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Abstract In the present work, accretion onto a static spher-
ically symmetric black hole in the hybrid metric-Palatini
gravity is considered. The Novikov–Thorne model for a rel-
ativistic thin accretion disk is used. The energy flux, tem-
perature distribution, emission spectrum and energy conver-
sion efficiency of accretion disks around such black holes are
numerically calculated. A comparison with the results for a
Schwarzschild black hole is made and conclusions about the
viability of the model are drawn. As a result, it is obtained
that the accretion disks around black holes in hybrid metric-
Palatini gravity are colder and less luminous than in general
relativity.

1 Introduction

At the beginning of the XX century, general relativity (GR)
replaced Newton’s theory of gravity, offering solutions to
long-standing unresolved issues. GR has since remained the
generally accepted theory of gravity. However, as physics
progressed, new challenges emerged that could not be
addressed by GR alone. One of the main problems of theoret-
ical physics at the moment is the accelerated expansion of the
universe [1–5]. Another problem manifests itself at the scale
of galaxies, demonstrating the presence of a large amount
of unknown matter [6,7]. In addition, there is still no self-
consistent theory of quantum gravity. There are problems in
the early Universe that cannot be solved within the frame-
work of GR, which leads to the emergence of a large number
of inflation theories [8–10]. One of the ways to solve these
problems is to search for a theory of gravity that go beyond
the scope of GR. One of the simplest and most widely used
methods for extending GR is f(R)-gravity.
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The f(R)-gravity approach allows replacing the Ricci
scalar in the Einstein–Hilbert action with an arbitrary func-
tion of the curvature [11–14]. An attractive feature of f(R)-
gravity is the possibility of simultaneously describing both
the inflationary period and the modern accelerated expan-
sion of the universe. The large family of f(R)-theories can be
divided into two classes: metric and Palatini ones. In the met-
ric approach the only variable is the metric, while in the Pala-
tini approach an additional variable is the independent affine
connection. Within the framework of the metric approach, it
is possible to successfully describe the dynamics of the mod-
ern universe. However, it encounters difficulties in explaining
the dynamics within the solar system [15–17]. Nevertheless,
there are a number of viable models that can overcome these
difficulties [18–20]. Another approach is the Palatini one,
which assumes the affine connection is independent of the
metric [21,22]. However, this modification also faces limita-
tions when it comes to describing observational data [23,24].

To overcome these challenges, hybrid metric-Palatini
gravity (HMPG) was developed [25–27]. This theory com-
bines the advantages of the metric and Palatini approaches
while avoids their shortcomings. HMPG includes both met-
ric (Einstein–Hilbert action) and Palatini (arbitrary function
of the Palatini curvature) parts. One of the main successes
of the model is the simultaneous explanations for cosmolog-
ical [28–30] and solar system dynamics [31,32] without the
need for screening mechanisms. Also it provides the descrip-
tion of galactic dynamics [33]. Moreover, this model has a
scalar-tensor representation, simplifying its study.

HMPG was explored in many works. For the most com-
plete review of studies, see [27]. In this brief introduction,
we outline the main areas of research within the framework
of this theory. First of all, it is necessary to note that the
HMPG was investigated on a wide range of scales and grav-
itational regimes. On a cosmological scale, the theory shows
its consistency and excellent agreement with observational
data [28–30]. On the scale of galaxies, the HMPG allows to
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describe rotation curves without introducing a large amount
of dark matter [33], and to explain the virial mass discrepancy
in clusters of galaxies [34]. In addition, the theory describes
the observational data obtained within the solar system
[31]. It was tested using the parametrized post-Newtonian
(PPN) formalism in the weak field regime [32,35]. HMPG
was also studied in stronger gravitational fields, for exam-
ple, using observational data from binary pulsars [36,37].
Gravitational waves were investigated [38,39]. Moreover,
the physical properties of neutron, Bose-Einstein conden-
sate and quark stars were studied [40]. In the strong field
limit, the static spherically symmetric black hole solution
was obtained numerically [41]. The evolution of dynamic
traversable wormhole geometries in a FLRW background in
the context of HMPG was studied [42]. The possibility of
obtaining stable spherically symmetric analytical solutions
within the framework of this model was also investigated
[43]. Also, in a number of works, a generalized version of
the HMPG was considered [44–46].

The recently obtained black hole solution [41] in HMPG
has opened up new possibilities for testing this theory. In
addition to the fact that a gravitational theory must confirm
the existence of compact bodies, it must also predict accretion
disks around such objects that are consistent with observa-
tions. Therefore, the study of the properties of accretion disks
can be used to test the adequacy of both the theory itself and
the black hole solution, and can also serve in the future to
limit HMPG.

In this paper, our focus is on studying accretion onto
a static spherically symmetric black hole within HMPG.
Accretion, the process of matter infall onto a black hole,
is highly sensitive to the gravitational theory’s peculiarities,
making it a valuable testbed for exploring new results and
constraints for this model. Historically, the first accretion
model was created by Shakura and Sunyaev [47]. However,
the first model which takes into account relativistic effects
was developed by Novikov, Thorne and Page [48,49]. Previ-
ously, many modified theories of gravity have already been
investigated by considering accretion disks [50–55].

We employ a numerical solution for the static spheri-
cally symmetric black hole metric in HMPG [41] to calcu-
late the energy flux, luminosity, and temperature within the
Novikov–Thorne model. We compare our results with calcu-
lations performed for a Schwarzschild black hole in GR. Our
analysis considers different values of the background scalar
field, first derivative of the scalar field, scalar field mass,
and different their interconnections. We examine two cases:
one with a Higgs-type potential V (φ) = −μ2

2 φ2 + ζ
4 φ4 and

another without any potential (V = 0). In the conclusion, we
discuss the viable aspects of HMPG.

The article is organized into seven sections. The first and
last are the introduction and conclusion respectively. The
second section provides a description of the HMPG and its

scalar-tensor representation. In the third section, we present
the Novikov–Thorne model. The fourth section outlines the
numerical calculations for the static spherically symmetric
black hole metric. In the fifth section the results of numerical
calculating for accretion properties in HMPG are presented.
In the sixth section we discuss obtained results. The conclu-
sion summarizes our findings.

Throughout this paper the Greek indices (μ, ν, ...) run
over 0, 1, 2, 3 and the signature is (−,+,+,+). All calcu-
lations are performed in the CGS system.

2 Hybrid metric-Palatini gravity

In this section, we discuss the fundamental characteristics
of HMPG and introduce mathematical background of this
theory. The action is formulated as follows [25,26]:

S = 1

2k2

∫
d4x

√−g[R + f (�)] + Sm, (1)

where k2 = 8πG
c4 , G is the gravitational constant, c is the

speed of light, g = det{gμν} is the determinant of the metric,
R and � are the metric and Palatini curvatures respectively
and Sm is the matter action. The first part of the action,
the metric curvature R, corresponds to the Einstein–Hilbert
action. The second part consists of general function of the
Palatini curvature and includes all deviations from GR.

The general form of scalar curvature expressions is the
same:

R = gμνRμν ≡ gμν
(
Γ α

μν,α − Γ α
μα,ν + Γ α

αλΓ
λ
μν − Γ α

μλΓ
λ
αν

)
,

� = gμν�μν ≡ gμν
(
Γ̂ α

μν,α − Γ̂ α
μα,ν + Γ̂ α

αλΓ̂
λ
μν − Γ̂ α

μλΓ̂
λ
αν

)
.

(2)

However, in the metric approach, curvature depends only
on the metric, while in the Palatini approach curvature is a
function of both the metric and the affine connection. Like
other metric and Palatini models, it is possible to represent
HMPG in a scalar-tensor form. Let us to introduce an auxil-
iary field A that allows to write the action as follows:

S = 1

2k2

∫
d4x

√−g[R + f (A) + f A · (� − A)] + Sm,

(3)

where f A = d f
d A . Then we can introduce the scalar field

φ ≡ f A and the potential V (φ) ≡ A fA − f (A), which con-
sist of kinetic and potential parts. After mathematical trans-
formations we obtain the scalar-tensor representation of the
HMPG action:

S = 1

2k2

∫
d4x

√−g[R + φ� − V (φ)] + Sm . (4)

To obtain the field equations, it is necessary to vary the
action with respect to all variables: the metric tensor gμν , the
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scalar field φ and the affine connection Γ̂ α
μν . Thus the field

equations take the following form:

Rμν + φ�μν − 1

2
(R + φ� − V ) gμν = k2Tμν,

� − Vφ = 0,

∇̂α

(√−gφgμν
) = 0, (5)

where Tμν is the energy-momentum tensor, and Vφ ≡ dV
dφ

. It
is necessary to emphasize that there is no torsion in HMPG.
Consequently, the final equation can be resolved, revealing
that the independent connection corresponds to the Levi-
Civita connection of the metric hμν = φgμν . By employing
the solution of this equation, a connection between the metric
and the Palatini curvatures can be expressed:

�μν = Rμν + 3

2φ2 ∂μφ∂νφ − 1

φ

(
∇μ∇νφ + 1

2
gμν∇α∇αφ

)
. (6)

This connection allows to rewrite the action without Palatini
terms [25,26]:

S = 1

2k2

∫
d4x

√−g

[
(1 + φ)R + 3

2φ
∂μφ∂μφ − V (φ)

]

+Sm . (7)

Thus, the action of HMPG in the scalar-tensor representation
has been obtained.

Taking into accaunt expressions (5), it is possible to derive
the scalar-tensor form of the field equations:

1

1 + φ

[
k2

(
Tμν − 1

2
gμνT

)
+ 1

2
gμν

(
V + ∇α∇αφ

)

+∇μ∇νφ − 3

2φ
∂μφ∂νφ

]
= Rμν, (8)

−∇μ∇μφ + 1

2φ
∂μφ∂μφ + φ[2V − (1 + φ)Vφ]

3

= φk2

3
T . (9)

From here onwards, the field equations are considered in
this form.

3 Thin accretion disk model

An accretion disk is an astrophysical structure that forms
near a massive object, representing diffuse material orbiting
around the central body. In this article only thin accretion
discs are considered. The general model of such disks was
developed by Shakura and Sunyaev [47] and later extended
by Novikov, Thorne and Page [48,49]. A thin accretion disc is
characterized by the fact that its vertical size, h, is negligible
compared to its horizontal size, h << r . In such structures,
particles move along Keplerian orbits, and the accretion disk
is located in the equatorial plan of the compact body. More-
over, the thin accretion disc model implies a steady state.

Thus, the accretion mass rate, Ṁ0, is assumed to be con-
stant over time. Additionally, in the steady-state model the
accreting matter is in thermodynamical equilibrium [51].

To study the electromagnetic properties of an accretion
disk, it is first necessary to study the geometry of space
in which particles move near a compact object [50]. The
geodesic motion of test particles moving around a massive
body is governed by the Lagrangian:

L = 1

2
gμν ẋ

μ ẋν, (10)

where the dot means the derivative with respect to τ , which
is an affine parameter along the geodesic xμ(τ); gμν is the
metric of a static, spherically symmetric space-time:

ds2 = g00dt
2 + g11dr

2 + g22dθ2 + g33dϕ2, (11)

for which the elements g00, g11, g22, g33 only depend on the
radial coordinate r . We also use an equatorial approximation,
implying that |θ −π/2| << 1. To derive the main features of
the thin accretion disc, it becomes essential to define the spe-
cific energy Ẽ and the specific angular momentum L̃ using
the Euler–Lagrange equations [48]:

g00 ṫ = Ẽ, (12)

g22ϕ̇ = L̃. (13)

Here Ẽ = E/m0c2 and L̃ = L/m0c, where E represents
the total energy of the particle in its orbit, m0c2 is the rest
mass energy of this particle and L is the angular momentum
of the particle.

Another important characteristic of the accretion disc is
the effective potential Vef f (r). It can be defined from the
relation 2L = −1, taking into accaunt Eqs. (12) and (13):

− g00g11ṙ
2 + Vef f (r) = Ẽ2. (14)

Then the effective potential is defined as

Vef f (r) = −g00

(
1 + L̃2

g33

)
. (15)

The circular orbit passes where the minimum of the effec-
tive potential is located. If there is no minimum (i.e., the
potential has a “smooth” shape), then the circular orbits are
unstable for a given moment. Therefore, for stable circular
orbits, conditions Vef f (r) = 0 and Vef f,r (r) = 0 must be
satisfied. This makes it possible to determine the specific
energy, specific angular momentum, and angular velocity Ω

of particles moving within the gravitational potential of a
massive object:

Ẽ = − g00√−g00 − g33Ω2
, (16)

L̃ = g33Ω√−g00 − g33Ω2
, (17)
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Ω = dϕ

dt
=

√
−g00,r

−g33,r
. (18)

The condition Vef f,rr (r) = 0 determines the radius of the
innermost stable circular orbit risco. This leads to the follow-
ing equation:

Ẽ2g33,rr + L̃2g00,rr + (g00g33),rr = 0. (19)

Solving this equation with respect to r and taking into account
expressions (16) and (17), we obtain the risco.

A key feature of an accretion disk is its accretion effi-
ciency, a measure which signifies the capacity of the central
body to transmute rest mass into outgoing radiation. This
measure is established as the proportion of the photon energy
rate that escapes from the disk’s surface to infinity to the
rate at which mass-energy is transported to the black hole. If
all emitted photons can escape to infinity, the efficiency can
be expressed in terms of the specific energy defined at risco
[48,49]:

η = 1 − Ẽms . (20)

Schwarzschild black holes have an efficiency of approxi-
mately 6%, while for extreme rotating Kerr black holes,
η ≈ 42%. It is important to note that the photon capture
by the black hole can influence the efficiency. For instance,
a Kerr black hole with photon capture has an efficiency of
40% [56].

One of the main parameters that characterize the spec-
trum of an accretion disk is the time averaged energy flux
emitted from the surface of the disk. It can be obtained from
the conservation equations ∇μEμ = 0 and ∇μ Jμ = 0 [48].
These laws follow from the law of conservation of the energy-
momentum tensor. Initially, in the work of D. Page and K.
Thorne [48], the energy flux was obtained within the frame-
work of GR, where, as is known, the energy-momentum ten-
sor is locally conserved. In our work we consider another the-
ory, HMPG. In this theory, local conservation laws are also
satisfied, as is shown in the work [57]. The authors investigate
the problem of conservation laws in scalar-tensor theories of
gravity and theories that have a scalar-tensor representation.
It is shown that HMPG has divergence-free field equations
and respect the local energy-mentum conservation. There-
fore, the general form of the formula for energy flux is also
applicable in this model, as in GR. The radiation flux per unit
area can be expressed in terms of the specific energy, angular
momentum and the angular velocity of the particles orbiting
in the disk as follows:

F(r) = − Ṁ0

4π
√−g

Ω,r

(Ẽ − Ω L̃)2

∫ r

risco
(Ẽ − Ω L̃)L̃ ,r rdr,

(21)

where Ṁ0 is the mass accretion rate. This quantity measures
the rate at which the rest mass of the particles streams inward
through the disk with respect to the coordinate time.1

The steady-state thin disk model includes a condition that
the accreting matter is assumed to be in thermodynamic equi-
librium. As a result, an ideal black body model is applicable
in describing the radiation from the disk’s surface, and the
energy flux can be derived from the Stefan-Boltzmann law,
F(r) = σT (r)4, where σ is the Stefan-Boltzmann constant.
Therefore, the observed luminosity has a redshifted black
body spectrum as follows [58]:

L(ν) = 2h

c2 cos γ

∫ r f

ri

∫ 2π

0

ν3
e rdϕdr

exp (hνe/kT ) − 1
. (22)

Here d denotes the distance to the source, γ represents the
disk inclination angle, ri and r f are the radii of the disk’s
inner and outer edge, respectively; νe = ν(1+ z) denotes the
emitted frequency, and the redshift factor is defined as:

1 + z = 1 + Ωr sin ϕ sin γ√−g00 − g33Ω2
, (23)

where we neglect the light bending [59].

4 Numerical results

The spherically symmetric space-time outside massive
objects can be described by the following line element:

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdϕ2). (24)

The metric functions ν(r) and λ(r) depend only on the radial
coordinate r , with the condition 0 ≤ r < ∞. Taking into
account the metric (24), the field equations (8) and (9) can
be represented in the following form [41]:

dφ

dξ
= −U

ξ2 , (25)

dMef f

dξ
=

(1 − Mef f ξ)[ξ2dU/dξ + 3U2/4φ − 2ξU ]
+Mef f ξ

3(1 + φ) − v

ξ4(1 + φ +U/2ξ)

−Mef f

ξ
, (26)

dν

dξ
= − ξ − {U (ξ)[8φ+3U (ξ)/ξ ]

4φ(1+φ)
+ ξ

}[1 − ξMef f (ξ)] − v(φ)
ξ(1+φ)

ξ2[1 − ξMef f (ξ)][1 + U (ξ)
2ξ(1+φ)

] ,

(27)

d2ν

dξ2 = (1 − ξ
2
dν
dξ

)(−ξ
dMef f
dξ

− Mef f )

ξ(1 − ξMef f )
− 5U (ξ)2

2ξ4φ(1 + φ)

− 2

ξ4(1 + φ)(1 − ξMef f )

1 In the original article by D. Page and K. Thorne [48], this formula
(21) was obtained for cylindrical coordinates. Therefore, when working
in a spherical coordinate system, it is important to take into account the
Jacobian for the transition from one system to another.
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×
{

2φ

3
[2v − (1 + φ)vφ] + v

}

+ 2U

ξ3(1 + φ)
− 1

2

(
dν

dξ

)2

+ 1

ξ

dν

dξ
, (28)

dU (ξ)

dξ
=

ξ2U (ξ)
2

[
ξ
dMef f (ξ)

dξ
+ Mef f (ξ)

]
ξ2(1 − ξMef f (ξ))

+2U (ξ)

ξ
− 1

ξ2

U2(ξ)

2φ

−
2φ
3

[
2v(φ) − (1 + φ)vφ(φ)

]
ξ2(1 − ξMef f (ξ))

− U (ξ)

2

dν

dξ
. (29)

To obtain these equations, the following transitions to
dimensionless variables were used

ξ = 2GMBH

c2r
,

dφ

dr
= c2

2GMBH
U,

V (φ) = 2

(
c2

2GMBH

)2

v(φ), (30)

where MBH is the black hole mass. The metric function
e−λ(r) is redefined as

e−λ(r) = 1 − 2GMBHMef f (r)

c2r
. (31)

These field equations was obtained in the article [41]. Then
authors found numerical solutions for these field equations.
In our work, we repeat the numerical analysis using integra-
tion methods from Python’s scipy library. For the solution,
the fixed initial conditions

Mef f (0) = 1, ν(0) = 0, ν′(0) = 0 (32)

were taken into account, and arbitrary numerical values for

u(0) = u0, φ(0) = φ0 (33)

were used.
The details of the calculations of the metric can be found

in the article [41].

5 Properties of thin accretion discs

Now, we are ready to investigate the properties of thin accre-
tion disks around black holes in hybrid metric-Palatini grav-
ity and compare the results with the Schwarzschild pre-
dictions. We consider two cases: a case without potential
V = 0 and a case where potential takes the Higgs-type form

V = −μ2

2 φ2 + ζ
4 φ4.

It is important to emphasize that in this article we con-
sider the case of a static spherically symmetric black hole.
To obtain the energy flux, emission spectrum, temperature,
and efficiency, we use the actual values of mass and accre-
tion rate of the system MAXI J1820+070 [60]. This system is
chosen due to the small value of the Kerr parameter a = 0.14,
which is closest to a Schwarzschild black hole.

5.1 Case V = 0

In the case V = 0, the metric of the HMPG includes two
model parameters: the initial value of the scalar field, φ0,
and the initial value of its derivative u0. We consider three
cases:

1. fixed φ0 = 1 and range of u0 = [4 × 10−9; 6.4 × 10−8],
2. fixed u0 = 5.12 × 10−7 and range φ0 = [0.5; 8],
3. a connection between φ0 and u0 obtained from the post-

Newtonian analysis. This connection has the following
form:

u0 = 2GMφ0

3c2r2 . (34)

It can be obtained from the expression for scalar pertur-

bation ϕ = −2GMφ0e
−mφr

3c2r
[32]. In this case, we consider

φ0 < 4×10−5 [31]. This limit was imposed on the initial
value of the scalar field using the data from the Cassini
experiment [61].

The first two cases are chosen due to the fact that such
black holes were studied in the article [41], where spherically
symmetric solution was obtained. The choice of the last case
has the following reason: we take the initial value of the scalar
field at a sufficiently large distance from the black hole. At
this distance, the gravitational field is quite weak, therefore
we can use the results of the post-Newtonian analysis.

Further we present the results of the analysis of figures in
accordance with these cases.

5.1.1 Energy flux

1. The effects of HMPG on the energy flux across the disk’s
surface are presented in Fig. 1a, b in this case. Here, all
curves lie below the Schwarzschild solution. Addition-
ally, as u0 increases, the peak value of the energy flux
decreases. The largest discrepancy in the peak energy
flux within this range of parameters is no more than 2.5%
relative to the Schwarzschild value.

2. In Fig. 1c, we observe a decline in the maximum energy
flux as φ0 decreases. All curves again sit beneath the
Schwarzschild one. However, in this case, the difference
between the maxima is much more noticeable, reaching
up to 95%.

3. The most realistic picture arises when the parameters are
considered within the limits imposed from the solar sys-
tem. As we can see in the Fig. 1d in this case the result is
close to Schwarzschild curve.
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Fig. 1 Case V = 0. The energy flux F(r) of a disk around a static black hole with Ṁ = 2.21 × 1018g/s and M = 8.48M
 as function of the
normalized radial coordinate r/rs . b is zoom version of a. In d the connection (34) from PN analysis is taking into accaunt

5.1.2 Emission spectra

1. In Fig. 2a, b we display the emission spectra for accretion
disk around black holes and compare it with the emission
spectra for the Schwarzschild black hole. In the case of
a fixed φ0, the luminosity decreases with increasing u0.

2. For a fixed u0, the luminosity decreases with decreasing
φ0. It can be seen on Fig. 2c, d.

3. The curve obtained in the frameworks of solar system
limitations looks the most realistic. The two curves are
almost identical in Fig. 2e.

5.1.3 Temperature

Since the temperature is related to the energy flux through
the Stefan-Boltzmann constant, the results for the effective
temperature are no different from the conclusions made for
the energy flux. These results are illustrated in Fig. 3.

Generally speaking, temperature can serve as an excel-
lent indicator to test a theory because its value can be deter-
mined from observational data [60]. Unfortunately, all known
accreting systems have a nonzero Kerr parameter. And even
a small deviation of this parameter from zero (for example,
0.14) does not allow us to check the results obtained for a
static spherically symmetric black hole with observational
data. Thus, the observational test of the theory is possible
only in the case of obtaining the Kerr-type solution and the
accretion characteristics for such a black hole.

5.1.4 Efficiency

The discussion of efficiency deserves special attention.

1. The case of fixed φ0 is shown in Fig. 4a. As u0 increases,
the efficiency decreases.

2. with the growth ofφ0 the efficiency increases and its value
approaches the Schwarzschild one. Moreover, small val-
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Fig. 2 Case V = 0. The emission spectrum νL(ν) of the accretion disk around a static black hole with Ṁ = 2.21 × 1018g/s and M = 8.48M

as function of frequency ν. b is zoom version a; d is zoom version c. In e the connection (34) from PN analysis is taking into accaunt
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Fig. 3 Case V = 0. The temperature distribution T (r) of a disk around a static black hole with Ṁ = 2.21 × 1018g/s and M = 8.48M
 as
function of the normalized radial coordinate r/rs . b is zoom version a. In d the connection (34) from PN analysis is taking into accaunt

ues of φ0 < 1 may differ by more than 80% from the
predictions of GR (Fig. 4b).

3. If we take into account the relationship between u0 and
φ0 (34), we can see that as φ0 increases, the efficiency
decreases. This dependence is illustrated in Fig. 4c. The
difference with the maximum value is almost 50%. On the
other hand, we can observe that no value of φ0 achieves
the efficiency value for a Schwarzschild black hole.

5.2 Case V = −μ2

2 φ2 + ζ
4 φ4

In the article [41] authors consider the only one case with the
potential, and this potential has a Higgs-type form:

V = −μ2

2
φ2 + ζ

4
φ4, (35)

where μ2 and ζ are constants. We also focus on this case
and obtain the picture of accretion. The Higgs potential is

the most widely used in particle physics. Now we redefine
constants μ2 and ζ into a dimensionless form as [41]

v(φ) = αφ2 + βφ4, (36)

where

α = −1

4

(
2GnMBH

c2

)2

μ2, β = 1

2

(
2GnMBH

c2

)2

ζ 2.

(37)

The Higgs-type potential yields four-parameter (α, β, φ0, u0)

solutions of the static gravitational field equations in HMPG.
Authors of the article [41] restrict their analysis investigat-
ing the role of constants α and β, while keeping φ0 and u0

fixed, and varying numerical values of α and β. However, we
consider a wider range of cases:
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Fig. 4 Case V = 0. The efficiency for thin accretion disk around static black hole a as function of u0; b as function of φ0; c as function of φ0,
taking into accaunt connection (34) between φ0 and u0 (from PN analysis)

1. We fix u0 = 10−8, φ0 = 1, β = 10−10, and take the
range of α = [−10−6;−4 × 10−5].

2. We fix u0 = 10−8, φ0 = 1, α = −10−10, and vary
β = [2 × 10−10; 14 × 10−10].

3. We study the case based on the Solar system data. We
assume that the scalar field mass is defined as [26,32]

m2
ϕ = [2V0 − Vφ − (1 + φ)φVφφ]/3|φ=φ0 , (38)

where subscript φ denotes the derivative with respect to
the scalar field. Subsequently, m2

ϕ has a connection with
α and β parameters:

m2
ϕ = [−4/3αφ0 − 16/3βφ3

0 − 10/3βφ4
0 ]

×2

(
c2

2GMBH

)2

. (39)

We save the connection between u0 and φ0, which
is known from PPN analysis as derivative of ϕ =
−2GMφ0e

−mφr

3c2r
with respect to r . As a result, we get

u0 = −2GMφ0e−mφrmφ

3c2r
− 2GMφ0e−mφr

3c2r2 . (40)

In this case, we vary α = [−10−6;−4 × 10−5] and fix
β = 10−20, φ0 = 4 × 10−5.

4. We assume m2
ϕ = −μ2 by analogy with quantum

field theoretical models. We choose the following set of
parameters: α = [−10−6;−4×10−5], β = 10−11, φ0 =
4 × 10−5.

5. We also consider the case of large values of φ0 = [0.1; 4]
and fix α = −10−10, β = 10−11, m2

φ = −μ2.

The first two cases are inspired by the work [41]. However,
we slightly extend the range of α and β parameters to better
illustrate changes in accretion characteristics. The third case
is based on post-Newtonian analysis, relationships and con-
straints obtained from the solar system. The fourth and fifth

instances include the connection m2
ϕ = −μ2 that emerges

from quantum field theoretical models, where −μ2 signifies
the scalar field particle mass. By extension, we give the same
meaning to this quantity in HMPG. Data from accelerator
experiments suggest that the Higgs self-coupling constant
ζ ≈ 1/8 for strong interactions. Nevertheless, the character-
istics of the self-action of a scalar field in HMPG can differ
markedly from those of Higgs bosons.

Further each of these cases is used to determine the char-
acteristics of the accretion disk.

5.2.1 Energy flux

1. This case is illustrated in Fig. 5a, b. We can observe that
as the modulus α increases, the energy flux maximum
also increases. Notably, at α = −10−5, it exceeds the
Schwarzschild result. The maximum deviation for curves
both above and below the Schwarzschild one is 0.95%
and 0.47%, respectively.

2. When we vary the β parameter, no curve exceeds the
Schwarzschild result. Furthermore, as β increases, the
maximum of the energy flux decreases. This result is
displayed in Fig. 5c, d.

3. As shown in Fig. 6 the energy flux maximum increases
with the growth of the modulus α. However, the change in
the β parameter, while α remaines fixed, does not affect
the position of the curve. This is due to the fact that β

is multiplied by greater powers of φ0 than α (see eq. 36),
which means that its contribution is suppressed.

4. As in previous cases, with increasing modulus α, an
increase in the energy flux maximum is observed (see
Fig. 7a–d). However, in none of the cases is there an
excess of the Schwarzschild curve. The maximum devia-
tion from the Schwarzschild curve in this case is 0.01%.
Similar to the previous case, changing β with a fixed α

does not contribute to the shift of the energy flux curve.
5. As φ0 increases, the maximum value of the energy flux

decreases. The maximum deviation is 80% from the GR
curve. This case is illustrated in Fig. 7e.
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Fig. 5 Hyggs-type potential case. The energy flux F(r) of a disk around a static black hole with Ṁ = 2.21 × 1018g/s and M = 8.48M
 as
function of the normalized radial coordinate r/rs . b is zoom version a; d is zoom version c

5.2.2 Emission spectra

In this subsection we present the spectral energy distribution
of the disk radiation around the black holes for the general
relativistic case, and for the hybrid metric-Palatini gravity.

1. In Fig. 8a, b we vary α while fixing other parameters. The
luminosity maximum exceeds Schwarzschild predictions
at α = −1.5×10−5. Thus, the luminosity changes faster
than the energy flux when we vary the α parameter.

2. With a fixed α parameter and varying β parameter, we see
the same pattern as for the energy flux: with increasing
β, the luminosity decreases (see Fig. 8c, d).

3. Taking into account the connection (39) between the mass
of the scalar fieldmφ and the parameters α and β, the pic-
ture does not differ from the energy flux. As the modulus
α grows, the luminosity maximum increases. Changes in

the β parameter with a fixed α do not affect the position
of the curve. This case is illustrated in Fig. 9.

4. In Fig. 10a–c, we can see that the connection between
mass of the scalar field and the parameter of potential
m2

ϕ = −μ2 yields an increase in luminosity as the mod-
ulus of α increases. Varying the β parameter in this case
also has no effect.

5. As φ varies, the largest values of φ produce the greatest
deviation from the Schwarzschild curve. However, in this
case, the maximum deviation from GR is only 3% (see
Fig. 10d, e).

5.2.3 Temperature

Temperature is related to energy flux through Stefan-
Boltzmann equation. As in the case without potential, all
conclusions that are true for the energy flux are also true for
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Fig. 6 Hyggs-type potential case. The energy flux F(r) of a disk around a static black hole with Ṁ = 2.21 × 1018g/s and M = 8.48M
 as
function of the normalized radial coordinate r/rs . The connections (39) and (40) are taken into accaunt. b and c are zoom versions a

the effective temperature. All results for the temperarure in
the case with potential are represented in Figs. 11, 12, 13.

5.2.4 Efficiency

For all previously considered cases, we also evaluated the
effect of changing various parameters on the efficiency (see
Fig. 14).

1. As the modulus of α increases, the efficiency also
increases. At values of α < −3.5 × 10−5, the efficiency
exceeds the Schwarzschild predictions.

2. With an increase in β and a fixed α, a decrease in effi-
ciency is observed. Moreover, the Schfwarzschild value
cannot be achieved for any value of β in this case.

3. In this case, neither when changing α nor when chang-
ing β are there any changes in the efficiency value. It

remains constant and is 98% of the value predicted by
Schwarzschild solution.

4. In the case of m2
φ = −μ2, we obtain the same result as

in the previous one.
5. However, when considering large values of φ0 > 1 and

taking into account m2
φ = −μ2, we observe a significant

decrease in efficiency, which can be less than 40% of the
Schwarzschild prediction.

6 Discussion

In this paper, the properties of thin accretion disks around
static spherically symmetric black holes in hybrid metric-
Palatini gravity are investigated. As a foundation for our
research, we use the numerical black hole solution obtained
in the article [41]. To study accretion properties, the steady-
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Fig. 7 Hyggs-type potential case. The energy flux F(r) of a disk around a static black hole with Ṁ = 2.21 × 1018g/s and M = 8.48M
 as
function of the normalized radial coordinate r/rs . The connection m2

ϕ = −μ2 is taken into accaunt. b–d are zoom versions of a
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Fig. 8 Hyggs-type potential case. The emission spectrum νL(ν) of the accretion disk around a static black hole with Ṁ = 2.21 × 1018g/s and
M = 8.48M
 as function of frequency ν. b is zoom version of a; d is zoomversion of c

state Novikov–Thorne model is employed and the observa-
tional data of the system MAXI J1820+070 are used. In this
paper, we consider two types of solutions: first, we study
a solution without a potential V = 0, and then we take a

Higgs-type potential V = −μ2

2 φ2 + ζ
4 φ4. As characteristics

of the accretion disk, we numerically obtain the energy flux,
temperature distribution, the emission spectra and the effi-
ciency. The numerical black hole solution, which is derived
in the article [41], has a certain set of free parameters. This
set is determined, among other things, by the presence of
the potential. In the case without a potential V = 0, these
parameters include the initial value of the scalar field φ0 and
its derivative u0. In the case with a Hyggs-type potential there
are two additional parameters: α and β.

In the case V = 0, we find the following features of the
accretion disks in the HMPG. Results, which are close to
Schwarzschild ones, can be obtained when we take suffi-
ciently large values of φ0 for large u0 or small values of u0

for small φ0. However, the former result seems unrealistic,
since the scalar field should take its background value at a
large distance from the black hole. This value is significantly
less than unity [31,32,36]. Therefore, φ0 > 1 looks unnatu-
ral.

Another approach to selecting the initial parameters φ0

and u0 arises from post-Newtonian analysis. Far from the
black hole, where we take the values of the free parame-
ters, the gravitational field is weak, allowing us to consider
the post-Newtonian expansion. Within the post-Newtonian
analysis, the scalar field is considered as the sum of the
background value and its perturbation φ = φ0 + ϕ. The
background value φ0 is a constant quantity, unlike the per-
turbation ϕ. Thus, taking the derivative of the scalar field φ

with respect to the distance at infinity, we simply obtain the
value of u0. As a result, we derive the connection eq. (34)
between u0 and φ0. If such a connection is established and
the values of φ0 are taken within the limits set by the Cassini
experiment [61], then we obtain the curves for the energy
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Fig. 9 Hyggs-type potential case. The emission spectrum νL(ν) of the accretion disk around a static black hole with Ṁ = 2.21 × 1018g/s and
M = 8.48M
 as function of frequency ν. The connections (39) and (40) are taken into accaunt. b and c are zoom versions of a

flux, temperature distribution and the emission spectra that
practically do not deviate from the Schwarzschild results (see
Figs. 1d, 2d). In this case, u0 takes a small values (∼ 10−11),
which once again speaks in favor of choosing small values
of the initial parameters due to their naturalness.

In the case of a Higgs-type potential, the theory includes
four free parameters: u0, φ0, α and β. Parameters α and β

are woven into the structure of the potential itself. At first,
we consider all parameters as independent quantities. A large
modulus α and sufficiently large φ0 > 1 lead to a situation,
where the maximum energy flux and the emission spectrum
can exceeds the Schwarzschild prediction. This situation con-
tradicts the following idea: large values of φ0 are not consis-
tent with data obtained from other observations [31,32,36].
This fact leads us to conclusion that this combination is
unrealistic. Further, with an increase in the β parameter, a
decrease in the energy flux maximum is observed, although

not significant. No β parameter yields a curve that exceeds
the Schwarzschild prediction.

Then, we once again consider a set of parameters based
on the limitations obtained from experiments in the solar
system. We also use the relationship between the parameters
resulting from the post-Newtonian expansion. In this case,
all parameters turn out to be small. With an increase in the
modulus α, a decrease in the maximum of energy flux is
observed.

The last case is based on an analogy with particle physics.
We assume that the mass of the scalar field m2

φ = −μ2. The
relationship (40) between φ0, u0 and the mass of the scalar
fieldmφ is preserved. In this case, it is found that even at large
values of α, the energy flux, temperature distribution and the
emission spectra would still be less than Schwarzschild pre-
dictions. However, if the parameter φ0 is increased, then at
sufficiently large values of φ0, the energy flux, temperature
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Fig. 10 Hyggs-type potential case. The emission spectrum νL(ν) of the accretion disk around a static black hole with Ṁ = 2.21 × 1018g/s and
M = 8.48M
 as function of frequency ν. The connection m2

ϕ = −μ2 is taken into accaunt. b and c are zoom versions of a; e is zoom version of d
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Fig. 11 Hyggs-type potential case. The temperature distribution T (r) of a disk around a static black hole with Ṁ = 2.21 × 1018g/s and
M = 8.48M
 as function of the normalized radial coordinate r/rs . b is zoom version of a, d is zoom version of c

distribution and the emission spectra begin to decrease signif-
icantly, and the difference can already exceed 80% at φ0 = 4.

Another important characteristic of the accretion process
is the efficiency. This quantity demonstrates the ability of the
central body to convert rest mass into outgoing radiation. In
the case without potential, the efficiency values closest to the
Schwarzschild prediction can be achieved when both u0 and
φ0 are taken to be either large or small. The most realistic
result is obtained by taking into account the relationship (34)
between φ0 and u0, and φ0 is taken within the constraints
imposed from the solar system. When we consider a model
with a Hyggs-type potential, the results for efficiency are the
same as for other accretion characteristics. The only case
where the efficiency exceeds the Schwarzschild prediction is
when α, φ0 and u0 are all large. An interesting situation is
observed when we take small values of φ0 and u0. Regardless
of the type of connection between these parameters, the effi-

ciency becomes constant. At the same time, for any values of
the parameters α and β, it does not reach the Schwarzschild
prediction if φ0 is taken to be small. In the case of large
values of φ0 > 1 and the presence of a relationship (40)
between the parameters, there is a significant deviation from
Schwarzschild predictions.

In this paper, we investigate the case of stellar-mass
black holes. This is done because we select system MAXI
J1820+070 with the smallest Kerr parameter (a = 0.14),
since we consider a static spherically symmetric solution in
HMPG. However, it is worth noting that our conclusions are
also true for supermassive black holes. The general character
of all curves is preserved, however, in the case of supermas-
sive black holes, the energy flux has different order of max-
imum values. This quantity is less, and the difference can
reach about 1015 erg/(s ·cm2) and even more, depending on
the masses of the black holes. However, the gap between the
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Fig. 12 Hyggs-type potential case. The temperature distribution T (r) of a disk around a static black hole with Ṁ = 2.21 × 1018g/s and
M = 8.48M
 as function of the normalized radial coordinate r/rs . The connections (39) and (40) are taken into accaunt. b and c are zoom versions
of a

predictions of HMPG and GR remains the same, regardless
of the data of the binary system. Similar changes are observed
for temperature distribution. In the case of luminosity, we find
that the maximum values are observed at lower frequencies
in the case of supermassive black holes. We can also see that
the maximum itself is several orders of magnitude smaller
than in the case of stellar-mass black holes. In addition, the
efficiency of accretion does not depend on the mass of the
black hole.

7 Conclusions

In this work, we have studied thin accretion disks around
black holes in hybrid metric-Palatini gravity. In this investi-
gation, we relied on a numerical static spherically symmetric
solution [41]. As a result, we have obtained the energy flux,
temperature distribution, emission spectrum and efficiency
for such black holes. We have shown that, in HMPG, accre-
tion disks around static spherically symmetric black holes

are colder and less luminous than in GR. This distinguishes
HMPG from metric f(R)-theory, where thin accretion disks
around such black holes are hotter and more luminous [54].

In this paper, we have considered various combinations of
the free parameters of the hybrid metric-Palatini gravity in
order to determine its viability. One case shows the excess
in the flux, temperature and luminosity relative to the values
predicted by the Schwarzschild solution: when we consider
a model with a Higgs-type potential and with large values of
parameters α, φ0 and u0. However, such a set of parameters
is not consistent with the limitations imposed by other exper-
iments on the background value of the scalar field (the value
away from the black hole) [31,32,36,37]. Thus we assume
that the set of large values of φ0, u0 and α is unrealistic. All
other sets of parameters demonstrate that the Schwarzschild
values are not reached.

The hybrid metric-Palatini gravity has another important
consequence. Within the restrictions imposed on the parame-
ters of the theory by other methods [31,32,36,37], this model
shows its full viability, and the results for the energy flux, tem-
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Fig. 13 Hyggs-type potential case. The temperature distribution T (r) of a disk around a static black hole with Ṁ = 2.21 × 1018g/s and
M = 8.48M
 as function of the normalized radial coordinate r/rs . The connection m2

ϕ = −μ2 is taken into accaunt. b–d are zoom versions of a
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Fig. 14 Hyggs-type potential case. The efficiency for thin accretion
disk around static black hole a for different values of α b for differ-
ent values of β; c for different values of α. The connections (39) and

(40) are taken into accaunt; d for different values of α. The connec-
tion m2

ϕ = −μ2 is taken into accaunt; e for different values of φ0. The

connection m2
ϕ = −μ2 is taken into accaunt

perature, and emission spectrum are close to GR. Another
advantage of HMPG is that realistic accretion regimes are
implemented in a wide range of parameters, without their
fine tuning. In addition, the existence of realistic accretion
regimes indicates the adequacy of the numerical black hole
solution obtained in the article [41]. In this work, the authors
demonstrate the possibility of the existence of spherically
symmetric black holes in a wide range of parameter values
(0.5 < φ0 < 8, 4 × 10−9 < u0 < 5.12 × 10−7). How-
ever, this range is not consistent with limitations from other
observations (φ0 < 4 × 10−5). We show that such a solution
is also possible in the case of parameter values consistent
with observations obtained from the solar system and binary
pulsars [31,32,36,37]. Thus, additional confirmation of the
viability of this solution is the presence of realistic accretion
regimes with such a natural set of parameters.

Accretion disks serve as excellent platforms for testing
theories of gravity, as well as for constraining them. One
of the most popular methods of testing such theories is the
continuum-fitting method [62]. This method relies on the fact
that the thermal spectrum of the disk depends on the back-
ground metric and on the movement of massive particles
within the accretion disk, as well as on the path of photons
from the emission point in the disk to the point of detec-
tion. Importantly, these dependencies do not involve atomic
physics [63]. That is, all differences are determined by the
underlying metric. To investigate whether continuum obser-
vations can constrain models of gravity, it is necessary to the-

oretically estimate the luminosity and compare it with obser-
vations using the minimum chi-square (χ2) approach [51].
Additionally, another significant test of gravitational theories
using accretion disk systems involves examining predictions
related to iron line broadening [64]. The fluorescent line of
iron, at an energy of 6.4 keV, allows to investigate the space-
time metric near accreting compact objects. The theory of
gravity influences the expected shape of this line, making
it an excellent test of the theory, as it allows the compari-
son between the predictions and observed data. This task is
especially relevant given the latest data obtained from X-ray
sources such as NuSTAR, RXTE, Suzaku, Swift, and XMM-
Newton. Moreover, it is highly probable that the resulting
theoretical predictions can be tested using next-generation
detectors like ATHENA.

It is important to emphasize that all the conclusions drawn
in this work apply to both stellar-mass and supermassive
black holes. The only differences observed are in the values
of the maximum energy flux, luminosity, and temperature,
which are lower for supermassive black holes. Additionally,
the emission spectrum curves shift to the left with increas-
ing mass, indicating that the maximum luminosity occurs at
lower frequencies. Furthermore, the mass of the black hole
does not in any way affect the efficiency of accretion.

In this paper, we consider the case of a static spherically
symmetric black hole. This is a crucial first step in research-
ing accretion in hybrid metric-Palatini gravity. Despite the
fact that the probability that this type of black holes is realized
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in nature is extremely small, it’s vital to understand the poten-
tial existence of adequate accretion regimes for this type. The
next step of this research will be to consider accretion in case
of Kerr-type black holes. It will allow to compare predictions
of HMPG with observations. This study will shed light on
the realism of the theory and serve as the basis for imposing
restrictions on free parameters of the hybrid metric-Palatini
gravity, including through the study of accretion disks around
rotating black holes. This is a subject for future research.
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41. B. Dǎnilǎ, T. Harko, F.S. Lobo, M.K. Mak, Phys. Rev. D 99(6),
064028 (2019). https://doi.org/10.1103/physrevd.99.064028

42. M.K. Zangeneh, F.S.N. Lobo, Eur. Phys. J. C 81(4) (2021). https://
doi.org/10.1140/epjc/s10052-021-09059-y

43. K.A. Bronnikov, S.V. Bolokhov, M.V. Skvortsova, Gravit. Cosmol.
26(3), 212 (2020). https://doi.org/10.1134/s0202289320030044

44. J.L. Rosa, S. Carloni, J.P.S. Lemos, F.S.N. Lobo, Phys. Rev. D
95(12) (2017). https://doi.org/10.1103/physrevd.95.124035

45. J.a.L. Rosa, J.P.S. Lemos, F.S.N. Lobo, Phys. Rev. D 101, 044055
(2020). https://doi.org/10.1103/PhysRevD.101.044055

46. J.L. Rosa, F.S.N. Lobo, G.J. Olmo, Phys. Rev. D 104(12) (2021).
https://doi.org/10.1103/physrevd.104.124030

47. N.I. Shakura, R.A. Sunyaev, Astron. Astrophys. 24, 337 (1973).
https://ui.adsabs.harvard.edu/abs/1973A&A....24..337S

48. D.N. Page, K.S. Thorne, Astrophys. J. 191, 499 (1974). https://
doi.org/10.1086/152990. https://ui.adsabs.harvard.edu/abs/
1974ApJ...191.499P

49. I.D. Novikov, K.S. Thorne, in Black Holes (Les Astres Occlus)
(1973), pp. 343–450. https://ui.adsabs.harvard.edu/abs/1973blho.
conf..343N

50. T. Harko, Z. Kovács, F.S.N. Lobo, Class. Quantum Gravity 28(16),
165001 (2011). https://doi.org/10.1088/0264-9381/28/16/165001

51. M. Heydari-Fard, H.R. Sepangi, Phys. Lett. B 816, 136276 (2021).
https://doi.org/10.1016/j.physletb.2021.136276

52. T. Harko, Z. Kovács, F.S.N. Lobo, Class. Quantum Gravity 27(10),
105010 (2010). https://doi.org/10.1088/0264-9381/27/10/105010

53. C.S.J. Pun, Z. Ková cs, T. Harko, Phys. Rev. D 78(2) (2008). https://
doi.org/10.1103/physrevd.78.024043

54. D. Pé rez, G.E. Romero, S.E.P. Bergliaffa, Astronom. Astrophysi.
551, A4 (2013). https://doi.org/10.1051/0004-6361/201220378

55. D. Pé rez, F.G.L. Armengol, G.E. Romero, Phys. Rev. D 95(10)
(2017). https://doi.org/10.1103/physrevd.95.104047

56. K.S. Thorne, Astrophys. J. 191, 507 (1974). https://doi.org/10.
1086/152991

57. D.W. Tian, General Relat. Gravit. 48(8) (2016). https://doi.org/10.
1007/s10714-016-2106-6

58. D.F. Torres, Nucl. Phys. B 626(1–2), 377 (2002). https://doi.org/
10.1016/s0550-3213(02)00038-x

59. J.P. Luminet, Astron. Astrophys. 75, 228 (1979)
60. X. Zhao, L. Gou, Y. Dong, Y. Tuo, Z. Liao, Y. Li, N. Jia, Y. Feng, J.F.

Steiner, Astrophys J 916(2), 108 (2021). https://doi.org/10.3847/
1538-4357/ac07a9

61. B. Bertotti, L. Iess, P. Tortora, Nature 425, 374 (2003). https://doi.
org/10.1038/nature01997

62. S.N. Zhang, W. Cui, W. Chen, Astrophys. J. 482(2), L155–L158
(1997). https://doi.org/10.1086/310705

63. C. Bambi, Arab. J. Math. 11(1), 81–90 (2021). https://doi.org/10.
1007/s40065-021-00336-y

64. Y. Lu, D.F. Torres, Int. J. Mod. Phys. D 12(01), 63–77 (2003).
https://doi.org/10.1142/s0218271803002718

123

https://doi.org/10.1007/s10509-018-3458-z
https://doi.org/10.1007/s10509-018-3458-z
https://doi.org/10.1103/physrevd.95.044031
https://doi.org/10.1103/physrevd.99.064028
https://doi.org/10.1140/epjc/s10052-021-09059-y
https://doi.org/10.1140/epjc/s10052-021-09059-y
https://doi.org/10.1134/s0202289320030044
https://doi.org/10.1103/physrevd.95.124035
https://doi.org/10.1103/PhysRevD.101.044055
https://doi.org/10.1103/physrevd.104.124030
https://ui.adsabs.harvard.edu/abs/1973A&A....24..337S
https://doi.org/10.1086/152990
https://doi.org/10.1086/152990
https://ui.adsabs.harvard.edu/abs/1974ApJ...191.499P
https://ui.adsabs.harvard.edu/abs/1974ApJ...191.499P
https://ui.adsabs.harvard.edu/abs/1973blho.conf..343N
https://ui.adsabs.harvard.edu/abs/1973blho.conf..343N
https://doi.org/10.1088/0264-9381/28/16/165001
https://doi.org/10.1016/j.physletb.2021.136276
https://doi.org/10.1088/0264-9381/27/10/105010
https://doi.org/10.1103/physrevd.78.024043
https://doi.org/10.1103/physrevd.78.024043
https://doi.org/10.1051/0004-6361/201220378
https://doi.org/10.1103/physrevd.95.104047
https://doi.org/10.1086/152991
https://doi.org/10.1086/152991
https://doi.org/10.1007/s10714-016-2106-6
https://doi.org/10.1007/s10714-016-2106-6
https://doi.org/10.1016/s0550-3213(02)00038-x
https://doi.org/10.1016/s0550-3213(02)00038-x
https://doi.org/10.3847/1538-4357/ac07a9
https://doi.org/10.3847/1538-4357/ac07a9
https://doi.org/10.1038/nature01997
https://doi.org/10.1038/nature01997
https://doi.org/10.1086/310705
https://doi.org/10.1007/s40065-021-00336-y
https://doi.org/10.1007/s40065-021-00336-y
https://doi.org/10.1142/s0218271803002718

	Thin accretion disk signatures in hybrid metric-Palatini gravity
	Abstract 
	1 Introduction
	2 Hybrid metric-Palatini gravity
	3 Thin accretion disk model
	4 Numerical results
	5 Properties of thin accretion discs
	5.1 Case V=0
	5.1.1 Energy flux
	5.1.2 Emission spectra
	5.1.3 Temperature
	5.1.4 Efficiency

	5.2 Case V=-µ22φ2+ζ4φ4
	5.2.1 Energy flux
	5.2.2 Emission spectra
	5.2.3 Temperature
	5.2.4 Efficiency


	6 Discussion
	7 Conclusions
	Acknowledgements
	References




