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Abstract We obtain the reflected entropy for bipartite
mixed state configurations of two adjacent and disjoint inter-
vals at a finite temperature in finite-sized non-gravitating
reservoirs described by CFT2s each coupled to two quan-
tum dots at their boundaries in the large central charge limit
through a replica technique. These field theory results are
substantiated through a holographic computation involving
the entanglement wedge cross section in the dual bulk BTZ
black hole geometry truncated by two Planck branes. The
two Planck branes are the holographic duals of the quan-
tum dots described by AdS2 slices with JT black holes.
Our result reproduce the holographic duality between the
reflected entropy and the bulk entanglement wedge cross
section in the context of the AdS3/CFT2 correspondence.
Subsequently we analyze the behaviour of the holographic
Markov gap between the reflected entropy and the mutual
information for different scenarios involving the subsystem
sizes and time.
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1 Introduction

Understanding the black hole information problem [1,2] has
led to various key insights into the issue of a quantum the-
ory of gravity. The intriguing aspect of this problem involves
the fine-grained entanglement entropy of the Hawking radi-
ation from an evaporating black hole dominating the coarse-
grained thermodynamic entropy at late times which leads to
a violation of unitarity. For a unitary evolution the entangle-
ment entropy of the Hawking radiation is expected to follow
the Page curve [3]. Recently, this puzzle has been investi-
gated for toy models of quantum field theories coupled to
semiclassical gravity, and a possible resolution to this issue
was proposed through the “island“ ( quantum extremal sur-
face) formula for the fine-grained generalized entanglement
entropy of the Hawking radiation. Specifically the authors
in [4,5] proposed the quantum extremal surface (QES) for-
mula motivated by the quantum corrected Ryu-Takayanagi
(RT) prescription described in [6–13]. The “island” formula
emphasizes that the fine-grained generalized entanglement
entropy of a subregion in quantum field theories coupled
to semiclassical gravity receives contribution from regions

termed entanglement island at late times.1 It was shown in
[11] that the entanglement island appears in the bulk entan-
glement wedge for the subregion in the QFT at late times
in the context of the AdS/CFT scenario. The corresponding
generalized entanglement entropy of a subregion R in the
radiation flux of an evaporating black hole is given by

S[R] = min

{
ext I s(R)

[
Area[∂ I s(R)]

4GN
+ Sef f [R ∪ I s(R)]

]}
.

(1)

In the above equation, I s(R) is the island region in the
black hole geometry corresponding to the subregion R. 2

The proof of the above “island” formula was provided
in [125,126] through a gravitational path integral in the
context of two dimensional Jackiw–Teitelboim (JT) grav-
ity [127,128] involving saddle points described by replica
wormhole configurations.

Earlier, the “island” formalism was explored in toy mod-
els of a semi-infinite non-gravitating radiation reservoir
described by a CFT2 matter field coupled to a (0+1) dimen-
sional holographic quantum mechanical system (quantum
dot) at the boundary [11,13]. The holographic dual of the
quantum dot is JT gravity on a Planck brane with (1+1)
dimensional conformal matter fields.3 The non-gravitating
reservoir and the Planck brane are coupled utilizing the trans-
parent boundary conditions at the junction[11,13]. At a finite
temperature, two such copies of semi-infinite CFT2 reser-
voirs coupled to quantum mechanical systems at their bound-
aries constitute a thermo-field double (TFD) state. In this
construction, the Page curve for the entanglement entropy of
the radiation reservoirs was reproduced utilizing the “island”
prescription.

In a generalization of the above construction, the authors
in [131] considered a finite-sized non-gravitating reservoir
described by CFT2 matter field coupled to two quantum
dots at their boundaries. At a finite temperature this model
involves two such copies of finite sized non-gravitating radi-
ation reservoirs characterized by CFT2s each with quan-
tum dots located at their boundaries. The bulk dual geom-
etry corresponding to these quantum dots are described by
two Planck branes truncating the AdS3 space time which are
AdS2 slices involving eternal JT black holes. Transparent
boundary conditions were implemented at the junctions of
the Planck branes with the non gravitating radiation reser-

1 Recently, there has been a rich development in this directions which
can be found in [14–122] and the references therein.
2 Higher dimensional generalization of the island construction for the
entanglement entropy has been studied in some recent papers [17,33,
39,40,123,124].
3 An example of a quantum mechanical system (quantum dot) dual to
the JT gravity is the Sachdev-Ye-Kitaev model in the infrared limit [129,
130].
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voirs. Subsequently, the authors computed the generalized
entanglement entropy of a finite segment in both the radia-
tion reservoirs which involves the communication of entan-
glement between the two eternal JT black holes on the two
Planck branes.

In a different context, it is known from quantum informa-
tion theory that the entanglement entropy serves as a valid
entanglement measure for pure states. However the entan-
glement entropy is not suitable to characterize mixed state
entanglement as it receives contributions from irrelevant clas-
sical and quantum correlations. This requires the introduc-
tion of other measures in quantum information theory to
characterize the entanglement for mixed states. In this con-
nection various entanglement and correlation measures were
proposed to describe mixed state entanglement such as the
reflected entropy, entanglement negativity, entanglement of
purification amongst others in the context of quantum infor-
mation theory [132–137]. Some of these measures could be
explicitly computed for CFT2 through field theory replica
techniques in [136,138–142] and were substantiated through
bulk holographic computations described in [136,143–157]
as well. In [158], the holographic entanglement negativity
for various bipartite mixed states of two adjacent and disjoint
intervals in the communicating black holes model described
in [131] were computed through the “island” prescription.
Subsequently, analogue of the Page curves for the entan-
glement negativity were reproduced for different scenarios
involving the subsystem sizes and time.

For the past few years the mixed state correlation measure
termed the reflected entropy SR has gained significant atten-
tion due to its holographic duality with the bulk entangle-
ment wedge cross-section (EWCS) [136,147].4 The reflected
entropy in various models of evaporating black holes was
also investigated in the context of the island construction in
[30,31,52,59] and analogue of the corresponding Page curve
were reproduced. In this article, we compute the reflected
entropy for bipartite mixed states of two adjacent and disjoint
subsystems in the model of two JT black holes communi-
cating through finite-sized non-gravitating reservoirs [131]
described earlier. Subsequently, we also obtain the holo-
graphic mutual information I for the mixed states under con-
sideration and compare their profiles with the corresponding
profiles for the holographic reflected entropy for these mixed
states for various subsystem sizes and the time. The differ-
ence between these two measures characterized an important
feature of multipartite entanglement termed the holographic
Markov gap [166–169] in this scenario.

This article is organized as follows. In Sect. 2, we briefly
review some earlier works related to our article. In Sect. 2.1
we review the model discussed in [131]. Subsequently, we
provide a short review of the reflected entropy for bipartite

4 For related works see also [157,159–165].

mixed states in Sect. 2.2 in the context of the AdS/CFT
scenario. Finally in the Sect. 2.3, we describe the issue of
Markov gap in quantum information theory. Next, in Sect. 3, a
detailed computation of the reflected entropy is described for
bipartite mixed states of two adjacent and disjoint subsystems
in finite-sized reservoirs each coupled to two quantum dots.
Subsequently, we substantiate these field theory results from
the explicit holographic computations of the bulk EWCS in
the dual eternal BTZ black hole geometry. In Sect. 4, we
discuss the holographic Markov gap for different scenarios
of the adjacent and disjoint subsystems by comparing the
corresponding profiles of the reflected entropy and the mutual
information. Finally in Sect. 5, we discuss and summarize our
results with some future open issues.

2 Review of earlier results

In this section, we begin with a brief review of the configura-
tion of two JT black holes communicating through finite-
sized non-gravitating reservoirs each coupled to quantum
dots at their boundaries as described in [131]. The bulk dual
of this configuration is described by (2+1)-dimensional eter-
nal BTZ black hole geometry truncated by two Planck branes
with AdS2 geometries. The two dimensional communicat-
ing eternal JT black holes in this case are located on these
Planck branes and the entire system of the black holes and
the reservoirs is described by a matterCFT2 with transparent
boundary conditions at the junctions [11,13]. Subsequently,
we will also review the field theory replica technique for the
computation of the reflected entropy and the corresponding
bulk entanglement wedge cross section in the AdS3/CFT2

scenario. Finally, we will discuss the emergence of the holo-
graphic Markov gap between the reflected entropy and the
corresponding mutual information.

2.1 Communicating black holes

In this subsection, we describe the model of [131] and con-
sider two eternal JT black holes at the same temperature. For
this case, the bulk computation of the generalized entangle-
ment entropy for a subsystem A described by the union of two
identical intervals in the two reservoirs has been described
in [158]. The Penrose diagram of the eternal JT black holes5

located on the Planck branes is described in Fig. 1 which are
coupled to each other through the shared reservoirs.

For this configuration, the metric describing the exterior
regions of the two eternal JT black holes may be expressed
as

ds2
1 = 4π2

β2

−dt2 + dξ2

sinh2 2πξ
β

, ξ ∈ (−∞,−ε] , (2)

5 The two eternal JT black holes together with the two Planck branes
are labeled as a and b.
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(a) (b)

Fig. 1 Schematics depict the maximal extension of the Penrose dia-
gram for two AdS2 eternal black holes. The union of segments consid-
ered in the radiation reservoirs (shaded regions) describes a subsystem

with the endpoints labeled as p1, p2, p3, p4. The eternal black holes
located on the JT branes are denoted as a and b. (Figure modified from
[131])

ds2
2 = 4π2

β2

−dt2 + dξ2

sinh2 2π
β

(ξ − L)
, ξ ∈ [L + ε,+∞) . (3)

The corresponding radiation reservoirs are defined by the flat
metric

ds2
R = −dt2 + dξ2

ε2 , ξ ∈ [−ε, L + ε] , (4)

where the reservoir is glued continuously to the surfaces ξ =
−ε and L + ε. The dilaton profiles for the two eternal JT
black holes on the Planck branes are then given as follows

φa(ξ) = �0 + 2πφr

β
coth

2πξ

β
,

φb(ξ) = �0 + 2πφr

β
coth

2π

β
(ξ − L) . (5)

Note that here the three dimensional bulk geometry consists
of an eternal BTZ black hole truncated by the two Planck
branes which is described by the following metric [11,51,
131]

ds2 = −

(
1 − z2

z2
h

)

z2 dt2 + 1

z2

(
1 − z2

z2
h

)dz2 + 1

z2 dx
2, (6)

where the horizon at zh is related to the inverse temperature
as β = 2π zh .

2.2 Reflected entropy

In this subsection we provide a brief review of the reflected
entropy for the case of two disjoint subsystems as described in
[136]. The authors in this work first proposed the mixed state
correlation measure of the reflected entropy which involved
a canonical purification of a bipartite mixed state. In this
regards, consider a bipartite mixed state ρAB of disjoint sub-
systems A and B. The canonically purified state |√ρAB〉 in
a doubled Hilbert space HA ⊗ HB ⊗ HA
 ⊗ HB
 may be

constructed to purify6 the given mixed state ρAB where A


and B
 are the CPT conjugate copies of the subsystems A
and B respectively. The reflected entropy SR(A : B) for the
bipartite subsystems may be defined as [136]

SR(A : B) = SvN (ρAA
 )√ρAB (7)

where SvN denotes the von Neumann entropy. In Eq. (7), the
reduced density matrix ρAA
 is given by

ρAA
 = TrHB⊗HB
 |√ρAB〉〈√ρAB |. (8)

The authors of [136] developed a replica technique to com-
pute the reflected entropy for bipartite mixed states inCFT2s.
For the bipartite state |ρm/2

AB 〉 ≡ |ψm〉, the replica man-
ifold involves m-replication of the original manifold with
m ∈ 2Z+. The corresponding reduced density matrix after
tracing over the subsystems BB∗ is then described as

ρ
(m)
AA∗ = TrHB⊗HB∗ |ψm〉〈ψm |. (9)

Using this reduced density matrix, the Rényi reflected
entropy may now be defined as Sn(ρ

(m)
AA∗)ψm which involves

an nm-sheeted replica manifold with n ∈ 2Z. The reflected
entropy may then be obtained by implementing the replica
limits n → 1 and m → 1 as7

SR(A : B) = lim
n,m→1

Sn(AA
∗)ψm . (10)

We now consider the case of the mixed state configuration of
two disjoint subsystemsA ≡ [z1, z2] and B ≡ [z3, z4] in a
CFT2. As described in [136] the reflected entropy involving

6 For more details about the construction of the canonically purified
state |√ρAB〉 see also [136,170].
7 The two replica limits n → 1 and m → 1 do not commute with
each other as discussed in [52,136,171]. In this work, we first consider
n → 1 and subsequently m → 1 limit to compute the reflected entropy
as suggested in [52,136,171].
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four point twist field correlators may be obtained through the
replica technique above as follows

SR(A : B) = lim
n→1

lim
m→1

Sn
(
AA∗)

ψm

= lim
n→1

lim
m→1

1

1 − n
log

〈σgA (z1)σg−1
A

(z2)σgB (z3)σg−1
B

(z4)〉CFT
⊗

mn(
〈σgm (z1)σg−1

m
(z2)σgm (z3)σg−1

m
(z4)〉CFT

⊗
m

)n .

(11)

Here the twist operators σgA and σgB are located at the end-
points of the corresponding subsystems A and B. The con-
formal dimensions for these twist operators are given by

hg−1
A

= hgB = n c

24

(
m − 1

m

)
, hgBg

−1
A

= 2 c

24

(
n − 1

n

)
,

hgm = c

24

(
m − 1

m

)
. (12)

Following this, the authors of [31] developed a generalized
version for the reflected entropy of a bipartite system AB in a
holographic semi-infinite CFT2 coupled to a semi-classical
gravity which is given as follows

SR
gen(A : B) = SR

eff(A ∪ IsR(A) : B ∪ IsR(B)) + Area[Q′]
2G(2)

N

,

(13)

where Q′ = ∂IsR(A)∩∂IsR(B). In the above expression, the
first term can be computed utilizing the formula described
in Eq. (10) and the second term is given by the value of
the dilaton field at the island point Q′ on the JT brane. In
this context, since the CFT2 located on the brane and the
flat non-gravitating region is considered to be holographic,
the term S(eff)

R can be obtained from the doubly holographic
perspective by computing the area of the dual EWCS in the
bulk geometry as

SR
gen(A : B) = 2Area(EWCS)

4GN
+ Area[Q′]

2G(2)
N

= 2EW (A : B) + Area[Q′]
2G(2)

N

, (14)

where we have defined EW (A : B) = 2Area(EWCS)
4GN

in the
above expression. In the following subsection, we describe
the holographic Markov gap [166] as the difference between
the reflected entropy and the mutual information in the frame-
work of the AdS3/CFT2 correspondence.

2.3 Markov gap

In quantum information theory, the Markov gap may be
described through the Markov recovery process which is

defined as a recovery of the quantum state ρABC from the
bipartite mixed state ρAB . Now if we define a quantum chan-
nel RB→BC whose action on the bipartite mixed state ρAB

produces tripartite state ρ̃ABC as

ρ̃ABC = RB→BC (ρAB) , (15)

where the quantum channel R acts on the subsystem B
only. If this tripartite state (ρ̃ABC ) is equal to the quan-
tum state ρABC then the Markov recovery process is per-
fect, and the corresponding state is said to be a quantum
Markov chain with the ordering A → B → C . As dis-
cussed in [172], the conditional mutual information vanishes
for the perfect Markov recovery process. In this context, the
authors of [173] further studied the conditional mutual infor-
mation and proposed a bound in terms of the quantum Fidelity
F (ρABC ,RB→BC (ρAB)) as

I (A : C | B) ≥ − max
RB→BC

log F (ρABC ,RB→BC (ρAB)) .

(16)

Here the quantum Fidelity becomes 1 when the quantum
recovery process is perfect and it becomes zero when the
corresponding density matrices have support on the orthogo-
nal subspaces. The authors of [173] also analyzed the bound
in Eq. (16) for the Markov recovery process of the reduced
density matrix ρABB∗ in the context of canonical purification
of the subsystem B. This led to the following constraint on
the conditional mutual information

I (A : B | B∗)
≥ − max

RB→BB∗
log F (ρABB∗ ,RB→BB∗ (ρAB)) , (17)

SR(A : B) − I (A : B)

≥ − max
RB→BB∗

log F (ρABB∗ ,RB→BB∗ (ρAB)) , (18)

where in the last inequality, the conditional mutual informa-
tion is expressed as the difference between reflected entropy
and the mutual information. This difference is called as
Markov gap as described in [166]. Subsequently, the authors
also demonstrate that the bound in Eq. (17) may be expressed
geometrically in the framework of AdS3/CFT2 as

SR(A : B) − I (A : B) ≥ log(2)AdS

2GN

× (# of boundaries of EWCS ) + O
(

1

GN

)
, (19)

where # represents number of non-trivial boundaries of the
EWCS in the bulk of AdS3 geometry. Note that the endpoints
of the EWCS located at spatial infinity does not contribute
in the Eq. (19).
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3 Reflected entropy and EWCS in two communicating
black holes

In this section we compute the reflected entropy for various
bipartite mixed states described by two adjacent and disjoint
subsystems in the radiation reservoirs for the two communi-
cating black holes configuration [131] reviewed in Sect. 2.1.
In this context we first consider the adjacent subsystems in
the radiation reservoirs and obtain the reflected entropy for
different channels of the corresponding twist correlator in the
large central charge limit. We then follow a similar analysis
for the computation of the reflected entropy for two disjoint
subsystems. Finally, we substantiate these field theory results
from a holographic computation of the EWCS in the dual
bulk geometry for these cases. Note that in the configura-
tions (6),(7), (8) and (9) for two adjacent and disjoint sub-
systems, we receive an additional contribution from the dila-
ton term Eq. (5) in the generalized reflected entropy formula
described in the Eqs. (13) and (14). However in the following
section, this additional term becomes zero for other contri-
butions since there is no QES point located on the JT brane.

3.1 Reflected entropy

3.1.1 Adjacent subsystems

We start our discussion with the computation of the reflected
entropy for two adjacent subsystems A ≡ [p1, p2]∪[p5, p6]
and B ≡ [p2, p3] ∪ [p4, p5] located in the radiation reser-
voirs as depicted in the figures below. To this end we uti-
lize the replica technique developed in [136] to obtain the
reflected entropy for the above bipartite mixed state for differ-
ent subsystem sizes. It is observed that the reflected entropy
receives contributions from various dominant channels of the
corresponding twist correlators in the large central charge
limit. In what follows we compute these contributions to the
reflected entropy for different configurations described by
the relative subsystem sizes for the communicating black
hole setup as shown in Fig. 1.

Configuration-1

We begin with the computation of the reflected entropy for the
contribution as described in Fig. 2a where the twist operators
are located at the endpoints of the two adjacent subsystems
and the Planck branes where the entire black hole/reservoir
setup is described by the same CFT2. The Rényi reflected
entropy for this configuration may be obtained from the fol-
lowing twist correlator

SR
n,m(A : B) = 2

1

1 − n

log
〈σg−1

B
(a1)σgA (p1)σgBg

−1
A

(p2)σg−1
B

(p3)σgB (b1)〉CFT
⊗

mn

〈σg−1
m

(a1)σgm (p1)σg−1
m

(p3)σgm (b1)〉nCFT
⊗

m

,

(20)

where the points a1 and b1 are located on the a and b-branes
respectively. In the above equation, the factor two correspond
to the contribution of the reflected entropy from the TFD copy
of the radiation reservoir. Note that the correlator in Eq. (20)
factorizes into the respective contractions in the large central
charge limit as follows [31]

SR
n,m(A : B) = 2

1

1 − n

log
〈σg−1

B
(a1)σgA (p1)σgB g

−1
A

(p2)〉CFT
⊗

mn 〈σg−1
B

(p3)σgB (b1)〉CFT
⊗

mn(
〈σg−1

m
(a1)σgm (p1)〉CFT

⊗
m 〈σg−1

m
(p3)σgm (b1)〉CFT

⊗
m

)n .

(21)

In this case the dominant contribution to the Rényi reflected
entropy arises from the correlator

SR
n,m(A : B) = 2

1

1 − n

log
〈σg−1

B
(a1)σgA (p1)σgBg

−1
A

(p2)〉CFT
⊗

mn(
〈σg−1

m
(a1)σgm (p1)〉CFT

⊗
m

)n
(22)

which may be obtained following the analysis described in
[31]. In the replica limit (n → 1 and m → 1) the reflected
entropy is then given from the above equation as follows

SR
eff(A : B) = 2c

3

log

[
4

sinh π(p2−p1)
β

sinh π(a1+p2)
β

sinh π(a1+p1)
β

sinh π(ε)
β

]
, (23)

where ε is the UV cutoff in the CFT2.

Configuration-2

In this case, the computation of the reflected entropy for the
two adjacent subsystems is similar to configuration-1, how-
ever, the factorization of the twist correlator in Eq. (20) in
the large central charge limit is different due to the change
in the size of the subsystems A and B as shown in Fig. 2b
which alters the location of the relevant twist operators. In
this case the Rényi reflected entropy is given by the following
expression

SR
n,m(A : B) = 2

1

1 − n

log

〈σg−1
B

(a1)σgA (p1)〉CFT
⊗

mn 〈σgBg−1
A

(p2)σg−1
B

(p3)

σgB (b1)〉CFT
⊗

mn(
〈σg−1

m
(a1)σgm (p1)〉CFT

⊗
m 〈σg−1

m
(p3)σgm (b1)〉CFT

⊗
m

)n ,

(24)

where the factor two in the above expression arises from the
reservoir copy of the double TFD states. Finally we obtain
the dominant contribution to the Rényi reflected entropy in
this configuration as follows
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SR
n,m(A : B) = 2

1

1 − n

log
〈σgBg−1

A
(p2)σg−1

B
(p3)σgB (b1)〉CFT

⊗
mn(

〈σg−1
m

(p3)σgm (b1)〉CFT
⊗

m

)n , (25)

which involves the points p2, p3 and b1 after the factorization
in the large central charge limit. The final expression for the
reflected entropy in the replica limit following [31,136] is
then given as

SR
eff(A : B) = 2c

3
log

[
4

sinh π(p3−p2)
β

sinh π(b1+p2)
β

sinh π(b1+p3)
β

sinh π(ε)
β

]
,

(26)

where ε is the CFT2 UV cutoff.

Configuration- 3 and 4

These configurations are depicted in the Fig. 2c and d and
the computation of the reflected entropy for these cases is
similar to the configurations 1 and 2. Here, the dominant
contributions for the configuration-3 and 4 are given by the
Eqs. (22) and (25) in the large central charge limit. Note that
the only difference in these configurations arise due to the
locations of the twist operators at the points p3 and p6 for
the configuration-3 while the other configuration involves
the points p1 and p4. However, these twist correlators can-
cel from the numerator and the denominator in the compu-
tation of the reflected entropy in the replica limit. Hence
the reflected entropy for the configuration-3 is given by
Eq. (23) and similarly Eq. (26) provides the result for the
configuration-4.

Configuration- 5

The computation of the reflected entropy for this configu-
ration as depicted in Fig. 2e is trivial since it reduces to the
analysis for the reflected entropy for two adjacent subsys-
tems in a standard CFT2. Hence the reflected entropy may
be obtained for this case as follows

SR(A : B) = 2c

3
log

[
4

sinh π(p3−p2)
β

sinh π(p3−p2)
β

sinh π(p3−p1)
β

sinh π(ε)
β

]
.

(27)

Configuration-6

In this configuration the nontrivial contribution to the
reflected entropy arises from the twist correlators involving
the QES point a2 on the a-brane and the point p2 in the reser-
voir as depicted in Fig. 3a. There is also an additional con-
tribution from the Weyl factor involving the point a2 while
the Weyl factors associated with the coincident points a1

and b1 cancels from the numerator and the denominator in
the expression for the reflected entropy. Hence the Rényi
reflected entropy for this configuration is given as follows

SR
n,m(A : B) = 2

1

1 − n

log
〈σg−1

B gA
(a2)σg−1

A
(a1)σgA (p1)σgB g

−1
A

(p2)σg−1
B

(p3)σgB (b1)〉CFT
⊗

mn

〈σg−1
m

(a1)σgm (p1)σg−1
m

(p3)σgm (b1)〉nCFT
⊗

m

.

(28)

The correlator in Eq. (28) factorizes in the large central charge
limit as follows

SR
n,m(A : B) = 2

1

1 − n

log

〈
σg−1

A
(a1)σgA (p1)

〉〈
σg−1

B gA
(a2)σgB g

−1
A

(p2)
〉〈

σg−1
B

(p3)σgB (b1)
〉

(〈
σg−1

m
(a1)σgm (p1)

〉〈
σg−1

m
(p3)σgm (b1)

〉)n .

(29)

Note that the correlators in the numerator and denomina-
tor of Eq. (29) are defined in the mn and m replicated
sheets respectively. The dominant contribution to the Rényi
reflected entropy in this case then arises from the correlator
involving the points a2 and p2 in the large central charge
limit as follows

SR
n,m(A : B) = 2

1

1 − n
log〈σg−1

B gA
(a2)σgBg

−1
A

(p2)〉CFT
⊗

mn .

(30)
Finally the reflected entropy for this configuration may be
obtained in the replica limit as

SR
eff(A : B) = 2c

3
log

⎡
⎣β

π

cosh
(

2π(a2−p2)
β

)
− 1

sinh
(

2πa2
β

)
⎤
⎦ . (31)

Now we may obtain the generalized reflected entropy utiliz-
ing the island formula in Eq. (13) as follows

SR
gen(A : B) = 2�0 + 4π�r

β
coth

(
2πa2

β

)

+ 2c

3
log

⎡
⎣β

π

cosh
(

2π(a2−p2)
β

)
− 1

sinh
(

2πa2
β

)
⎤
⎦ . (32)

Configuration-7

This configuration is similar to the configuration-6, however,
the reflected entropy in this case receives contribution from
the QES point b2 located on the b-brane. Hence, the twist
correlator for the Rényi reflected entropy factorizes to the
following contraction in the large central large limit

SR
n,m(A : B) = 2

1

1 − n

log

〈
σg−1

A
(a1)σgA (p1)

〉 〈
σg−1

B gA
(b2)σgB g

−1
A

(p2)
〉 〈

σg−1
B

(p3)σgB (b1)
〉

(〈
σg−1

m
(a1)σgm (p1)

〉〈
σg−1

m
(p3)σgm (b1)

〉)n ,

(33)
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(a) Configuration-1 (b) Configuration-2

(c) Configuration-3 (d) Configuration-4

(e) Configuration-5

Fig. 2 Schematics depicts all the possible contributions to the reflected entropy for the case of two adjacent subsystems A and B where we get
connected phase of entanglement island for initial four phases only

where the dominant contribution in the above equation
involves twist operators located at the points b2 and p2 as
shown in Fig. 3b. Thus the Rényi reflected entropy is given
by the following equation
SR
n,m(A : B) = 2

1

1 − n
log〈σg−1

B gA
(b2)σgBg

−1
A

(p2)〉CFT
⊗

mn .

(34)

Finally, the expression of the reflected entropy may be
obtained in the replica limit as follows

SR
eff(A : B) = 2c

3
log

⎡
⎣β

π

cosh
(

2π(b2−p2)
β

)
− 1

sinh
(

2πb2
β

)
⎤
⎦ . (35)

For this configuration, we may now obtain the generalized
reflected entropy by using the island formula in Eq. (13) as

SR
gen(A : B) = 2�0 + 4π�r

β
coth

(
2π(L − b2)

β

)

+ 2c

3
log

⎡
⎣β

π

cosh
(

2π(b2−p2)
β

)
− 1

sinh
(

2πb2
β

)
⎤
⎦ . (36)

Configuration-8 and 9

The computation of the reflected entropy in this cases fol-
low the analysis described for the configurations-6 and 7.
The dominant contributions in these cases are then given
by Eqs. (30) and (34) in the large central charge limit. The
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(a) Configuration-6 (b) Configuration-7

(c) Configuration-8 (d) Configuration-9

Fig. 3 The non-trivial cross section in each of the following channels for the reflected entropy is shown with a connected phase of the entanglement
island

only difference between these two configurations arise from
the location of the twist operators at points p3 and p6 as
depicted in Fig. 3c for the first while the other configuration
3d incorporate twist operators located at the points p1 and
p4. However, the contribution from these correlators cancel
in the replica limit. Therefore the reflected entropy for the
configuration-8 is given by the Eq. (32) and similarly the Eq.
(36) describes the result for the configuration- 9.

Configuration-10

Now we describe the next configuration where the reflected
entropy involves contribution from the points located on both
the radiation reservoirs as depicted in the Fig. 4a. In this case,
the Weyl factors cancel from the numerator and denominator
in the reflected entropy expression in the replica limit. Hence
the Rényi reflected entropy for this configuration is given by

SR
n,m(A : B)= 1

1−n
log

⎡
⎢⎣

〈
σg−1

A
(a1)σgA (p1)σgBg

−1
A

(p2)σg−1
B

(p3)σgB (b1)〈
σg−1

m
(a1)σgm (p1)σg−1

m
(p3)σgm (b1)

σg−1
A

(a2)σgA (p4)σgBg
−1
A

(p5)σg−1
B

(p6)σgB (b2)
〉
CFT

⊗
mn

σg−1
m

(a2)σgm (p4)σg−1
m

(p5)σgm (b2)
〉n
CFT

⊗
m

⎤
⎥⎦ .

(37)

In the large central charge limit, the above expression factor-
izes to the following contractions

SR
n,m(A : B)= 1

1 − n
log

⎡
⎢⎣

〈
σg−1

A
(a1)σgA (p1)

〉〈
σgBg

−1
A

(p2)σgBg
−1
A

(p5)
〉〈

σg−1
B

(p3)σgB (b1)
〉

(〈
σg−1

m
(a1)σgm (p1)

〉〈
σg−1

m
(p3)σgm (b1)

〉)n
〈
σg−1

A
(a2)σgA (p4)

〉〈
σg−1

B
(p6)σgB (b2)

〉
(〈

σg−1
m

(a2)σgm (p4)
〉〈

σg−1
m

(p6)σgm (b2)
〉)n

⎤
⎥⎦ .

(38)
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Now the reflected entropy in this configuration may be
obtained from the dominant correlator involving the twist
operators located at the points p2 and p5 since the other cor-
relators in Eq. (38) cancel from the numerator and denomi-
nator in the replica limit. Hence, the Rényi reflected entropy
reduced to the following expression

SR
n,m(A : B) = 1

1 − n
log

〈
σgBg

−1
A

(p2)σgBg
−1
A

(p5)
〉
. (39)

Note that the correlator involving twist operators from the
TFD copies of theCFT2s are also studied in the article [174].
Finally, we may obtain the reflected entropy as follows

SR
eff(A : B) = 2c

3
log

[
β

π
cosh

(
2π t

β

)]
. (40)

Configuration-11 and 12

In these configurations, the computation of the reflected
entropy for two adjacent subsystems A and B also follow
the similar analysis described in configuration-10, and the
dominant correlators in these cases are given by the Eq. (39).
Therefore apart from the change in the factorization of the
correlators in these configurations as depicted in Fig. 4b and
c, the results of the reflected entropies remain identical, which
is given by Eq. (40).

Configuration-13

In this case, the Rényi reflected entropy of two adjacent sub-
systems A and B involves twist operators located on both the
radiation reservoirs as depicted in Fig. 5a and the dominant
contribution arises from the the four point twist field corre-
lator in the computation for the reflected entropy. For this
configuration, the Rényi reflected entropy may be obtained
from the following expression

SR
n,m(A : B) = 1

1 − n
log

⎡
⎢⎣

〈
σg−1

A
(a1)σgA (p1)σgBg

−1
A

(p2)σg−1
B

(p3)σg−1
A

(a2)〈
σg−1

m
(a1)σgm (p1)σg−1

m
(p3)

σgA (p4)σgBg
−1
A

(p5)σg−1
B

(p6)
〉
CFT

⊗
mn

σg−1
m

(a2)σgm (p4)σg−1
m

(p6)
〉n
CFT

⊗
m

⎤
⎥⎦ , (41)

where the correlator does not involve any QES point on the
b-brane. The factorization of the above correlator in the large
central charge limit implies the following expression of the
Rényi reflected entropy

SR
n,m(A : B) = 1

1 − n
log

⎡
⎢⎣

〈
σg−1

A
(a1)σgA (p1)

〉〈
σgBg

−1
A

(p2)σg−1
B

(p3)σgBg
−1
A

(p5)σg−1
B

(p6)
〉

(〈
σg−1

m
(a1)σgm (p1)

〉〈
σg−1

m
(p3)σg−1

m
(p6)

〉)n
〈
σg−1

A
(a2)σgA (p4)

〉
(〈

σg−1
m

(a2)σgm (p4)
〉)n

⎤
⎥⎦ . (42)

In the above equation, the dominant correlator involves twist
operators located at the points p2, p3, p4 and p5 while the
other contributions cancel from the nominator and denomi-
nator in Eq. (42). Hence the Rényi reflected entropy reduced
to the following form

SR
n,m(A : B) = 1

1 − n

× log

〈
σgBg

−1
A

(p2)σg−1
B

(p3)σgBg
−1
A

(p5)σg−1
B

(p6)
〉

(〈
σg−1

m
(p3)σg−1

m
(p6)

〉) . (43)

Now, we utilize a technique termed as inverse doubling trick
described in [175] to compute the reflected entropy from Eq.
(43). In this trick, the four point twist correlator is reduced
to the two point function in the BCFT2, and we can obtain
the expression of this two point twist correlator in the OPE
channel by following the analysis described in [175]. Finally,
the reflected entropy in the replica limit may be computed as

SR
eff(A : B) = 2c

3

× log

⎡
⎢⎢⎣

(r3 − r2) sech
(

2π t
β

) √
r2

3 + 2r3r2 cosh
(

4π t
β

)
+ r2

2

r3ε

⎤
⎥⎥⎦ ,

(44)

where r3 and r2 are the location of the points p3 and p2

respectively.

Configuration-14

This case is similar to the configuration-13 as shown in
Fig. 5b, and the twist field correlator for the Rényi reflected
entropy factorizes in the following contraction in the large
central charge limit
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(a) Configuration-10 (b) Configuration-11

(c) Configuration-12

Fig. 4 The corresponding figures depict the connected phase of the entanglement island with non-trivial cross section extending between the TFD
copies of the radiation reservoirs

(a) Configuration-13 (b) Configuration-14

(c) Configuration-15 (d) Configuration-16

Fig. 5 Schematics depicts the non-trivial cross section to the reflected entropy of the two adjacent subsystems A and B where the corresponding
cross section ended of the Hartman-Maldacena surface
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SR
n,m(A : B) = 1

1 − n
log

⎡
⎢⎣

〈
σg−1

A
(b1)σg−1

B
(p3)

〉〈
σgA (p1)σgBg

−1
A

(p2)σgBg
−1
A

(p4)σg−1
B

(p5)
〉

(〈
σg−1

m
(b1)σgm (p3)

〉〈
σg−1

m
(p1)σg−1

m
(p5)

〉)n
〈
σg−1

A
(b2)σgA (p6)

〉
(〈

σg−1
m

(b2)σgm (p6)
〉)n

⎤
⎥⎦ . (45)

The dominant correlator in Eq. (45) involves twist opera-
tors located at the points p1, p2, p4 and p5 while the other
contributions cancel from the nominator and denominator in
the replica limit. Hence the Rényi reflected entropy may be
reduced as

SR
n,m(A : B)

= 1

1 − n
log

〈
σgA (p1)σgBg

−1
A

(p2)σgBg
−1
A

(p4)σg−1
B

(p5)
〉

(〈
σg−1

m
(p1)σg−1

m
(p5)

〉)n . (46)

On utilization of the techniques discussed in [136,175], the
reflected entropy may be obtained as follows

SR
eff(A : B) = 2c

3

× log

⎡
⎢⎢⎣

(r1 − r2) sech
(

2π t
β

) √
r2

1 + 2r1r2 cosh
(

4π t
β

)
+ r2

2

r1ε

⎤
⎥⎥⎦ ,

(47)

where r1 and r2 are location of the points p1 and p2 respec-
tively.
Configuration-15 and 16

In these configurations, the computation of the reflected
entropy for two adjacent subsystems A and B follows a
similar analysis as described for the configurations-13 and
14. Here the dominant correlators for the configurations-15
and 16 are given by the Eqs. (43) and (46) respectively in

the large central charge limit. The only difference in these
configurations arise from the twist operators located at the
points p1 and p4 as depicted in Fig. 5c for the first, while the
other configuration Fig. 5d involves twist operators located at
the points p3 and p6. However the contributions from these
two point twist correlators cancel from the numerator and
denominator in the replica limit. Hence the expression for
the reflected entropies in the configurations-15 and 16 are
given by Eqs. (44) and (47) respectively.

3.1.2 Disjoint subsystems

In this subsection, we discuss the computation of the reflected
entropy for two disjoint subsystems A ≡ [p1, p2] ∪ [p5, p6]
and B ≡ [p3, p4] ∪ [p7, p8] located on both the radiation
reservoirs described by CFT2s in the communicating black
hole setup as shown in Fig. 1. In this context we obtain the
reflected entropy for different configurations described by
relative subsystem sizes utilizing the techniques developed
in [136].

Configuration-1

We first discuss the configuration which involves the twist
operators located on the radiation reservoirs and the a, b-
branes as depicted in Fig. 6a. Since this configuration is sym-
metric on the reservoir copy of the double TFD states it suf-
fices to compute the reflected entropy of the two disjoint sub-
systems in one of the reservoirs. Hence the Rényi reflected
entropy may be obtained using the following twist correlator

SR
n,m(A : B) = 2

1

1 − n
log

〈σg−1
B

(a1)σgA (p1)σg−1
A

(p2)σgB (p3)σg−1
B

(p4)σgB (b1)〉CFT
⊗

mn

〈σg−1
m

(a1)σgm (p1)σg−1
m

(p2)σgm (p3)σg−1
m

(p4)σgm (b1)〉nCFT
⊗

m

, (48)

where the factor 2 in the above equation incorporates the
contribution to the reflected entropy from the other copy of
the radiation reservoir. In the large central charge limit, the
correlators in Eq. (48) factorize to the respective contractions
as follows

SR
n,m(A : B) = 2

1

1 − n
log

⎡
⎢⎣ 〈σg−1

B
(a1)σgA (p1)σg−1

A
(p2)σgB (p3)〉CFT

⊗
mn(

〈σg−1
m

(a1)σgm (p1)σg−1
m

(p2)σgm (p3)〉CFT
⊗

m

)n
〈σg−1

B
(p4)σgB (b1)〉CFT

⊗
mn(

〈σg−1
m

(p4)σgm (b1)〉CFT
⊗

m

)n
⎤
⎥⎦ . (49)
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(a) Configuration-1 (b) Configuration-2

(c) Configuration-3 (d) Configuration-4

(e) Configuration-5

Fig. 6 Schematics depicts all the possible contributions to the reflected entropy for the case of two disjoint subsystems A and B where the
contraction of the correlator leads to the similar result

Note that the two point function in the above equation cancel
from the numerator and denominator in the replica limit.
Thus the dominant correlator to the Rényi reflected entropy
in this case may be expressed as

SR
n,m(A : B) = 2

1

1 − n

log
〈σg−1

B
(a1)σgA (p1)σg−1

A
(p2)σgB (p3)〉CFT

⊗
mn

〈σg−1
m

(a1)σgm (p1)σg−1
m

(p2)σgm (p3)〉CFT
⊗

m
.

(50)

Finally, the reflected entropy for the two disjoint subsystems
for this configuration may be obtained as follows [31,136]

SR
eff(A : B) = 2c

3
log

(
1 + √

x

1 − √
x

)
,

x = sinh π(p2−p1)
β

sinh π(a1+p1)
β

sinh π(p3−p1)
β

sinh π(a1+p2)
β

. (51)

Configuration-2

This configuration Fig. 6a is similar to the previous case and
the computation of the reflected entropy for the two disjoint
subsystems in this case follow the same analysis. However
the twist field correlator in Eq. (48) factorizes to the respec-
tive contraction in the large central charge limit
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SR
n,m(A : B) = 2

1

1 − n
log

⎡
⎢⎣ 〈σg−1

A
(a1)σgA (p1)〉CFT

⊗
mn

〈σg−1
m

(a1)σgm (p1)〉CFT
⊗

m
×

〈σg−1
A

(p2)σgB (p3)σg−1
B

(p4)σgA (b1)〉CFT
⊗

mn(
〈σg−1

m
(p2)σgm (p3)σg−1

m
(p4)σgm (b1)〉CFT

⊗
m

)n
⎤
⎥⎦ . (52)

From the above equation, the dominant contribution to the
reflected entropy arises from the four point twist correlator.
Therefore we may obtain the reflected entropy for this con-
figuration as [31,136]

SR
eff(A : B) = 2c

3
log

(
1 + √

x

1 − √
x

)
,

x = sinh π(p4−p3)
β

sinh π(b1+p2)
β

sinh π(p3−p2)
β

sinh π(b1+p4)
β

. (53)

Configuration- 3 and 4

It may be observed from Fig. 6c that this case is similar
to the configuration-3 and the dominant contribution to the
reflected entropy is given by Eq. (50). The only difference
in this case arises from the two point correlator involv-
ing the twist operators located on the points p4 and p8

which is obtained after the factorization in the large cen-
tral charge limit. However this does not contribute to the
reflected entropy in the replica limit as it cancels out from the
numerator and the denominator as earlier. Hence the reflected
entropy in this case is given by Eq. (51).

For the configuration-4 as depicted in Fig. 2d, we fol-
low arguments similar to those described above for the
configuration-3 and obtain the reflected entropy from Eq.
(53).

Configuration- 5

In this case, the reflected entropy for the two disjoint subsys-
tems may be obtained by utilizing the procedure described in
[136]. Since this case involves four point twist correlator as
the dominant contribution to the reflected entropy this may
be given as

SR
eff(A : B) = 2c

3
log

(
1 + √

x

1 − √
x

)
,

x = sinh π(p2−p1)
β

sinh π(p4−p3)
β

sinh π(p3−p2)
β

sinh π(p4−p2)
β

. (54)

Configuration-6

In this case, the computation of the reflected entropy involves
a nontrivial contribution from the twist operators located at
the QES point a2 on the a-brane and the points p2 and p3

in the radiation reservoir as depicted in Fig. 7a. Here the
reflected entropy also incorporates an additional contribu-
tion from the Weyl factor associated with the QES point a2.
Thus the Rényi reflected entropy in this case may be obtained
as

SR
n,m(A : B) = 2

1

1 − n
log

〈σg−1
B gA

(a2)σg−1
A

(a1)σgA (p1)σg−1
A

(p2)σgB (p3)σg−1
B

(p4)σgB (b1)〉CFT
⊗

mn(
〈σg−1

m
(a1)σgm (p1)σg−1

m
(p2)σgm (p3)σg−1

m
(p4)σgm (b1)〉CFT

⊗
m

)n , (55)

where the factor 2 involves the contribution to the reflected
entropy from the other copy of the radiation reservoir. In the
large central charge limit, the correlator in Eq. (55) factorizes
to the following contraction

SR
n,m(A : B) = 2

1

1 − n
log

〈
σg−1

A
(a1)σgA (p1)

〉〈
σg−1

B gA
(a2)σg−1

A
(p2)σgB (p3)

〉〈
σg−1

B
(p4)σgB (b1)

〉
(〈

σg−1
m

(a1)σgm (p1)
〉〈

σg−1
m

(p2)σgm (p3)
〉〈

σg−1
m

(p4)σgm (b1)
〉)n . (56)
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(a) Configuration-6 (b) Configuration-7

(c) Configuration-8 (d) Configuration-9

Fig. 7 Schematics depicts all the possible contributions to the reflected entropy for the case of two disjoint subsystems A and B where we get non
trivial cross section from the entanglement island

From the above equation, the dominant correlator for this
configuration arises from the three point twist correlator
while the other contributions to the reflected entropy can-
cel from the numerator and denominator in the replica limit.
Hence the Rényi reflected entropy may be expressed as fol-
lows

SR
n,m(A : B) = 2

1

1 − n
log

〈σg−1
B gA

(a2)σg−1
A

(p2)σgB (p3)〉(
〈σg−1

m
(p2)σgm (p3)〉

)n .

(57)

Finally in the replica limit, the reflected entropy of the two
disjoint subsystems for this case may be given by

SR
eff(A : B) = 2c

3
log

⎡
⎣β

(
cosh

(
2π(R−a2)

β

)
− 1

)

πr sinh
(

2πa2
β

)
⎤
⎦ , (58)

where R and r are related to the points p2 and p3 as R =
(p3 + p2)/2 and r = (p3 − p2)/2. Now we may obtain
the generalized reflected entropy using the island formula
described in Eq. (13) as

SR
gen(A : B) = 2�0 + 4π�r

β
coth

(
2πa2

β

)

+ 2c

3
log

⎡
⎣β

(
cosh

(
2π(R−a2)

β

)
− 1

)

πr sinh
(

2πa2
β

)
⎤
⎦ .

(59)

Configuration-7

This configuration is similar to the previous case however
the dominant correlator for the reflected entropy for the two
disjoint subsystems now involves a QES point b2 located on
the b-brane as shown in Fig. 7b. Thus the factorization of the
twist correlator for the Rényi reflected entropy in the large
central charge limit may be given by
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SR
n,m(A : B) = 2

1

1 − n
log

〈
σg−1

A
(a1)σgA (p1)

〉〈
σg−1

B gA
(b2)σg−1

A
(p2)σgB (p3)

〉〈
σg−1

B
(p4)σgB (b1)

〉
(〈

σg−1
m

(a1)σgm (p1)
〉〈

σg−1
m

(p2)σgm (p3)
〉〈

σg−1
m

(p4)σgm (b1)
〉)n . (60)

Note that the dominant correlator from the above equation
arises from the three point twist correlator involving the
points p2, p3 and b2 while the other contributions to the
reflected entropy cancel from the numerator and denomina-
tor in the replica limit. Hence the Rényi reflected entropy
may be obtained as follows

SR
n,m(A : B) = 2

1

1 − n
log

〈σg−1
B gA

(b2)σg−1
A

(p2)σgB (p3)〉(
〈σg−1

m
(p2)σgm (p3)〉

)n .

(61)

Finally in the replica limit the expression for the reflected
entropy in this case is given by the following

SR
eff(A : B) = 2c

3
log

⎡
⎣β

(
cosh

(
2π(R−b2)

β

)
− 1

)

πr sinh
(

2πb2
β

)
⎤
⎦ , (62)

where R and r are related to the points p2 and p3 as R =
(p3+ p2)/2 and r = (p3− p2)/2. Once again we may obtain
the generalized reflected entropy using the island formula in
Eq. (13) as follow

SR
gen(A : B) = 2�0 + 4π�r

β
coth

(
2πb2

β

)

+ 2c

3
log

⎡
⎣β

(
cosh

(
2π(R−b2)

β

)
− 1

)

πr sinh
(

2πb2
β

)
⎤
⎦ .

(63)

Configuration-8 and 9

In these configurations, the computation of the reflected
entropy follows a similar analysis to that described in
configuration-3 and 4. The dominant twist correlators in these
cases are given by the Eqs. (57) and (61) in the large cen-
tral charge limit. The only difference in configuration-8 as
depicted in Fig. 7c arises from the two point correlator involv-
ing the twist operators located at the points p4 and p8 how-
ever this contribution to the reflected entropy cancel from
the numerator and denominator in the replica limit. Hence
the expression for the reflected entropy in the above config-
uration is given by Eq. (59) in the replica limit.

For the configuration-9 (Fig. 7d), we may employ similar
arguments as described for the configuration-8 to compute
the reflected entropy of two disjoint subsystems. Thus the
reflected entropy in this case is given by Eq. (63) in the replica
limit.

Configuration-10

The reflected entropy in this configuration involves twist
operators located on both the radiation reservoirs and the
a and b-branes as depicted in Fig. 8a. The Rényi reflected
entropy in this case may be obtained as

SRn,m (A : B) = 1

1 − n
log

⎡
⎢⎣

〈
σ
g−1
A

(a1)σgA (p1)σ
g−1
A

(p2)σgB (p3)σ
g−1
B

(p4)σgB (b1)

〈
σ
g−1
m

(a1)σgm (p1)σ
g−1
m

(p2)σgm (p3)σ
g−1
m

(p4)σgm (b1)

σgA (a2)σ
g−1
A

(p5)σgA (p6)σ
g−1
B

(p7)σgB (p8)σ
g−1
B

(b2)
〉
CFT

⊗
mn

σgm (a2)σ
g−1
m

(p5)σgm (p6)σ
g−1
m

(p7)σgm (p8)σ
g−1
m

(b2)
〉n
CFT

⊗
m

⎤
⎥⎦ .

(64)

The factorization of the above correlator to the respective
contraction in the large central charge limit is given by the
following equation

SR
n,m(A : B) = 1

1 − n
log

⎡
⎢⎣

〈
σg−1

A
(a1)σgA (p1)

〉〈
σg−1

A
(p2)σgB (p3)σgA (p6)σg−1

B
(p7)

〉
(〈

σg−1
m

(a1)σgm (p1)
〉〈

σg−1
m

(p2)σgm (p3)σgm (p6)σg−1
m

(p7)
〉)n

〈
σg−1

B
(p4)σgB (b1)

〉〈
σgA (a2)σg−1

A
(p5)

〉〈
σgB (p8)σg−1

B
(b2)

〉
(〈

σg−1
m

(p4)σgm (b1)
〉〈

σgm (a2)σg−1
m

(p5)
〉〈

σgm (p8)σg−1
m

(b2)
〉)n

⎤
⎥⎦ , (65)
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(a) Configuration-10 (b) Configuration-11

(c) Configuration-12

Fig. 8 The corresponding diagrams depict non-trivial cross section extending between the TFD copies of the radiation reservoirs

where the Weyl factors associated with the points on the
branes cancel from the numerator and denominator in the
replica limit. The dominant twist correlator in this case for
the reflected entropy involves the four point correlator with
the twist operators located on both the radiation reservoirs.
Hence the Rényi reflected entropy is given by

SR
n,m(A : B) = 1

1 − n

× log

〈
σg−1

A
(p2)σgB (p3)σgA (p6)σg−1

B
(p7)

〉
(〈

σg−1
m

(p2)σgm (p3)σgm (p6)σg−1
m

(p7)
〉)n , (66)

where the other two point twist correlators in the above equa-
tion cancel from the numerator and denominator in the replica
limit. Finally, the reflected entropy for this case in the replica
limit may be obtained as follows

SR
eff(A : B) = 2c

3
log

⎡
⎣β cosh

(
2π t
β

)
πr

⎤
⎦ . (67)

In Eq. (67), r is related to the points p2 and p3 as r =
(p3 − p2)/2.

Configuration-11 and 12

In these configurations (Fig. 8b, c), the computation of the
reflected entropy follows similar analysis as described in the
configuration-10. The only difference in these cases arise
from the two point correlators with the twist operators located
at the points p4 and p8 in the radiation reservoirs for the first
while the other configuration-12 (Fig. 8c) incorporates the
twist operators located at the points p1 and p5. However
these contributions to the reflected entropy for these cases
cancel from the numerator and denominator in the replica
limit. Thus the expression of the reflected entropies in these
configurations are given by Eq. (67).

Configuration-13

In this case, the reflected entropy for the two disjoint subsys-
tems A and B involves the twist operators located on both the
radiation reservoirs as depicted in Fig. 9a. The Rényi reflected
entropy in this scenario may be expressed as follows
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SR
n,m(A : B) = 1

1 − n
log

⎡
⎢⎣

〈
σg−1

A
(a1)σgA (p1)σg−1

A
(p2)σgB (p3)σg−1

B
(p4)(〈

σg−1
m

(a1)σgm (p1)σg−1
m

(p2)σgm (p3)σg−1
m

(p4)

σgA (a2)σg−1
A

(p5)σgA (p6)σg−1
B

(p7)σgB (p8)
〉
CFT

⊗
mn

σgm (a2)σg−1
m

(p5)σgm (p6)σg−1
m

(p7)σgm (p8)
〉
CFT

⊗
m

)n
⎤
⎥⎦ .

(68)

In the large central charge limit, the correlator in Eq. (68)
factorizes to the respective contraction as follows

SR
n,m(A : B)= 1

1−n
log

⎡
⎢⎣

〈
σg−1

A
(p2)σgB (p3)σg−1

B
(p4)σgA (p6)σg−1

B
(p7)σgB (p8)

〉
(〈

σg−1
m

(p2)σgm (p3)σg−1
m

(p4)σgm (p6)σg−1
m

(p7)σgm (p8)
〉)n

〈
σg−1

A
(a1)σgA (p1)

〉〈
σg−1

A
(a2)σgA (p5)

〉
(〈

σg−1
m

(a1)σgm (p1)
〉〈

σg−1
m

(a2)σgm (p5)
〉)n

⎤
⎥⎦ . (69)

The dominant twist correlator in this case for the reflected
entropy involves the six point function with the twist oper-
ators located on both the radiation reservoirs, however the
other two point twist correlators in Eq. (69) cancel from the
numerator and denominator in the replica limit. Hence the
Rényi reflected entropy is given as

SR
n,m(A : B) = 1

1 − n

log

〈
σg−1

A
(p2)σgB (p3)σg−1

B
(p4)σgA (p6)σg−1

B
(p7)σgB (p8)

〉
(〈

σg−1
m

(p2)σgm (p3)σg−1
m

(p4)σgm (p6)σg−1
m

(p7)σgm (p8)
〉)n .

(70)

We utilize a technique termed as inverse doubling trick to
compute the above dominant correlator [175]. In this context,
the six point function in the CFT2 reduces to a three point
function in the BCFT2 and the expression for the reflected
entropy may be obtained in the appropriate OPE channel by
following a similar analysis to that described in [175]

SR
eff(A : B) = c

3

log

⎡
⎣sech( 2π t

β
)
√
r2+(R−r2)2

√
r2+R2+2Rr2 cosh( 4π t

β
)+r2

2

r2r

⎤
⎦ ,

(71)

where R and r are related to the points p2 and p3 as R =
(p3 + p2)/2 and r = (p3 − p2)/2.

Configuration-14

This configuration is similar to above case and the twist corre-
lator for the Rényi reflected entropy factorizes to the respec-
tive contraction in the large central charge limit as follows

SR
n,m(A : B) = 1

1 − n
log

⎡
⎢⎣

〈
σgA (p1)σg−1

A
(p2)σgB (p3)σg−1

A
(p5)σgB (p6)σg−1

B
(p7)

〉
(〈

σgm (p1)σg−1
m

(p2)σgm (p3)σg−1
m

(p5)σgm (p6)σg−1
m

(p7)
〉)n

〈
σgB (b1)σg−1

B
(p4)

〉〈
σg−1

B
(b2)σgB (p8)

〉
(〈

σg−1
m

(b1)σgm (p3)
〉〈

σg−1
m

(b2)σgm (p8)
〉)n

⎤
⎥⎦ .

(72)

In this case, the dominant correlator in the above equa-
tion involves a six point twist correlator, however the other
two point twist correlators cancel from the numerator and
the denominator. Thus the Rényi reflected entropy may be
obtained as

SR
n,m(A : B) = 1

1 − n

log

〈
σgA (p1)σg−1

A
(p2)σgB (p3)σg−1

A
(p5)σgB (p6)σg−1

B
(p7)

〉
(〈

σgm (p1)σg−1
m

(p2)σgm (p3)σg−1
m

(p5)σgm (p6)σg−1
m

(p7)
〉)n .

(73)

On utilization of the techniques discussed in [175], the
reflected entropy for the two disjoint subsystems is given
by the following equation

SR
eff(A : B) = c

3

log

⎡
⎣sech( 2π t

β
)
√
r2+(R−r2)2

√
r2+R2+2Rr2 cosh( 4π t

β
)+r2

2

r2r

⎤
⎦,

(74)

where R and r are related to the points p2 and p3 as R =
(p3 + p2)/2 and r = (p3 − p2)/2.

Configuration-15 and 16

In these configurations, the computation of the reflected
entropies for the two disjoint subsystems A and B follow
a similar analysis as described for the configurations-13 and
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(a) Configuration-13 (b) Configuration-14

(c) Configuration-15 (d) Configuration-16

Fig. 9 Starting two figures indicate connected phase of the entanglement island with non-trivial cross section however later diagrams depict
disconnected phase of the entanglement island with cross section ending the Hartman–Maldacena surface

14. Here the dominant correlators for these configurations
are given by the Eqs. (70) and (73). The only difference
in these cases arise from the two point correlators with the
twist operators located at the points p4 and p8 for the first
(Fig. 9c) while the other configuration-16 (Fig. 9d) incorpo-
rates the twist operators located at the points p1 and p5 in
the radiation reservoirs. However these contributions to the
reflected entropy for these cases cancel from the numerator
and denominator in the replica limit. Finally, the reflected
entropy for these configurations are given by the Eqs. (71)
and (74).

3.2 Entanglement wedge cross section

In this subsection, we compute the bulk EWCS for the vari-
ous mixed states described by the two adjacent and disjoint
subsystems located in both the radiation reservoirs for which
the field theory computations were described in the earlier
sections. In this context, we observed a rich phase structure
for the EWCS arising from the various contributions from
different relative sizes of the two adjacent and disjoint sub-
systems as depicted in the Figs. 2, 3, 4, 5, 6, 7, 8 and 9.
In particular, we utilized the embedding space formalism to
compute the bulk EWCS for different configurations.

3.2.1 Adjacent subsystems

We first consider the two adjacent subsystems A and B in
both the copies of the radiation reservoirs and compute the
EWCS for all the possible contributions while considering
different sizes of the subsystems.

Configuration-1

The EWCS for this configuration is shown in Fig. 2a as a dot-
ted line and this may be computed using the result obtained
in [147] in the adjacent limit as follows

EW = c

3
log (4z) , z = sinh π z12

β
sinh π z34

β

sinh π z23
β

sinh π z14
β

, (75)

where z is the cross-ratio at a finite temperature and we have
utilized the Brown–Henneaux formula c = 3

2GN
[176]. The

above result may be expressed in terms of the boundary coor-
dinates of the corresponding subsystems shown in Fig. 2a as
follows

EW = c

3
log

[
4

sinh π(p2−p1)
β

sinh π(a1+p2)
β

sinh π(a1+p1)
β

sinh π(ε)
β

]
. (76)
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Interestingly the field theory replica technique result for the
the reflected entropy described in Eq. (23) matches exactly
with twice the bulk EWCS in Eq. (75) for the two adjacent
subsystems in accordance with the proposed holographic
duality in [31,136].

Configuration-2

As depicted in Fig. 2b, the bulk EWCS for this configuration
may be obtained by following a similar analysis as discussed
in the previous configuration. Hence the expression for the
EWCS is given by

EW = c

3
log

[
4

sinh π(p3−p2)
β

sinh π(b1+p2)
β

sinh π(b1+p3)
β

sinh π(ε)
β

]
, (77)

where ε is the UV cutoff. Once again the replica technique
result in Eq. (26) matches with twice the bulk EWCS in
Eq. (77) in agreement with the proposed holographic duality
in [31,136].

Configuration-3 and 4

The configuration-3 is similar to the case-1. However the only
difference in this configuration arises from the entanglement
wedge of the subsystem A ∪ B as described in Fig. 2c. Thus
the bulk EWCS for the configuration-3 may be obtained from
Eq. (76).

On utilization of similar argument for the configuration-4
which is analogous to case-2 as shown in Fig. 2d. Therefore,
the bulk EWCS for the configuration-4 is given by Eq. (77).

Configuration-5

The computation of the bulk EWCS for this configuration
as shown in Fig. 2e is trivial since it reduces to the usual
expression of the EWCS in the context of the AdS/CFT
scenario. Therefore the bulk EWCS is given by

EW = c

3
log

[
4

sinh π(p3−p2)
β

sinh π(p3−p2)
β

sinh π(p3−p1)
β

sinh π(ε)
β

]
. (78)

Once again twice of the above bulk EWCS exactly matches
with the replica technique results in Eq. (27) which is con-
sistent with the holographic duality described in [31,136].

Configuration-6

The bulk EWCS in this configuration involves QES point
located on the a-brane and the point p2 situated in the radi-
ation reservoir as shown in the Fig. 3a. To compute the bulk
EWCS for this configuration, we utilize the embedding space

formalism which involves following coordinate transforma-
tions [51,91]

T1(z, t) = zh

√
1

z2 − 1

z2
h

cosh

(
t

zh

)
,

T2(z, t) =
zh sinh

(
x
zh

)
z

,

X1(z, t) = zh

√
1

z2 − 1

z2
h

sinh

(
t

zh

)
,

X2(z, t) =
zh cosh

(
x
zh

)
z

. (79)

where zh is related to the inverse temperature as zh = β
2π

.
Note that, the AdS3 BTZ black hole metric may be reduced
to the embedding metric using the above coordinate trans-
formations as follows [51,91]

ds2 = dX2
1 + dX2

2 − dT 2
1 − dT 2

2 . (80)

In the above background, the expression of the geodesic
length connecting two arbitrary points is given by

L = cosh−1 (
X1X

′
1 + X2X

′
2 − T1T

′
1 − T2T

′
2

)
, (81)

where the unprimed and the primed coordinates are the loca-
tion of the arbitrary points in term of the embedding coor-
dinates. For this configuration, the endpoints of the bulk
EWCS in the BTZ coordinates are defined as (p2, ε, t) and
(a2, zQES, t). Finally, we may obtain the bulk EWCS utiliz-
ing the Eqs. (81) and (79) as

EW = c

3
cosh−1

⎡
⎣ z2

h

(
cosh

(
a2−p2
zh

)
− 1

)
zQESε

⎤
⎦ , (82)

where zQES may be obtained using the profile of the a-brane

as zQES k = zh sinh
(
a2
zh

)
with constant k = 1 [51]. Hence,

the expression of the bulk EWCS becomes

EW = c

3
log

⎡
⎣β

π

cosh
(

2π(a2−p2)
β

)
− 1

sinh
(

2πa2
β

)
⎤
⎦ , (83)

where we have removed divergent term. In the above equa-
tion, we have utilized a relation between inverse temperature
and zh as zh = β

2π
. Once again twice of the above bulk

EWCS exactly matches with the replica technique result in
Eq. (31) which is consistent with the proposed holographic
duality in [31,136].
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Configuration-7

For this configuration, the computation of the bulk EWCS
follows a similar analysis as described in the previous case.
However the bulk EWCS for this configuration involves a
point b2 located at the b-brane. Hence the expression of the
bulk EWCS is given as

EW = c

3
log

⎡
⎣β

π

cosh
(

2π(b2−p2)
β

)
− 1

sinh
(

2πb2
β

)
⎤
⎦ . (84)

Once again the replica technique result in Eq. (35) exactly
matches with twice of the above bulk EWCS in accordance
with the proposed holographic duality.

Configuration-8 and 9

For these configurations, the computation of the bulk EWCS
follows a similar analysis described in the configurations 6
and 7. However the enclosed entanglement wedge regions for
the subsystem A∪B in these two configurations are different
as shown in the Fig. 3c and d. Thus the expressions of the bulk
EWCS for the configurations 8 and 9 are given by the Eqs.
(83) and (84) respectively.

Configuration-10

The computation of the bulk EWCS for this configuration
involves the endpoints (p2, ε, t) and (p2, ε,−t+iβ/2) which
are located in both the radiation reservoirs as depicted in
Fig. 4a. Utilizing the Eqs. (81) and (79), we may obtain the
expression of the bulk EWCS as follows

EW = c

3
log

[
β

π
cosh

(
2π t

β

)]
, (85)

where we have removed divergent term. Note that twice of
above the bulk EWCS exactly matches with the replica tech-
nique result for the reflected entropy described in Eq. (40)
which is consistent with the holographic duality in [31,136].

Configuration-11 and 12

The computation of the bulk EWCS for these configurations
follow a similar analysis described in the configuration-10.
The only difference in these configurations arises from the
enclosed entanglement wedge regions for the subsystem A∪
B as shown in the Fig. 4b and c. Thus the expressions of the
bulk EWCS for the configurations 11 and 12 are given by
Eq. (85).

Configuration-13

For the computation of the bulk EWCS in this configuration,
we may utilize a coordinate transformation which relates the
AdS3 BTZ metric described in Eq. (6) to Poincare metric as
follows8

T =
√

1 − z2

z2
h

e
x
zh sinh

(
t

zh

)

X =
√

1 − z2

z2
h

e
x
zh cosh

(
t

zh

)

Z = ze
x
zh

zh
, (86)

where T, X, Z are the Poincare coordinates. The bulk EWCS
may then be obtained from the following geodesic length
formula

L = cosh−1

[
(X2 − X1)

2 − (T2 − T1)
2 + Z2

1 + Z2
2

2Z1Z2

]
.

(87)

As described in Fig. 5a, the endpoints of the bulk EWCS

for this case are given by
(
r1 cosh 2π t

β
, r1 sinh 2π t

β
, ε

)
and(

x2, r2 sinh 2π t
β

, z2

)
. Note that the bulk EWCS for this con-

figuration describes the following geodesic equation z2 =√
r2

2 (cosh 2π t
β

)2 − x2
2 , which is also similar to the Hartman–

Maldacena surface discussed in [174]. Thus the expression
of the bulk EWCS may be obtained as

EW = c

3

log

⎡
⎢⎢⎣

(r1 − r2) sech
(

2π t
β

) √
r2

1 + 2r1r2 cosh
(

4π t
β

)
+ r2

2

r1ε

⎤
⎥⎥⎦ ,

(88)

where we have utilized the relation between inverse temper-
ature and zh . Once again the replica technique result in Eq.
(44) exactly matches with twice the bulk EWCS which is
consistent with the proposed holographic duality described
in [31,136].

Configuration-14

The computation of the bulk EWCS for this configuration
follows a similar analysis described in the previous case.

8 This kind of bulk EWCS was also studied in the article [175] in a
different toy model of the brane world geometry.
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Thus, the expression of the bulk EWCS may be obtained
using Eq. (87) as

EW = c

3

log

⎡
⎢⎢⎣

(r1 − r2) sech
(

2π t
β

) √
r2

1 + 2r1r2 cosh
(

4π t
β

)
+ r2

2

r1ε

⎤
⎥⎥⎦ .

(89)

Interestingly the the replica technique result for the reflected
entropy in Eq. (47) exactly matches with twice the above
bulk EWCS in accordance with holographic duality.

Configuration-15 and 16

The computation of the bulk EWCS for these configurations
as show in Fig. 5c and d follow a similar analysis described
in the configuration 13. Hence the expressions of the bulk
EWCS for the configurations 15 and 16 are given by the Eqs.
(88) and (89) respectively.

3.2.2 Disjoint subsystems

In this subsection, we discuss the computation of the bulk
EWCS for the case of two disjoint subsystems A and B which
are sandwiched with an auxiliary subsystemC . These subsys-
tems are located in both the copies of the radiation reservoirs
described byCFT2s. In this context, we obtain different pos-
sible contributions to the bulk EWCS as depicted in Figs. 6,
7, 8 and 9 with different sizes of the subsystems.

Configuration-1

To compute the bulk EWCS for this configuration, we utilize
the result of the bulk EWCS obtained in [147] for two disjoint
subsystems A and B at finite temperature in the context of
AdS3/CFT2 scenario. The corresponding expression of the
EWCS may be obtained in terms of the finite temperature
cross ratio z as follows

EW = c

6
log

[
1 + 2z + 2

√
z(z + 1)

]
,

z = sinh π z12
β

sinh π z34
β

sinh π z23
β

sinh π z14
β

, (90)

where we have used Brown–Henneaux formula c = 3/2GN

[176]. For the configuration described in Fig. 6a, the bulk
EWCS may be obtained using the coordinate of the boundary
subsystems A = [p1, p2] and B = [p3, a1] as

EW = 2
c

6
log

[
1 + 2z + 2

√
z(z + 1)

]
,

z = sinh π(p2−p1)
β

sinh π(a1−p1)
β

sinh π(p3−p2)
β

sinh π(a1−p1)
β

. (91)

The above bulk EWCS is consistent with the replica tech-
nique result of the reflected entropy in Eq. (51) in accordance
with the holographic duality as described in [31,136].

Configuration-2

From the Fig. 6b, we can observe that the bulk EWCS in
this configuration may be obtained using a similar analysis
followed in the configuration-1. Hence the expression of the
bulk EWCS is given by

EW = 2
c

6
log

[
1 + 2z + 2

√
z(z + 1)

]
,

z = sinh π(p4−p3)
β

sinh π(b1+p2)
β

sinh π(p4−p2)
β

sinh π(b1+p2)
β

. (92)

Once again the replica technique result in Eq. (53) exactly
matches with twice the bulk EWCS which is consistent with
the proposed holographic duality described in [31,136].

Configuration-3 and 4

The computation of the bulk EWCS for these configurations
are similar to the cases discussed earlier. However the only
difference in these configurations arises from the enclosed
entanglement wedge regions for the subsystem A ∪ B as
shown in Fig. 6c and d. Thus the expression of the bulk EWCS
in the configurations 3 and 4 are given by the Eqs. (91) and
(92) respectively.

Configuration-5

The computation of the EWCS follows a similar analysis
described in [147] in the context of the AdS/CFT scenario.
At a finite temperature, the expression of the EWCS in this
configuration may be given by the following equation

EW = 2
c

6
log

[
1 + 2z + 2

√
z(z + 1)

]
,

z = sinh π(p2−p1)
β

sinh π(p4−p3)
β

sinh π(p3−p1)
β

sinh π(p4−p1)
β

. (93)

Once again twice of the above bulk EWCS is consistent with
the replica technique expression in Eq. (54) in accordance
with the proposed holographic duality.

Configuration-6

In this configuration, we follow a similar analysis described
in the configuration-6 of the adjacent subsystems to obtain
the expression of the bulk EWCS. In particular, we utilize
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the embedding space formalism to obtain the expression of
the bulk EWCS which is given by the following geodesic
length Eq. (81). As depicted in Fig. 7a, the endpoints of the
bulk EWCS in this case involves a point on the a-brane and
an arbitrary point on the RT surface homologous to the sub-
system C . We consider these endpoints of the bulk EWCS as
(a2, zQES, t) on the a-brane and (R + r sin(φ), r cos(φ), t).
Here φ is the angle defined to get the coordinates of the end-
point on the RT surface and R, r are defined in terms of the
boundary coordinate as p2+p3

2 ,
p3−p2

2 respectively. There-
fore, the expression of the bulk EWCS can be obtained in
this configuration using the Eq. (81) as

EW = c

3
cosh−1

⎡
⎣ z2

h

(
cosh

(
(R−a2)

zh

)
− 1

)
r zQES

⎤
⎦ , (94)

where we considered that the bulk EWCS becomes minimum
for φ = 0. In the above equation, the zQES may be obtained

using the profile of the a-brane as zQES = zh sinh
(
a2
zh

)
with

k = 1 [51]. Therefore, the expression of the EWCS becomes

EW = c

3
log

⎡
⎣β

(
cosh

(
2π(R−a2)

β

)
− 1

)

πr sinh
(

2πa2
β

)
⎤
⎦ . (95)

Note that the above result of the bulk EWCS exactly matches
with the expression of the reflected entropy in Eq. (58) using
Eq. (14).

Configuration-7

The contribution of the bulk EWCS in this configuration may
be obtained by following the analogous analysis described in
the previous case. As shown in Fig. 7b, the bulk EWCS now
obtains contribution from the b-brane. However the compu-
tation of the bulk EWCS remains same as configuration-6,
thus the expression of the EWCS may be given by

EW = c

3
log

⎡
⎣β

(
cosh

(
2π(R−b2)

β

)
− 1

)

πr sinh
(

2πb2
β

)
⎤
⎦ . (96)

Using Eq. (14), the above result matches with the replica
technique result described in Eq. (62).

Configuration-8 and 9

In these configurations, the bulk EWCS may be obtained by
following a similar procedure provided in the configurations-
6. The only difference may be observed in the corresponding
configurations arise from the enclosed entanglement wedge
regions as depicted in Fig. 7c and d. Thus the expressions of

the bulk EWCS in these cases are described by Eqs. (95) and
(96) for the configurations 8 and 9 respectively.

Configuration-10

For the computation of the bulk EWCS in this configura-
tion as shown in Fig. 8a, we utilize the embedding space for-
malism to express the length of the EWCS which is given
by Eq. (81). Consequently, we obtain the corresponding
length using the endpoints (R + r sin(φ), r cos(φ), t) and
(R+r sin(φ), r cos(φ),−t + iβ/2) of the bulk EWCS. Note
that these endpoints of the EWCS are located on the RT sur-
face homologous to subsystem C . Thus, The expression of
the bulk EWCS may then be obtained as follows

EW = c

3
log

⎡
⎣β cosh

(
2π t
β

)
πr

⎤
⎦ , (97)

where r is related to the points p2 and p3 as r = (p3− p2)/2.
Above result matches with the replica technique result Eq.
(67) of the reflected entropy by utilizing the proposal Eq.
(14).

Configuration-11 and 12

As we can notice from the Fig. 8b and c that the bulk EWCS
in these configurations is same as above case. However, the
only observed difference in these configuration can be indi-
cated from the enclosed entanglement wedge regions of the
subsystem A∪B. Therefore the expression of the bulk EWCS
may be described by Eq. (97).

Configuration-13

We utilize the method discussed in the configuration-13 of
the adjacent subsystems to compute the EWCS in this con-
figuration described in Fig. 9a for the disjoint subsystems A
and B. Consequently, we use Eq. (87) to obtain the expres-
sion of the EWCS for two disjoint subsystems. As depicted
in Fig. 9a that the endpoints of the bulk EWCS are given
as ((R+r sin φ) cosh( 2π t

β
), (R+r sin φ) sinh( 2π t

β
), r cos φ)

and (x2, r3 sinh( 2π t
β

),

√(
r3 cosh( 2π t

β
)
)2 − x2

2 ). Hereφ is the

angle defined to get the coordinates of the endpoint on the RT
surface homologous to the subsystem C . Finally the expres-
sion of the bulk EWCS may be given by

EW = c

3
log

⎡
⎣sech( 2π t

β
)
√
r2+(R−r2)2

√
r2+R2+2Rr2 cosh( 4π t

β
)+r2

2

r2r

⎤
⎦ , (98)
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where R, r are defined in terms of the boundary coordi-
nates as p3+p2

2 ,
p3−p2

2 respectively. In the above equation, we
obtained the minimum length of the bulk EWCS for φ = 0.
Thus the corresponding result matches with the replica tech-
nique expression using the proposal Eq. (14).

Configuration-14

We may obtain the expression of the bulk EWCS in this con-
figuration as shown in Fig. 9b by following a similar analysis
described in the earlier configuration. Thus the expression of
the bulk EWCS is given by

EW = c

3
log

⎡
⎣sech( 2π t

β
)
√
r2+(R−r2)2

√
r2+R2+2Rr2 cosh( 4π t

β
)+r2

2

r2r

⎤
⎦ .

(99)

Above expression matches with the replica technique result
using the proposal Eq. (14).

Configuration-15 and 16

In these configurations, the bulk EWCS as depicted in Fig. 9c
and d may be obtained by following a similar analysis
discussed in configuration-13 and 14. The only difference
in these configuration may be observed from the enclosed
entanglement wedge region for the subsystem A∪ B. There-
fore the bulk EWCS is given by Eqs. (88) and (89) for the
configurations 15 and 16 respectively.

4 Markov gap

In this section, we will compare the behaviour of the profiles
for the reflected entropy with that of the mutual information
for the bipartite mixed states in three different cases where
we will vary the subsystem sizes and the time. As mentioned
in the introduction the difference between the holographic
reflected entropy and the mutual information is described
as the holographic Markov gap as defined in the context of
quantum information theory and the Markov recovery pro-
cess. To this end we first considered bipartite mixed states of
adjacent subsystems in the reservoirs and obtained the pro-
files for the holographic reflected entropy by varying the size
of the subsystem and time. Similarly, we described the cor-
responding holographic mutual information for these phases
arising from the different structures of the RT surfaces sup-
ported by the subsystems. Subsequently we followed a sim-
ilar analysis for the case of disjoint subsystems and in all
the cases we demonstrated the behaviour of the holographic
Markov gap described in [166].

4.1 Adjacent subsystems

We first consider adjacent subsystems A and B of finite
lengths l1 and l2 respectively in both the TFD copies of the
radiation reservoirs to describe the holographic Markov gap.
In this context, the holographic mutual information for the
adjacent subsystems A and B is defined as

I (A : B) = S(A) + S(B) − S(A ∪ B), (100)

where S(X) is the holographic entanglement entropy of a
subsystem X . We will investigate the qualitative nature of the
holographic Markov gap for three different scenarios involv-
ing the subsystem sizes and time. For this purpose we will
utilize the structure of the RT surfaces associated with the
corresponding subsystems which was briefly described in
[158] for the communicating black hole configurations.

(i) Full system (A ∪ B) fixed, common point varied

We first consider the case where the entire reservoir region is
covered by the subsystem A∪B and the adjacent point is var-
ied on a constant time slice. In this case, we obtained various
phases of the holographic reflected entropy and the mutual
information that characterizes the Markov gap as depicted in
Fig. 10.

In the above figure, we observe different dominant con-
tributions to the reflected entropy for two adjacent subsys-
tems described in Sect. 3 while varying the common point.
Specifically, the configurations (1), (10) and (2) for the two
adjacent subsystems dominate in the consecutive phases of
the reflected entropy in Fig. 10.

(i i) Subsystem A fixed, B varied

Next we consider the size of the subsystem A to be fixed on
a constant time slice and analyzed the holographic Markov
gap with the variation of the size of the subsystem B. We
observed different phases of the reflected entropy and the
mutual information to describe the Markov gap for each as
shown in Fig. 11.

Similar to earlier case, we receive different dominant con-
tributions corresponding to various configurations described
in Sect. 3 to the reflected entropy while varying the size of the
subsystem B. In particular, we observe configurations (5),and
(1) dominate in the consecutive phase of the reflected entropy
as shown in Fig. 11.

(i i i) Subsystems A and B fixed, time varied

In this case, we fix both the size of the adjacent subsystems A
and B and analyze the behaviour of the holographic Markov
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Fig. 10 Schematics shows the variation of the correlation measures
reflected entropy (yellow) and mutual information (blue) for two adja-
cent subsystems A and B while the common boundary between them
is being shifted in the radiation reservoirs. In the y-axis, the correlation

measures are plotted with a scale factor of 6
c where c is the central

charge of the CFT2s located in the reservoirs and the Planck branes.
Here β = 1, t = 15, c = 500, φ0 = 30c

6 , φr = 30
π

, L = 16π
β

, ε = .001,
A ∪ B = [.01L , .99L]
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Fig. 11 Schematics shows the variation of the correlation measures
namely, reflected entropy (yellow) and mutual information (blue) for
two adjacent subsystems A and B with increasing size of the subsystem
B in the radiation reservoirs. In the y-axis, the correlation measures are

plotted with a scale factor of 6
c where c is the central charge of theCFT2s

located in the reservoirs and the Planck branes. Here β = 1, t = 20,
c = 500, φ0 = 30c

6 , φr = 30
π

, L = 16π
β

, ε = .001, A = [.01L , .15L]

gap with time. In particular, we consider the equal lengths of
the subsystems A and B Fig. 12.

Finally in the last case, we observe different dominant con-
tributions (10) and (2) dominate consecutively in the reflected
entropy for two adjacent subsystems as shown in Fig. 12.

4.2 Disjoint subsystems

We now consider a mixed state configuration of disjoint
subsystems A and B where a subsystem C is sandwiched
between them in both the TFD copies of the radiation reser-

voirs. Here we describe the holographic Markov gap in three
different scenarios involving the subsystem sizes and the
time. For the disjoint subsystems the mutual information is
defined as

I (A : B) = S(A) + S(B) − S(A ∪ B ∪ C) − S(C), (101)

where S(X) is the holographic entanglement entropy of a
subsystem X . Here we will utilize the structure of the RT
surfaces associated with the subsystems in question which
was again briefly described in [158] for the communicating
black hole scenarios.
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Fig. 12 Schematics shows the variation of the correlation measures
namely, reflected entropy (yellow) and mutual information (blue) for
two adjacent subsystems A and B while increasing the time t . In the y-
axis, the correlation measures are plotted with a scale factor of 6

c where

c is the central charge of the CFT2s located in the reservoirs and the
Planck branes. Here β = 1, c = 500, φ0 = 30c

6 , φr = 30
π

, L = 16π
β

,
ε = .001, A = [.01L , .5L] and B = [.5L , .99L]
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Fig. 13 Schematics shows the variation of the correlation measures
namely, reflected entropy (yellow) and mutual information (blue) for
two disjoint subsystems A and B while increasing common point. In
the y-axis, the correlation measures are plotted with a scale factor of 6

c

where c is the central charge of the CFT2s located in the reservoirs and
the Planck branes. Here β = 1, c = 500, φ0 = 30c

6 , φr = 30
π

, L = 16π
β

,
ε = .001 and A = [.01L , .15L]

(i) Subsystem A fixed, C varied

In this case, we fix the size of the subsystem A and gradually
vary the size of the subsystem C on a constant time slice. We
analyze the behavior of the holographic Markov gap from
the comparison between the reflected entropy described in
Sect. 3 and the mutual information in Eq. (101). We observe
different phases of the holographic Markov gap as shown in
Fig. 13.

In this case, we receive different dominant contributions
for various configurations described in Sect. 3 to the reflected
entropy for two disjoint subsystems while varying the size of
the subsystem C . We observe contribution (1) dominates in
the starting phase of the reflected entropy as shown in Fig. 13.
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Fig. 14 Schematics shows the variation of the correlation measures
namely, reflected entropy (yellow) and mutual information (blue) for
two disjoint subsystems A and B while increasing the size of the sub-
system B. In the y-axis, the correlation measures are plotted with a

scale factor of 6
c where c is the central charge of the CFT2s located in

the reservoirs and the Planck branes. Here β = 1, c = 500, φ0 = 30c
6 ,

φr = 30
π

, L = 16π
β

, ε = .001, A = [.01L , .15L] andC = [.15L , .30L]

(i i) Subsystems A and C fixed, B

Next we consider the size of the subsystems A and C to be
fixed on a constant time slice and analyze the behavior of
the holographic Markov gap while varying the size of the
subsystem B. We obtained various phases of the reflected
entropy and the mutual information as described in Fig. 14.

As earlier, we note that the reflected entropy curve in
Fig. 14 is dominated by various contributions from the con-
figurations describe in Sect. 3. Particularly, configurations (5)
and (1) of the reflected entropy for the disjoint subsystems
dominate the corresponding phases shown in Fig. 14.

(i i i) Subsystems A, B and C fixed, time varied

Finally in the last case, we considered equal sizes of the
subsystems A and B on a constant time slice and observed
various phases of the holographic Markov gap through the
analysis of the reflected entropy as obtained in Sect. 3 and
the mutual information in eq. (101) with the variation of the
time as shown in Fig. 15.

Once again in the last scenario, the reflected entropy for
the two disjoint subsystems receives different dominant con-
tributions from the configurations described in Sect. 3 with
increasing time t . Specifically, the configurations (10) and
(2) for the two disjoint subsystems dominate respectively in
the consecutive phases of the reflected entropy depicted by
the yellow curve in Fig. 15.

5 Summary and discussion

To summarize, we have computed the reflected entropy for
various bipartite mixed states described by adjacent and

disjoint subsystems at a finite temperature for the commu-
nicating black hole configurations in a Planck brane world
geometry. In this context, we considered a configuration
involving two eternal JT black holes with two finite sized
radiation reservoirs coupled to two quantum dots. The bulk
dual of the corresponding configuration was described by
an eternal AdS3 BTZ black hole geometry truncated by two
Planck branes. Interestingly, the gravitating nature of each
of the radiation reservoirs corresponding to the two Planck
branes could be demonstrated from the perspective of the
other brane. Note that for this configuration the two dimen-
sional eternal JT black holes are located on the Planck branes
with a single matter CFT2 described on the entire geometry
with transparent boundary conditions imposed at the inter-
faces of the radiation reservoirs and the Planck branes.

The reflected entropy for the mixed state configurations
in question was computed for the communicating black hole
configuration described above. We demonstrated the differ-
ent possible dominant channels for the multipoint twist corre-
lators involved in the computation of the reflected entropy in
the large central charge limit. In this context, we first investi-
gated the reflected entropy in the large central charge limit for
two adjacent subsystems located in the radiation reservoirs
utilizing the replica technique developed in [136]. Subse-
quently, we followed a similar analysis for the computation
of the reflected entropy of two disjoint subsystems located
in the radiation reservoirs. These field theory replica tech-
nique results were substantiated by explicit bulk holographic
computation of the EWCS in the dual brane world geometry.

Furthermore, we also analyzed the holographic Markov
gap as described in [166] between the reflected entropy and
the mutual information for various bipartite mixed states in
the context of AdS3/CFT2 correspondence. In this connec-
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Fig. 15 Schematics shows the variation of the correlation measures
namely, reflected entropy (yellow) and mutual information (blue) for
two disjoint subsystems A and B while varying the time t . In the y-axis,
the correlation measures are plotted with a scale factor of 6

c where c is

the central charge of the CFT2s located in the reservoirs and the Planck
branes. Here β = 1, c = 500, φ0 = 30c

6 , φr = 30
π

, L = 16π
β

, ε = .001,
A = [.01L , .45L], C = [.45L , .55L] and B = [.55L , .99L]

tion, we compared the holographic reflected entropy and the
mutual information for various bipartite mixed state configu-
rations under consideration. We obtained different profiles of
the holographic Markov gap in various configurations related
to the variation of size of the subsystems and time.

There are various fascinating future directions which can
be investigated to obtain a better understanding of the mixed
state entanglement structure in Hawking radiation. Follow-
ing some recent developments in [158,177,178], it will be
interesting to study other mixed state correlation measures
and their corresponding Markov gaps. One may also extend
the study of the present article to investigate the multipartite
correlations where it is expected to observe the characteris-
tics of the holographic Markov gap. We would like to address
some these interesting issues in the near future.
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