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Abstract In this work, radially symmetric domain wall
solutions in the presence of impurities are investigated for
both flat and curved D+1 spacetimes, with geometry gener-
ated by a rotationally invariant background metric. We have
examined the constraints placed upon the model by Derrick’s
theorem, and found out the Bogomol’nyi bound and equa-
tions of the symmetric restriction to this theory. Impurity-
doped versions of a φ4 model in two dimensions and a model
with logarithmic potential in a Schwarzschild background
have been explicitly worked out. The resulting configura-
tions have been compared with those found in the homoge-
neous version of the theory, so that the effect of impurities
in the form of solutions may be better appreciated. We have
also generalized to higher dimensions some of the results
that had been presented in the recent literature. These results
relate to the possibility of BPS-preserving impurities, which
we have found to still exist in the spacetimes considered in
this work. We also investigate ways in which these results
may be extended in a curved background.

1 Introduction

The presence of topological structures is of great importance
in high energy physics, as reported in Refs. [1–3] and in refer-
ences therein. The standard and perhaps most known of such
configurations are kinks, vortices and magnetic monopoles.
Kinks appear in 1+1 spacetime dimensions as real scalar field
configurations, but vortices and monopoles require two and
three spatial dimensions, as well as the addition of Abelian
and non Abelian gauge fields, respectively. The study of these
localized structures in the presence of impurities is also of
current interest, as one can see from Refs. [4–16], to quote
some recent investigations in the subject.
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The inclusion of impurities has several distinct motiva-
tions, one of them being the possibility of modelling more
realistic scenarios, and study how they may affect the oth-
erwise standard results. In 1 + 1 spacetime dimensions, the
interesting spectral wall phenomenon was recently reported
in kink-like collisions in the presence of an impurity [11].
Also, in 2 + 1 dimensions, fermionic impurities in super-
symmetric Chern-Simons theories were considered in [4].
Moreover, in the study of vortices, the impurity can be of the
electric or magnetic type, and may add different contribu-
tions; see, e.g, Ref. [6]. The addition of impurities may also
affect the scattering of vortices [12]. Another motivation is
related to integrability, with the integrable vortex equations
being generalized to include magnetic impurities as well [14].

In this work, we focus on the study of topological struc-
tures in models in which a real scalar field is coupled to an
impurity function in D+1 spacetime dimensions with a radi-
ally symmetric background metric. We find a Bogomol’nyi
bound and the respective first-order equations that must be
solved by configurations which saturate this bound. We solve
these equations and explore the modifications engendered in
the system by the introduction of those inhomogeneities. The
behavior of solutions in the presence of localized impurities
is investigated in two distinct scenarios, one in flat space and
the other in the outer region of a Schwarschild black hole. We
also generalize some of the results that were first presented
in Refs. [9,10] for the D = 1 case, and explore possible
extensions of this generalization.

We organize the investigation as follows: in Sect. 2 we
present a general discussion, introducing the model and col-
lecting the preliminary results. We then move on and elabo-
rate on the Bogomol’nyi procedure and the presence of zero
modes in Sect. 3. We illustrate the main results in Sect. 4, con-
sidering two distinct scenarios, the flat or Minkowski and the
Schwarzschild geometries. We go further on and discuss the
case of form-preserving impurities in Sect. 5. We close the
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work in Sect. 4, where we summarize the results and com-
ment on some perspectives of future investigations.

2 General discussion

Consider a real scalar field theory in D+1 spacetime dimen-
sions. The standard action for such a theory can be obtained
through integration of a Lagrangian density of the usual form
L0 = 1

2∂μφ∂μφ − U , where φ is a real-valued function of
spacetime coordinates and U is a nonnegative potential with
degenerate minima, which may, in general depend on both
φ and the coordinates. The last condition on the potential is
taken to allow for the possibility of topologically stable con-
figurations. In order to model the presence of impurities in
our system, we must add an impurity function σ(x), which
may be coupled to the real scalar field through the inclusion
of an additive term of the formLσ = − f σ to the Lagrangian,
where f = f (x, φ, ∂μφ) is a function that controls the cou-
pling between σ and φ. Thus, we work with the action

S =
∫
d4x

√|g|
{

1

2
∂μφ∂μφ − f σ(x) −U − σ 2(x)

2

}
, (1)

where the last additive term was included for convenience
and does not affect the equations of motion. If σ is square
integrable in the space coordinates, this addition amounts to
a constant term E0 = ∫

(σ 2/2)dDx on the energy. Else, this
term has no meaning of its own, but the full action (1) may
still make sense. We may alternatively interpret U + σ/2 as
a deformation from the potential defined in L0.

The determinant
√|g| in (1) represents a static background

geometry. We assume spherical symmetry for the metric ten-
sor gμν , which is implicitly defined through the line element

ds2 = A2(r)dt2 −
[
B2(r)(dr)2 + ρ2(r)d�2

]
, (2)

where A, B and ρ are smooth nonnegative functions of the
radial coordinate and d� is a differential spawned by the
D − 1 angular variables of the model. Although the letter
r is used, we also include the case D = 1, where no angu-
lar coordinates are present, even though the letter x is more
traditionally used in that case. In this work, we assume that
the spacetime geometry is derived from a fixed background,
so that Einstein’s equations for the metric are not consid-
ered. The factor

√|g| may be derived from this metric, and
calculation of this determinant leads to
√|g| = A(r)B(r)ρ(r)D−1ω(θ1, . . . θD−2) ≡ γ (r)ω, (3)

where ω generalizes the sin θ factor known from spherical
coordinates in the D = 3 case. Note that polar coordinates
in two spatial dimensions are naturally included as the case
ω = 1. Although cylindrically symmetric geometries, which
require the inclusion of a term of the form ζ 2(r)dz2 tods2, are

not strictly included in (2), the generalization of our results to
this case is straightforward, and mostly amounts to a change
in γ (r). Thus, it shall suffice for our purposes to consider
only geometries of the form (2).

We shall now consider time-independent configurations.
As was first proved by Derrick through the use of scaling
arguments [17], stable solutions of this kind are not possi-
ble for a standard Lagrangian with self-interaction poten-
tial U = U (φ); see also Ref. [18]. Although stable time-
dependent solutions might be found even within a standard
model [19,20], a single-particle interpretation of the associ-
ated defects is difficult. Since Derrick’s theorem is heavily
dependent on the sign constraint found from requiring δE=0
under scaling, it may not hold in the presence of impurities.
Although this possibility is of significant theoretical rele-
vance, this work is most concerned with solutions that may
be compared to the impurity-free case, defined by σ = 0, and
such a discussion is only meaningful for families of models
that allow for stable topological defects even in the absence of
impurities. For a discussion of defects in higher dimensions
without this caveat, see [15]. Thus, we shall here look for
potentials that generate stable (or at least metastable) static
configurations both in the presence and in the absence of
impurities. In order to evade Derrick’s theorem, one must
change the energy functional, upon whose form the entire
argument is constructed. In order to accomplish this, two
approaches are possible:

(i) One may modify the matter Lagrangian density directly.
In that direction, it was shown in Ref. [21] that Der-
rick’s argument may be evaded through the use of an
r -dependent potential of the form U = Ũ (φ)/r2D−2,
with which configurations of the form φ = φ(r) of the
equations of motion have been found. Recently, Mor-
ris has expanded this result to allow for more general
rotationally-symmetric geometries. [22]. In our nota-
tion, this generalization amounts to substitution of the
r2−2D multiplicative factor in the potential by (B/γ )2.
In the same reference, it was shown that such a potential
may arise naturally in the effective description of a real
scalar field. This may be achieved, for example, if φ

is non-minimally coupled to a Maxwell Lagrangian or
to another scalar field solving an Euler–Lagrange equa-
tion of the form ∇μ [F(φ)∇μχ ] = 0, for some function
F(φ). For details and other examples, see [22]. This
approach has the advantage of working for any metric
of the form (2), including a Minkowski spacetime of
any given dimension.

(ii) In rotationally symmetric curved spacetimes, one may
choose the background geometry in such a way that
the ensuing energy functional may be minimized when
the Lagrangian is of canonical form. This approach
was first used by Gonzales and Sudarsky [23] to
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find a stable, time-independent topological defect in
a static Einstein universe, a result which has recently
been extended [24] to include a wider class of solu-
tions in the same spacetime geometry. In Refs. [25,
26], stable, spherical domain walls have been found
for (3 + 1) background metric tensor of the form
gμν = diag(A2(r),−A−2(r),−r2,−r2 sin2 θ). Ref-
erence [26] in particular establishes precise criteria that
must be satisfied by a metric of the aforementioned
form in order to allow for stable domain walls. Unfor-
tunately, these criteria include the condition that A′(r)
must have zeros in the region of interest, which exclude
some important cases such as the Schwarschild, as well
as the Reissner–Nördstrom background, which had
been ruled out in previous investigations [27]. Despite
those caveats, these results are still compatible with
a large class of geometries, with the Schwarschild–
Rindler AdS space being an important example [26].

In both approaches, stable solutions have only been found
under the assumption of some symmetry that allows the static
field equations to be solved in terms of a single variable.
Hence, we shall henceforth assume rotational symmetry and
thus take φ = φ(t, r). Since the angular dependence of our
problem is entirely contained in the determinant of the met-
ric, the energy functional is proportional to �D , where �D

is a factor which depends on the spatial dimension consid-
ered and is found through integration of the volume form
ωdθ1...dθD−2, with ω specified by (2) and (3). By the prin-
ciple of symmetric criticality [3], the equations of motion
with the assumption of radial symmetry may be obtained as
stationary points of the spherically symmetric Lagrangian

L = �D

{∫
�
drγ

φ̇2

2A2(r)
−

∫
�
drγ

[
1

2

(
∂rφ

B(r)

)2
+U

]}

− �D

∫
�
drγ

(
f σ + σ(r)2

2

)
, (4)

where � is the domain of integration in the radial coordinate
and the dot denotes differentiation with respect to time. The
field equations these configurations must satisfy are

∂t∂
tφ − 1

γ
∂r

[
γ

(
fφ′σ − ∂rφ

)] + fφσ +Uφ = 0, (5)

where the subscripts φ and φ′ denote differentiation with
respect the field and to φ′ ≡ ∂rφ, respectively.

In an infinite space, the domain of integration is given
by � = (−∞,∞) if D = 1 and � = [r0,∞), for some
r0, if D ≥ 2. More generally, we may demand that � is a
union of closed sets. This last possibility becomes specially
important if the metric (2) gives rise to an event horizon.
Since �D has no effect on the variation of E[φ], the field

equation in the static case correspond to stationary points of
ε[φ, ∂rφ] ≡ E[φ,∂rφ]

�D
. For static configurations, this func-

tional has the form

ε =
∫

�

drγ

{
1

2

(
∂rφ

B(r)

)2

+U + f σ + σ(r)2

2

}
. (6)

The Euler–Lagrange equations for these configurations are
of the form δε

δφ
= 0, or

1

γ
∂r

[
γ

(
fφ′σ − ∂rφ

)] − fφσ −Uφ = 0. (7)

We may use (6) to investigate scaling arguments following
the method of Derrick [17] and Hobart [18]. We thus perform
the transformation φ(r) → φ(λr) ≡ φλ, which implies ε →
ελ, where

ελ =
∫

�

dyγ (y/λ)

[
λ

2

(
∂rφλ

B(y/λ)

)2

+ U (φλ, y/λ)

λ

]

+
∫

�

dy
γ (y/λ)

λ

[
f (y/λ)σ (y/λ) + σ(y/λ)2

2

]
. (8)

To allow for stability under this transformation, we must
impose the well known condition

dελ

dλ

∣∣∣∣
λ=1

= 0, (9)

which leads to the restriction

I1 + I2 = I3 + I4, (10)

where I1 has exactly the same form as the energy in (6), while

I2 =
∫

�

dr

{
1

2

(
∂rφ

B(r)

)2

+U (φ, r)

+ f σ + σ(r)2

2

}
r
dγ

dr
, (11)

I3 =
∫

�

drγ

{(
∂rφ

B(r)

)2

+ (∂rφ)2r

B3(r)

dB(r)

dr

−r
∂U (φ, r)

∂r
− r f

dσ

dr

}
. (12)

and

I4 =
∫

�

drγ

{
∂ f

∂φ′ ∂rφ − r
dσ

dr
− r

∂ f

∂r

}
σ (13)

Both the geometry and the presence of the impurity conspire
to make this expression far more complex than its counter-
part in the one-dimensional theory without impurities. This
added complexity has as its direct consequence the weaken-
ing of Derrick’s theorem. There are now many ways in which
condition (10) can be satisfied, since there are several inde-
pendent terms as well as a great deal of liberty in the choice
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of Lagrangians that are able to evade Derrick’s argument. It
is noteworthy that most terms in the above integrals have an
explicit dependence on the impurity. This means that one who
endeavors to use a canonical potential in their investigations
will find a much easier path than the one encountered in the
impurity-free theory, in which the allowed geometries are
strongly constrained, and where stable domain walls have
only been found as a result of intense, and mostly recent,
labor [23–26]. Although we shall not, for reasons already
discussed, pursue this line of investigation, it must be empha-
sized that the above result seems to indicate that, when impu-
rities are allowed, there exists a wider array of geometries
capable of supporting domain-wall solutions. This is a phys-
ically relevant observation which warrants future investiga-
tion.

To investigate stability, one should also take the condition
d2ελ

dλ2

∣∣∣
λ=1

> 0 into account. This second derivative leads to

a rather complicated expression, because of the number of
terms in (8), but it suffices to say that the two extra terms that
appear because of the presence of the impurity are more than
enough to allow for stable configurations, even if the form of
the potential is not constrained. Scaling arguments for σ = 0
in radially symmetric geometries can be found in Ref. [22],
with which our results can be compared.

3 Bogomol’nyi procedure and zero modes

In order to find a minimum of (6), we may use a Bogomol’nyi
[28] procedure to derive an energy bound for symmetric
configurations. This is an efficient way to search for stable
solutions of the radially symmetric field equations without
imposing strong restrictions in the metric. To do this, we shall
assume a potential of the form

U (φ, r) = 1

2

(
Wφ(φ)

B(r)

γ

)2

, (14)

where Wφ is the derivative of an auxiliary function W (φ). To
allow for a Bogomol’nyi procedure, the coupling function
must satisfy the constraint f = √

2U − ∂rφ
B(r) , or

f (r, φ, φ′) = B(r)Wφ

γ
− ∂rφ

B(r)
. (15)

By completing the square in the ε functional (6) with the
above constraints, we then find

ε =
∫

�

drγ

{
1

2B2(r)

[
∂rφ − B(r)

(
σ − √

2U
)]2

}

+
∫

�

drγ (∂rφ)

√
2U

B2(r)
≥

∫
dW ≡ �W, (16)

where use has been made, in the last line, of (14). Thus, the
energy is subject to the bound

E ≥ �D

∫
�

dr(∂rφ)Wφ = �D�W, (17)

where �W ≡ W (φ(r))|∂� . Saturation of this bound occurs
if and only if φ satisfies the Bogomol’nyi equation

∂rφ = σ(r)B(r) + WφB2(r)

γ
. (18)

Since both σ and B are functions of the radial coordinate
alone, we may as well define σ̃ (r) ≡ σ(r)/B(r) to write,
more simply,

∂rφ + σ̃ (r) + Wφ

γ
= 0, (19)

without explicit reference to B(r). Since no additional
requirement was made about σ(r), one may alternatively
write the action (1) in terms of σ̃ , which could then be
refereed to as the impurity itself, with coupling function
f̃ = B(r)

√
2U−∂rφ. Using this first-order equation it is pos-

sible, although somewhat tedious, to show that condition (10)
is identically satisfied by any solution of the first-order equa-
tions, as should be the case.

We may find the zero modes of Eq. (18) through lineariza-
tion of this equation. Solutions of the first-order equation
belong to a one-parameter family of functions which form a
moduli space. This space may be parametrized by the zero
of a domain-wall, or by any other parameter that completely
specifies a BPS solution, just as the position of a fixed point.
Let X denote this parameter, and write

φ(r, X̃) − φ(r, X) = δXψ(r), (20)

where both δX ≡ X̃ − X and ψ are assumed to be small,
in the sense that higher powers of these quantities may be
neglected. We may use this definition together with Eq. (18)
to find

dψ

dr
= Wφφ

B2(r)

γ
	⇒ ψ = Ce

∫
Wφφ

B2(r)
γ

dr
, (21)

where C is a constant of integration. Apart from the fac-
tor B2/γ which accounts for the change in geometry, this
calculation is identical to the one made for the standard one-
dimensional case, both with and without impurities [3,10].
The constant C may be specified by using (20) together with
an specification of X . Let, for definiteness, X denote a zero
of the field and consider a transformation X → X + dX .
Since both X and X +dX are zeroes, we can deduce, exactly
as in the one-dimensional case,

∂φ

∂r
(r, X)

∣∣∣∣
r=X

dr + ∂φ

∂X ′ (X, X ′)
∣∣∣∣
X ′=X

dX ′ = 0 (22)

and, since dX = dr , one is readily led to ∂φ
∂r = − ∂φ

∂X at
those points. Using this result together with (20), we can
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find ψ(r0) = − ∂φ
∂r

∣∣∣
r0

and thus we obtain, finally,

C = B2(r0)

γ (r0)
− B(r0)σ (r0). (23)

When D = 1, this result agrees perfectly with those found
in [10], provided that differences in the conventions adopted
are taken into account. We see that the impurity enters φ

only through C . Since, however this value changes with r0,
the effect of the impurity is felt in all points of the mod-
uli space and must thus change the scattering properties of
these solutions, as expected on physical grounds. Within this
approximation, one may derive a scattering Lagrangian of the
form Ls = �D Ẋ2 M(X)/2, with M(X) = ∫

drγψ which,
apart from the unimportant multiplicative factor and the more
relevant γ , in the definition of M, is identical to the corre-
sponding one-dimensional Lagrangian [10].

4 Examples

In this section, we solve the first-order equations to find
BPS solutions in the presence of localized impurities for two
important geometries.

4.1 Flat spacetime

As a first example, let us a deal with a plane geometry in
two spatial dimensions. In the impurity-free case, solutions
saturating the Bogomol’nyi bound for this geometry have
already been found [21], and may be readily compared with
our results. To define the potential, we may choose the aux-

iliary function W (φ) in the form W (φ) = φ − φ3

3 , so that
Wφ = 1 − φ2. This choice results in the well-known φ4

potential. This leads to the family of equations

∂rφ = σ(r) + 1 − φ2

γ
, (24)

which are of the Riccati form [29]. One important property
of the Riccati equation is the fact that it may be converted
into a second order, linear equation. Here, this is achieved
through the substitution

φ = γ
ξ ′

ξ
, (25)

which leads to the second order equation

ξ ′′ + γ ′

γ
ξ ′ −

(
σ + 1

γ

)
ξ

γ
= 0. (26)

Upon solving the above linear equation, one may obtain φ

algebraically by means of (25). This correspondence may be
a useful tool in the search for BPS solutions, since techniques

for solving second-order linear equations are readily avail-
able. Moreover, (26) allows one to make use of the existence
and uniqueness theorems that are available for equations of
this kind.

In two-dimensional euclidean polar coordinates, the Bogo-
mol’nyi equation (24) for a given sigma is

∂rφ = σ(r) + 1 − φ2

r
. (27)

Let us exemplify the class of models defined by this choice
of potential with a family of Gaussian impurities of the form

σ(r) = αe−βr2
, (28)

where α and β > 0 are real constants. This impurity function
can be seen in Fig. 1 for two values of the constant β, which
controls how fast the impurity falls to infinity. The other con-
stant, α, may be important in scattering problems, but has not
engendered any qualitative effect in the static solutions we
are currently concerned with, so we fix it at unity. Impurities
of this form were considered in [8,12], where they have been
coupled to the topological vortices of Maxwell-Higgs theory.
The solutions are determined up to a constant of integration
r0, which may be determined by specification of the zero of
the scalar field. We have solved the above equation for the
choices β = 0.1 and β = 1, and display the results in Fig. 2.

For comparison, we also plotted the solution φ0(r) = r2−r2
0

r2+r2
0

,

which corresponds to σ = 0, in the same figure. One sees that
the presence of an impurity changes the qualitative behavior
of the solution, which is not a monotone function of the radial
coordinate anymore, being initially a descending function of
r , until it meets its minimal value (now not associated with a
vacuum as before) and starts to grow. Indeed, the near-zero
behavior of the solutions is φ ≈ Cr2 −αr , where C is a con-
stant which can be determined numerically. For the solutions
depicted in Fig. 2, we have found C = 2.038 (β = 0.1) and
C = 2.982 (β = 1). Since C depends on β, both parame-
ters of the impurity play a role in the determination of the
position of this minimum of the solution. Another important
difference from the impurity-free case is found in the emer-
gence of a maximum for sufficiently small values of β. In the
present example, this maximum (φ ≈ 1.420) is achieved for
r ≈ 3.530 when β = 0.1.

4.2 Schwarzschild background

As a second example, let us consider a system interacting
with the same family of impurities, but on a curved back-
ground in three spatial dimensions. Specifically, let us con-
sider domain wall solutions on a Schwarzschild background,
defined by the line element

ds2 =
(

1 − rs
r

)
dt2 −

(
1 − rs

r

)−1
dr2 + r2(r)d�2, (29)
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Fig. 1 Impurity σ(r) = αe−βr2
for β = 0.1 (yellow) and β = 1

(green). In both examples, α = 1

Fig. 2 Solutions of (27) with Wφ = 1 − φ2 and impurity function
given by (28), with α = 1 and β = 0.1 (yellow), β = 1 (green). The
dashed blue line represents the impurity-free case, i.e., α = 0

where d�2 = dθ2 + sin2 θdϕ2 and rs is the Schwarzschild
radius, which defines the boundary of the event horizon of

the black hole. Here, A = B−1 =
√

1 − rs
r . Instead of the

φ4 potential of the previous example, we shall now choose a
logarithmic potential of the form

U (r, φ) = 1

2

(
φ ln(φ2)

r

)2 (
1 − rs

r

)
, (30)

which presents minima at φ = 0 and φ = ±1. We thus have
Wφ = φ ln(φ2) and the first-order equations in the radially
symmetric case must thus be of the form

∂rφ = σ(r)√
1 − rs

r

+ φ(r) ln(φ(r)2)

r2

(
1 − rs

r

)−1
. (31)

Fig. 3 Impurity σ(r) = (r − rs)e
−

(
r−rs
rs

)2

, defined for r > rs . Here,
rs = 1

When σ = 0, the above equation can be solved to find a
solution

φ0(r) = −e
−κ

(
r

r−rs

)−2/rs

, (32)

where κ is an arbitrary real constant. It is important to note
that, although the function above does solve the first order
equation ∂rφ = φ(r)

r2 ln(φ(r)2)
(
1 − rs

r

)−1 and the corre-
sponding second-order equation, it does not behave in the
way expected from a topological defect, because its asymp-
totic value does not belong to the vacuum manifold of the
theory. Indeed, for any finite value of κ , one can readily see
from the analytical expression above that φ0 tends to a finite
value that is completely defined by the constant κ . Such a
solution still possesses a finite (though κ dependent) energy
due to the r−2 factor in the potential, which ensures that the
energy density goes to zero asymptotically. However, such a
solution would only be possible if one imposes the somewhat
arbitrary boundary condition limr→∞ φ0(r) = −e−κ , which
is difficult to justify on physical grounds. Let us see how this
situation changes in the presence of an impurity. We choose
a σ function of the form

σ(r) = (r − rs)e
−

(
r−rs
rs

)2

(r > rs). (33)

This impurity (Fig. 3) exists only in the outer region of the
Schwarzschild black hole, and it is zero at the horizon itself.
In our examples, we have chosen a Schwarzschild radius
equal to unity.

As in the previous example, the solution of (31) cannot
be written in closed-form, but we have calculated it numer-
ically, and the result is depicted in Fig. 4 alongside the pre-
viously discussed solution (32) of the impurity-free case.
Unlike the latter, the impurity-doped solution does reach the
desired asymptotic value, connecting two vacua of the model
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Fig. 4 Solutions of (31) for σ = 0, κ = 1 (dashed blue line) and for
σ given by (33) (green, solid line). Here, rs = 1

as expected from a topological solution, thus circumventing
the problem found in the impurity-free scenario. As in the
previous example, the field is not a monotonic function of
r when an impurity is present, instead displaying a mini-
mum at r ≈ 1.215. Near r = 1, the solution is of the form
φ(r) ≈ −1−2C1(r−1)2 +(r−1)3/2, where we have found
an approximate value of 3.296 for C1. The last term, which
only appears because of impurity, forces the field to decrease
initially.

5 Form-preserving impurities

A very interesting property found in [10] for the one-
dimensional case is the possibility of preserving the form
of the kink when certain impurities are added to the sys-
tem. One may wonder if such a possibility is also present in
higher dimensions. Indeed, the second-order equation of the
impurity-free case will be satisfied if and only if the two σ

terms in Eq. (7) cancel each other out exactly. This is possible
if the impurity function solves the differential equation

1

γ
∂r

[
γ σ

B(r)

]
+ WφφB(r)

γ
σ = 0. (34)

This condition generalizes the one found in Refs. [9,10], with
which it agrees when D = 1. If the solution solves the first-

order equation ∂rφ = Wφ
B2(r)

γ
, corresponding to domain

wall solutions, one may solve (34) to find

σ(r) = α
B2(r)

γ 2∂rφ
, (35)

where α is a real constant. For example, the solution

φ0(r) = r2 − r2
0

r2 + r2
0

(36)

of the φ4 model is preserved if any impurity of the family

σα(r) = α
(
r2 + r2

0

)2

r4r2
0

(37)

is added to the system. As expected, the configuration is no
longer a BPS solution in the impurity-doped system, but it
still solves the radially symmetric Euler–Lagrange equation
of the system, as one may verify directly. The parameter
α changes the shape of the impurity, making it thicker or
thinner, and is important in scattering calculations [10]. On
the other hand, the remaining BPS equation of the impurity-

free case, ∂rφ = −Wφ
B2(r)

γ
, gives the result

σ(r) = β
∂rφ

B(r)
, (38)

where β is also a real constant. The above equation pre-
serves the “antikink” solution of the impurity-free case. In
two spacetime dimensions, the solution preserved through
the use of (34) is not BPS [10], as it satisfies the field equa-
tion of the model, but cannot solve (18). In one spatial dimen-
sion, not much can be done to change this situation, but when
D ≥ 2, new degrees of freedom are added because of the pos-
sible presence of background curvature. This raises the possi-
bility of preserving a BPS solution in a Minkowski spacetime
after both an impurity and a nontrivial background metric are
added to the system. In order to achieve this, the scalar field
must solve the first-order equations in both systems, leading
to the constraint equation

Wφ

γ̃
= Wφ

γ
B2 + Bσ, (39)

where γ̃ is a factor depending only on dimension and choice
of coordinates, so that γ̃ = r in polar coordinates, γ̃ =
r2 sin θ in spherical, etc. This constraint is satisfied provided
σ solves the algebraic equation

σ = Wφ

B

(
1

γ̃
− B2

γ

)
. (40)

Thus, an impurity solving the above equation relates radial
solutions which solve their respective BPS equations in dif-
ferent spacetimes. The requirement that the spacetimes be
distinct is needed in order to prevent the vanishing of the
1/γ̃ − B2/γ factor in (40). Inverting this logic of the above,
one could also start with a fixed impurity function and solve
Eq. (39) for B(r). The result is

B =
−σ ±

√
σ 2 − 4W 2

φ

γ γ̃

2Wφ

γ, (41)

which shows that the constraint equation can only be solved
if |σ | ≥ 2|Wφ |√

γ γ̃
. The solutions in both spacetimes saturate the
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Bogomol’nyi bound (17). Thus, we find

ε =
∫

�̃

dr γ̃
Wφ

γ̃
=

∫
�

drγ
Wφ

γ
, (42)

so that the energy densities of the solutions satisfy ρ = Wφ

γ
=(

dφ
dr

)2
γ̃
γ

= γ̃
γ
ρ̃ and are thus related by the conformal factor

γ̃
γ

.

6 Discussion and final remarks

In this work, we have investigated domain wall solutions
in real scalar field theories with impurities. Working in a
(D + 1)-dimensional spacetime with a spherically symmet-
ric background metric, we have found first-order equations
whose solutions possess the minimal energy compatible with
radial symmetry, and presented some solutions of these equa-
tions, both in flat and Schwarzschild spacetimes. The ensu-
ing defects have been compared to their impurity-free coun-
terparts, allowing us to analyze the specific effects of the
impurity doping on the behavior of the solutions. Next, we
have investigated the possibility of doping the system with
an impurity which preserves the form of an (anti)domain
wall solution from an impurity-free theory. This investiga-
tion leads, in each case, to an equation that defines a family
of impurity functions parametrized by a real constant, thus
generalizing the results that were found in Ref. [10] for the
D = 1 case. Finally, we have showed that, when D ≥ 2, there
exists an impurity which relates the “standard” case inves-
tigated in [21] to a different system in a curved spacetime.
Both systems present identical solutions of their respective
radial Bogomol’nyi equation.

An interesting perspective related to this last application
lies in the generalization of the systems considered here
to allow for coupling with gravity, in which case Einstein
equations (or one of their generalizations) must be consid-
ered as well. When an impurity is added to the system, the
energy-momentum tensor which acts as a source to these field
equations is changed. One may thus wonder if it is possible
that (39), which is a constraint equation in this work, may
emerge naturally in a theory with gravitation. Other interest-
ing paths for future investigations include the extension to
theories with more than one real scalar fields, for instance, in
the multi field scenario similar to the one considered in Ref.
[30] in the one-dimensional case. Systems in which kink-
like solutions are coupled to more complex defects, such as
vortices, have been investigated in the absence of impurities
(see, for example, [31,32] and references therein), and may
be generalized to include impurities, in a way similar to the
investigations considered in [8,12]. Moreover, there are other
aspects of the theory that merit further investigation, such as
the search for time-dependent and non-BPS solutions, the

study of defect scattering and formal proofs of existence and
uniqueness for solutions, as well as the possibility of explor-
ing other symmetries or even dropping the assumption of
radial symmetry to further generalize our findings. Some of
the above issues are presently under consideration, and we
hope to return to them in the near future.
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