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Abstract We consider the Brans–Dicke theory in non-
metricity gravity, which belongs to the family of symmetric
teleparallel scalar–tensor theories. Our focus lies in explor-
ing the implications of the conformal transformation, as we
derive the conformal equivalent theory in the Einstein frame,
distinct from the minimally coupled scalar field theory. The
fundamental principle of the conformal transformation sug-
gests the mathematical equivalence of the related theories.
However, to thoroughly analyze the impact on physical vari-
ables, we investigate the spatially flat Friedmann–Lemaître–
Robertson–Walker geometry, defining the connection in the
non-coincidence gauge. We construct exact solutions for the
cosmological model in one frame and compare the physical
properties in the conformal related frame. Surprisingly, we
find that the general physical properties of the exact solu-
tions remain invariant under the conformal transformation.
Finally, we construct, for the first time, an analytic solution
for the symmetric teleparallel scalar–tensor cosmology.

1 Introduction

Symmetric teleparallel general relativity (STGR) [1] repre-
sents an alternative gravitational theory, considered equiva-
lent to General Relativity (GR). In STGR, the fundamental
geometric elements consist of the metric tensor gμν and the
symmetric, flat connection �λ

μν with the covariant derivative
∇λ, leading to ∇λgμν �= 0. While GR defines autoparal-
lels using the Levi–Civita connection for the metric tensor
gμν , STGR emphasizes the non-metricity component, cru-
cial for the theory’s description. The equivalence between
these two gravitational theories becomes evident upon a study
of the gravitational Lagrangians [2]. In GR, the Lagrangian
function involves the Ricci scalar constructed by the Levi–
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Civita connection R̊, whereas in STGR, the corresponding
Lagrangian is defined by the non-metricity scalar Q. The
Ricci scalar and the non-metricity scalar differ by a bound-
ary term B = R̊ − Q [1–3]. Consequently, the variation of
the two distinct Lagrangians yields the same physical theory.
However, this equivalence breaks down when introducing
matter non-minimally coupled to gravity [4–8], or nonlin-
ear terms of the gravitational scalars in the Action Integral
[9,10].

In f (Q)-gravity [9,10], a straightforward extension of the
STGR theory, the gravitational Lagrangian takes the form
of a nonlinear function f of the non-metricity scalar Q.
These nonlinear terms introduce additional degrees of free-
dom, leading to modifications in the gravitational field equa-
tions that give rise to new phenomena [11]. In the context
of cosmology, f (Q) has been proposed as a solution to the
dark energy problem [12–17] and has been utilized to explain
cosmic acceleration [18–21].

In the symmetric teleparallel theory of gravity, the pres-
ence of a flat geometry defined by the connection �λ

μν allows
for the existence of a coordinate system known as the coin-
cidence gauge, where the covariant derivative can be repre-
sented as a partial derivative. This implies that in the sym-
metric teleparallel theory of gravity, the inertial effects can be
distinguished from gravity [9]. Consequently, the choice of
the connection as the starting point in the symmetric telepar-
allel theory leads to the formulation of distinct gravitational
theories [3]. As a result, self-accelerating solutions can natu-
rally emerge both in the early and late universe [22]. The
impact of different connections on the existence of cos-
mological solutions has been extensively explored in [22],
while the scenario of static spherically symmetric spacetimes
has been considered in [23,24]. The reconstruction of the
cosmological history was derived in [25–27]. Specifically,
the phase-space analysis was studied, for the field equa-
tions for the four different connections which describe the
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Friedmann–Lemaître–Robertson–Walker (FLRW) geometry
[3]. For similar studies see also [28,29]. Quantum cosmology
in f (Q)-gravity investigated in [30], while in [31] a minisu-
perspace description is presented from where it follows that
the f (Q)-theory can be described by two scalar fields. The
first scalar field corresponds to the degrees of freedom associ-
ated with the higher-order derivatives of the theory, whereas
the second scalar field is linked to the connection defined
in the non-coincidence gauge. For further investigations into
f (Q)-gravity and its generalizations, we recommend refer-
ring to the works cited in [32–43] and the references provided
therein.

Scalar fields non-minimally coupled to gravity have found
extensive application in gravitational physics within the
framework of General Relativity, such as in scalar-curvature
theories [44,45], or in the context of teleparallelism, specifi-
cally scalar–tensor theories [46,47]. The Brans–Dicke theory
[48] represents one of the earliest scalar-curvature theories,
formulated with the intention of establishing a gravitational
theory that adheres to ω̂m’s principle [49]. This model is
defined in the Jordan frame [50], where the presence of a mat-
ter source is essential for the existence of physical space. In
contrast, General Relativity is defined in the Einstein frame,
enabling the existence of physical space even in the absence
of a matter term. The Brans–Dicke parameter is a charac-
terized constant of the theory which indicates the coupling
between the scalar and the gravitation Lagrangian [51]. When
the Brans–Dicke parameter vanishes, the theory is equivalent
to the f (R)-gravity, where the non-minimally coupled scalar
field attributes the higher-order degrees of freedom [52].

Although the scalar-curvature theory is initially defined in
the Jordan frame, a geometrical mapping exists that enables
the transformation of the theory into the Einstein frame. Con-
sequently, the scalar-curvature theory can be interpreted in
the form equivalent to General Relativity, involving a mini-
mally coupled scalar field. This geometric mapping is a con-
formal transformation, establishing a connection between
the solution trajectories of the two frames [53]. However,
the physical properties of the solution trajectories are not
invariant under the application of the conformal transforma-
tion. For example singular solutions does not remain sin-
gulars after the application of the conformal transforma-
tion, for more details see the discussion [54–56] and refer-
ences therein. More recently, the Hamiltonian inequivalence
between the Jordan and Einstein frames has been explored
in [57–59].

In this study we are interested to study the effects of the
conformal transformation on the physical properties of cos-
mological solutions on the Brans–Dicke analogue in sym-
metric teleparallel scalar–tensor theory [4]. It is known that
f (Q)-gravity is equivalent to a specific family of symmetric
teleparallel scalar–tensor models, and we use the analogy of
the Brans–Dicke model with the f (R)-gravity in order to

introduce the non-metricity Brans–Dicke theory. We focus
in the cosmological scenario of a spatially flat FLRW geom-
etry. Moreover, we consider the case in which the connection
is defined in the non-coincidence gauge and the gravitational
theory is equivalent to a multiscalar field model. While the
mathematical application of the conformal transformation in
non-metricity theory has been previously explored in [5],
no concrete conclusions were drawn regarding the physi-
cal properties of the solutions under the conformal transfor-
mation. More recently, in [60], several exact cosmological
solutions were identified in the non-metricity scalar–tensor
theory for the non-coincidence gauge. Within this work, we
aim to determine exact and analytic solutions for the non-
metricity Brans–Dicke cosmological theory, subsequently
comparing the physical properties of the solutions between
the Jordan and the “Einstein” frames. As we shall see in the
following, the conformal equivalent theory is not defined in
the Einstein frame, because a coupling between the scalar
field and another geometric invariant it follows [5]. How-
ever, in order to stand out the two theories, we shall call the
one to defined in the (pseudo)-Einstein frame.

The structure of the paper is outlined as follows.
In Sect. 2 we discuss the fundamental properties and def-

initions of symmetric teleparallel gravity. Additionally, we
explore f (Q)-theory and the symmetric teleparallel scalar–
tensor theory of gravity. We demonstrate that f (Q)-theory
can be reformulated as a non-metricity scalar–tensor theory.
Furthermore, we present the utilization of conformal trans-
formations and the derivation of the conformal equivalent
theory in Sect. 3. In Sect. 4, we introduce the extension of the
Brans–Dicke field in non-metricity gravity. Here, we intro-
duce a novel parameter ω, akin to the Brans–Dicke param-
eter of scalar-curvature theory. As ω → 0, the gravitational
Action characterizes the f (Q)-theory, similarly to how the
Brans–Dicke field characterizes f (R)-gravity in the same
limit. Within this gravitational model, we consider a spa-
tially flat FLRW background geometry, and for the connec-
tion defined in the non-coincidence gauge, we present the
field equations in both the Jordan frame and the Einstein
frame.

To explore the effects of the conformal transformation
on the physical properties of solution trajectories within the
conformal equivalent theories, Sect. 5 is dedicated to deriving
precise solutions for the field equations. We conduct a com-
parative analysis of the physical properties between the two
frames. It is observed that singular scaling solutions in one
frame correspond to singular scaling solutions in the other
frame, displaying identical asymptotic behaviour. Addition-
ally, for the non-singular de Sitter solution, it is established
that the asymptotic behaviour of physical properties remains
unchanged under the application of the conformal trans-
formation. Moreover, in Sect. 6, we introduce an analytical
solution for the scalar–tensor theory in non-metricity grav-
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ity for the first time. The analysis reveals that this universe
originates from a Big Rip singularity, transitions into an
era characterized by an ideal gas, and ultimately converges
towards a de Sitter universe as a future attractor. Notably, the
observed behaviour of the physical parameters remains con-
sistent regardless of the frame in which the theory is defined.
Finally, our findings are summarized in Sect. 7.

2 Symmetric teleparallel gravity

Let Mn be a manifold defined by the metric tensor, gμν , and
the derivative ∇λ, defined by the generic connection �λ

μν

with conditions, the �λ
μν to inherit the symmetries of the

metric tensor gμν ; that is, if X is a Killing vector of gμν , i.e.
LX gμν , then LX�λ

μν = 0, in which LX is the Lie derivative
with respect the vector field X . Furthermore, for the connec-
tion �λ

μν it holds that the Riemann tensor Rκ
λμν and torsion

tensor Tλ
μν are always zero; that is,

Rκ
λμν ≡ ∂�κ

λν

∂xμ
− ∂�κ

λμ

∂xν
+ �σ

λν�
κ
μσ − �σ

λμ�κ
μσ = 0, (1)

Tλ
μν ≡ �λ

μν − �λ
νμ = 0. (2)

In symmetric teleparallel theory of gravity only the non-
metricity tensor survives, defined as [1]

Qλμν = ∇λgμν, (3)

that is,

Qλμν = ∂gμν

∂xλ
− �σ

λμgσν − �σ
λνgμσ . (4)

We define the disformation tensor

Lλ
μν = 1

2
gλσ

(
Qμνσ + Qνμσ − Qσμν

)
(5)

and the non-metricity conjugate tensor [3]

Pλ
μν = 1

4

(
−2Lλ

μν + Qλgμν − Q′λgμν − δλ
(μQν)

)
, (6)

where now the non-metricity vectors Qλ and Q′λ are defined
as

Qλ = Q μ
λ μ, Q′

λ = Qμ
λμ, (7)

and

Pλ = Pλ
μνgμν = (n − 2)

4

(
Qλ − Q′λ) .

The non-metricity scalar is defined as

Q = Qλμν Pλμν

and the gravitational Action Integral in STGR is given by the
following expression [1]

SST G R =
∫

d4x
√−gQ. (8)

The non-metricity scalar, Q, and the Ricciscalar R̊ for the
Levi–Civita connection �̊λ

μνof the metric tensor gμν differ
by a boundary term B, that is, [4]

B = R̊ − Q, (9)

where

B = −∇̊λ

(
Qλ − Q′λ) (10)

and ∇̊λ denotes covariant derivative with respect to the Levi–
Civita connection, �̊λ

μν .

2.1 f (Q)-theory

An extension of STGR which has drawn the attention
recently is the f (Q)-gravity. In this theory, the gravitational
Lagrangian is a nonlinear function f (Q), such that the action
integral is [9,10]

S f (Q) =
∫

d4x
√−g f (Q) .

The resulting gravitational field equations are

f ′(Q)Gμν + 1

2
gμν

(
f ′(Q)Q − f (Q)

)

+2 f ′′(Q) (∇λQ) Pλ
μν = 0, (11)

where Gμν is the Einstein-tensor.
Moreover, variation with respect to the connection �λ

μν

gives the equation of motion

∇μ∇ν

(√−g f ′(Q)Pμν
μνσ

) = 0. (12)

Furthermore, in the limit at which f (Q) becomes linear,
the field equations are reduced to those of symmetric telepar-
allel gravity (STGR).

Last but not least, in the presence of a matter source mini-
mally coupled to gravity, the field equations (11) are modified
as follows

f ′(Q)Gμν + 1

2
gμν

(
f ′(Q)Q − f (Q)

)

+2 f ′′(Q) (∇λQ) Pλ
μν = Tμν, (13)

with the energy–momentum tensor Tμν to give the degrees
of freedom for the matter source.

2.2 Symmetric teleparallel scalar–tensor theory

Although the symmetric teleparallel scalar–tensor theory it
is not a pure Machian theory [4], it has properties similar to
that of a Machian theory [49].
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The gravitational action integral is [4]

SST ϕ =
∫

d4x
√−g

(
F (ϕ)

2
Q − ω (ϕ)

2
gμνϕ,μϕ,ν − V (ϕ)

)
,

(14)

where V (φ) is the scalar field potential, which drives the
dynamics and F (φ) is the coupling function between the
scalar field and the gravitational scalar Q. The function,
ω (φ), can be eliminated with the introduction of the new
scalar field d� = √

ω (ϕ)dϕ. Hence, the action integral (14)
becomes

SST � =
∫

d4x
√−g

(
F (�)

2
Q − 1

2
gμν�,μ�,ν −V (�)

)
.

(15)

The field equations which follow from the gravitational
action (14) are

F (ϕ) Gμν + 2F,φϕ,λ Pλ
μν + gμνV (ϕ)

+ω (ϕ)

2

(
gμνgλκϕ,λϕ,κ − ϕ,μϕ,ν

) = 0, (16)

∇μ∇ν

(√−gF (ϕ) Pμν
μνσ

) = 0 (17)

and

ω (ϕ)√−g
gμν∂μ

(√−g∂νϕ
)

+ω,ϕ

2
gλκϕ,λϕ,κ + 1

2
F,ϕ Q − V,ϕ = 0. (18)

It is important to observe that for ω (ϕ) = 0, F (ϕ) =
ϕ, the latter field equations take the functional form of
f (Q)-theory [4], where now ϕ = f ′ (Q) and V (ϕ) =(
f ′(Q)Q − f (Q)

)
.

3 Conformal transformation

The symmetric teleparallel scalar–tensor theory satisfies
Mach’s principle, that is, the gravitational theory is defined in
the Jordan frame. A similar result holds for the f (Q)-theory.
The Jordan frame is related to the Einstein frame through a
conformal transformation. This transformation relates theo-
ries which are conformal equivalent. This equivalence it has
to do with the trajection solutions for the field equations, but
it is not a physical equivalence; since the physical proper-
ties of the theories do not remain invariant under a confor-
mal transformation. Conformal transformations for the four-
dimensional manifold were investigated in [5], see also [6,7].
Below we consider a n-dimensional space.

Let ḡμν, gμν be two conformal equivalent metrics related
according to

ḡμν = e2(xκ )gμν, ḡμν = e−2(xκ )gμν.

Therefore, for the nonmetricity tensor we find

Q̄λμν = e2Qλμν + 2,λḡμν. (19)

Moreover,

Q̄μ = Q̄ ν
μ ν = Qμ + 2n,μ, (20)

Q̄′
μ = Q̄ ν

μν = Q′
μ + 2,μ (21)

and

P̄λ = P̄λ
μν ḡμν = e−2 Pλ + (n − 2) (n − 1)

2
,λ.

Therefore, for the non-metricity scalar we find

Q̄ = Q̄λμν P̄λμν = e−2Q + (
2,λ Pλ

+ (n − 2) (n − 1) λ
,λ

)
. (22)

Consider now the action integral (14) for the n-dimensional
conformally related metric ḡμν , that is,

S̄ST ϕ =
∫

dn x
√−ḡ

(
F (ϕ)

2
Q̄ − ω (ϕ)

2
ḡμνϕ,μϕ,ν − V (ϕ)

)
.

(23)

With respect to the metric gμν and the conformal factor
, the latter action integral is

S̄ST ϕ =
∫

dn x
√−g

(
e(n−2)F (ϕ)

(
Q

2
+ ,λ Pλ

))

+ dn x
√−g

(
en

(
(n − 2) (n − 1)

2
λ

,λ

−ω (ϕ)

2
e−2gμνϕ,μϕ,ν − V (ϕ)

))
,

We select F (ϕ) e(n−2) = 1, that is  = 1
2−n ln F (ϕ).

Therefore, the latter action reads

S̄ST ϕ =
∫

dn x
√−g

(
Q

2
+ ,λ Pλ

)

+
∫

dn x
√−g

((
(n − 1) F (ϕ)

n
2−n

2 (n − 2) F (ϕ)
− ω (ϕ)

2

e(n−2)

F (ϕ)
n

2−n

)

gμνϕ,μϕ,ν − F (ϕ)
n

2−n V (ϕ)
)

. (24)

The second terms become
∫

dn x
√−g

(
,λ Pλ

) =
∫

dn x
√−g

(
−∇̊λ Pλ

)

=
∫

dn x
√−g

(
(n − 2)

4
B

)
.

We end with the gravitational Lagrangian

S̄ST ϕ =
∫

dn x
√−g

(
Q

2
− ln F (ϕ)

B

4

+ A (ϕ)

2
gμνϕ,μϕ,ν − V (ϕ) F (ϕ)

n
2−n

)
(25)
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with

A (ϕ) =
(

(n − 1)
(
F,ϕ

)2

(n − 2) F (ϕ)

− ω (ϕ)

F (ϕ)

)
. (26)

Nonmetricity theories with a boundary term introduced
before in [61]. The latter Action Integral is a particular case
of the models presented in [61].

4 Brans–Dicke cosmology in symmetric teleparallel
theory

Similarly to the consideration of the Brans–Dicke field in
the scalar-curvature theory, we take into account the follow-
ing action integral within a four-dimensional manifold in the
context of symmetric teleparallel theory. Indeed, in action
(14) we assume F (ϕ) = ϕ and ω (ϕ) = ω

ϕ
, ω = const..

Thus, we arrive at the Lagrangian

SB Dϕ =
∫

d4x
√−g

(
ϕ

2
Q − ω

2ϕ
gμνϕ,μϕ,ν − V (ϕ)

)
.

(27)

Parameter ω play a similar role as that of the Brans–Dicke
parameter.

We define the new field ϕ = eφ , in order to write the latter
action in the form of the dilaton field

SD =
∫

d4x
√−geφ

(
Q

2
− ω

2
gμνφ,μφ,ν

−V̂ (φ)

)
, V̂ (φ) = V (φ) e−φ. (28)

On the other hand, in the Einstein frame, the equivalent
action integral is

S̄D =
∫

dn x
√−g

(
Q

2
− φ

B

4
+ ω̄

2
gμνφ,μφ,ν

−V (φ) e−2φ

)
, ω̄ = 3

2
+ ω , V̄ (φ) = V (φ) e−2φ.

(29)

The solution trajectories of the field equations for the two
gravitational theories described by the action integrals (28),
(29) are linked by the conformal transformation. However,
no definitive conclusion can be drawn concerning the rela-
tionship of the physical properties of the solutions under the
application of the conformal transformation.

The objective of this study is to examine how the con-
formal transformation impacts the physical properties of the
trajectory solutions in symmetric teleparallel theory. To con-
duct such an analysis, we consider the background geometry

which describes an isotropic and homogeneous spatially flat
FLRW universe, with the line element

ds2 =−N 2 (t) dt2+a(t)2
(

dr2+r2
(

dθ2 + sin2 θdφ2
))

,

(30)

in which a (t) is the scale factor and N (t) is the lapse func-
tion. We derive the field equations for the two conformally
related models, namely SD and S̄D .

We obtain exact and analytic solutions for one of the mod-
els and thoroughly examine the physical properties of these
solutions. Subsequently, we apply the conformal transforma-
tion to ascertain the corresponding exact and analytic solu-
tions for the second model, delineating the specific physical
properties of these solutions. Finally, we conduct a compara-
tive analysis of the physical properties between the solutions
of the two conformally related theories.

For the spatially flat FLRW geometry described by the
line element (30) there are three families of symmetric con-
nections which describe a flat geometry and inherit the sym-
metries of the background space [3,22,35]. One family is
defined in the coincidence gauge, for this family the non-
metricity scalar Q has the same factional form with the tor-
sion scalar of teleparallelism. Thus, for the connection in the
coincidence gauge the symmetric teleparallel scalar–tensor
theory is equivalent to the scalar-torsion theory and f (Q)-
theory is equivalent to f (T )-theory. The remaining two fam-
ilies of connections are defined in the non-coincidence gauge
where, as it was found in [31], a scalar field is introduced into
the gravitational theory which describes the connection and
there exist a minisuperspace description.

In this piece of study we select to work in the framework
of the connection with nonzero components

�t
t t = ψ̈(t)

ψ̇(t)
+ ψ̇(t),

�r
tr = �r

r t = �θ
tθ = �θ

θ t = �
φ
tφ = �

φ
φt = ψ̇(t), (31)

�r
θθ =−r, �r

φφ =−r sin2 θ, �θ
rθ =�θ

θr =�
φ
rφ =�

φ
φr = 1

r
,

(32)

�θ
φφ = − sin θ cos θ , �

φ
θφ = �

φ
φθ = cot θ, (33)

in which ψ̇ = dψ
dt , and without loss of generality we have

assumed that N (t) = 1.
Thus, the non-metricity scalar is calculated

Q = −6H2 + 9ψ̇ H + 3ψ̈ , γ = ψ̇. (34)

We substitute into (28) and subsequently derive the cos-
mological field equations in the Jordan frame, yielding:

3H2 + ω

2
φ̇2 + 3

2
φ̇ψ̇ − e−φV (φ) = 0, (35)

2Ḣ + 3H2 + 2H φ̇ − ω

2
φ̇2 − 3

2
φ̇ψ̇ − e−φV (φ) = 0, (36)
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3ψ̈ + 2ωφ̈ + H
(
6ωφ̇ + 9ψ̇

) − 6H2 + ωφ̇2 − e−φV,φ = 0,

(37)

φ̈ + φ̇2 + 3H φ̇ = 0, (38)

where H = ȧ
a is the Hubble function. Recall that we have

selected N (t) = 1. Equations (35), (36) are the modified
Friedmann’s equations (16). Moreover, Eq. (37) is the equa-
tion of motion for the connection (17) and the second-order
ordinary differential equation (38) is the equation of motion
for the scalar field (18).

Not all equations are independent, indeed, Eq. (35) is
a conservation law for the dynamical system. Specifically,
the second-order differential equations (36)–(38) form a
Hamiltonian dynamical system described by the point-like
Lagrangian,

L
(
a, ȧ, φ, φ̇, ψ, ψ̇

)

= eφ

(
3aȧ2 + ω

2
a3φ̇2 + 3

2
a3φ̇ψ̇

)
+ a3V (φ) , (39)

in which Eq. (35) is the constraint equation describing the
conservation law of “energy” for the classical Hamiltonian
system. Recall that for ω = 0, the latter Lagrangian reduces
to that of f (Q)-gravity for the same connection.

We observe that for ψ (t) = ψ0 and φ (t) = φ0, the
equations read

3H2 − e−φ0 V (φ0) = 0, (40)

2Ḣ + 3H2 − e−φ0 V (φ0) = 0, (41)

3H2 + 1

2
e−φ0 V (φ0),φ0

= 0, (42)

where the limit of General Relativity is recovered when
−2V (φ0) = V (φ0),φ0

; that is, V (φ) = 0, or V (φ) = e−2φ .
We consider the conformally related metric,

ds̄2 = −N̄ 2 (τ ) dτ 2 + α2 (τ )

×
(

dr2 + r2
(

dθ2 + sin2 θdφ2
))

, (43)

with a (t) = α (t) e− φ(t)
2 , N (t) = N̄ (t) e− φ(t)

2 and dτ =
e− φ(t)

2 dt .
The field equations for the conformal equivalent theory

(29) are

3H̄2 − 3H̄φ′ + ω̄

2
φ′2 + 3

2
φ′ψ ′ − e−2φV (φ) = 0, (44)

2H̄ ′ + 3H̄2 + 3H̄φ′ − ω̄

2
φ′2 − 3

2
φ′ψ ′ − e−2φV (φ) = 0,

(45)

2H̄ ′ + 3H̄2 + 2

3
e−2φ

(
V,φ − 2V

) − (
ψ ′′ + 3H̄ψ ′) = 0,

(46)

φ′′ + 3H̄φ′ = 0, (47)

where we have assumed N̄ (t) = 1, and α′ = dα
dτ

, H̄ (τ ) = α′
α

or H̄ (t) = e− φ
2

(
H + φ̇

2

)
.

Last but not least, the point-like Lagrangian for the field
equations is

L
(
α, α′, φ, φ′, ψ,ψ ′) = 3αα′2 − 3α2α′φ′ + ω̄

2
α3φ′2

+3

2
α3φ′ψ ′ + α3V̄ (φ) . (48)

At this juncture, it is crucial to highlight that, for ω̄ = 0, the
latter gravitational theory is equivalent to the non-metricity
theory with boundary term, specifically with the f (Q, B) =
Q + f (B) theory of gravity [41].

5 Exact solutions

In this Section we determine the existence of exact solu-
tions for the field equations that hold special significance.
Additionally, we investigate the physical properties of the
solutions within the conformal equivalent theory. Our focus
is on determining the prerequisites for the existence of sin-
gular solutions, corresponding to universes dominated by an
ideal gas, as well as identifying the conditions for a de Sit-
ter solution. Subsequently, we utilize the conformal trans-
formation to deduce the exact solution in the second frame,
subsequently studying the physical properties and conduct-
ing a comparative analysis of the solutions between the two
frames.

5.1 Singular solution in the Jordan frame

We assume the scaling solution, a (t) = a0t p, H (t) = p
t ,

for the cosmological model defined in the Jordan frame. This
scale factor describes a universe dominated by an ideal gas
with equation of state parameter we f f = 2−3p

3p . Thus, for

p = 2
3 , the solution describes a universe dominated by a

pressureless fluid, i.e. dust. For p = 1
2 it describes a universe

dominated by radiation. Moreover, for p > 1 or p < 0, the
exact solution describes acceleration.

For the power-law singular solution a (t) = a0t p and from
the equation of motion (38) it follows that

φ (t) = φ0 + ln
(

t1−3p + φ1

)
, p �= 1

3
(49)

and from the remaining of the field equations we derive

V (t) = eφ0 p (3p − 1) φ1

t2 (50)

and

ψ̇ = 1

3 (3p − 1)

(
6p2

t
+ 2pφ1t3p−2 + (1 − 3p)2 ω

t
(
1 + t3p−1

)
φ1

)

, φ1 �= 0,

(51)
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ψ̇ = 1

3 (3p − 1)

ω (6p − 1) − 3p2 (2 + 3ω)

t
, φ1 = 0. (52)

Hence, from (49) and (50), we can write the potential
function as follows

V (φ) = eφ0 p (3p − 1) φ1
(
eφ−φ0 − φ1

) 2
2p−1 . (53)

For the stiff fluid solution, i.e. p = 1
3 , we calculate

φ (t) = φ0 + 2

(

ln

√
1 + 2φ1t2

t

)

, p = 1

3
(54)

V (t) = 4eφ0φ1

t2 , ψ̇ (t) = 3 + 2ω + 4t2
(
φ2

1 t2 + 2φ1
)

3t
(
1 + 2φ1t2

) .

(55)

Therefore the scalar field potential is

V (φ) = 4φ1
(
eφ − 2φ1eφ0

)
. (56)

5.1.1 Einstein frame

We proceed now with the derivation of the exact solution for
the conformally related model in the Einstein frame. There-
fore, after the application of the conformal transformation
we derive

α (t) = e
φ0
2 t p

√
t1−3p + φ1, H̄ (t)

= e− φ0
2

⎛

⎝1 − p + 2pφ1t3p−1

2t3p
(
t1−3p + φ1

) 3
2

⎞

⎠ , p �= 1

3
. (57)

The equation of state parameter for the effective fluid,
w̄e f f (t) = −1 − 2

3
H̄ ′
H̄2 , is determined

w̄e f f (t)

=
3 (1 − p) t2−6p − 4p

(
(9p − 5) φ1t−3p + (3p − 2) φ2

1

)

(
t3p+1 (1 − p) + 2pφ1

)2 .

(58)

In the special limit for which φ1 = 0 and V (φ) = 0, the latter
expression becomes w̄e f f = 1, and easily we can write the

scale factor in terms of the new parameter τ as α (τ) � τ
1
3 .

Therefore for φ1 = 0, any scaling solution in the Jordan
frame corresponds to the scaling solution which describes a
stiff fluid in the Einstein frame.

On the other hand, for φ1 �= 0 and for large values of t , it
follows that w̄e f f (t) � −1+ 2

3p for p > 1
3 . This means that,

in the asymptotic limit, the solution in the Einstein and in the
Jordan frames has the same physical properties. We recall that
τ (t → ∞) → ∞ for φ1 > 0 and p > 1

3 . Hence, as far as we
move from the singularity the two frames describe the same
physical universe. In the contrary, near to the singularity, that
is t → 0, w̄e f f (t) � 1.

For p = 1
3 , the solution at the Einstein frame is

α (t) = e
φ0
2

√
t2 + 2φ1 , H̄ (t) = 2φ1e

φ0
2

t2

(
1 + 2t2φ1

) 3
2

(59)

and

w̄e f f (t) = −1

3
− 2φ1

3t2 . (60)

Hence

H̄ (α) = 1

3

(
1

α
− eφ0

9α3

)
, w̄e f f (α) = 1 + 12α2

9a2 − eφ0
.

(61)

Thus, for large values of time, the asymptotic solution
resembles that of a stiff fluid, similar to the scenario in the
Jordan frame.

5.2 de Sitter universe in the Jordan frame

Consider now the de Sitter universe with a (t) = a0eH0t ,
H (t) = H0. Then from the field equations in the Jordan
frame we derive

eφ(t) = eφ0
(

1 − e−3H0(t−φ1)
)

(62)

and

V (φ) = 3eφ0 H2
0 , ψ̇ = H0

(
2e3H0t − e3H0φ1 (3ω + 2)

)

3
(
e3H0t − e3H0φ1

) .

(63)

This means that the de Sitter solution exists for constant
potential function V (φ).

5.2.1 Einstein frame

Now we transform the solutions in the Einstein frame. Indeed,
the scale factor and the Hubble function becomes

α (t) =
√

eφ0
(
e2H0t − e−H0t e3H0φ1

)
, (64)

H̄ (t) = H0
e− φ0

2 e
3
2 H0t

(
2e3H0t + e3H0φ1

)

4
(
e3H0t − e3H0φ1

) 3
2

(65)

while the effective equation of state parameter reads

w̄e f f (t) = 12e3H0(t+φ1) − 4e6H0t + e6H0φ1

2
(
e3H0t + e3H0φ1

)2 . (66)

Hence for large values of t → ∞, it follows that
w̄e f f (t) � −1, while for small values of t → 0, we
determine w̄e f f (t) � 1 − 24

(2+e3H0φ1)
2 + 8

2+e3H0φ1
,where

for e3H0φ1 → 0, the limit w̄e f f (t) � −1 follows, and for
e3H0φ1 → ∞ we derive w̄e f f (t) � 1.
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5.3 Singular solution in the Einstein frame

Consider now the scaling solution α (τ) = α0τ
q , then from

equations (44)-(47) we derive

φ (τ) = φ̄0 + φ̄1

1 − 3q
τ 1−3q , q �= 1

3
, (67)

ψ ′ = −1

3
φ̄1ω̄τ 3q − 2q

3φ̄1τ 2

(
τ 3q − 3φ̄1τ

)
(68)

and

V (τ ) = q (3q − 1)

τ 2 exp

(
φ̄0 + φ̄1

1 − 3q
τ 1−3q

)
, (69)

or equivalently

V (φ) = (3q − 1)

(
φ̄1

(1 − 3q)

) 2
1−3q (

φ − φ̄0
) 2

3q−1 . (70)

In the case of q = 1
3 , the exact solution

φ (τ) = φ̄0 + φ̄1 ln (τ ) (71)

follows, that is,

ψ ′ = −2
(
1 − 3φ̄1

) + 3
(
φ̄1

)2
ω̄

9φ̄1τ
, V (τ ) = 0. (72)

5.3.1 Jordan frame

For q �= 1
3 , the solution at the Jordan frame is

a (τ ) = e−φ0 exp

(
φ̄1

3q − 1
τ 1−3q

)
τ q , (73)

H (τ ) = e
φ0
2 exp

(
φ̄1

3q − 1
τ 1−3q

)
τ−1−3q

(
qτ 3q − φ̄1τ

)
,

(74)

we f f (τ ) = q (2 − 3q) τ 6q + qt1+3q φ̄1 + 2τ 2
(
φ̄1

)2

3
(
qt3q − t φ̄1

)2 . (75)

We remark that we f f (τ →0) � − 2
3 and we f f (τ →∞) �

−1 + 2
3q . Hence, far from the singularity, the physical prop-

erties of the solution remain unchanged under the influence
of the conformal transformation.

The case q = 1
3 was studied before. Thus we omit it.

5.4 de Sitter universe in the Einstein frame

For the exponential scale factor α (τ) = α0eH̄0τ , from the
field Eqs. (44)–(47) in the Einstein frame we determine the
exact solution

φ (τ) = φ̄0 − 3

H̄0
φ̄1e−3H̄0τ ,

V (τ ) = 3H̄2
0 exp

(
2φ̄0 − 2

3
φ̄1e−3H̄0τ

)
, (76)

ψ ′ = 2H̄0 − ω̄

3
φ̄1e−3H̄0τ . (77)

Therefore, the scalar field potential is

V (φ) = 3H̄2
0 . (78)

5.4.1 Jordan frame

Finally, in the Jordan frame the latter solution is

a (τ ) = exp

(
H̄0t − φ̄0 + φ̄1

3H̄0
e−3H̄0t

)
, (79)

H (τ ) = exp

(
−3H̄0t + φ̄0

2
− φ̄1

6H̄0
e−3H̄0t

) (
H̄0e3H̄0t − φ̄1

)

(80)

and

we f f (τ ) = −3e6H̄0t H̄2
0 + e3H̄0t H̄0φ̄1 + 2

(
φ̄1

)2

3
(

H̄0e3H̄0t − φ̄1

)2 . (81)

From these expressions we have the limitswe f f (τ → 0)=
− 3H̄2

0 +H̄0φ̄1+(φ̄1)
2

3(H̄0−φ̄1)
and we f f (τ → ∞) = −1. We conclude

that the de Sitter universe is the asymptotic solution in the
two frames.

The above discussion highlights that the solutions exhibit
identical physical properties in both the Jordan and Einstein
frames at the asymptotic limits. This observation is signif-
icant and sets it apart from the scalar-curvature or scalar-
torsion theories of gravity, where such equivalence does not
hold true.

6 Analytic solution

In the preceding Section, we explored the existence of exact
solutions for the field equations. The derived solutions exhibit
fewer degrees of freedom compared to the original dynami-
cal system, rendering them special or asymptotic solutions.
Subsequently, we proceed to establish the analytic solution
for the field equations. Specifically, for the Brans–Dicke field
with the potential function V (φ) = V0 exp ((λ − 1) φ), we
derive the analytic solution for the field Eqs. (35)–(38). The
field equations form a three-dimensional Hamiltonian sys-
tem with six degrees of freedom, enabling the application of
the Hamilton–Jacobi method to simplify the field equations
and to construct the analytic solution.

We consider the point transformation

ln a = 1

6
u , φ = � − u

λ
, ψ = ψ, (82)
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in which the Lagrangian function of the field equations is

L
(
N , u, u̇,�, �̇, ψ, ψ̇

) = exp
(

λ−2
2λ

u + �
)

12λ2 N

((
λ2 − 6

)
u̇2

−6λ2�̇
(
ω�̇ + 3ψ̇

) + 6λ
(
2ω�̇ + 3ψ̇

))

− V0 N exp

(
exp

(
λ − 2

2λ
u + (λ − 1) �

))
. (83)

We have considered the lapse function N (t) to be a non-
constant function, we see below that this necessary in order
to write the closed-form solution of the field equations.

From Lagrangian function (83) we can define the momen-
tum

pu = ∂L

∂ u̇
, p� = ∂L

∂�̇
, pψ = ∂L

∂ψ̇
, (84)

that is,

u̇ = −3N

λ
exp

(
λ − 2

2λ
u − �

)
(λpu + p�) , (85)

�̇ = − N

3λ2 exp

(
λ − 2

2λ
u − �

) (
9 (λpu + p�) + λ2 pψ

)
,

(86)

ψ̇ = − N

9
exp

(
λ − 2

2λ
u − �

) (
3p� − 2ωpψ

)
. (87)

Therefore, the Hamiltonian function H = pq
∂L
∂q̇ − L can

be written

H ≡ N exp

(
λ − 2

2λ
u − �

)(
36V0λ

2eλ�

−27 (λpu + p�)2 − 6λ2 p� pψ + 2λ2ωp2
�

)
= 0, (88)

where H = 0, follows from the constraint equation (35).
Consequently, Hamilton’s equations are

ṗu = 0 , ṗψ = 0 (89)

and

ṗ� = 2V0λeλ�N exp

(
λ − 2

2λ
u − �

)
, (90)

from which we infer that pu and pψ are constants, that is
pu = p0

u , and pψ = p0
ψ .

Let S = S (u,�,ψ) be the Action, then from (88) we can
write the Hamilton–Jacobi equation
(

36V0λ
2eλ� − 27

(
λ

∂S

∂u
+ ∂S

∂�

)2

−6λ2 ∂S

∂�

∂S

∂ψ
+ 2λ2ω

(
∂S

∂�

)2
)

= 0. (91)

Moreover, from (89) it follows that S (u,�,ψ) = p0
uu +

p0
ψψ + Ŝ (�) , that is,
(

36V0λ
2eλ� − 27

(
λp0

u + Ŝ,�

)2

−6λ2 p0
ψ Ŝ,� + 2λ2ω

(
Ŝ,�

)2
)

= 0. (92)

Therefore

p� ≡ Ŝ,� = −λ

(
p0

u + λ

9
p0
ψ

)

±|λ|
9

√

108V0eλ� + p0
ψ

(
18λp0

u + p0
ψ

(
λ2 + 6ω

))
.

(93)

Using the above mentioned expression, we can derive the
action Ŝ (�). The field Eqs. (85)–(87) are reduced to the
following dynamical system

1

N
u̇ = − 3

λ
exp

(
λ − 2

2λ
u − �

) (
λp0

u + p�

)
, (94)

1

N
�̇ = − 1

3λ2 exp

(
λ − 2

2λ
u − �

) (
9

(
λp0

u + Ŝ,�

)
+ λ2 p0

ψ

)
,

(95)

1

N
ψ̇ = −1

9
exp

(
λ − 2

2λ
u − �

) (
3Ŝ,� − 2ωp0

ψ

)
. (96)

We consider the new independent variable to the scalar
field �, such that u = u (�) and ψ = ψ (�). Thus, the
analytic solution is expressed in terms of the closed-form
functions

u (�) = u0 + λ� +
2λ

√
p0
ψ

√
18p0

uλ + p0
ψλ2 + 6p0

ψω

× arctan h

⎛

⎜
⎜
⎝

√√
√√
√√

108V0eλ� + p0
ψ

(
18λp0

u + p0
ψ

(
λ2 + 6ω

))

√
p0
ψ

(
18p0

uλ + 18p0
uλ + p0

ψλ2 + 6p0
ψω

)

⎞

⎟
⎟
⎠

(97)

and

ψ (�) = ψ0 + λ

9

(
ln

(
108V0eλ�

)

+9p0
uλ + p0

ψλ2 + 6p0
ψω

pψ0λ2 (u (�) − u0 − λ�)

)
.

(98)

The Hubble function and the equation of state parameter
we f f are expressed as

H (�) = �̇

N

(
1

a

da

d�

)
, we f f (�) = −1 − 2

3H2

�̇

N

d H

d�
.

(99)
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Fig. 1 Qualitative evolution of the effective equation of state parameter
in the Jordan frame we f f (� (a)) and in the Einstein frame w̄e f f (� (α))

for different values of the free parameters. For all the plots we consider

the initial conditions
(

p0
u, p0

ψ, u0

)
= (1, 0.8,−10), and V0 = 1. We

observe that the behaviour for the equation of state parameter is similar
in the two frames and the de Sitter solution is a common future solution

From (93) and (95) it follows that

1

N
�̇ = −± |λ|

27λ2 exp

(
λ − 2

2λ
u − �

)

×
√

108V0eλ� + p0
ψ

(
18λp0

u + p0
ψ

(
λ2 + 6ω

))

(100)

which means that � is a monotonically function, as long as
N does not change sign. Indeed, for N = 1, � is a monoton-
ically function.

Figure 1 illustrates the qualitative evolution of the equation
of state parameter, we f f (a), for the above mentioned analyt-
ical solution, considering various values of the free parame-
ters. Additionally, we calculate and display the evolution of
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the equation of state parameter w̄e f f (α) for the conformal
equivalent theory as defined in the Einstein frame. The plots
in both frames utilize identical values for the free parameters,
reflecting corresponding initial conditions.

It is observed that the universe initiates from a big
rip singularity, subsequently progresses towards a saddle
point characterized by an ideal gas, representing the matter-
dominated era and finally transitions to the de Sitter point.
This behaviour is consistent across solution trajectories in
both frames, mirroring the findings for the asymptotic solu-
tions in the preceding section. While previously, the resem-
blance in the evolution of physical parameters was noted at
the asymptotic limits, Fig. 1 demonstrates that this similarity
persists throughout the global evolution of the cosmologi-
cal solution. The Big Rip behaviour observed before for the
case of f (Q)-theory in [26] and in scalar-nonmetricity the-
ory [60].

7 Conclusions

We performed an extensive analysis on the influence of the
conformal transformation on the physical properties of cos-
mological solution trajectories within symmetric teleparal-
lel gravity’s conformal equivalent theories. To undertake this
analysis, we introduced the Brans–Dicke model in the context
of non-metricity gravity, alongside an analogue of the Brans–
Dicke parameter. Notably, when this parameter approaches
zero, the non-metricity scalar–tensor theory is reduced to the
f (Q)-theory.

Regarding the background geometry, we focused on the
isotropic and homogeneous spatially flat FLRW metric. Con-
cerning the theory’s connection, we specifically examined a
connection defined within the non-coincidence gauge. It is
worth recalling that in the coincidence gauge, the cosmolog-
ical field equations simplify to those of scalar-torsion theory,
limiting the new information that could be deduced from this
study. For this particular cosmological model, we derived the
field equations in both the Jordan and the Einstein frames.

In scalar-curvature theory conformal transformation has
been used as an approach to avoid singularity [62] because
singular solutions in the one frame can correspond to non-
singular solutions for the other frame and vice versa [63–65]
and there is not necessary an one-to-one correspondence for
the physical properties of the solutions under a conformal
transformation. For instance in [66] specific type singulari-
ties change type under the conformal transformation. On the
other hand in [67] the authors focus on the effects of the con-
formal transformation on power-law inflationary solutions in
scalar-curvature theory, they found that “ inflation ” depends
on the frame selection. By comparing the phase-space of the
cosmological equations for the scalar-curvature theory in the
Jordan and in the Einstein frame we can see that there are

differences on the asymptotic behaviours [68,69]. A simi-
lar conclusions follows and by comparing the results of the
phase-space analysis for the scalar-torsion gravity [70,71].

In scalar-nonmetricity theory, we derived exact solutions
of particular significance in one frame, illustrating both
singular and non-singular solutions. Subsequently, we uti-
lized the conformal transformation to reconstruct the exact
solutions for the conformal equivalent theory. Our analysis
involved a thorough comparison of the physical properties
for the two theories, each defined within different frames.
Notably, we discovered that the physical properties remained
invariant under the influence of the conformal transforma-
tion. We focused on power-law and exponential solutions for
the scale factor. These two solutions describe the asymptotic
behaviour of any potential function. Hence, from the results
of this work we can make conclusions about the asymptotic
behaviour of the general solutions between the two frames.

Consequently, singular solutions in one frame corre-
sponded to singular solutions in the other frame, displaying
similar properties in the asymptotic limit. Furthermore, we
observed that the non-singular de Sitter solution remained a
de Sitter solution in the alternate frame as well. Furthermore,
we constructed for the fist time an analytic solution for the
cosmological field equations in non-metricity scalar–tensor
theory. This solution describes an cosmological model with
Big Rip singularity, which involves to a matter dominated
solution and the final state of the universe is that of the de
Sitter universe. Surprisingly this specific cosmological his-
tory describes the conformal equivalent theory. Hence, the
physical equivalence of the physical solutions between the
two frames extends the asymptotic limits of the solutions.

In a future study we plan to investigate further such anal-
ysis by investigate the case of compact objects.
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