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Abstract In this paper we present the Hietarinta Chern–
Simons supergravity theory in three space-time dimensions
which extends the simplest Poincaré supergravity theory.
After approaching the construction of the action using the
Chern–Simons formalism, the analysis of the corresponding
asymptotic symmetry algebra is considered. For this pur-
pose, we first propose a consistent set of asymptotic bound-
ary conditions for the aforementioned supergravity theory
whose underlying symmetry corresponds to the supersym-
metric extension of the Hietarinta algebra. We then show
that the corresponding charge algebra contains the super-
bms3 algebra as subalgebra, and has three independent cen-
tral charges. We also show that the obtained asymptotic sym-
metry algebra can alternatively be recovered as a vanishing
cosmological constant limit of three copies of the Virasoro
algebra, one of which is augmented by supersymmetry.
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1 Introduction

A higher-spin generalization of the D-dimensional Poincaré
superalgebra was introduced by Hietarinta in [1] by includ-
ing (spinor-)tensor generators associated with (half-)integer
higher-spin representations of the Lorentz group. Unlike
the infinite-dimensional higher-spin algebras, the (anti-
)commutators of higher-spin Hietarinta generators do not
close on higher-spin generators. In its simplest form, the
Hietarinta algebra defined in three spacetime dimensions
contains three spin-2 generators which obey the following
structure [2]

[Ja, Jb] = εabc J
c, [Ja, Pb] = εabc P

c,

[Ja, Zb] = εabc Z
c, [Za, Zb] = εabc P

c. (1.1)

Here Ja are the Lorentz rotation generators, Pa correspond
to translation generators and Za is an additional vector gen-
erator. The above algebra is also denoted as the Hietar-
inta/Maxwell algebra [2] due to its isomorphism to the
Maxwell algebra [3–6] in which the role of the generators Za

and Pa is interchanged. The Hietarinta algebra can be seen
as an extension of the Poincaré algebra unlike the Maxwell
symmetry, which corresponds to an extension and deforma-
tion of Poincaré.

In three spacetime dimensions, Chern–Simons (CS) grav-
ity theories based on both the Maxwell and the Hietarinta
algebras have been largely studied in [7–11] and [2,12,
13], respectively. Three-dimensional gravity models have
received a great interest since they offers us a simple lab-
oratory for studying different aspects of higher-dimensional
gravity and the underlying laws of quantum gravity. On the
other hand, the CS theories are characterized by not hav-
ing local degrees of freedom. Although the Hietarinta and
the Maxwell algebras are isomorphic, they have quiet dif-
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ferent physical implications. In particular, the geometries
described by the field equations coming from Maxwell grav-
ity are Riemannian (torsionless) and locally flat [7–11].1 On
the other hand, in the case of Hietarinta gravity theory, the
equations of motion describe geometries locally flat but with
a non-vanishing torsion. Interestingly, both minimal massive
gravity [16] and topological massive gravity [17] appear as
particular cases of a more general minimal massive gravity
obtained upon spontaneous symmetry breaking in a Hietar-
inta CS gravity [2].

To our knowledge, a three-dimensional CS supergravity
action based on the simplest Hietarinta superalgebra remains
unexplored, despite the Hietarinta superalgebra is known
[12]. In the Maxwellian counterpart, there are two known
minimal supersymmetric extensions of the Maxwell algebra.
The first one is called the non-standard Maxwell superalge-
bra, which includes one fermionic generator [18,19], and
the other one is denoted as the minimal Maxwell superal-
gebra allowing for two fermionic generators [20–30]. The
non-standard one is not a good candidate to construct a CS
supergravity theory since it supersymmetrizes only tensorial
generators Za

{
Qα, Qβ

} = −1

2

(
C�a)

αβ
Za, (1.2)

and reproduces an exotic supersymmetric action [19,25].
Nonetheless, as it was mentioned in [2], the translational
generators Pa can be expressed as bilinear expressions of
fermionic generators in a supersymmetric extension of the
Hietarinta algebra (with one fermionic generator). Thus,
unlike the non-standard Maxwell superalgebra, the Hietar-
inta superalgebra can be seen as the extension of the sim-
ple three-dimensional super-Poincaré algebra which strongly
suggests that the physical models based on the Hietarinta
superalgebra is a priori different from the Maxwell one.

In this work, we explore the construction of a CS super-
gravity action based on the Hietarinta superalgebra. The
obtained CS action corresponds to an extension of the
Poincaré CS supergravity action [31] whose dynamics is
very different to the super-Maxwell one [28]. In order to
have a better understanding of the additional gauge field σ a

related to Za , we study the implications of σ a at the level
of the asymptotic structure. In asymptotically flat spacetime,
the bms3 algebra, originally formulated by Bondi, van der
Burg, Metzner and Rainer [32–35], results to describe the
asymptotic symmetry of General Relativity [36]. The study
of richer boundary dynamics could offer a better under-
standing of the duality beyond the AdS/CFT correspon-
dence [37]. Thus, the study of new asymptotic symmetries of

1 A CS gravity theory based on Maxwell algebra in 2 + 1 was initially
considered in [14,15].

CS (super)gravity theories based on symmetries bigger than
bms3 could be worth studying. Such infinite-dimensional
algebra have received a growing interest due to recent devel-
opments in the derivation for the Weinberg’s soft theorems
as well as the memory effect [38–45].

Here, we present a novel asymptotic symmetry algebra
for three-dimensional flat supergravity. We proposed a set
of asymptotic conditions for an extension of the simplest
supergravity without cosmological constant. We show that
the corresponding asymptotic symmetry algebra is described
in this case by an extension of the usual bms3 superalgebra
[46–48] and can be seen as the supersymmetric extension of
the extended l-conformal Galilean algebra for l = 1 [13].
Moreover, the infinite-dimensional algebra obtained here is
characterized by three non-trivial central charges related to
the different coupling constants of the CS action and to the CS
level k. Thus, the asymptotic symmetry superalgebra found
here is quiet different to the one appearing in the minimal
Maxwell CS supergravity theory, recently introduced in [49].
Indeed, in the Maxwell case, the corresponding asymptotic
superalgebra does not contain the bms3 superalgebra as a
subalgebra and possesses two fermionic generators. We also
present an alternative way to recover the aforementioned
extended super-bms3 algebra. We show that it appears by
applying a vanishing cosmological constant limit � → 0 to
three copies of the Virasoro algebra, one of which is aug-
mented by supersymmetry, after an appropriate redefinition
of the generators is considered. The flat limit at the level of
the boundary conditions is also considered.

The paper is organized as follows: In Sect. 2 we present the
Hietarinta CS supergravity theory in three spacetime dimen-
sions. Section 3 is devoted to the study of the correspond-
ing asymptotic symmetry algebra. In Sect. 4 we show that
the asymptotic symmetry can alternatively be obtained as
a vanishing cosmological constant limit of three copies of
the Virasoro algebra, one of which is augmented by super-
symmetry. Section 5 is devoted to discussion and possible
developments.

2 Three-dimensional Hietarinta Chern–Simons
supergravity

In this section, we present the minimal supersymmetric
extension of the Hietarinta CS gravity in three dimensions.
The underlying symmetry corresponds to the Hietarinta
superalgebra [12], which contains the super-Poincaré sym-
metry as a subalgebra. The so-called Hietarinta algebra is
isomorphic to the three-dimensional Maxwell algebra [3–6].
Although these algebras are isomorphic, they are physically
different and leads to distinct CS gravity theories [2].

The Hietarinta superalgebra, which we will denote as sH,
is spanned by the set of generators {Ja, Pa, Za, Qα}, which
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satisfy the following (anti)-commutation relations

[Ja, Jb] = εabc J
c, [Ja, Pb] = εabc P

c,

[Ja, Zb] = εabc Z
c, [Za, Zb] = εabc P

c,

[Ja, Qα] = 1

2
(�a)

β
α Qβ,

{
Qα, Qβ

} = −1

2

(
C�a)

αβ
Pa,

(2.1)

where a, b, · · · = 0, 1, 2 are Lorentz indices raised and low-
ered with the (off-diagonal) Minkowski metric ηab and εabc is
the Levi-Civita tensor. The gamma matrices in three dimen-
sions are denoted by �a and C is the charge conjugation
matrix, satisfying CT = −C and C�a = (C�a)T . The CS
gravity action based on the Hietarinta algebra was first con-
sidered in [2]. Here, we shall extend this construction to the
supersymmetric case.

The non-vanishing components of a non-degenerate
invariant bilinear product for the Hietarinta superalgebra are
given by

〈Ja Jb〉 = α0ηab, 〈Ja Pb〉 = α1ηab, 〈Za Zb〉 = α1ηab,

〈Ja Zb〉 = α2ηab,
〈
QαQβ

〉 = α1Cαβ, (2.2)

where α0, α1 and α2 are arbitrary constants. The gauge con-
nection one-form A reads

A = ωa Ja + ea Pa + σ a Za + ψ̄Q, (2.3)

where ωa is the spin connection one-form, ea corresponds to
the dreibein one-form, σ a is the gauge field one-form associ-
ated with the vector generator Za , while ψ is a fermionic
gauge field. The corresponding curvature two-form F =
d A + 1

2 [A, A] is given by

F = Ra Ja + T a Pa + Fa Za + ∇ψ̄Q, (2.4)

with

Ra = dωa + 1

2
εabcωbωc,

T a = dea + εabcωbec + 1

2
εabcσbσc + 1

4
iψ̄�aψ,

Fa = dσ a + εabcωbσc. (2.5)

The covariant derivative ∇ = d + [A, ·] acting on spinors
reads

∇ψ = dψ + 1

2
ωa�aψ. (2.6)

The CS supergravity action invariant under the Hietarinta
superalgebra is obtained considering the non-vanishing com-
ponents of the invariant tensor (2.2) and the gauge connection
one-form (2.3) in the general expression of a CS action

I [A] = k

4π

∫

M

〈
AdA + 2

3
A3

〉
, (2.7)

defined on a three-dimensional manifold M, and where k =
1

4G is the CS level of the theory related to the gravitational
constant G.

Then, the Hietarinta CS supergravity action reads

IsH = k

4π

∫
α0

(
ωadωa + 1

3
εabcω

aωbωc
)

+α1
(
2ea Ra + σ aFa − iψ̄∇ψ

) + 2α2σ
a Ra, (2.8)

which can be seen as an extension of the three-dimensional
Poincaré CS supergravity action [50] without introducing a
cosmological constant. From the previous action we can see
that the term proportional to α0 contains the gravitational CS
Lagrangian [51,52]. The term along α1 contains the Einstein-
Hilbert term, a term involving the σ a field and the Rarita-
Schwinger Lagrangian, while α2 yields a term involving the
field σ a . Naturally, the three-dimensional Poincaré CS super-
gravity action [50] is recovered when the additional gauge
field σa is switched off. As we shall see, the presence of the
σa gauge field has implications in the asymptotic structure of
the theory. In absence of supersymmetry, the CS action cor-
responds to the Hietarinta CS gravity, in which the role of the
vielbein ea (associated with the Poincaré translations) and of
the additional spin-2 field σ a get interchanged in comparison
to the Maxwell CS gravity action [7–10].

The equations of motion are obtained by the extremization
of the action, which gives

δea : 0 = α1Ra,

δωa : 0=α0Ra+α1

(
Ta+ 1

2
εabcσ

bσ c+ 1

4
iψ̄�aψ

)
+α2Fa,

δσ a : 0 = α1Fa + α2Ra,

δψ̄ : 0 = α1∇ψ, (2.9)

where T a = Dea is the usual torsion two-form. Let us note
that the non-degeneracy of the invariant bilinear trace is guar-
anteed for α1 �= 0 which implies that the above equations can
be equivalently written as

T a = 0, Ra = 0, Fa = 0, ∇ψ. (2.10)

Thus, the field equations derived from the CS supergravity
action (2.8) reduce to the vanishing of the curvature two-
forms (2.5)–(2.6). The CS action (2.8) is invariant, by con-
struction, under the gauge transformation δA = d�+[A,�],
with gauge parameter � = χa Ja + εa Pa + γ a Za + ε̄Q. In
particular, the action is invariant under the following local
supersymmetry transformation laws

δωa = 0,

δea = 1

2
i ε̄�aψ,

δσ a = 0

δψ = dε + 1

2
ωa�aε. (2.11)
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One can notice that curvature two-forms (2.5)–(2.6) trans-
form covariantly under the supersymmetry transformation
laws (2.11).

2.1 Bosonic solutions in the BMS gauge

In this section we analyze the bosonic field equations (2.10)
(with ψ = 0). We consider spacetimes with null boundary,
which can be described in the BMS gauge. We parametrize
spacetime by the local coordinates xμ = (u, r, φ), where
−∞ < u < ∞ is the retarded time coordinate, φ ∼ φ + 2π

is the angular coordinate and the boundary is located at r =
const. Then, the metric can be written as follows [46]

ds2 = Mdu2 − 2dudr + Ndφdu + r2dφ2, (2.12)

where M and N are two arbitrary functions of the coor-
dinates u, φ. As was previously mentioned, the Hietarinta
symmetry can be obtained from the Maxwell one, in which
the role of the generators Pa and Za gets interchanged
(Pa ↔ Za). Then, one way of finding the solutions of the
Hietarinta gravity theory is considering the solutions of the
Maxwell theory found in [10], and then go to the basis we
are interested in, by interchanging the role of the vielbein and
the gauge field along Z .

In the Maxwell case, the fields (ω̃a, ẽa, σ̃ a) obey bound-
ary conditions in which the functions M and N are given
for the known results in asymptotically flat gravity in three
dimensions

M = M(φ), N = J (φ) + uM′(φ). (2.13)

The spacetime line element can be written in terms of the
vielbein as ds2 = ηabẽa ẽb, where ηab is the off-diagonal
Minkowski metric. Then, in the Maxwell case, the vielbein
and the torsionless spin connection one-forms are given by

ẽ0 = −dr + 1

2
Mdu + 1

2
Ndφ, ẽ1 = du, ẽ2 = rdφ,

ω̃0 = 1

2
Mdφ, ω̃1 = dφ, ω̃2 = 0.

(2.14)

Furthermore, solving the e.o.m involving the gauge field σ̃ a ,
it was shown in [10] that it can be written in the following
way

σ̃ 0 = 1

2
Ndu+ 1

2

(
F−r2

)
dφ, σ̃ 1 = 0, σ̃ 2 = 0, (2.15)

where F = F(u, φ) is given by

F = Z(φ) + uM′(φ) + u2

2
J ′′(φ). (2.16)

Here, we are interested in the Hietarinta symmetry which
appears from the Maxwell algebra when the generators Pa
and Za are interchanged, or equivalently, when the role of the

vielbein and the Maxwell gauge field is exchanged. Then,
the Hietarinta gauge fields (ea, ωa, σ a) are related to the
Maxwell ones (ẽa, ω̃a, σ̃ a) as follows:

ea = σ̃ a, ωa = ω̃a, σ a = ẽa . (2.17)

Consequently, the bosonic counterpart of the field equations
(2.10) (with ψ = 0) are solved by the following components
of the gauge fields

e0 = 1

2
Ndu + 1

2

(
F − r2

)
dφ, ω0 = 1

2
Mdφ,

σ 0 = −dr + 1

2
Mdu + 1

2
Ndφ,

e1 = 0, ω1 = dφ, σ 1 = du,

e2 = 0, ω2 = 0, σ 2 = rdφ. (2.18)

3 Asymptotic symmetry algebra

In this section, we compute the asymptotic symmetry alge-
bra for the previously presented Hietarinta CS supergravity.
To this end we provide the suitable fall-off conditions for the
gauge fields at infinity and the gauge transformations pre-
serving the boundary conditions. Let us mention that the
boundary conditions we will consider here correspond to
a supersymmetric extension of the conditions presented in
[10], but considering the exchange of the gauge fields ea

and σ a . Then, the charge algebra is found using the Regge–
Teitelboim method [53].

3.1 Boundary conditions

Based on the results obtained in the previous section, we
consider the following behaviour of the gauge fields at the
boundary

A = 1

2
Mdφ J0 + dφ J1

+1

2

(
Ndu + Fdφ − r2dφ

)
P0 + rduP2

+
(

−dr + 1

2
Mdu + 1

2
Ndφ

)
Z0

+duZ1 + rdφZ2 + ψ

21/4 dφ Q+, (3.1)

where the functionsM,N andF , and the Grassmann-valued
spinor component ψ are assume to depend on all boundary
coordinates xi = (u, φ). The radial dependence of the gauge
field A can be dropped out by the gauge transformation

A = h−1dh + h−1ah, (3.2)

where h = e−r Z0 . Then, the new gauge field a = audu +
aφdφ becomes the asymptotic field, where the component
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along φ is

aφ = 1

2
Mdφ J0 + dφ J1 + 1

2
Fdφ P0

+1

2
NdφZ0 + ψ

21/4 dφ Q+. (3.3)

The asymptotic symmetries correspond to the set of transfor-
mations that leaves the asymptotic conditions (3.1) invariant.
Thus, we consider gauge parameters of the form � = h−1λh
and

λ = χa(u, φ) Ja + εa(u, φ)Pa + γ a(u, φ)Za

+ 21/4ε+(u, φ)Q+ + 21/4ε−(u, φ)Q−. (3.4)

Considering the gauge connection (3.3) and the gauge param-
eter (3.4), it is possible to show that the parameters can be
solved in terms of three arbitrary bosonic functions and one
arbitrary fermionic function, i.e. λ = λ(Y, R, T, E). Indeed,
we find

χ0 = M
2
Y−Y ′′ ε0 = 1

2
(MR+N T +FY )+ 1

2
ε−ψ−R′′

γ 0 = 1

2
(MT + NY ) − T ′′,

χ2 = −Y ′, ε2 = −R′, γ 2 = −T ′,
χ1 = Y, ε1 = R, γ 1 = T, (3.5)

while the fermionic functions read

ε− = E, ε+ = 1√
2

(
Yψ − 2E ′) . (3.6)

Then, the transformation laws for the arbitrary functions M,
N , F and � under the asymptotic symmetries are given by

δM = M′Y + 2MY ′ − 2Y ′′′ ,

δN = N ′Y + 2NY ′ + M′T + 2MT ′ − 2T ′′′,
δF = F ′Y + 2FY ′ + N ′T + 2N T ′ + M′R

+2MR′ + 3iE ′� + iE� ′ − 2R′′′,

δ� = � ′Y + 3

2
�Y ′ + 1

2
ME − 2E ′′. (3.7)

Let us now determine the asymptotic form of the gauge fields
along time evolution. For this purpose we incorporate the
Lagrange multipliers for every dynamical field in the asymp-
totic form of the gauge field. The asymptotic symmetries
along time will be preserved whenever the Lagrange multi-
plier is Au = h−1auh, with

au = λ(μN , μM, μF , μ�), (3.8)

where the “chemical potentials” are arbitrary functions and
assumed to be fixed at the boundary. The time evolution of the
gauge fields in the asymptotic region is given by the following
conditions

Ṁ = M′μN + 2Mμ′
N − 2μ′′′

N ,

Ṅ = N ′μN + 2Nμ′
N + M′μF + 2Mμ′

F − 2μ′′′
F ,

Ḟ = F ′μN + 2Fμ′
N + N ′μF + 2Nμ′

F
+M′μM + 2Mμ′

M + 3iμ′
�� + iμ�� ′ − 2μ′′′

M,

�̇ = � ′μN + 3

2
�μ′

N + 1

2
Mμ� − 2μ′′

�. (3.9)

The above transformation laws and conditions for the
asymptotic field contain the information of the asymptotic
structure of the Hietarinta CS supergravity and their corre-
sponding algebra. Indeed, the charge algebra of the Hietarinta
supergravity theory can be computed following the Regge–
Teitelboim approach [53]. In what follows we will consider
this construction.

3.2 Charge algebra: extended super-bms3 algebra

The charge algebra of the Hietarinta CS supergravity theory
in representation of Poisson brackets can be obtained using
the Regge–Teitelboim method [53] directly from the trans-
formation law

δ�2 Q[�1] = {Q[�1], Q[�2]} , (3.10)

where Q[�] is the conserved charges spanning the algebra
[54]. On the other hand, the variation of the charge in CS
theory is given by

δQ[�] = k

2π

∫

∂�

〈�δA〉 . (3.11)

After applying the gauge transformation (3.2) which intro-
duces the asymptotic field (3.3) we get [55]

δQ[λ] = k

2π

∫
dφ

〈
λδaφ

〉
. (3.12)

Considering the invariant tensor (2.2) and the gauge field a
defined in (3.3) in the previous expression, we obtain

δQ[Y, R, T, E]=
∫
dφ (Y δJ+RδP+T δZ+2iEδ�) (3.13)

where we have defined

J = k

4π
(α2N + α0M + α1F) , (3.14)

P = k

4π
α1M, (3.15)

Z = k

4π
(α1N + α2M) , (3.16)

� = − k

4π
α1�. (3.17)

We assume that the functions Y , T , R and E do not depend
on the fields which implies that the charge variation is inte-
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grable on the phase space. Then, one finds

Q[Y, R, T, E] =
∫

dφ (YJ + RP + TZ + 2iE�) . (3.18)

There are four independent surface charges,

j[Y ] = Q[Y, 0, 0, 0], p[R] = Q[0, R, 0, 0],
z[T ] = Q[0, 0, T, 0], g[E] = Q[0, 0, 0, E], (3.19)

associated with four independent symmetry generators Y , R
and T and E . Then, the Poisson brackets of these indepen-
dent charges can be evaluated considering (3.10) and (3.9).
Expanding in Fourier modes and defining

Jm = j[eimφ], Pm = p[eimφ], Zm = z[eimφ],
Gm = g[eimφ], (3.20)

one obtain the following Poisson brackets

i {Jm,Jn} = (m − n)Jm+n + c1

12
m3δm+n,0,

i {Jm,Pn} = (m − n)Pm+n + c2

12
m3δm+n,0,

i {Pm,Pn} = 0,

i {Zm,Zn} = (m − n)Pm+n + c2

12
m3δm+n,0,

i {Jm,Zn} = (m − n)Zm+n + c3

12
m3δm+n,0,

i {Pm,Zn} = 0,

i {Jm,Gn} =
(m

2
− n

)
Gm+n,

i {Pm,Gn} = 0,

i {Gm,Gn} = Pm+n + c2

6
m2δm+n,0, (3.21)

where we have used the integral representation of the Kro-
necker delta δm,n = 1

2π

∫
dφ ei(m−n)φ . As we can see from

the previous algebra it defines an extension of the super-
bms3 algebra spanned by Jm , Pm and Gm and corresponds
to a supersymmetric extension of the extended l-conformal
Galilean algebra when l = 1 [13]. Let us note that the present
superalgebra can be seen as a non-trivial central extension
since the constant ci

12m
3δm+n,0 cannot be removed by redefin-

ing the generatorsJm ,Pm andZm . As it is expected, it corre-
sponds to an infinite-dimensional lift of the Hietarinta super-
algebra, with three central charges which are related to the
CS level k and to the three coupling constants appearing in
the CS supergravity action through the following relation

ci = 12kαi−1, i = 1, 2, 3. (3.22)

Indeed, the Hietarinta superalgebra is a finite subalgebra of
(3.21). It can be explicitly seen by identifying the modes in
(3.21) with the generators in (2.1) as follows

J−1 = −√
2J0, J1 = √

2J1, J0 = J2,

P−1 = −√
2P0, P1 = √

2P1, P0 = P2,

Z−1 = −√
2Z0, Z1 = √

2Z1, Z0 = Z2,

G−1/2 = √
2Q+, G1/2 = √

2Q−. (3.23)

Unlike the super-bms3 algebra, the obtained asymptotic
superalgebra contains an additional central charge c3 =
12kα2. Naturally, the centrally extended super-BMS3 alge-
bra [46–48] is recovered when Zm and c3 are switched off.

Let us mention that when the role of the generatorsZm and
Pm is interchanged, the charge algebra (3.21) corresponds to
the supersymmetric extension of the asymptotic symmetry
algebra of the Maxwell CS gravity, given by a deformation of
the bms3 algebra [10,56]. Nonetheless, it is important to clar-
ify that the exchange of Zm and Pm reproduces an infinite-
dimensional lift of the non-standard Maxwell superalgebra
[18,19]. The corresponding asymptotic symmetry algebra
of the minimal Maxwell CS supergravity has been recently
presented in [49], which is quiet different to the asymptotic
algebra introduced here. In the minimal Maxwell case, the
asymptotic algebra is characterized by two fermionic gener-
ators Gm and Hm .

4 Extended super-bms3 algebra and vanishing
cosmological constant limit

Let us note that the infinite-dimensional algebra (3.21) can be
obtained as a Inönü–Wigner contraction of the direct sum of
three copies of the Virasoro algebra, one of which augmented
by supersymmetry. Indeed, let us consider the direct product
svir ⊕ vir ⊕ vir as follows

i
{
L±
m,L±

n

} = (m − n)L±
m+n + c±

12
m3δm+n,0,

i
{
L̂m, L̂n

}
= (m − n) L̂m+n + ĉ

12
m3δm+n,0,

i
{
L+
m,Q+

r

} =
(m

2
− r

)
Q+

m+r ,

i
{
Q+

r ,Q+
s

} = L+
r+s + c+

6
r2δr+s,0.

(4.1)

After the following redefinitions,

L+
m = 1

2

(
�2Pm + �Zm

)
, L−

m = 1

2

(
�2P−m − �Z−m

)
,

L̂m = J−m − �2P−m,

Q+
r = �√

2
Gr , c± = 1

2

(
�2c2 ± �c3

)
,

ĉ =
(
c1 − �2c2

)
, (4.2)

the previous algebra, written in the basis {J ,P,Z,G}, leads
to the extension of super-bms3 algebra given in (3.21) in the
limit � → ∞. Let us notice that the basis {J ,P,Z,G} sat-
isfy a supersymmetric extension of the infinite-dimensional
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lift of the AdS-Lorentz algebra [48] in which the role ofP and
Z is interchanged. In such basis, the � parameter is related to
the cosmological constant through � = − 1

�2 . Then, the limit
� → ∞ can be seen as a vanishing cosmological constant
limit. It is important to mention that the obtained asymptotic
symmetry algebra along the one of the minimal Maxwell
supergravity [49] can both be obtained as a flat limit � → ∞.
Nonetheless, the asymptotic algebra of the minimal Maxwell
supergravity appear by contracting three copies of the Vira-
soro algebra, two of which are augmented by supersymmetry
[48,49].

It is also possible to show that the boundary conditions
(3.3) can be derived as a flat limit of a supersymmetric exten-
sion of the Brown–Henneaux boundary conditions [57] con-
sidered in [58], after an appropriate change of basis. First, let

us consider the basis
{
J±
a , Ĵa

}
, in which the connection one-

form can be written as the sum of three sl(2,R) connections:
A = A++A−+ Â. The CS action splits into the sum of three
Lorentz CS actions, one for each connection, leading to three
sl(2,R) connections satisfying Brown–Henneaux boundary
conditions [58]:

a± = (
L± J±

0 + J±
1

)
dx±, â =

(
L Ĵ0 + Ĵ1

)
dφ, (4.3)

where x± = φ ± t
�

and

L± = L± (
x±)

, L = L (φ) , (4.4)

are arbitrary functions of their arguments, which are required
to satisfy on-shell,

∂∓L± = 0, ∂uL = 0. (4.5)

Thus, each set of charges resulting from (3.12) will satisfy a
Virasoro algebra with central charges c± and ĉ.

Then, let us consider three copies of the sl(2,R) algebra,
one of them augmented by supersymmetry, and where each

copy is spanned by generators
{
J+
a , Qα

}
,
{
J−
a

}
,
{
Ĵa

}
. The

r -independent gauge connection will be written in terms of a
supersymmetric extension of the Brown–Henneaux bound-
ary conditions:

a+ =
(
L+ J+

0 + J+
1 + ψ

21/4 Q+
)
dx+,

a− = (
L− J−

0 + J−
1

)
dx−,

â =
(
L Ĵ0 + Ĵ1

)
dφ, (4.6)

where the Grassmann-valued ψ is required to satisfy

∂−ψ = 0. (4.7)

For convenience, we now make the change t = u and con-
sider the following change of basis

J±
a = �2Pa ± �Za

2
, Ĵa = Ja − �2Pa, (4.8)

Q+ = �√
2
Q̃+, (4.9)

so that the asymptotic gauge field reads

a =
(

1

2
Mdu + 1

2
Ndφ

)
Z0 + du Z1

+
(

1

2
M − 1

2�2 F
)
dφ J0 + dφ J1

+
(

1

2
N du + 1

2
Fdφ

)
P0

+ �

21/4 Q̃+dφ + 1

�

�

21/4 Q̃+du, (4.10)

where we have redefined the arbitrary functions as follows

M = (
L+ + L−)

, N = �
(
L+ − L−)

,

F = �2 (
L+ + L− − 2L

)
, (4.11)

� = �√
2
ψ. (4.12)

The conditions (4.5) and (4.7) now read

∂uM = 1

�2 ∂φN , ∂uN = ∂φM, ∂uF = ∂φN , (4.13)

∂u� = 1

�
∂φ�. (4.14)

We can now apply the vanishing cosmological constant limit
� → ∞ directly to the r -independent asymptotic gauge field
(4.10), such that it reduces to

a =
(

1

2
Mdu + 1

2
Ndφ

)
Z0 + du Z1 + 1

2
Mdφ J0

+dφ J1 +
(

1

2
N du + 1

2
Fdφ

)
P0

+ �

21/4 Q̃+dφ, (4.15)

which coincides with the asymptotic form of the gauge con-
nection proposed in (3.3). As an ending remark, one can
notice that these boundary conditions correspond to a super-
symmetric extension of the ones proposed in [10] for the
Maxwell gravity theory, when the role of the generators Za

and Pa is interchanged in (4.15).

5 Discussion

In this paper, we have presented the CS supergravity the-
ory based on the minimal supersymmetric extension of the
Hietarinta symmetry. The CS theory can be seen as an exten-
sion of the N = 1 Poincaré CS supergravity theory [31].
Although the Hietarinta superalgebra is isomorphic to the
non-standard Maxwell superalgebra [18,19], the gauge field
interpretation à la Hietarinta allows us the construction of a
truly supergravity action. We have shown that the additional
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gauge field σ a , which is responsible to turn on the torsion,
modifies the asymptotic algebra. After considering appro-
priate boundary conditions, we showed that the asymptotic
symmetry algebra of the bulk theory is given by an extension
of the bms3 superalgebra [46–48] with three non-trivial cen-
tral charges. The obtained asymptotic symmetry algebra can
also be seen as a supersymmetric extension of the extended
l-conformal Galilean algebra for l = 1 [13]. Interestingly, the
extendedbms3 superalgebra can alternatively be recovered as
a vanishing cosmological constant limit of three copies of the
Virasoro algebra, one of which is augmented by supersym-
metry. Let us mention that the analysis of the energy bounds
and asymptotic Killing spinors is analogous to the one pre-
sented in [46] for three-dimensional Poincaré supergravity
since the extended bms3 superalgebra introduced here con-
tains bms3 as subalgebra.

As a generalization of our results, it would be worth it to
study the inclusion of a cosmological constant to the Hietar-
inta supergravity. In this direction, one expect that the sym-
metry algebra of the corresponding theory should be isomor-
phic to three copies of the so (2, 1) algebra, one of which
should be augmented by supersymmetry. It would interest-
ing to explore if its bosonic counterpart admits black holes
solutions of the BTZ type [59,60] that resemble the ones
obtained in [61] in presence of a non-vanishing torsion. A
further more detailed analysis of the solutions and thermo-
dynamics of the Hietarinta gravity theory with and without
cosmological constant might be of interest.

It might also be of interest to explore higher-spin gen-
eralizations of the Hietarinta gravity model. In presence of
spin-3, one could expect to find an extension of the Poincaré
CS gravity coupled to spin-3 gauge fields [62–65]. A ques-
tion is whether such spin-3 gravity model may appear as a
flat limit of three copies of the sl (3,R) analogously to the
spin-3 Maxwell gravity theory [66]. At the asymptotic sym-
metry level, one could also expect to obtain an extension
of the spin-3 version of the bms3 algebra [62,63,65] which
should be related to a combination of W3 algebra through
a flat limit. A consistent coupling of the Hietarinta gravity
theory with massless spin- 5

2 gauge field might be also of
interest. It would be interesting to verify if such higher-spin
generalization extend the hypergravity of Aragone and Deser
[67] and the Poincaré CS hypergravity theory [68,69].

Another aspect that it would be worth exploring is the non-
relativistic regime of the Hietarinta CS supergravity theory
presented here. Non-relativistic versions of supergravity the-
ories have only been approached recently [70–83]. In this
direction, the expansion method [84–86] has been a pow-
erful tool to derive the corresponding non-relativistic coun-
terpart of a three-dimensional supergravity theory [74–80].
Following the procedure used in [76,77,79,80], it would
be interesting to obtain the corresponding non-relativistic
Hietarinta supergravity [work in progress]. We guess that

the non-Lorentzian Hietarinta superalgebra should contain
the extended-Bargmann superalgebra [72] as subalgebra.
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