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Abstract In this paper, we study topological numbers for
uncharged and charged static black holes obtained in z = 3
Hořava–Lifshitz gravity theory in different ensembles, where
z measures the degree of anisotropy between space and time.
We first calculate the topological numbers for the uncharged
black holes by changing the value of the dynamic coupling
constant, and find that the black holes with spherical and flat
horizons have the same topological number. When the black
hole’s horizon is hyperbolic, different values of the coupling
constant generate different topological numbers, which can
be 1, 0 or −1. This shows that the coupling constant plays
an important role in the topological classification. Then we
study the topological numbers for the charged black holes
in different ensembles. The black hole with a spherical hori-
zon has the same topological number in canonical and grand
canonical ensembles. When the horizons are flat or hyper-
bolic, they have different topological numbers in canonical
and grand canonical ensembles. Therefore, the topological
numbers for the uncharged black holes are parameter depen-
dent, and those for the charged black holes are ensemble
dependent.
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1 Introduction

Topological approaches are effective ways for studying phys-
ical systems, which ignore the specific structure of the sys-
tems and focus on their general characteristics. Defects are
important tools for these approaches, as they reveal certain
properties of field configurations. Recently, a topological
approach has been used to research on the black holes [1]. In
this elegant approach, the black hole solutions are treated as
defects in the thermodynamic parameter space. Local ther-
modynamic stability and instability of a black hole are deter-
mined by positive and negative winding numbers, respec-
tively. The global characteristic is characterized by a topolog-
ical number which is sum of the winding numbers for all the
black hole branches at an arbitrary temperature. Each black
hole is endowed with a topological number, and then black
holes can be classified according to the values of the numbers.
This approach was based on Duan’s φ-mapping topological
current theory [2,3], and a key point is the construction of a
vector field. In [1], they defined the field through the intro-
duction of a generalized free energy. Based on this work, the
influences of the cosmological constant, angular momentum
parameters, charges, and other parameters on the topological
numbers in the different spacetimes have been extensively
researched, and many important results have been found [4–
35]. In black hole physics, topological approaches are not
limited to the study of black hole classification, but are also
used to study light rings and shadows, as well as other natures
of black holes [36–43].

In this paper, we study topological numbers for uncharged
and charged black holes obtained in the theory of z = 3
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Hořava–Lifshitz (HL) gravity in different ensembles. The
influence of a dynamical coupling constant for the uncharged
black holes and that of different ensembles for the charged
black holes on the topological numbers are discussed. HL
theory was proposed by Hořava [44–46], which is a non-
relativistic renormalizable theory of gravity at a Lifshitz
point. At short distances, this theory describes interacting
nonrelativistic gravitons. When the condition of detailed bal-
ance is restrictively obeyed, it is intimately related to topo-
logically massive gravity in three dimensions. At long dis-
tances, it reduces to the relativistic value z = 1, where z
measures the degree of anisotropy between space and time.
Therefore, this theory is seen as a candidate for the UV
completion of Einstein’s general relativity. Since the theory
was proposed, it immediately attracted much attention. Lü
first obtained the solutions for spherically symmetric black
holes and Friedman–Lemaître–Robertson–Walker cosmol-
ogy from the HL gravity action [47]. Subsequently, Cai et
al. considered a general dynamical coupling constant, and
obtained the solution of the topological black holes and dis-
cussed their thermodynamic properties [48–50]. The above
solutions are for the case of z = 3. The black hole solutions
of z = 4 HL gravity were gotten in [51] and their ther-
modynamics were studied in [52,53]. Compared with other
UV complete gravity theories, HL theory exhibits signifi-
cantly different UV behaviors. Meanwhile, different values
of the coupling constant and different ensembles may affect
topological numbers. Therefore, it is necessary to study the
topological properties of this theory and the influence of the
dynamic coupling constant on topological numbers.

The rest is organized as follows. In the next section, we
give a brief review of the topological approach proposed in
[1]. In Sect. 3, we study the influence of different values of
the dynamic coupling constant on the topological numbers
for the uncharged black holes. In Sect. 4, the influence of dif-
ferent ensembles on the topological numbers for the charged
black holes is studied. The last section is devoted to our con-
clusion and discussion.

2 Review of topological approach

In [1], the generalized free energy is defined by

F = E − S

τ
, (2.1)

where E and S are the energy and entropy of a system, respec-
tively. τ is a variable and can be seen as the inverse tempera-
ture of the cavity enclosing the black hole. This free energy
is off-shell except at τ = 1/T . An important vector is con-
structed via a thermodynamic approach,

φ =
(

∂F
∂rh

,− cot � csc �

)
. (2.2)

where 0 < rh < +∞ and 0 ≤ � ≤ π . Zero points of
the vector obtained at τ = 1/T and � = π/2 correspond
to the on-shell black hole solution. Other points are not the
solutions of Einstein field equations, and then they are the
off-shell states. φ� diverges at � = 0 and � = π , which
leads to that the direction of the vector is outward.

Using Duan’s φ-mapping topological current theory, one
can define a topological current [2,3]

jμ = 1

2π
εμνρεab∂νn

a∂ρn
b, (2.3)

where μ, ν, ρ = 0, 1, 2, a, b = 1, 2, ∂ν = ∂
xν and xν =

(τ, rh,�). τ is seen as a time parameter of the topological
defect, and na is a unit vector defined by φa

||φ|| (a = 1, 2) with

φa = (φrh , φ�) and ||φ|| is the norm of the vector φ. It is
easy to prove that current is conserved. Using the Jacobi ten-
sor εab Jμ(

φ
x ) = εμνρ∂νφ

a∂ρφb and two-dimensional Lapla-
cian Green function 
φa ln||φ|| = 2πδ2(φ), the current is
rewritten as [40]

jμ = δ2(φ) jμ
(

φ

x

)
, (2.4)

which is nonzero only when φa(xi ) = 0. Then a topological
number in a parameter region

∑
is obtained as follows

W =
∫

∑ j0d2x =
N∑
i=1

βiηi =
N∑
i=1

wi , (2.5)

where j0 = ∑N
i=1 βiηiδ

2(�x − �zi ) is the density of the
current, βi is Hopf index which counts the number of the
loops that φa makes in the vector φ space when xμ goes
around the zero point zi . Clearly, this index is always posi-
tive. ηi=signJ 0(φ/x)zi = ±1 is the Brouwer degree. wi is
the winding number for the i-th zero point of the vector in
the region and its values is independent on the shape of the
region.

3 Topological numbers for uncharged HL black holes

The action of the z = 3 Horava–Lifshitz theory is written as
[44,45]

I =
∫

dtd3x(L0 + L1),

L0 = √
gN

[
2

κ2 (Ki j K
i j − λK 2) + κ2μ2(�R − 3�2)

8(1 − 3λ)

]
,

L1 = √
gN

[
κ2μ2(1 − 4λ)

32(1 − 3λ)
R2

− κ2

2ω4

(
Ci j − μω2Ri j

2

) (
Ci j − μω2Ri j

2

)]
, (3.1)
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where κ2, λ, μ, ω and � are constant parameters, and the
Cotten tensor, Ci j , is defined by

Ci j = εikl
k

(
Ri
l − 1

4
Rδil

)
. (3.2)

Comparing the action to that of general relativity, one can get
the speed of light, Newton’s constant and the cosmological
constant,

c = κ2μ

4

√
�

1 − 3λ
, G = κ2

32πc
, �C = 3

2
�. (3.3)

L0 is equivalent to the usual Einstein-Hilbert Lagrangian
when λ = 1. In the HL theory, λ is the dynamical coupling
constant, susceptible to quantum corrections [44]. The cos-
mological constant is negative when λ > 1/3, and is positive
when λ < 1/3. In this paper, we only consider the negative
cosmological constant.

Cai et al. considered a general dynamical coupling con-
stant λ, and obtained the solution of the topological black
holes in the HL gravity [48,49]. The metric is

ds2 = −N 2(r) f (r)dt2 + dr2

f (r)
+ r2d�2

k, (3.4)

where d�2
k is the line element for two-dimensional space

with constant scalar curvature 2k. Without loss of generality,
we take k = 1, 0 and −1 which implies the spherical, flat
and hyperbolic horizons, respectively. The functions f (r)
and N (r) are given by

f (r) = k − �r2 − αrs, N (r) = γ r1−2s, (3.5)

where α and γ are both integration constants, and s is

defined by s = 2λ±√
2(3λ−1)

λ−1 . In [50], the authors studied the
thermodynamical properties of the charged and uncharged
topological black holes, and found some interesting result
which were never observed in Einstein gravity. The cosmo-
logical constant was seen as a fixed constant in the past.
Recently, it has been regarded as a variable related to pres-
sure, P = − �

8π
= 3

8πl2
, and its conjugate quantity is a

thermodynamic volume V . In this paper, we use the initial
expression of the cosmological constant. The mass, Hawking
temperature, entropy are [48]

M =
√

2κ2μ2�kγ

16
√

3λ − 1

(k − �rh)2

r2s
h

,

T = γ

4πr2s
h

[−�r2
h (2 − s) − ks],

S = πκ2μ2�k√
2(3λ − 1)

[
k ln(

√−�rh) + 1

2
(
√−�rh)

2
]

+ S0.

(3.6)

In the above equations, rh is the horizon radius and S0 is

a constant. When the speed of light c = κ2μ
4

√
�

1−3λ
=

2−s
1+s

κ2μ
√−�

4
√

2
and Newton’s constant are adopted, the mass

and entropy are rewritten as follows [50]

M = c3γ�k�

16πG

1 + s

s − 2

(
k − �r2

h

)2
r−2s
h ,

S = c3�k�

4G

1 + s

s − 2
[k ln(−�r2

h ) − �r2
h ] + S0. (3.7)

To study the topological properties, we adopt the definition
of the generalized free energy and get

F = c3γ�k�

16πGr2s
h

1 + s

s − 2

(
k − �r2

h

)2

−c3�k�[k ln(−�r2
h ) − �r2

h ] 1+s
s−2 + 4GS0

4Gτ
. (3.8)

We calculate the vector φ and obtain its components,

φrh = c3γ�k�
(
k − �r2

h

)
8πGr2s+1

h

1 + s

2 − s

[
2� + s

(
k − �r2

h

)]

−c3�k�

4Gτrh

1 + s

s − 2

(
k − �r2

h

)
,

φ� = − cot � csc �. (3.9)

Zero points of φrh determine the topological properties. Let
φrh = 0 and get the relation between rh and τ ,

τ = − 2πr2s
h

γ
[−2�r2

h − s(k − �r2
h )

] , (3.10)

which shows the change of the inverse temperature with the
horizon radius. To clearly and intuitively study the local and
global properties of the black holes, we use Eqs. (3.9) and
(3.10) and plot Figs. 1, 2, 3, 4, 5, 6 and 7. The influence of the
dynamical coupling constant λ on the topological numbers
is inversed in these figures. During the calculation, c = G =
�k = 1, and r0 is the length scale of the cavity surrounding
the black holes.

From the left picture of Fig. 1, we find that the horizon
radius decreases monotonically with the increase of τ ’s value,
which implies that there is only one on-shell black hole solu-
tion for an fixed τ ’s value and no phase transition to appear.
Thus the black hole is stable for any temperature. We use the
method developed in [1] and find that the winding number
is w = 1. We order τ/r0 = 50.00 and plot the picture of
the unit vector field in the right picture of the figure. There
is one zero point which is at (rh/r0,�)= (21.82, π/2) in the
picture. The winding number can also be calculated by using
the method in [40,41], and it is independent of loops that
surround the zero point. Thus we calculate it through the red
contour C1 in Fig. 1. Its winding number is 1, which shows
the stability of the black hole. The global characteristic is
characterized by the topological number for this black hole,
which is W = w = 1. In [10], the authors found that the
topological number for a four-dimensional Schwarzschild
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Fig. 1 Topological properties of the uncharged HL black hole, where
k = 1, s = 1/2, λ = 1, γ = 1 and �r2

0 = −0.00838. Zero points of
the vector φrh in the plane rh − τ are plotted in the left picture. The unit

vector field n on a portion of the plane �−rh at τ/r0 = 50.00 is plotted
in the right picture. The zero point is at (rh/r0,�) = (21.82, π/2)

Fig. 2 Topological properties of the uncharged HL black hole, where
k = 0, s = 1/2, λ = 1, γ = 1 and �r2

0 = −0.00838. Zero points of
the vector φrh in the plane rh − τ are plotted in the left picture. The unit

vector field n on a portion of the plane �−rh at τ/r0 = 50.00 is plotted
in the right picture. The zero point is at (rh/r0,�)= (20.00, π/2)
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Fig. 3 Topological properties of the uncharged HL black hole, where
k = −1, s = 1/2, λ = 1, γ = 1 and �r2

0 = −0.00838. Zero points
of the vector φrh in the plane rh − τ are plotted in the left picture. The

unit vector field n on a portion of the plane � − rh at τ/r0 = 60.00 is
plotted in the right picture. Zero points are at (rh/r0,�)= (2.89, π/2)
and (13.78, π/2), respectively

Fig. 4 Topological properties of uncharged HL black holes, where
k = 1, 0 or −1, s = 0, λ = 1/2 and �r2

0 = − 0.00838. Zero points of
the vector φrh in the plane rh − τ are plotted in the left picture. The unit

vector field n on a portion of the plane �−rh at τ/r0 = 40.00 is plotted
in the right picture. The zero point is at (rh/r0,�)= (14.31, π/2)
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Fig. 5 Topological properties of the uncharged HL black hole, where
k = 1, s = 1, λ = 3 and �r2

0 = − 0.08380. Zero points of the vector
φrh in the plane rh − τ are plotted in the left picture. The unit vector

field n on a portion of the plane � − rh at τ/r0 = 60.00 is plotted in
the right picture. The zero point is at (rh/r0,�)= (6.57, π/2)

AdS black hole is 0. Therefore, this black hole is different
from the Schwarzschild AdS black hole in topological class.

When k = 0, the horizon is flat and the topological prop-
erties are reflected in Fig. 2. It is clearly from the left picture
that the topological number is also 1 and there is no phase
transition. And then the winding number yielded by the zero
point is 1.

When k = −1, the metric (3.4) denotes the black hole
with a hyperbolic horizon and its topological properties are
shown in Fig. 3. There are two on-shell black hole solutions
in the left picture. In [1], the authors defined an annihilation
point and a generation point based on d2τ

dr2
h

> 0 and d2τ

dr2
h

< 0

at a certain point τc, respectively. Using these definitions,
we find that an annihilation point appears in the left picture
of the figure. This annihilation point divides the black hole
into a stable region and an unstable region, which yield the
winding numbers are 1 and −1, respectively. A second-order
phase transition occurs at the annihilation point. There are
two horizon radii for a same τ when τ < τc = 79.53, and
they coincide with each other at the annihilation point. When
τ > τc, there is no black hole existed in the left picture. The
positions of the zero points are shown in the right picture of
the figure and are located at (2.89, π/2) and (13.78, π/2),
respectively. The winding numbers corresponding to these
two points are 1 and −1, respectively. Thus the topological
number is 0.

When λ = 1/2, there is s = 0, and it is easy to find from
Eq. (3.10) that the value of τ is independent of k. Thus the

Fig. 6 Zero points of the vector φrh in the plane rh − τ , where k = 0,
s = 1, λ = 3 and �r2

0 = −0.08380

topological properties of the black holes with the spherical,
flat and hyperbolic horizons are shared by Fig. 4. In the figure,
the horizon radii decrease monotonically with the increase
of τ ’s value, which shows that the black holes are stable for
any temperature and the winding number is 1. The black
holes have a same topological number 1. The zero points are
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Fig. 7 Topological properties of the uncharged HL black hole, where
k = −1, s = 1, λ = 3 and �r2

0 = − 0.00838. Zero points of the vector
φrh in the plane rh − τ are plotted in the left picture. The unit vector

field n on a portion of the plane � − rh at τ/r0 = 40.00 is plotted in
the right picture. The zero point is at (rh/r0,�)= (7.01, π/2)

located at the same position. This shows that the dynamical
coupling constant λ plays an important role in the topological
class of the black holes.

When λ = 3, we get s = 1 and plot Figs. 5, 6 and 7.
From Fig. 5, we find that when the τ ’s value decreases at a
certain value, the horizon radius increase very fast. The black
hole is stable for any τ ’s value and its winding number is 1.
The zero point is at (rh/r0,�)= (6.57, π/2). Therefore, its
topological number is 1.

When k = 0, it is easy to find from Eq. (3.10) that the
τ ’s value is independent on the horizon radius. Therefore,
the variation of r/r0 with τ/r0 is a vertical line parallel to
the vertical axis in Fig. 6. The horizon radius is not affected
by the τ ’s value, and the black hole is stable. It is natural to
obtain the topological number of 1.

When k = −1, Fig. 7 is plotted. In the figure, the hori-
zon radius increase monotonically with the τ ’s value, which
shows that the black hole is unstable for any τ ’s value and its
winding number is −1. The zero point is at (7.01, π/2) for
τ/r0 = 40.00 and corresponds to the winding number −1.
Therefore, the topological number is −1.

Comparing Figs. 1, 2, 3, 4, 5, 6 and 7, it is evident that
the uncharged black hole with the spherical and flat horizons
have the same topological number. However, for the different
values of λ in the uncharged black hole with the hyperbolic
horizon, its topological numbers can be 1, 0 or −1. Therefore,
its topological number is parameter dependent.

4 Topological numbers for charged HL black holes in
different ensembles

The solution of the charged black hole in the HL grav-
ity theory with an electromagnetic field was gotten when
s = 1/2 and λ = 1 [48]. It is also given by the metric
(3.4). Now the functions N (x) = 1 and f (x) = k + x2

1−ε2 −√
ε2x4+(1−ε2)(c0x−q2/2)

1−ε2 . Taking the limit ε → 1, the solu-

tion becomes f (x) = k + x2

2 − c0
2x + q2

4x2 , which is the
AdS Reissner–Nordström black hole solution. Our interest
is focused on the solution with ε2 = 0. Taking ε2 = 0, the
function is

f (x) = k + x2 −
√
c0x − q2

2
, (4.1)

where x = √−�r , q and c0 are integral constants. c0 can

be expressed as c0 = 2k2+q2+4kx2++2x4+
2x+ , and x+ = √−�rh

is determined by f (x+) = 0, where rh is the horizon radius.

The black hole’s mass and charge are M = κ2μ2�k
√−�c0

16

and Q = κ2μ2�k
√−�q

16 , respectively. We also use speed of
light and Newton’s constant to rewrite the mass and charge
as follows,

M = c3�kc0

16πG
√−�

, Q = c3�kq

16πG
√−�

. (4.2)
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Fig. 8 Topological properties of the charged HL black hole in the
canonical ensemble, where k = 1 and �r2

0 = − 0.01. Zero points
of the vector φrh in the plane rh − τ are plotted in the left picture. The

unit vector field n on a portion of the plane � − rh at τ/r0 = 40.00 is
plotted in the right picture. The zero point is at (rh/r0,�)= (22.54, π/2)

The Hawking temperature, entropy and electromagnetic
potential are

T = √−�
6x4+ + 4k2x2+ − 2k2 − q2

16πkx+ + 16πx3+
,

S = −c3�k

4G�

(
2k ln x+ + x2+

)
+ S0,

� = q

x+
+ �0, (4.3)

respectively, where S0 and �0 are constants. In the follow-
ing, we study the topological numbers for this black hole in
canonical and grand canonical ensembles, respectively.

4.1 Topological numbers in canonical ensemble

For a canonical ensemble, there is only an exchange of energy
between the system and the external environment, and the
system’s temperature, volume and particle number remain
be unchanged. We use the definition of the generalized free
energy and get

F = c3�kc0

16πG
√−�

+ c3�k
(
2k ln x+ + x2+

) + 4S0

4G�τ
. (4.4)

According to the definition of the vector φ, its components
are

φrh = c3�k
(
2k2 + q2 − 4kx2+ − 6x4+

)
32πGx2+

− c3�k
(
x2+ + k

)
2Gτ

√−�x+
,

φ� = − cot � csc �. (4.5)

We let φrh = 0, and get the relation between τ and rh , which
is

τ = 16π(x3+ + kx+)√−�(6x4+ + 4kx2+ − 2k2 − q2)
. (4.6)

In this section, we also order c = G = �k = 1 and q = 1
to plot Figs. 8, 9 and 10 and to describe its topological prop-
erties. In the figures, we can get the winding numbers from
the change of rh with τ which reflects the local properties,
and the topological numbers which is the sum of the winding
numbers.

In Fig. 8, the radius of the event horizon monotonically
decreases with the increase of τ ’s value, which shows that
the black hole is stable for any τ ’s value and there is no phase
transition to appear. It is easy to get the winding number as
1. Thus the topological number for the black hole with the
spherical horizon is 1. When τ/r0 = 40.00, the unit vector
field n is plotted in the right picture of the figure. There is only
one zero point which is at (22.54, π/2), which also shows the
topological number is 1. In [1], the authors have found that
the topological number for the four-dimensional RN AdS
black hole is 1, therefore, both this black hole and the RN
AdS black hole belong to a class with a topological number
of 1.

It is also easy to find from Fig. 9 that the topological
number of the black hole with the flat event horizon is 1.
The zero point is at (21.12, π/2) in this figure.
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Fig. 9 Topological properties of the charged HL black hole in the
canonical ensemble, where k = 0 and �r2

0 = − 0.01. Zero points
of the vector φrh in the plane rh − τ are plotted in the left picture. The

unit vector field n on a portion of the plane � − rh at τ/r0 = 40.00 is
plotted in the right picture. The zero point is at (rh/r0,�)= (21.12, π/2)

Unlike the previous two figures, there are two curves in
Fig. 10. The upper curve represents a monotonic decrease
of the horizon radius with the increase of τ ’s value, which
leads to the winding number 1. For another curve, an anni-
hilation point divides the black hole into stable and unstable
regions, and their winding numbers are 1 and −1, respec-
tively. We used the approach in [14] to calculate the topolog-
ical number for the black hole with the hyperbolic horizon
by considering the combination effect of these two curves.
Therefore, the topological number is 1. In the right picture,
the zero points are at (rh/r0,�)= (4.38, π/2), (7.30, π/2)
and (15.38, π/2), which generate the winding numbers of
1, −1, and 1, respectively. On the other hand, a heat capac-
ity is an effective tool for distinguishing the thermodynamic
stability and second-order phase transitions in thermody-
namic systems [22]. The heat capacity of this black hole is

CQ = T
(

∂S
∂T

)
Q = (k−r2

h�)2[q2+2(k−r2
h�)(k+3r2

h�)]
2�(k−3r2

h�)[q2+2(k−r2
h�)2] . We focus

our interest on the case of k = −1. It is easy to obtain that the
heat capacity diverges at T−1 = τc = 52.75, which implies
that the second-order phase transition occurs. The heat capac-
ity is greater than zero at rh = 4.34 and 15.38, which means
the stability of the black hole. The heat capacity is less than
zero at point rh = 7.30, which indicates the instability of the
black hole.

4.2 Topological numbers in grand canonical ensemble

In the grand canonical ensemble, the system can exchange
the energy and charge with the outside, and its temperature,
volume and chemical potential remain be unchanged. Now
the generalized free energy is defined by

F = E − Q� − S

τ

= c3�kc0

16πG
√−�

− c3�kq

16πG
√−�

(
q

x+
+ �0

)

+c3�k
(
2k ln x+ + x2+

) + 4S0

4G�τ
. (4.7)

We use the definition of the vector φ, and get its components,

φrh = c3�k
(
2k2 − q2 − 4kx2+ − 6x4+

)
32πGx2+

− c3�k
(
x2+ + k

)
2Gτ

√−�x+
,

φ� = − cot � csc �. (4.8)

Solving φrh = 0 yields the relation

τ = 16π(x3+ + kx+)√−�(6x4+ + 4kx2+ − 2k2 + q2)
. (4.9)

We use Eqs. (4.8) and (4.9) and plot Figs. 11, 12 and 13 to
describe the topological properties. Clearly, the topological
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Fig. 10 Topological properties of the charged HL black hole in the
canonical ensemble, where k = −1 and �r2

0 = − 0.01. Zero points
of the vector φrh in the plane rh − τ are plotted in the left picture. The

unit vector field n on a portion of the plane � − rh at τ/r0 = 50.00 is
plotted in the right picture. The zero point is at (rh/r0,�)= (4.34, π/2),
(7.30, π/2) and (15.38, π/2), respectively

Fig. 11 Topological properties of the charged HL black hole in the
grand canonical ensemble, where k = 1 and �r2

0 = − 0.01. Zero
points of the vector φrh in the plane rh −τ are plotted in the left picture.

The unit vector field n on a portion of the plane �−rh at τ/r0 = 40.00 is
plotted in the right picture. The zero point is at (rh/r0,�)= (22.31, π/2)
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Fig. 12 Topological properties of the charged HL black hole in the
grand canonical ensemble, where k = 0 and �r2

0 = − 0.01. Zero points
of the vector φrh in the plane rh−τ are plotted in the left picture. The unit

vector field n on a portion of the plane �−rh at τ/r0 = 40.00 is plotted
in the right picture. The zero points are at (rh/r0,�)= (4.68, π/2) and
(20.76, π/2), respectively

Fig. 13 Topological properties of the charged HL black hole in the
grand canonical ensemble, where k = −1 and �r2

0 = − 0.01. Zero
points of the vector φrh in the plane rh −τ are plotted in the left picture.

The unit vector field n on a portion of the plane �−rh at τ/r0 = 40.00 is
plotted in the right picture. The zero point is at (rh/r0,�)= (0.82, π/2),
(11.04, π/2) and (18.83, π/2), respectively
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number for the black hole with the spherical horizon in Fig. 11
is 1, which is same as that in the canonical ensemble.

In Fig. 12, an annihilation point appears when τc = 75.09
and it divides the black hole into the stable and unsta-
ble regions. The phase transition occurs at this annihilation
point. In the stable region, the horizon radius monotoni-
cally decreases with the increases of τ ’s value. In the unsta-
ble region, the horizon radius monotonically increases with
the increases of τ ’s value. Its topological number is 0. The
zero points are at (rh/r0,�)= (4.68, π/2) and (20.76, π/2),
respectively.

There are two separate curves in Fig. 13. The upper left
curve has a stable black hole region and an unstable black hole
region, with a winding number of 1 and −1, respectively. The
phase transition occurs at the annihilation point τc = 48.12.
For another curve, a generation point and an annihilation
point divide the black hole into three regions. These three
regions correspond to a large black hole, an intermediate
black hole, and a small black hole, respectively. The winding
numbers for them are −1, 1, and −1, respectively. Thus the
topological number is −1. It is easy to find from the figure
that there is a small-large black hole phase transition near
an inverse temperature of τ/r0 = 116.00. The right picture
shows three zero points, which were obtained at τ/r0 =
40.00. The winding numbers corresponding to these three
zeros are −1, 1, and −1, respectively. Therefore, the sum of
the three also yields a topological number of −1. It should be
noted that when we take τ/r0 = 40.00, we can only obtain
three zero points. When τ/r0 = 116.00, three other zero
points can be obtained, which are not shown in the figure.
Considering the winding numbers in both cases, we can also
obtain a topological number of −1.

Compared with the results in the canonical ensemble, it
is not difficult to find that the black hole with the spherical
horizon has the same topological number in the canonical
and grand canonical ensembles, while the black holes with
the flat and hyperbolic horizons have different topological
numbers in the canonical and grand canonical ensembles.
Therefore, the topological numbers for the black holes with
the flat and hyperbolic horizons are ensemble dependent.

5 Conclusion and discussion

In this work, we studied the topological numbers for the
uncharged and charged black holes in the HL gravity. The
influence of the dynamical coupling constant λ on the topo-
logical numbers for the uncharged black holes has been
extensively discussed. For the charged black holes, their
topological numbers in the canonical and grand canonical
ensembles were studied. The numbers for these black holes
obtained in the work are listed in Tables 1 and 2.

Table 1 Topological numbers of uncharged HL black holes. BH is the
abbreviation for the HL black hole, and TNs is the abbreviation for the
topological numbers

Black hole solutions TNs

Uncharged BH with the spherical horizon 1

Uncharged BH with the flat horizon 1

Uncharged BH with the hyperbolic horizon 1, 0 or −1

Table 2 Topological numbers of charged HL black holes in different
ensembles. CE is the abbreviation for the canonical ensemble, and GCE
is the abbreviation for the grand canonical ensemble

Black hole solutions TNs in CE TNs in GCE

Charged BH with the spherical horizon 1 1

Charged BH with the flat horizon 1 0

Charged BH with the hyperbolic horizon 1 −1

For the uncharged black holes with the spherical and
flat horizons, their topological numbers are the same and
independent on the value of the coupling constant. For the
uncharged black hole with the hyperbolic horizon, different
values of the coupling constant result in different topologi-
cal numbers, which indicates that the topological number for
this black hole is parameter dependent. This coupling con-
stant plays an important role in the topological class of black
holes. We have also studied the topological numbers for the
charged black holes in the canonical and grand canonical
ensembles. In these two ensembles, the topological numbers
for the charged black hole with the spherical horizon are the
same. While the black holes with the flat and hyperbolic hori-
zons have different topological numbers in these two ensem-
bles. This shows that the last two black holes are ensemble
dependent.

On the other hand, according to topological classifica-
tion, the charged black hole with a spherical horizon and the
uncharged black hole belong to the same class because they
have the same topological number. Due to the fact that the
uncharged and charged black holes with flat and hyperbolic
horizons are parameter dependent and ensemble dependent,
respectively, it is necessary to consider the parameters’ val-
ues and ensemble’s selection when classifying them. Fur-
thermore, our work is limited to the influence of the dynamic
coupling constant on the topological numbers for the static
HL black holes. Whether this constant also has an important
influence on the number for rotating HL black holes needs
to be further confirmed in future work.

Data availability This manuscript has no associated data or the data
will not be deposited. [Authors’ comment: All data generated during
this study are contained in this published article.]
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