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Abstract Here, generation of PBHs and secondary GWs
from non-canonical inflation with quartic potential have been
probed. It is illustrated that, quartic potential in non-canonical
setup with a generalized power-law Lagrangian density can
source a consistent inflationary era with the latest observa-
tional data. Besides, we show that our model satisfies the
swampland criteria. At the same time, defining a peaked func-
tion of inflaton field as non-canonical mass scale parameter
M(φ) of the Lagrangian, gives rise to slow down the inflaton
in a while. In this span, namely Ultra-Slow-Roll (USR) stage,
the amplitude of the curvature perturbations on small scales
enlarges versus CMB scales. It has been illustrated that, fur-
ther to the peaked aspect of the chosen non-canonical mass
scale parameter, the amount of α parameter of the Lagrangian
has enlarging impact on the amplitude of the scalar per-
turbations. As a consequence of adjusting three parameter
Cases of this model, three Cases of PBHs in proper mass
scopes to explain LIGO-VIRGO events, microlensing events
in OGLE data and DM content in its totality, could be pro-
duced. In the end, power-law behavior of the current density
parameter of gravitational waves �GW0 in terms of frequency
has been examined. Also, the logarithmic power index as
n = 3 − 2/ ln( fc/ f ) in the infrared regime is obtained.

1 Introduction

It is widely recognized that, quantum fluctuations of scalar
field in the inflationary era could produce primal curvature
perturbations. The hastened expansion of the universe during
the inflation throws the perturbed modes out of the Hubble
horizon. These modes come back to the horizon in Radi-
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ation Dominated (RD) era. The enlarged perturbed scales
can produce the ultra-dense domains in RD era. In the end,
gravitational cave-in of these domains causes to born Primor-
dial Black Holes (PBHs) with different masses. The earliest
allusion to the context of PBHs was referred to the 1970s [1–
4]. Thenceforth, fortunate detection of Gravitational Waves
(GWs) ensued from converging black holes with masses of
30M� (M� connotes the solar mass) by LIGO-Virgo coop-
eration [5–9], has returned the PBHs notion to the center
of attention. So PBHs could be considered as the origin of
traced GWs. Into the bargain, the cryptic essence of Dark
Matter (DM) [10], has inspired the researchers to ponder
about PBHs as a probable candidate for the totality or a por-
tion of DM content [11–51].

PBHs could be produced in broad mass range. Some
observational data impose constraints on their mass spec-
tra. The localized PBHs mass spectra in O(10)M� can be
restrained by LIGO-VIRGO events. The PBHs mass spec-
tra in permissible regime of OGLE data [31,52], around
O(10−5)M�, could be considered as sources of ultrashort-
timescale microlensing events. The PBHs in the mass range
O(10−16 − 10−11)M� could comprise the whole DM con-
tent, since there are not any observational constraint in this
zone [13–22].

In the PBHs generation scenarios, the amplitude of the
curvature perturbations power spectrum PR needs to be
amplified on small scales around seven order of magni-
tude with regard to CMB scale [11–38]. On the other side,
the CMB anisotropies data of Planck 2018 [53] confine the
scalar power spectrum to P∗

R � 2.1 × 10−9 at pivot scale
k∗ = 0.05 Mpc−1. So, a suitable process is needed to amplify
the amplitude of the scalar power spectrum from O(10−9)

at the CMB scale to O(10−2) on PBHs scales, without any
conflict with observational data. Thus far, a large numbers
of techniques in the standard model of inflation [33–38],
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and beyond the standard model [11–30] have been offered
to achieve this goal.

Secondary GWs propagate in the cosmos coeval with pro-
duction of PBHs and they could be tracked down by different
GWs observatories in various frequency ranges [11–16,18–
21,23,23,25,26,32,34,35,38]. Detection of secondary GWs
via detectors like Square Kilometer Array (SKA) [54], Euro-
pean Pulsar Timing Array (PTA) [55–58], Laser Interferom-
eter Space Antenna (LISA) [59,60] and so on, could be the
indirect way to observe the PBHs. In addition, rectitude of
PBHs generation models could be examined by way of the
forthcoming data of these detectors.

In most of the PBHs production models, enhancement
of the primordial curvature perturbations takes places in an
Ultra-Slow-Roll (USR) phase of the inflationary era. In the
USR phase due to a friction dominated process, velocity
of the inflaton field decreases in comparison with slow-roll
regime. Usually, in this phase the slow-roll condition is bro-
ken down by the second slow roll parameter. In this way extra
time for enough growth of PR to produce PBHs is provided.
Basically, the USR regime in the standard model of inflation
could be generated by altering the inflationary potentials.
This aim could be reached either by altering the potentials to
have inflection points [34–37], or by setting a bump/dip for
the potentials on the scales smaller than CMB scale [33,38].
Hence, decreasing the velocity of the inflaton could take place
in the vicinity of the inflection point or in the bump/dip pass-
ing. Beyond the standard model of inflation, the USR regime
could be produced via applying suitable coupling functions
to enhance the friction gravitationally [14–23].

The non-canonical inflationary model with power-law
Lagrangian L(X, φ) = Xα − V (φ), where X connotes the
canonical kinetic term, is a well recognized generalization for
the standard model of inflation [12,13,61–63]. Therein, for
α = 1 the canonical standard model of inflation is recovered.
It has been shown that, smaller obtained slow-roll parameters
in this framework in comparison with canonical case can lead
to the longer inflationary era and also larger scalar spectral
index (ns) and smaller tensor-to-scalar ratio (r) [62]. Thence,
the steep potentials such as quartic and exponential poten-
tials could be resurrected in this setup [61–63]. On the other
hand, it has been proven that in this framework allowable
PBHs mass spectra and detectable GWs could be produced
on small scales [12,13].

So as to check the theoretical rectitude of the inflation-
ary models, their compatibility with swampland criteria in
addition to observational constraints have been verified. The
swampland criteria emanate from string theory and com-
prise two conjectures namely distance conjecture and de Sit-
ter conjecture [64–66]. The distance conjecture imposes an
upper limit on the filed evolution �φ < 1. The de Sitter
conjecture imposes a lower limit on the potential gradient
|V,φ/V | > 1. The de Sitter conjecture is in conflict with the

slow-roll condition in the standard model of inflation due to
ε1 = |V 2

,φ/V 2| � 1.
In the present work, we are interested in studying the pro-

duction of PBHs and GWs in the framework of generalized
power-law non-canonical inflation with quartic potential, in
which the mass scale parameter of non-canonical Lagrangian
M(φ) depends on the scalar field. We try to employ the field-
dependent feature of M(φ) to make the model not only be
consistent with observations at CMB scale but also produce
PBHs on small scales. To do this, in Sect. 2, fundamental
relations of generalized power-law non-canonical model are
analyzed. Thence, in Sect. 3, observational and theoretical
viability of the model thereto enhancing process of the ampli-
tude of the scalar power spectrum at small scales has been
expounded. Thereafter, PBHs mass spectra and current den-
sity parameter spectra of secondary GWs are obtained in
Sects. 4 and 5, respectively. In the end, Sect. 6 is allotted to
the abridged results of the paper.

2 Generalized power-law non-canonical inflation

We start by the following common action

S =
∫

d4x
√−g L(X, φ), (1)

in which the Lagrangian density L(X, φ) could be defined
as varied functions of scalar field φ and kinetic term X ≡
1
2∂μφ∂μφ [61–63,67,68]. Here, we introduce a new gener-
alized power-law shape for the Lagrangian density as follows

L(X, φ) = X

(
X

M(φ)4

)α−1

− V (φ), (2)

therein, the non-canonical dimensionless α parameter spec-
ifies deviation from canonicity. for α = 1 the canonical
version of Lagrangian (2) can be retrieved. The parameter
M(φ) with dimension of mass, denotes the non-canonical
mass scale of inflation. For the first time we consider M(φ)

as a general function of scalar field instead of a constant
parameter. V (φ) is the inflationary potential. The homoge-
neous and isotropic universe is described by the ensuing flat
Friedmann–Robertson–Walker (FRW) metric as

ds2 = dt2 − a2(t)
(

dx2 + dy2 + dz2
)

, (3)

where t is the cosmic time and a(t) denotes the scale factor.
Using the flat FRW metric, the kinetic term transforms into
X = φ̇2/2 (dot signifies derivative against t).

It is noteworthy that, the following field redefinition

ψ =
∫

M(φ)
2(1−α)

α dφ, (4)

results in recovery of the well known form of the non-
canonical Lagrangian L(X̃ , ψ) = X̃α − U (ψ) from the
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Lagrangian (2), wherein X̃ = ψ̇2/2 and U (ψ) = V (φ(ψ)).
In this way, any function M(φ)4 can be eliminated from the
non-canonical kinetic term of the Lagrangian (2) by the field
redefinition (4). Nevertheless, some form of M(φ) in the field
redefinition (4) may cause complexity in deriving an analyti-
cal expression for the potentialU (ψ). Hence, it is reasonable
to use the Lagrangian (2) in such models depending on the
form of M(φ).

In what follows the ensuing form of energy density ρφ and
pressure pφ of the scalar field could be computed from the
Lagrangian (2) (see [61,62] to peruse these equations)

ρφ = 2X

(
∂L
∂X

)
− L

= (2α − 1) X

(
X

M(φ)4

)α−1

+ V (φ), (5)

pφ = L = X

(
X

M(φ)4

)α−1

− V (φ). (6)

Utilizing Eqs. (5) and (6), the first and second Friedmann
equations are derived as

H2 = 1

3M2
p
ρφ

= 1

3M2
p

[
(2α − 1) X

(
X

M(φ)4

)α−1

+ V (φ)

]
, (7)

Ḣ = −1

2M2
p
(ρφ + pφ) = − 1

M2
p
αX

(
X

M(φ)4

)α−1

, (8)

in which H ≡ ȧ/a designates the Hubble parameter and
Mp = 1/

√
8πG is the reduced Planck mass.

Using the Lagrangian (2) and minimizing the action (1)
with respect to scalar field φ, the ensuing second order equa-
tion of motion can be derived

φ̈ + 3H φ̇

2α − 1
−

(
2(α − 1)

α

) (
M,φ

M(φ)

)
φ̇2

+
(

V,φ

α(2α − 1)

) (
2M(φ)4

φ̇2

)α−1

= 0, (9)

wherein (,φ) signifies derivative against φ. It is worth noting
that, for α = 1, all of the preceding equations revert to their
canonical versions.

In the following, the first and second Hubble slow-roll
parameters are introduced as

ε1 ≡ − Ḣ

H2 , ε2 ≡ ε̇1

H ε1
. (10)

Under the slow-roll approximation conditions ({ε1, ε2} �
1), kinetic energy term can be dominated by the potential
energy. So, thereunder the first Friedmann equation (7) abbre-
viates to [62]

3M2
p H

2 � V (φ), (11)

Furthermore, under the slow-roll conditions in Eq. (9), φ̈ and
φ̇2 could be neglected and using Eq. (11), the equation of
motion can be recast in

φ̇ = −θ

{(
Mp√
3α

)(
θV,φ√
V (φ)

) (
2M(φ)4

)α−1
} 1

2α−1

, (12)

where θ = 1 for V,φ > 0 and θ = −1 for V,φ < 0.
Applying the definition of the first slow-roll parameter

(ε1 ≡ −Ḣ/H2) and using dN = Hdt to convert the cos-
mic time to e-folding number N thereto Eqs. (7), the field
equation of motion (9) takes the following form

φ,NN +
[

3

2α − 1
− ε1

]
φ,N −

(
2(α − 1)

α

) (
M,φ

M(φ)

)
φ2

,N

+V,φ

V

[
3α − (2α − 1)ε1

α(2α − 1)

]
φ2

,N

2ε1
= 0, (13)

wherein (,N ) and (,NN ) designate the first and 2nd derivative
against N , respectively.

So as to analyze the perturbations dynamics in this frame-
work, we pursue the calculations of [69]. Therefrom, the cur-
vature power spectrum under the slow-roll approximation at
sound horizon passing (csk = aH) by comoving wavenum-
ber k in non-canonical setup is given by

PR = H2

8π2M2
pcsε1

∣∣∣
csk=aH

, (14)

where

c2
s ≡ ∂ pφ/∂X

∂ρφ/∂X
= ∂L(X, φ)/∂X

(2X) ∂2L(X, φ)/∂X2 + ∂L(X, φ)/∂X
,

(15)

signifies the square of the scalar perturbations sound speed
[62,69]. The amplitude of the curvature power spectrum at
pivot scale (k∗ = 0.05 Mpc−1) has been constrained by
Planck teamwork as PR(k∗) � 2.1 × 10−9 [53]. For the
power-law Lagrangian (2), the square of the sound speed
(15) takes the following form

c2
s = 1

2α − 1
. (16)

It is obvious that, in order to prevent the model from classical
instability we required c2

s > 0 which results in α > 1/2.
Pursuant to [69], in this setup the scalar spectral index ns

is obtained from the curvature power spectrum and it could
be written with regard to slow-roll parameter as follows

ns − 1 ≡ d lnPR
d ln k

= −2ε1 − ε2. (17)

The scalar spectral index is observationally constrained by
Planck 2018 as ns = 0.9668 ± 0.0037 (TT,TE,EE+lowE+
lensing+BK15+BAO, 68% CL) [53].
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Subsequent to [69], the tensor perturbations power spec-
trum under the slow-roll approximation at k = aH in non-
canonical framework is given by

Pt = 2H2

π2M2
p
. (18)

It is evident that, the tensor power spectrum in this setup is
equal to its canonical counterpart. Because The tensor power
spectrum in this setup ia associated to the gravity sector of
the action. Employing the scalar (14) and tensor (18) power
spectra, the tensor-to-scalar ratio r is calculated as

r ≡ Pt

PR
= 16csε1. (19)

There is an upper bound on the tensor-to-scalar ratio estab-
lished by Planck 2018 as r < 0.063 (TT,TE,EE+lowE+
lensing+BK15+BAO, 95% CL) [53]. It is worth noting that,
recently the mentioned upper bound on r is constricted by
BICEP/Keck 2018 to r < 0.036 at 95% CL [70].

3 Methodology and viability of the model

It is widely recognized that, creation of the seeds of PBHs
during the inflation requires an enhancement around seven
order of magnitude in thePR on small scales in proportion to
PR(k∗) at CMB scale. In the subsequent stage, the circum-
stances of occurring such enhancement in the PR through
the non-canonical framework with power-law Lagrangian
(2) has been expounded. To this end, the ensuing two-parted
function is chosen for the non-canonical mass scale parame-
ter M(φ) of the generalized Lagrangian (2)

M(φ) = M0
(
1 − ε(φ)

)
, (20)

wherein

ε(φ) = w√
1 + (φ−φc)2

b2

. (21)

The M0 parameter in (20) with the dimension of mass, is
responsible for observational compatibility of the model on
CMB scale as well as the α parameter. The second term of
(20), ε(φ) is a dimensionless peaked function of φ, that is
able to generate a localized peak in φ = φc with height ω

and breadth b. The parameters {φc, b} have dimensions of
mass and ω is dimensionless. It can be deduced that, for
φ �= φc the ε(φ) function melts away (ε(φ) � 1) and M(φ)

comes back to constant M0. Hence, ε(φ) is responsible for
slowing the inflaton down in the vicinity of φ = φc (i.e.
USR phase) and enhancing the curvature power spectrum
on small scales without significant effect on CMB scale. So
as to achieve this goal, we need to adjust the peak function
parameter {ω, b, φc}. In this way, not only the compatibility
of the model with observational data on CMB scale is insured,

but also the USR phase could be generated to enhance the
PR on smaller scales to produce PBHs.

It should be noted that, in [12] the authors have investi-
gated production of PBH and GWs in non-canonical frame-
work with power-law Lagrangian through the mechanism
of inflection point in a class of steep-deformed exponential
potential. Two cases of PBHs are produced in the vicinity of
inflection point of the potential (the USR stage) [12].

In [13], production of PBHs and GWs in the same frame-
work as [12], from the quartic potential in the presence of
a tiny bump has been investigated. At the moment of bum-
passing three cases of PBHs were generated [13]. In both
mentioned papers [12,13] the power-law Lagrangian con-
tains the constant non-canonical mass scale parameter M ,
but in the present work we consider a generalized form of
this framework with M(φ) as a function of φ defined by Eq.
(20).

Here, we consider the quartic potential for the model

V (φ) = λ

4
φ4. (22)

in which, λ � 0.13 is the dimensionless self coupling param-
eter [71]. The quartic potential can source chaotic inflation
[72] and it has substantial reheating features [73,74]. It is
demonstrated that, the quartic potential in the standard model
of inflation suffers from some problems. First, because of the
large self-coupling constant λ � 0.13, its produced scalar
fluctuations on CMB scale cannot be compatible with the
latest Planck data [53]. On the other hand, owing to gen-
eration of the large tensor fluctuations by this potential, its
predicted quantity for r cannot lie in the permitted domain
of Planck 2018 data [53]. As regards the quartic potential
cannot accommodate to feasible inflationary epoch in the
standard model of inflation, in this work we attempt to revive
it through the generalized power-law non-canonical setup.
Simultaneously, employing a peaked function for M(φ) in
this setup, we could examine the generation of PBHs and
GWs on smaller scales.

Altogether, this model is comprised of three Cases con-
taining a collection of six parameters {α, M0, λ, ω, φc, b}.
Regarding λ � 0.13, the M0 parameter for each case
could be computed via the observational constraint on the
scalar power spectrum (P∗

R ∼ 2.1 × 10−9) at pivot scale
(k∗ = 0.05 Mpc−1) [53]. Three parameters {ω, φc, d} do
not have any significant effect on CMB scale. So α is the
only free parameter which can be used to remedy the large

tensor-to-scalar ratio r of the model. So pursuant to [61–
63,75–77], we have chosen α = 17 for all Cases of our model
to decrease the r . It is notable that, using the chosen α, Null
Energy Condition (NEC) is preserved and the kinetic energy
remains positive and dominated by potential energy through-
out the inflationary era. Thus, the model is free of the ghost
and tachyonic instabilities. Furthermore, the Lagrangian (2)
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Table 1 The assigned parameters for Cases A, B, and C considering
the fixed λ = 0.13 and α = 17

# ω φc/Mp b/Mp M0/MP

Case A 0.9226 0.01070 1.3 × 10−6 2.49 × 10−5

Case B 0.9267 0.01165 1.2 × 10−6 2.54 × 10−5

Case C 0.9270 0.01236 1.1 × 10−6 2.53 × 10−5

satisfies the Effective Field Theory (EFT) conditions for non-
canonical Lagrangian [78]. The assigned parameters for all
Cases of the model are classified in Table 1. Table 2 embodies
the resultant quantities for ns , r and generated PBHs.
To the best of our knowledge, deficiencies of the Hot Big
Bang (HBB) theory could be rectified through a feasible
inflationary epoch with a length of 60–70 e-folds number
[72,74,79]. The last column of Table 2 embodies the length
of inflation (�N = Nend − N∗) apropos to Cases of Table 1,
from the CMB horizon passing point (N∗ = 0) to the end
of inflation (Nend). Whenever the first slow-roll parameter
meets one (ε1 = 1), the inflationary era ends for Cases of
this model (see the ε1 plot in Fig. 1).

Concerning the background evolution, the second Fried-
mann equation (8) and the equation of motion (13) should be
solved concurrently, via substituting the inflationary potential
(22) and the defined M(φ) from (20) and (21). The required
initial conditions are acquired from the slow-roll equations
(11) and (12) with the potential (22). Thereafter, evolutions
of scalar field φ, its derivative φ,N , the first and second slow-
roll parameters (ε1, ε2) against the e-folds number have been
plotted in Fig. 1 for Cases A (red lines), B (green lines) and C
(blue lines). A small USR region in the proximity of φ = φc

can be seen in each graph of Fig. 1. The short-living USR
stage lasts for about two e-folds numbers. In this region, the
inflaton speed is decreased and goes toward zero (see φ,N in
Fig. 1). Hence, an approximately flat region in the graph of the
field evolution is produced for each Case of the model (notice
φ in Fig. 1). The inflationary era of our model is comprised of
three consecutive phases namely first SR phase, intermediate
USR phase and final SR phase. Following [80], the sharpness
of transitions between these phases can be inferable from the
evolution of ε2. As it can be seen from the ε2 graph of Fig 1,

in the beginning of the USR stage ε2 takes the negative values
then it tends to positive values larger than one, at last it returns
to zero at the beginning of the final SR phase. Hence, accord-
ing to [80] we conclude that, the sharp transitions take place
between three phases of the inflationary era. As regards the
reduction in the ε1 during the USR phase (see ε1 in Fig. 1),
according to Eq. (14) the amplification of PR can be pre-
sumable in this phase. Into the bargain, the value of ε2 for
each Case of the model oversteps its bound (slow-roll con-
dition ε2 � 1 ) in USR region (see ε2 in Fig. 1). Ergo, in the
USR regime, the slow-roll conditions is violated by ε2 even
though it is held by ε1. Albeit, the validity of the slow-roll
conditions in the vicinity of CMB scale (N∗ = 0), is obvious
from the ε1 and ε2 graphs of Fig. 1.

Consequently, it is allowable to compute the scalar spec-
tral index ns and tensor-to-scalar ratio r , applying Eqs. (17)
and (19) under the slow-roll approximation for the model. It
is inferable from the listed quantities in Table 2 that, ns and
r apropos of each Case of the model can be compatible with
Planck 2018 data (TT,TE,EE+lowE+lensing+BK15+BAO,
95% CL) [53]. Furthermore, the values of r apropos of all
Cases are compatible with BICEP/Keck 2018 data (r <

0.036 at 95% CL) [70]. Hence, the quartic potential through
the generalized power-law non-canonical setup is resurrected
in light of the latest observational data.

In this stage, by considering the swampland criteria, the-
oretical viability of the model in addition to observational
consistency can be checked. The swampland criteria origi-
nate from string theory and are comprised of two theoretical
conjectures so-called distance conjecture and de Sitter con-
jecture [64–66]. The distance conjecture leads to an upper
bound on scalar field evolution during the inflationary era
as �φ < 1. The de Sitter conjecture bounds the potential
gradient as |V,φ/V | > 1. Employing the field evolution,
�φ = φ(N ) − φ(Nend) is calculated and plotted in Fig. 2
during the inflationary era. It is obvious from this plot that,
the distance conjecture (�φ < 1) is held throughout the infla-
tionary era for all Cases and the field distance �φ decrease to
the end of inflation. As for the second conjecture, the potential
gradient is plotted in Fig. 2 as well. It is inferred from this plot
that, the de Sitter conjecture (|V,φ/V | > 1) is established all
over the inflationary era for all Cases and the potential gradi-

Table 2 The computed quantities for Cases of Table 1 with regard to
the scalar spectral index ns , the tensor-to-scalar ratio r , the peak of the
amplitude of the scalar power spectrum Ppeak

R , the wavenumber kpeak,

the PBHs abundances f peak
PBH and masses Mpeak

PBH. Here, the length of the
inflationary era is �N = Nend − N∗ and the observable quantities ns
and r are calculated at CMB horizon passing e-folds number (N∗ = 0)

# ns r Ppeak
R kpeak/Mpc−1 f peak

PBH Mpeak
PBH/M� �N

Case A 0.9622 0.030 0.037 4.43 × 1012 1.0000 1.20 × 10−13 63.66

Case B 0.9621 0.030 0.042 7.93 × 108 0.0457 3.76 × 10−6 63.66

Case C 0.9621 0.030 0.050 4.46 × 105 0.0013 11.87 63.71
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Fig. 1 Evolution of the scalar field φ and its derivative φ,N as well as the first ε1 and second ε2 slow-roll parameters in regard of the e-folds number
N for the Cases A (red lines), B (green lines) and C (blue lines)

ent |V,φ/V | increases from the CMB passing e-fold number
to the end of inflation.

As described erstwhile, in the USR domain, validity of the
slow-roll conditions is contravened by ε2. Ergo, it is unallow-
able to compute the curvature power spectrum via Eq. (14)
governed by the slow-roll conditions. Thus, the evolution of
the curvature perturbations should be evaluated through the
subsequent Mukhanonv–Sasaki (MS) equation [69] all over
the inflationary era

υ ′′
k +

(
c2
s k

2 − z′′

z

)
υk = 0, (23)

therein the prime connotes derivative against the conformal
time η ≡ ∫

a−1dt , and

υk ≡ zRk, z ≡ a
(
ρφ + pφ

)1/2

cs H
. (24)

In order to solve the MS equation (23) numerically, it is nec-
essary to take the ensuing Bunch–Davies vacuum state [10]
into account as the inceptive condition on the scales deep
interior the horizon

υk � e−icskη

√
2csk

, (aH � csk). (25)

Thenceforth, the curvature perturbations power spectrum is
calculated from the subsequent equation

PR ≡ k3

2π2

∣∣R2
k

∣∣ = k3

2π2

∣∣∣∣υk
2

z2

∣∣∣∣ . (26)

The acquired quantities for the curvature power spec-
tra Ppeak

R and relevant comoving wavenumbers kpeak at the
peak location (matching with φ = φc) for each Case of
the model have been classified in Table 2. Subsequently, the
attained curvature power spectraPR with regard to comoving
wavenumber k thereto the observational confinements have
been plotted in Fig. 3 respecting the Cases A (red line), B
(green line) and C (blue line). It can be inferable form this fig-
ure that, the curvature power spectra respecting all Cases of
the model in the environs of the CMB scale k ∼ 0.05 Mpc−1,
are consistent with Planck restriction PR(k∗) � 2.1 × 10−9

[53]. Moreover, the amplitudes of PR for all Cases during
the USR domain in the vicinity of φ = φc, undergo increases
toO(10−2) which are sufficient to produce PBHs in different
masses.

It should be mentioned that, the α parameter pertinent to
the Lagrangian (2) could have the amplifying impacts on the
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Fig. 2 Legitimacy of swampland criteria for all Cases of the model (see plots legends), consist of distance conjecture �φ < 1 (left panel) and de
Sitter conjecture |V,φ/V | > 1 (right panel)

Fig. 3 The curvature perturbations power spectra computed through
the numerical solutions of the MS equation (23) against the comov-
ing wavenumber k respecting the Cases A (red line), B (green line)
and C (blue line). The light-green, yellow, cyan, and orange sectors
are excluded by the CMB constraints [53], PTA constraints [81], the
impact on neutron-to-proton ration during the Big Bang Nucleosynthe-
sis (BBN) [82–84], and the μ-distortion of CMB [85,86], respectively

amplitude of the curvature power spectra in USR domain,
with no significant interference in the CMB scale. In Fig. 4,
the relation between the amplitude ofPR and the α parameter
for Case A, has been portrayed. It is deduced from this figure
that, the larger α yields the greater PR in the USR domain,
without any serious disturbance on CMB scale.

4 PBHs mass spectra

The current section is devoted to evaluate the mass spec-
tra of produced PBHs through the quartic potential in
non-canonical framework with the generalized power-law
Lagrangian (2). As described in the preceding sections, the
seeds of PBHs generate in the inflationary era from the

Fig. 4 The relation between PR and non-canonical α parameter as to
Case A of Table 1. The amplitude of PR grows up for greater α in USR
domain (see the different values of α in the legend of the plot)

enhanced scalar perturbations. The perturbed scales leave the
horizon during the inflation and thereafter when they revert
to the horizon in RD era, the ultra-dense districts could be
produced. Eventually, PBHs can be born from the gravita-
tional cave-in of the mentioned districts. The mass of PBHs
could be defined as a portion of the horizon mass via the
subsequent equation

MPBH(k) = γ
4π

H

∣∣∣
csk=aH

� M�
( γ

0.2

) (
10.75

g∗

) 1
6

×
(

k

1.9 × 106Mpc−1

)−2

, (27)

therein γ = ( 1√
3

)3 connotes the collapse efficiency [4] and

g∗ = 106.75 implies the effective number of relativistic
degrees of freedom. The fractional abundance fPBH(M) of
PBHs specifies that what percentage of the cosmos DM con-
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tent could be allotted to PBHs and can be obtained from the
ensuing equation

fPBH(M) � �PBH

�DM
= β(M)

1.84 × 10−8

( γ

0.2

)3/2 ( g∗
10.75

)−1/4

×
(

0.12

�DMh2

) (
M

M�

)−1/2

, (28)

wherein �DMh2 � 0.12 implies the defined current DM
density parameter by Planck data [53]. Furthermore, β(M)

indicates the generation rate of PBHs and it can be calculated
from the Press-Schechter formalism for gaussian distribution
of the primal perturbations as follows [87,88]

β(M) =
∫

δc

dδ√
2πσ 2(M)

e
− δ2

2σ2(M)

= 1

2
erfc

(
δc√

2σ 2(M)

)
. (29)

Here “erfc” is the error function complementary and δc = 0.4
indicates the density threshold [89,90]. Moreover, σ 2(M)

denotes the coarse-grained density contrast smoothed on the
scale k as

σ 2
k =

(
4

9

)2 ∫
dq

q
W 2(q/k)(q/k)4PR(q), (30)

in which PR is the curvature power spectrum and W (x) =
exp

(−x2/2
)

denotes the Gaussian window.
In the next, the PBHs abundance for each Case of Table 1

can be obtained from the Eqs. (27)–(30), by substituting the
attained PR from the MS equation (23) in Eq. (30). The
consequent quantities for fPBH and MPBH (pertinent to peak
location) have been classified in Table 2 for each Case of
Table 1. Additionally, the PBHs mass spectra thereto the
observational domains have been schemed in Fig. 5 for all
Cases of the model. As it can be seen from Table 2, there
is a huge difference in the PBH masses of the cases A, B
and C. It can be inferred from Eq. (27) that, PBHs masses
are proportional to the scales k wherein the PBHs are pro-
duced. Originally these scales are pertinent to the peak scales
of the scalar power spectra. So we got the huge differences
in the PBHs masses, because of the differences between the
wavenumbers of the peaks of the scalar power spectra. The
peak position of the scalar power spectrum defines the mass
of produced PBH. The key parameter which is responsible
to specify the peak position of scalar power spectrum is φc

for each case of the model. So the parameter φc plays a key
role in specifying the mass of produced PBH.

It can be inferable from Fig. 5 that, the consequent PBHs
mass spectrum from the parameter Case A could be a promis-
ing claimant for 99% of DM content. The anticipated PBHs
mass spectrum for the parameter Case B has placed in the
permissible zone of the OGLE data [31,52], and it could be
proper to be considered as the origin of ultrashort-timescale

Fig. 5 The PBHs mass spectra relevant to Cases A (red line), B (green
line) and C (blue line). The colory districts demonstrate the present
observational restriction on the PBHs abundance. Some of these dis-
tricts are excluded by observations of CMB [91] (purple district), LIGO-
VIRGO event [92–95] (red district), microlensing events via MACHO
[96], EROS [97], Kepler [98]), Icarus [99], OGLE [31,52], Subaru-HSC
[100] (green district), and PBHs evaporation [32,101–104] (pink dis-
trict). The only allowable district is the ultrashort-timescale microlens-
ing events in the OGLE data [31,52] (brown district)

microlensing events. The foretold PBHs mass spectrum con-
cerning the parameter Case C, has situated in the sensitivity
zone of LIGO-VIRGO and its concurrent GWs would be
traced by these observatories.

5 Secondary gravitational waves

Propagated secondary GWs in the cosmos, could be the fur-
ther upshot of reentry of the perturbed modes to the horizon
in the RD era. Whereas, the concurrent GWs with PBHs pro-
duction could be tracked down by multifarious detectors, so
they can be considered as an indirect way to detect PBHs. The
present section is earmarked for scrutinizing the secondary
GWs coeval with PBHs production in the generalized power-
law non-canonical model with the quartic potential.

It can be shown that the present energy density of the
secondary GWs is given by [105]

�GW(ηc, k) = 1

12

∫ ∞
0

dv

∫ |1+v|
|1−v|

du

(
4v2 − (1 + v2 − u2)2

4uv

)2

×PR(ku)PR(kv)

(
3

4u3v3

)2
(u2 + v2 − 3)2

×
⎧⎨
⎩

[
−4uv + (u2 + v2 − 3) ln

∣∣∣∣∣
3 − (u + v)2

3 − (u − v)2

∣∣∣∣∣
]2

+π2(u2 + v2 − 3)2�(v + u − √
3)

⎫⎬
⎭ , (31)
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Fig. 6 The acquired present energy density spectra of secondary grav-
itational waves �GW0h

2 against the frequency respecting the param-
eter Cases A (red line), B (green line) and C (blue line) of Table 1,
in addition to the observational regions of the GWs detectors such as
EPTA (brown domain), SKA (purple domain), LISA (orange domain),
DECIGO (red domain) and BBO (green domain). The power-law incline
of the �GW0h

2 spectrum has been schemed via dashed black lines in
three frequency regions for Case A

therein � indicates the Heaviside theta function and ηc
implies the termination time of the growth of �GW. The
present GWs energy spectrum and its counterpart at ηc are
associated together through [81]

�GW0h
2 = 0.83

( g∗
10.75

)−1/3
�r0h

2�GW(ηc, k), (32)

in which �r0h
2 � 4.2 × 10−5 indicates the present radiation

density parameter and g∗ � 106.75 specifies the effective
degrees of freedom in the energy density at ηc. The relation
between frequency and wavenumber is

f = 1.546 × 10−15
(

k

Mpc−1

)
Hz. (33)

Thenceforth, the present density parameter spectra of the
secondary gravitational waves �GW0 concurrent with PBHs
respecting the all Cases of Table 1 could be attained, through
the Eqs. (31)–(33) and the obtainedPR from the MS equation
(23).

The consequent �GW0 spectra have been plotted in Fig. 6
for Cases A (red line), B (green line), C (blue line),
thereto sensitivity domains of GWs detectors like SKA (pur-
ple domain) [54], EPTA (brown domain) [55–58], LISA
(orange domain) [59,60], BBO (green domain) [106,107]
and DECIGO (red domain) [106,108]. The predicted �GW0

spectrum of parameter Case A, has lied in the sensitivity
domain of LISA. Moreover, the resultant �GW0 spectra for
Cases B and C have situated in the sensitivity domain of
SKA detector (see Fig. 6). Thus, the rectitude of this model
could be verified in light of approaching observations of these
detectors.

In the last stage, the slopes of �GW0 spectra at different
frequency regions have been estimated for all Cases of the

Table 3 The consequent values for frequencies and heights of the peaks
of �GW0h

2 spectra, in addition to the power indexn in frequency regions
f � fc, f < fc and f > fc respecting Cases A, B and C

# fc/Hz �GW0h
2 ( fc) n f � fc n f < fc n f > fc

Case A 6.86 × 10−3 9.73 × 10−9 3.00 1.17 −4.84

Case B 1.00 × 10−6 1.14 × 10−8 2.94 1.10 −1.49

Case C 6.91 × 10−10 2.07 × 10−8 2.85 1.07 −1.45

model. It has been exhibited that, the inclination of �GW0

spectrum could be matched with a power-law function of
frequency as �GW0( f ) ∼ f n [23,109,110]. The estimated
quantities for the power indexes n for all Cases of the model
in three frequency regions like f � fc, f < fc and f > fc
have been arranged in Table 3 ( fc denotes the frequency
of the peak of �GW0 spectrum). It can be inferred that, the
consequent quantities for n in the infrared region f � fc
could be compatible with the logarithmic equation n = 3 −
2/ ln( fc/ f ) acquired in [111–113].

As it can be seen from the listed results in Table 3, there
are large differences between the frequencies of GWs. The
secondary GWs are produced concurrent with PBHs genera-
tion. The frequencies of GWs are relevant to the wavenubers
k through Eq. (33). As we mentioned previously, the key
parameter to specify the scale k for each case is φc. On the
other word the frequencies of the peaks of the GWs spec-
tra are pertinent to peaks positions of scalar power spectra,
which are specified by φc.

6 Conclusions

This study is devoted to exhibit creation of PBHs from
the quartic potential in non-canonical inflationary model
with a generalized power-law lagrangian (2). The obser-
vational anticipations of the quartic potential on CMB
scale, through the power-law non-canonical setup have
been remedied. The consequent quantities for scalar spec-
tral index ns and tensor-to-scalar ratio r for all Cases of
the model could place in the allowable domain defined by
Planck 2018 (TT,TE,EE+lowE+lensing+BK15+BAO, 95%
CL) [53]. Additionally, the r quantities respecting all Cases
of the model could be compatible with the latest limitation
r < 0.036 of BICEP/Keck 2018 data at 95% CL [70] (notice
Table 2).

Choosing the non-canonical mass scale parameter M(φ)

of the Lagrangian (2) as a two-parted peaked function of φ

(20)–(21) leads to make the inflaton slow down in an USR
region (in the vicinity of the peak position φ = φc) with no
effect on CMB scale. Thus, after adjusting the parameters of
the model according to Table 1, the sufficient enhancement
in the scalar power spectrum during the USR region could be
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produced to born PBHs seeds. In this way not only the quar-
tic potential could originate a feasible inflationary era, but
also the PBHs and GWs seeds could be generated. Note that
our model consists of 6 free parameters {α, M0, λ, ω, φc, b}.
Since λ = 0.13 is fixed, the parameter M0 can be obtained
from the CMB normalization constraint. So α is the only free
parameter which can be fine tuned to remedy the results of ns
and r for the quartic potential. Three parameters {ω, φc, d}
of the peak function do not have any significant effect on
CMB scale. These three parameters should be fine tuned to
produce PBHs in different mass range with allowable abun-
dances. The ω parameter is responsible for the height of the
peak of PR and subsequent PBH abundance, The φc param-
eter is defined the peak position of the PR and the mass
of produced PBH and d parameter is responsible for dura-
tion of USR stage and breadth of the peak of the PR. The
USR stage in this model lasts for about two e-folds num-
bers. Following [80], from the behavior of ε2 we inferred
that, the sharp transitions could occur between three phases
of the inflationary era of this model (first SR phase, inter-
mediate USR phase and final SR phase). Sharp transition
between the SR and USR phases may cause quantum correc-
tions like large one-loop corrections in the curvature power
spectrum [80,114,115]. Moreover, the transition procedure
could affect the size of local non-Gaussianity [80]. Studying
of possible quantum corrections and non-Gaussianity in this
framework are beyond the scope of the present work and we
leave them for future works.

The background evolution through the concurrent solv-
ing of Eqs. (8) and (13) could be evaluated. Thence, Fig. 1
embodies plots of scalar field φ and its derivative φ,N , thereto
the first ε1 and second ε2 slow- roll parameters against the
e-fold number N . It is obvious from the mentioned plots that,
in the USR region the velocity of the inflaton approaches to
zero and ε1 undergoes a decrease, which yields an increase in
the curvature perturbations power spectrum (see Fig. 3). The
slow-roll conditions ({ε1, ε2} � 1) all over the USR region
are obeyed by ε1, whereas broken by ε2 momentarily. We
also checked that the swampland criteria are satisfied in our
model.

In addition, the curvature perturbations power spectra
could be computed by way of solving the MS equation (23)
for Cases of the model (notice Table 2 and Fig. 3). The por-
trayed spectra of PR at CMB scale are confined in the obser-
vational constraint of Planck 2018 (P∗

R � 2.1×10−9), while
they enhance around seven order of magnitude in the USR
region to produce PBHs.

Three Cases of PBHs mass spectra according to parame-
ter Cases of the model have been attained via the numerical
solutions of MS equation. The consequent PBHs from the
parameter Case A could be a promising claimant for 99% of
DM content. The anticipated PBHs for the parameter Case
B in the permissible zone of the OGLE data [31,52], could

be the origin of the ultrashort-timescale microlensing events.
The foretold PBHs concerning the parameter Case C, in the
sensitivity zone of LIGO-VIRGO could be considered as
the source of detected GWs by these detectors. The con-
sequent values for PBHs abundance fPBH and mass MPBH

are arranged in Table 2 and mapped in Fig. 5.
Thereafter, the spectra of �GW0 (the current density

parameter of coeval GWs with PBHs) have been obtained and
plotted in Fig. 6 for all Cases. The predicted �GW0 spectrum
from parameter Case A, has lied in the sensitivity domain of
LISA, whereas the resultant �GW0 spectra for Cases B and C
have situated in the sensitivity domain of SKA detector (see
Fig. 6). Thus, the rectitude of this model could be verified in
light of the approaching data of these detectors.

In the last stage, the power-law slopes of �GW0 spec-
tra (�GW0( f ) ∼ f n) [23,109,110] at different frequency
regions have been estimated for all Cases of the model.
Table 3 embodies the peak frequencies of �GW0 spectra and
the estimated values for the power indexes n for all Cases of
the model in three frequency regions like f � fc, f < fc
and f > fc. It can be inferred that, the consequent quantities
for n in the infrared region f � fc could be compatible
with the logarithmic equation n = 3 − 2/ ln( fc/ f ) acquired
in [111–113].
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