2 , (13)

ensures by design the proper reduction to the forward limit
and has the necessary flexibility to model the x = ξ line,
which is particularly relevant for the current GPD phe-
nomenology. The prefactor (1 − x2) of FC (β, α) in (12)
combined with 1/(1 − β2) in (13) was introduced to facil-
itate the fulfilment of the positivity constraint (9). The for-
ward limit (unpolarised PDF for the GPD H ) is denoted by
f (β) ≡ H(β, 0, 0), while hC (β, α) is a profile function gen-
eralising that proposed by Radyushkin [54]. In this study it
is given by:

hC (β, α) = ANNC (|β|, α)∫ 1−|β|

−1+|β|
dαANNC (|β|, α)

. (14)

Thanks to a special design of the activation function and the
use of the absolute value, the neural network ANNC (|β|, α)

is even w.r.t. both β and α variables, and it vanishes at the
edge of the support region |β| + |α| = 1. The symmetry in
β is introduced to keep the resulting GPD an odd function
of x (relevant for phenomenology of DVCS and TCS), while
the symmetry in α is mandatory, as it allows fulfillment of
the time reversal property, i.e. the invariance under ξ ↔ −ξ

exchange. The normalisation by the integral over α, which
can be done analytically, allows enforcement of the proper
forward limit, while the rest of the model is typically trained
to reproduce the diagonal x = ξ probed by amplitudes of
processes like DVCS, TCS and DVMP.

As the term FC (β, α) was found to be tightly constrained
by the necessity of reproducing both ξ = 0 and x = ξ

lines, an additional term FS(β, α) was introduced. This term
explicitly vanishes on the ξ = 0 and x = ξ lines, i.e. it does
not contribute to the fit of FC (β, α) on the phenomenologi-
cal inputs. Rather, (x2 − ξ2)FS(β, α) represents a contribu-
tion that is entirely unconstrained by DVCS data at Leading
order (LO) accuracy and the knowledge of PDFs, and aims at
reproducing the deconvolution uncertainty of exclusive pro-
cesses. Precisely, it corresponds to a LO shadow distribution
as defined and studied in [10]. FS is constructed in the fol-
lowing way:

FS(β, α) = f (β)hS(β, α). (15)

123



Eur. Phys. J. C (2024) 84 :201 Page 5 of 15 201

where:

hS(β, α)/NS = ANNS(|β|, α)∫ 1−|β|

−1+|β|
dαANNS(|β|, α)

− ANNS′(|β|, α)∫ 1−|β|

−1+|β|
dαANNS′(|β|, α)

. (16)

Since this contribution is not constrained in the fit, the major
limit on its size, aside from the maximal flexibility of the neu-
ral network, is really imposed by the positivity constraint.
During training, we seek to maximise the NS normalisa-
tion factor in (16) within the limits allowed by positivity so
as to leverage the maximal flexibility. Writing the function
hS(β, α) as the difference of two different profile functions
characterized by ANNS(|β|, α) and ANNS′(|β|, α) ensures
that FS(β, α) brings no contribution to the forward limit. The
f (β) factor helps to enforce the positivity.

Finally, FD(β, α) gives the additional flexibility necessary
to model the D-term, a degree of freedom of GPDs associated
to the final terms in ξn+1 in (8) and which plays a crucial role
in the characterisation of partonic matter [60,61]. One has:

FD(β, α) = δ(β)D(α), (17)

and

D(α) = (1 − α2)

N∑
i=1
odd

diC
3/2

i (α) , (18)

where di are coefficients of the expansion of D-term into
Gegenbauer polynomials, and where N is an arbitrary trun-
cation parameter.

3 Representation of experimental data and estimation
of uncertainties

Let us now discuss how the model encodes a representa-
tion of experimental data for processes like DVCS, TCS and
DVMP which we will use as an input for the lattice QCD
impact study. We stress again that experimental data for the
aforementioned processes mostly probe GPDs at the x = ξ

line (with some additional information on the D-term), and
that at t = 0, the forward limit, i.e. the PDF, is very well
known from a wealth of inclusive and semi-inclusive pro-
cesses.

We use a built-in PDF parameterisation proposed in [62]
for f (β) involved in (13) and (15). Free parameters of the
FC (β, α) term are constrained by 200 points of Hq(x, ξ =
x) generated with the GK model [46–48] spanning over the
range of −4 < log10(x = ξ) < log10(0.95) at fixed t = 0
and μ2 = 4 GeV2. The term FS(β, α) is only constrained by

the positivity requirement (9), giving rise to large uncertain-
ties when x < ξ . The details of the constraining procedure
are given in Ref. [17].

The uncertainty of the model is encoded in a collection
of 100 replicas. This way is convenient for propagation of
uncertainty to any related quantity and for the use of Bayesian
reweighting techniques. A single replica represents the out-
come of the independent fit to 200 x = ξ points indicated in
the previous paragraph, with a random choice of the initial
parameters (weights and biases of ANNs, and normalisation
parameter NS in (16)). In this way, we probe how lattice data
can help constraining the ill-posed inverse problem between
DVCS data and GPDs. We thus do not fluctuate the output of
GK model according to some experimental uncertainties.2

To evaluate the mean and standard deviation of a quantity
derived from the GPD at a specific kinematic point – which
can be the GPD itself, a 3D number density, an observable,
etc. – one may use any statistical estimator of the mean and
uncertainty of the population X of 101 values returned by
replicas. In this analysis we use respectively the median and
the median absolute deviation (MAD):

σ̄ ≡ 1.4826 × median

(
|median(X) − X |

)
, (19)

where the factor 1.4826 is derived from the assumption of
gaussianity.

We note that the population of 101 values returned by
replicas may contain outliers, i.e. pathological values with
respect to the other entries, distorting the evaluation of mean
and uncertainty. This may happen due to instabilities in the
numeric procedures, which cannot be entirely avoided due
to the complexity of GPD modelling and the constraining
procedure. Many methods for detecting and removing out-
liers were proposed in the literature, like the 3σ -method [63].
Alternatively, one can chose robust estimators with respect
to outliers, our motivation for using MAD.

Figure 1 shows 100 replicas of H(ν, ξ, t = 0) evaluated
at three values of ξ , together with its 1σ̄ band. For small
values of ξ , the replica bundle is extremely coherent, or auto-
correlated, at small Ioffe time. This is due to the fact that the
positivity constraint limits considerably the freedom of the
model for x > ξ , on a region that is therefore all the more
extended that ξ is small.

4 Generating mock lattice QCD data

After describing in the previous section the fit of our flex-
ible GPD model with phenomenological inputs, we turn to
the question of the generation of plausible mock lattice QCD

2 We assume here that the experimental uncertainties are small with
respect to the theoretical ones as hinted in [10,17].
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Fig. 1 The set of GPD replicas Im H(ν, ξ, t = 0) between Ioffe times
ν = 0 and ν = 20 at ξ = 0.1 (top), ξ = 0.5 (middle), ξ = 0.9 (bottom)
and their corresponding one standard deviation bands. Due to waning
support x > ξ as ξ increases, the replicas become less constrained by
positivity, oscillate more heavily, and decohere

data. In accordance with our choice of working in the pseudo-
distribution formalism, we will generate data at small Ioffe
time ν. More precisely, for each value of ξ that we will con-
sider, we generate the data in three independent batches, cor-
responding to the following regions in ν:

1. 0.2 ≤ ν ≤ 2, with data spaced regularly with interval
	ν = 0.2,

2. 2.2 ≤ ν ≤ 4, with interval 	ν = 0.2,
3. 4.4 ≤ ν ≤ 6, with interval 	ν = 0.4.

We introduce these three independent batches of lattice QCD
data to loosely mimic actual simulations where various sets
of points with different correlations arise from varying the
boosted hadron momenta and the separation between fields
in the non-local operator.

0 2 4 6 8 10
ν

0.0

0.2

0.4

0.6

0.8

1.0

g
(ν
;b

,0
.0
5,
10
)

b=1.1
b=2

Fig. 2 The relative uncertainty of the mock lattice data
g(ν; b, 0.05, 10) is displayed as a function of the Ioffe time ν for
b = 1.1 (green) and for b = 2 (red)

We assume the correlation between different batches of
data to be zero. On the contrary, we consider the existence of
correlations inside the batches, characterized for commodity
by a simple coefficient 0 ≤ c < 1, which is the same between
any two lattice data points in the same batch, and does not
vary from batch to batch. This choice of constant correlation
coefficient is obviously an oversimplification, but it already
allows us to get a rough estimate of the impact of correlations
on the determination of GPDs.

We characterise how uncertainty grows from ν = 0 to
ν = 10 by an exponential slope parameter called b. Figure 2
presents the relative uncertainty profiles which we will use
in this study, given by

g(ν; b, s = 5%, νmax = 10) = s(bν − bνmax) + 1 − bν

1 − bνmax
,

(20)

where bν is the parameter b to the power of the Ioffe time
ν and bνmax , the same put with the maximal value of ν we
suppose achievable on the lattice. As can be immediately
checked, this formula guarantees that when ν = νmax, the
relative uncertainty is 100%, and when ν = 0, it saturates
to s, here chosen as 5%. We choose the uncertainty to reach
100% at νmax = 10 to replicate the common behaviour of
lattice data, which tend to exhibit uncertainty on the order
of its central value around this point in Ioffe time (see, for
example, figure 9a of [38]). The parameter b controls the
steepness of the uncertainty increase. For b → 1, uncertainty
increases linearly with Ioffe time, while for larger values of
b, it starts with a plateau of good precision and then degrades
very quickly. The two cases b = 1.1 and b = 2 presented
on Fig. 2 represent two archetypes of lattice uncertainties,
corresponding respectively to data of bad or good signal to
noise ratio.

We will therefore use as uncertainty of our mock lattice
data
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σLatt(ν) ≡ g(ν; b, s = 5%, νmax = 10)μ̄(ν), (21)

where μ̄(ν) is the median of the output of our flexible GPD
model at ν and the relevant value of ξ . Each of the three
batches of data points contains a number of samples at Ioffe
times νi . We characterize the correlation between these points
inside each batch by a coefficient c and express the associated
covariance matrix

�Latt
i,i ′ ≡

(
δi,i ′ + (1 − δi,i ′)c

)
σLatt(νi )σ

Latt(ν′
i ). (22)

We then draw the central values μLatt
i of our mock lattice

data points in a normal distribution centered on the median
of the output of the flexible GPD model at each νi , with
the covariance matrix �Latt

i,i ′ . This means that we choose our
mock lattice data to be globally compatible with the central
value of our flexible GPD model fitted on phenomenological
inputs.

Figure 3 gives an example of mock lattice data set (orange
points) superposed to the replicas of our GPD model. The
four panels demonstrate the effect of various combinations
of correlation coefficient c and level of noise parameter b.
Increasing c increases the degree to which one of the central
values influences the choice of the others within a given batch
in ν, while increasing the parameter b results in a data set
much more concentrated around the maximum likelihood of
the GPD model.

5 Bayesian reweighting

Now, we would like to assess the impact of the different sets
of mock lattice data generated in the previous section on
the GPD model. For this purpose, for each replica Rk , we
introduce a goodness-of-fit estimator χ2

k :

χ2
k =

∑
batches

∑
i,i ′

(μLatt
i − Rk(νi ))

(
(�Latt)−1

)
i,i ′

×(μLatt
i ′ − Rk(νi ′)), (23)

where μLatt
i is the central value of the lattice data generated

at point νi . With this definition, χ2
k estimates the relative

compatibility of a given replica Rk with the mock data within
the uncertainty of the latter. Bayesian reweighting consists
in affecting to each replica Rk a weight ωk expressed from
the goodness-of-fit χ2

k through [64]

ωk = (χ2
k )

N−1
2

Z
e− χ2

k
2 , (24)

where Z is a normalization factor such that
∑

k ωk = 1. One
can further define the effective fraction of replicas R which
are compatible with the new data set as

τ ≡ exp(
∑

k ωk ln(ωk))

K
, (25)

where the exponentiated value is the Shannon entropy of the
weight set.

In the following, we will generate several sets of mock lat-
tice data at various values of ξ and reweight our GPD model
altogether with these new data at several ξ . We call this the
“multikinematic” reweighting, as opposed to the “monokine-
matic” reweighting where only one value of ξ is considered.
As we do not model any correlation between mock lattice
data at different values of ξ , the total χ2 will then be the sum
of the χ2 evaluated at each ξ .

5.1 Reweighted statistics

Once weights ωk have been attributed to the replicas, we
need to define the central value and standard deviation of
a weighted distribution. At each kinematic where we want
to evaluate the weighted central value and deviation, we
first order the replicas monotoneously, and then define the
weighted median μ̄ω as the element satisfying the condition

l−1∑
k=1

ωk ≤ 1

2
and

kmax∑
k=l+1

ωk′ ≤ 1

2
. (26)

The weighted median is the element which most accurately
splits the weights evenly. The weighted standard deviation
estimator σ̄ω is obtained by simply replacing the median by
its weighted equivalent in (19).

5.2 Metrics of the impact of Bayesian reweighting

The effective fraction of replicas compatible with the data set
τ defined in (25) tells us how constraining the new data set
is compared to the prior model. It is mostly a tool to evalu-
ate the statistical significance of the reweighted distribution:
if τ is too small, the weighted mean and standard deviation
should not be considered as statistically significant. However,
τ brings only indirect information on the reduction of uncer-
tainty. To characterise the latter, which is our main physical
objective, we introduce the ratio �(y), such as

�(y) ≡ σ̄ω(y)

σ̄ (y)
. (27)

At a given value of y (which can represent any kinematic,
in momentum space or Ioffe time), it represents the fraction
of uncertainty remaining after reweighting. If �(y) = 1, the
uncertainty of the replica bundle at y has not decreased via
reweighting. If �(y) < 1, some reduction of uncertainty has
occurred via reweighting at that point. We further define the
average retainment of uncertainty in Ioffe time as

rν = 1

νmax − νmin

∫ νmax

νmin

dν �(ν), (28)
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Fig. 3 The set of GPD replicas between Ioffe times ν = 0 and ν = 6 at
ξ = 0.1 (green), their median (blue), the 1σ band (red) corresponding
to b = 1.1 (top) and b = 2 (bottom), and the corresponding generated

mock lattice data set (orange) determined by c = 0 (left) and c = 0.5
(right) are shown

and a corresponding ratio in momentum space where we
adopt a logarithmic scale,

rlnx = 1

ln(xmax/xmin)

∫ xmax

xmin

dx

x
�(x). (29)

We calculate the uncertainty retainment values rν for the
region 0 ≤ ν ≤ 20 and rlnx for the region 5×10−3 ≤ x ≤ 1.
These two metrics, intended for ν and x spaces respectively,
assign a global numerical value to the reduction of uncer-
tainty following the introduction of the mock lattice data,
which will be convenient to compare various scenarios.

One should note that although we generate mock lattice
data in the range 0 ≤ ν ≤ 6, our uncertainty retainment rν
metric extends up to ν = 20. We do this to assess the ability
for lattice data to decrease the uncertainty of our GPD model
even in Ioffe time regions where we do not expect to be able
to extract statistically significant lattice data. Indeed, [43]
concluded that the data at low values of Ioffe time, thanks
to their smaller uncertainties, represented in effect the bulk
of the constraint even at larger Ioffe times. We also do not
include the entire region 0 ≤ x ≤ 1 in our metric of uncer-
tainty retainment rlnx , integrating only from the lower bound
x = 5 × 10−3. We choose to cap the integration with this
lower bound given that �(x) becomes relatively constant at

lower x . The inclusion of such behaviour in the integration
region would completely dominate the discrimination effects
at large x .

6 Results of the reweighting

6.1 Monokinematic reweighting

Let us now apply the tools of Bayesian reweighting using our
GPD model fitted on phenomenological inputs as a prior, and
our mock data as the new information. As a first example, we
look at monokinematic reweighting, i.e. we add mock data
at a single value of ξ and measure its impact on the GPD
extraction at this same value. We recall that, on average, the
generated mock lattice data becomes closer to the most likely
output of the prior model as b increases. As c increases, the
mock lattice data remains more consistently above or below
the central value of the prior model.

The result for b = 2 (high precision), c = 0 (uncorre-
lated data) and ξ = 0.1 is shown on Fig. 4, while Fig. 5
shows the result for ξ = 0.5 and the same other parameters.
The right hand side plots show the effect of reweighting in
Ioffe time: we observe a large reduction of uncertainty, which
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initial uncertainty ratio (purple-solid), the average uncertainty retain-
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range in which the lattice data was generated ν = 0 to ν = 6 (orange-
shade, right). The associated effective fraction of replicas retained after
reweighting is given by τ = 0.3
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Fig. 5 Same caption as Fig. 4 up to the fact that the GPD is shown at ξ = 0.5, with mock data added at ξ = 0.5 and similarly b = 2 (high
precision) and c = 0 (no correlation). The average uncertainty retainments are rlnx = 0.54 and rν = 0.25, τ = 0.11

remains effective far outside of the range of the data (the light
orange zone) although the case ξ = 0.5 shows more fluctua-
tions linked to the lesser coherence of the replica bundle. The
average retainment of uncertainty in Ioffe time is rν = 0.16
at ξ = 0.1, and rν = 0.25 at ξ = 0.5.

On the other hand, the left hand side plots show a far
less spectacular reduction of uncertainty in momentum space.
The situation is actually inverted, with a larger reduction of
uncertainty at ξ = 0.5 compared to ξ = 0.1. Indeed, the
retainment of uncertainty remains very large at rlnx = 0.78 at
ξ = 0.1, whereas it is rlnx = 0.54 at ξ = 0.5. The fact that the
uncertainty is less reduced in momentum space compared to

Ioffe time is an illustration of the imputation problem evoked
in the introduction. The reconstruction of the x-dependence
from limited Ioffe time data is an inverse problem which trig-
gers a significant rise in uncertainty because the mock data
produces no control over the “high-frequency” behaviour of
the momentum distribution. Therefore, reweighting is twice
less efficient in momentum space compared to Ioffe time at
ξ = 0.5, and five times less efficient at ξ = 0.1. Why does
it behave so poorly at ξ = 0.1 in momentum space? The
answer comes from the extreme coherence of the replicas of
the GPD model in Ioffe time in the region where the reweight-
ing is performed. This means that the GPD model contains
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Fig. 6 Effective fraction of replicas retained after reweighting τ (green curve), retainment of uncertainty in Ioffe time (blue curve) and in momentum
space (red curve) for the combinations of high and low noise (resp. b = 1.1 and 2) and low and high correlation (resp. c = 0 and 0.5)
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Fig. 7 Same caption as Fig. 4 up to the fact that the GPD is shown at ξ = 0.5, with mock data added at ξ = 0.1, b = 1.1 (low precision) and
c = 0.5 (correlated data). The average uncertainty retainments are rlnx = 1.15 and rν = 0.93, τ = 0.83

in the end very little information in this region, such that the
reweighting cannot efficiently select features of the distribu-
tion that would make a significant difference in momentum
space.

We reiterate that the origin of the large coherence is the
fact that positivity constrains tightly the GPD on a large part
of the x dependence at ξ = 0.1 (namely for x > 0.1). We

add therefore lattice data in a region where another theoreti-
cal constraint in momentum space has already considerably
reduced the freedom in modelling. Lattice data must be all
the better to bear any impact that the initial modelling uncer-
tainties are small. On the other hand, the model is much more
flexible at ξ = 0.5, allowing lattice data a relatively better
discriminating power in momentum space.
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Fig. 9 Same caption as Fig. 4 up to the fact that the GPD is shown at ξ = 0.5, with mock data added at ξ = {0.1, 0.2, 0.3, 0.4, 0.5}, b = 1.1 (low
precision) and c = 0.5 (correlated data). The average uncertainty retainments are rlnx = 0.75 and rν = 0.65, τ = 0.57

To compare the effect of reweighting at various values of ξ ,
we show in Fig. 6 the effective fraction of surviving replicas
τ and the retainment of uncertainty in Ioffe time and momen-
tum space as functions of ξ . As the value of ξ increases, the
replica bundle decoheres and the effective fraction of repli-
cas τ drops quickly. For ξ > 0.7, a full refit seems necessary
due to the low statistics. We observe that the reduction of
uncertainty is systematically better in Ioffe time compared
to momentum space, as expected due to the imputation prob-
lem. Using better and uncorrelated data (b = 2, c = 0)
produces generally a significant reduction of uncertainty in
Ioffe time compared to the other configurations, but that is not
reflected in momentum space. Overall, we observe in the case
b = 1.1 (low precision) that uncertainty in momentum space
decreases with larger values of ξ . The fact that uncertainty
is so erratic for b = 2 has to do with the small value of τ ,

which makes results unreliable at large ξ , but underlines how
constraining the new data are compared to the prior model.

This highlights that with our modelling, it is in the large
ξ region, where positivity does not provide significant con-
straints on the GPD, that we would observe the largest effect
due to the inclusion of lattice data. However, we have worked
here at t = 0, where we could use the very well-known unpo-
larised PDF as an input to our model, and used a simplified
version of the positivity constraint neglecting the role of the
GPD E for instance. In general, the behaviour of GPDs at
ξ = 0 but t �= 0 is one of the most crucial aspects of GPD
phenomenology and can be accessed readily on the lattice.
Although our current study invites to preferentially include
data at large ξ , in a more complete setting, the extraction
of more precise t-dependent PDFs plays a major role. We
note that by studying both the limit ξ = 0 and large ξ ,
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Table 1 Results as a function of
the reweighting parameters.
Low Correlation: c = 0, High
Correlation: c = 0.5, Low
Precision: b = 1.1, High
Precision: b = 2, rlnx : Average
uncertainty retainment in x , rν :
Average uncertainty retainment
in ν, τ : Effective fraction of
replicas retained after
reweighting

ξUsed Data ξShown Results
Precision Correlation τ rν rlnx

0.1 Low Low 0.1/0.5 0.47 0.25/0.92 0.82/1.24

0.1 Low High 0.1/0.5 0.83 0.85/0.93 1.02/1.15

0.1 High Low 0.1/0.5 0.30 0.16/0.90 0.78/1.08

0.1 High High 0.1/0.5 0.46 0.23/0.91 0.82/1.23

0.5 Low Low 0.5 0.36 0.44 0.67

0.5 Low High 0.5 0.52 0.58 0.64

0.5 High Low 0.5 0.11 0.25 0.54

0.5 High High 0.5 0.37 0.51 0.77

0.1 0.2 0.3 Low Low 0.5 0.30 0.62 0.95

0.1 0.2 0.3 Low High 0.5 0.77 0.82 1.00

0.1 0.2 0.3 High Low 0.5 0.10 0.34 0.54

0.1 0.2 0.3 High High 0.5 0.30 0.61 0.73

0.1 0.2 0.3 0.4 0.5 Low Low 0.5 0.16 0.19 0.66

0.1 0.2 0.3 0.4 0.5 Low High 0.5 0.57 0.65 0.75

0.1 0.2 0.3 0.4 0.5 High Low 0.5 0.03 0.13 0.45

0.1 0.2 0.3 0.4 0.5 High High 0.5 0.18 0.25 0.77

one handles two very interesting limits of GPDs: the first
is directly involved in the hadron tomography program or
the spin sum rule, whereas the latter probes a very different
partonic dynamic in the hadron, with a sensitivity to pairs of
partons. The small but non-zero values of ξ can on the other
hand be constrained rather efficiently by a combination of
experimental data, positivity constraints and arguments from
perturbation theory if working at a reasonably hard scale [65].
It remains however interesting to verify whether lattice data
at moderately small value of ξ are in good agreement with
positivity constraints considering the words of caution on
relying excessively on these inequalities at low renormalisa-
tion scale, as underlined for instance in [66].

6.2 Multikinematic reweighting

We would like to explore one last aspect, namely how
reweighting is propagated to other values of ξ . So far, we
have only studied the effect of reweighting exactly at the
same value of ξ as the data we were simulating. We show in
Fig. 7 the result of a reweighting where the data is added at
ξ = 0.1, but we observe the impact on the GPD at ξ = 0.5,
with b = 1.1 (low precision) and c = 0.5 (correlated data).
With these large uncertainties, the reweighting does not give
any significant reduction of uncertainty at ξ = 0.5 in Ioffe
time (rν = 0.93), and even an increase of uncertainty in
momentum space (rlnx = 1.15) by smearing the distribu-
tion.

Let us now add data for ξ ∈ {0.1, 0.2, 0.3} while keeping
b = 1.1 and c = 0.5. The retainment of uncertainty at ξ =
0.5 drops to rν = 0.82 and rx = 1.0 (Fig. 8). If we now add

data for ξ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, uncertainty retainment
at ξ = 0.5 tightens to rν = 0.65 and rx = 0.75 (Fig. 9).
It is however not better than a simple reweighting directly
at ξ = 0.5 which results in rν = 0.58 and rx = 0.64 (see
Table 1 for all results, including various combinations of
uncertainty and correlation that we have not mentioned in
the text or figures). This demonstrates that adding some data
at a given value of ξ only produces a rather minimal effect
on other values of higher ξ within our modelling of GPDs.

7 Conclusion

We have presented a study of the impact of mock lattice
QCD data at moderate value of ξ on a GPD model. The lat-
ter is based on machine learning techniques and fitted to the
forward limit and diagonal x = ξ of the phenomenolog-
ical GK model, which represents the typical experimental
information available on GPDs. We further enforce a posi-
tivity constraint, which considerably limits the freedom of the
model in the region x > ξ . We observe as a result that our
model uncertainties are largely autocorrelated in the small
Ioffe-time region at small ξ , meaning that lattice data only
bring minimal additional reduction of uncertainty in momen-
tum space. We observe that the reduction of uncertainty in
momentum space is systematically inferior to that in Ioffe
time space, as a consequence of the inverse problem of relat-
ing the two representations of GPDs. We also observe that the
addition of data at some low values of ξ impacts only mini-
mally the GPD at higher values of ξ . However, the latter point
happens in a context where the t-dependence is neglected.
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When restored, one recovers the t-dependent PDF at zero
skewness, a quantity which is not directly constrained by
experimental data. We thus expect that the impact of lattice
QCD data in the low-ξ region will increase with the value of
|t |.

The Bayesian method employed here appears to be an ade-
quate way to combine both experimental and lattice knowl-
edge on GPDs, when the lattice data is globally in agreement
with the prior model. However, our study highlighted the
impact of correlations within the lattice data on a potential
joint extraction. Real lattice data frequently present a very
high degree of correlation, along with systematic effects that
are only starting to be under control. This mandates a very
careful treatment to avoid significant biases in the assessment
of uncertainty reduction, which represents a challenge for the
community.
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