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Abstract In this paper, we employ gauge/gravity duality to
investigate the string breaking and melting of doubly-heavy
tetraquark that includes two heavy quarks and two light anti-
quarks in a holographic model at finite temperature. Firstly,
four different configurations of QQq̄q̄ are studied at differ-
ent separation distances of the heavy quarks at finite temper-
atures. At high temperature, QQq̄q̄ will melt at certain dis-
tances and the screening distance has been given for different
temperatures. As the temperature continues to increase, some
configurations of doubly-heavy tetraquark can not exist. Fur-
thermore, we investigate three decay modes of QQq̄q̄ and
compare the potential energy of QQq̄q̄ with that of QQq at
finite temperature.

1 Introduction

The gauge/gravity duality has been widely recognized as
a fundamental feature of quantum gravity, and extensive
research has been carried out in this field over the past two
decades, leading to many important findings [1]. Holographic
QCD offers a novel approach to study and compute the
properties of various physical phenomena in QCD. Studying
heavy quarkonium is beneficial for understanding the prop-
erties of quark–gluon plasma(QGP), as well as validate our
understanding of the interactions between hadrons and fun-
damental particles [2,3]. In holographic QCD, we can study
the interaction between quarks and antiquarks by placing a
pair of them inside a bulk. Then, we can utilize the tools
of string theory to calculate the interaction between the two
quarks and their corresponding potential energy.

The string breaking phenomenon is a result of the nonper-
turbative effects of QCD. Up to now, lattice QCD has been
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effectively utilized to investigate this phenomenon, albeit
limited to meson modes at zero temperature and zero chemi-
cal potential [4]. As is widely acknowledged, the environ-
ment in which tetraquark are situated can often be com-
plex. Therefore, introducing high-temperature factors into
the model to study the behavior of four quark potentials at ele-
vated temperatures can aid in better understanding the behav-
ior of tetraquark under extreme conditions. In previous stud-
ies, it has been discovered that under sufficiently high temper-
atures, thermal excitations produce a plasma of quarks and
gluons [5]. Subsequently, they discussed the potential at finite
temperatures [5–7]. The deformed AdS5 model [8–10] and
Einstein–Maxwell-Dilaton model are employed to compute
the quark–antiquark potential [11–28] in these researches.

Recently, at the Large Hadron Collider, the LHCb col-
laboration observed a hadron state that contains four quarks
[29,30]. This tetraquark contains two charm quarks, a ū and
a d̄ quark, with a mass of about 3875 MeV/c2. This finding
has renewed interest in studying the tetraquark theory. It is
worth noting that lattice gauge theory is still a fundamental
tool for studying non-perturbative phenomena in QCD, but
research results on the potential of QQq̄q̄ are limited [31–36].

The tetraquark model used in this paper was proposed
by Andreev [37]. This model assumes that the heavy quarks
are significantly heavier than the typical energy scale of the
system, allowing us to treat them as static. The interaction
potential between the quarks is determined by their relative
separation. The main reason for studying this model is that its
results on both quark–antiquark and tetraquark potentials are
consistent with lattice calculations and QCD phenomenol-
ogy [4,38]. At zero temperature, the timelike Wilson loop is
realized by a U-shaped macroscopic string for any interquark
separation. At finite temperature, we have seen that the string
configuration is either a pair of straight strings or U-shaped
[5]. Our technique for extracting the potential of QQq̄q̄ is
similar to the one used in lattice QCD. We extract the poten-
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tial from the expectation value of the QQq̄q̄ Wilson loop,
WQQq̄q̄(R, T ). The QQq̄q̄ Wilson loop consists of heavy
quark paths and light quark propagators. The separation dis-
tance between heavy quark pairs and the potential energy
relationship of the model were calculated and analyzed at
finite temperature [39–47]. Subsequently, three decay modes
of tetraquark were studied to determine the most probable
decay mode that occurs at high temperatures and to compare
it with the decay of three quarks.

Section 2 provides a brief review of the theoretical foun-
dation of the model and establishes a framework for study-
ing QQq̄q̄ at finite temperature. Section 3 involves numeri-
cal solutions for the energy and separation distance between
heavy quarks for these configurations at different tempera-
tures. This is followed by a discussion of the results in Sect. 4.
In this section, we will also discuss the melting of QQq̄q̄
strings at finite temperatures by analyzing potential energy
trends. Later in Sect. 5, the three types of decay modes in
the QQq̄q̄ model will be discussed and compared with the
decay modes in the QQq model. Finally, Sect. 6 presents the
summary and conclusion of this paper.

2 Preliminaries

In this paper, we extend the study of the potential for doubly-
heavy tetraquarks from zero temperature [37] to finite tem-
peratures. To begin our discussion on the potential of QQq̄q̄
at finite temperatures, let us first review the specific holo-
graphic model utilized in this paper. Following [37,48,49],
the background metric at finite temperatures is given by:

ds2 = esr
2 R2

r2

(
f (r)dt2 + d �x2 + f −1(r)dr2

)

+ e−sr2
g(5)
ab dωadωb, (1)

such model is a deformation of the Euclidean AdS5 space
of radius R, with a deformation parameter s [50]. In the
five-dimensional compact space (sphere) characterized by
the blackening factor f with coordinates ωa and f (r), the
Nambu–Goto action of a string is expressed as

SNG = 1

2πα′

∫ 1

0
dσ

∫ T

0
dτ

√
γ , (2)

here, γ represents an induced metric on the string world-
sheet with a Euclidean signature, while α

′
is a parameter

associated with the string. For the AdS5 space, we assume

that the blackening factor f takes the form f (r) = 1−
(

r
rh

)4
,

where f (0) = 1 at the boundary and f (rh) = 0 at the
horizon. The Hawking temperature, which is consistent with

the temperature of the dual gauge theory, can be defined as
T = 1

4π
|∂r f |r=rh .

Then, we consider baryon vertices which are string junc-
tions [51]. According to the AdS/CFT correspondence, they
are represented by a five-brane wrapped around the internal
space X at the point where three strings intersect and appear to
be joined together in five dimensions [52,53]. Correspond-
ingly, the antibaryon vertex is represented by an antibrane
in the AdS/CFT correspondence. At leading order α

′
, the

brane’s action is Svert = T5
∫
d6ξ

√
γ (6), whereT5 represents

the brane tension and ξ i denotes the world-volume coordi-
nates. If we choose static specifications ξ0 = t and ξa = θa ,
where θa represents the coordinates on X, then the resulting
action is as follows

Svert = τv

∫
dt

e−2sr2

r

√
f (r). (3)

Here, Tv is a dimensionless parameter defined by Tv =
T5Rvol(X), where vol(X) represents the volume of X, and
it serves as a free parameter. Additionally, we have the same
action for both baryon and antibaryon vertices Sv̄ = Sv at
finite temperature.

Finally, we consider the light quark located at the end of
the string, a scalar field that is coupled to the boundary of the
worldsheet via the open string tachyon Sq = ∫

dτeT [54].
Here, the integral is over a world-sheet boundary parame-
terized by τ ,and e is a boundary metric. Assuming a con-
stant background given by T(x, r) = T0 and worldsheets
with boundaries along lines in the t direction. Thus, the action
can be written as

Sq = m
∫

dt
e
s
2 r

2

r

√
f (r). (4)

Here, m = RT0 represents the mass of a point particle at rest,
with T0 as its mass. Therefore, the given action describes the
behavior of a point particle with mass T0 at rest. It should
be noted that the same action also describes the behavior of
light antiquarks located at string endpoints, and hence Sq̄ =
Sq . In this model, the interaction of quarks is described by
the string tension, which is consistent with Ref. [3].

The model parameters are selected as follows: g = R2

2πα
′ ,

k = τv

3 g and n = m
g . All our parameters are consistent with

Refs. [4,37,48,49] based on the lattice QCD. The value of
s is fixed from the slope of the Regge trajectory of ρ(n)

mesons in the soft wall model with the geometry Eq. (1).
This gives s = 0.45GeV2. Then, fitting the value of the
string tension σ to its value in [39] gives g = 0.176. Accord-
ing to the gauge/string duality g is related to the ’t Hooft
coupling. Next, the parameter m is adjusted to reproduce the
lattice result for the Q̄Q string breaking distance L(m)

c . With
L(m)
c = 1.22fm [39], it gives m = 0.538. The parameter n

123



Eur. Phys. J. C (2024) 84 :101 Page 3 of 14 101

Fig. 1 A static string configuration at small heavy-quark separation
distance. The heavy quarks Q are located on the boundary, whereas the
light antiquarks q̄ , baryon vertex V, and antibaryon vertex V̄ are situated
in the bulk of the five-dimensional space at rq̄ , rv and rv̄ , respectively.
rh represents the position of the black-hole horizon, while rw indicates
the position of a dynamic wall in the confined phase

is expressed in terms of the parameters of as n = m
g [4]. For

fixed the value of k, one should keep in mind two things.
First, the value of k can be adjusted to fit the lattice data for
the three-quark potential, as is done in [38] for pure SU (3)

gauge theory. Unfortunately, at the moment, there are no lat-
tice data available for QCD with two light quarks. Second,

the range of allowed values for k is limited to − e3

15 to − 1
4 e

1
4 .

We take k = − 1
4 e

1
4 simply because it yields an exact solution

to Eq. (20). Finally, the parameters of this article are as fol-

lows: s = 0.45 GeV2, g = 0.176, n = 3.057, k = − 1
4 E

1
4 ,

and c = 0.623 GeV in this model from Ref. [37] at zero tem-
perature. No other extra parameters are introduced in this
article.

3 The connected string configuration of QQq̄q̄

3.1 Small L

The configuration of QQq̄q̄ is illustrated in Fig. 1. The total
action for this system is given by the sum of the Nambu–Goto
actions, as well as the actions associated with the vertices and
antiquarks.

S =
5∑

i=1

S(i)
NG + 2Sv + 2Sq̄. (5)

We choose the static gauge ξ1 = t and ξ2 = r for
the Nambu–Goto actions, the boundary conditions for x(r)
become

x (1)(0) = −1

2
�, x (2)(0) = 1

2
�, x (1,2,3) (rv) = x (3,4,5)

(rv̄) = x (4,5)
(
rq̄

) = 0. (6)

Considering the boundary conditions, we get the total action

S = gT

(
2

∫ rv

0

esr
2

r2

√
1 + f (r) (∂r x)2 dr +

∫ rv̄

rv

esr
2

r2 dr

+2
∫ rq̄

rv̄

esr
2

r2 dr + 3k
e−2sr2

v̄

rv̄

√
f (rv̄)

+3k
e−2sr2

v

rv

√
f (rv) + 2n

e
1
2 r

2
q̄

rq̄

√
f
(
rq̄

))
.

(7)

Here ∂r x = ∂x
∂r , T = ∫ T

0 dt and the straight strings are
located at x = 0. For string (1) and (2), which correspond
to the first term in (7), we can derive the equation of motion
(EoM) for x(r) using the Euler–Lagrange equation. Thus, it
is found that

I = w(r) f (r)∂r x√
1 + f (r) (∂r x)2

, w(r) = esr2

r2 . (8)

I is a constant. We have ∂r x = cot α when r = rv , and I
can be expressed as

I = w(rv) f (rv)∂r x√
1 + f (r) (∂r x)2

, w(r) = esr2

r2 . (9)

Then ∂r x can be obtained:

∂r x

=
√

ω (rv)2 f (rv)2

(
f (rν) + tan2 α

)
ω(r)2 f (r)2 − f (r)w (rv)2 f (rv)2 .

(10)

Using Eq. (10), we can obtain an expression for the separation
distance L ,

L = 2
∫ rv

0

dx

dr
dr. (11)

Next, we calculate the potential energy of doubly-heavy
tetraquark. The energy of string (1) can be got from the first
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item in the Eq. (7),

E1 = S

T
= g

∫ rs

0

esr
2

r2 dr
√

1 + f (r) (∂r x)2. (12)

This expression is not well-defined, because the integral
diverges at r = 0. So we should subtract the divergent term

E1 = S

T
= g

∫ rv

0

(
1

r2 esr
2
√

1 + f (r) (∂r x)2 − 1

r2

)
dr

− g
rv

+ c, (13)

here c is a normalization constant. We can fix the constant
by fitting the lattice results. For the heavy quarkonium, we
can take 2c to fit the potential of heavy quarkonium with
lattice. The choice of the normalization constant c for the
energy of a single baryon configuration is equal to 3c. [55]
String (2) is calculated in the same way as string (1), and
thus E1 = E2. String (3) is described by the second term
in Eq. (7), and represents a straight string stretched between
the baryon vertex and antibaryon vertex. The energy can be
calculated as

E3 = S

T
= g

∫ rv̄

rv

esr
2

r2 dr. (14)

String (4) and string (5) are both described by the third term
in Eq. (7), and represent straight strings.

E4 = E5 = S

T
=

∫ rq̄

rv̄

esr
2

r2 dr. (15)

Then, we can get the energy of QQq̄q̄ for this configuration.

EQQq̄q̄ = g

(
2

∫ rv

0

(
esr

2

r2

√
1 + f (r) (∂r x)2 − 1

r2

)
dr

− 2

rv
+

∫ rv̄

rv

esr
2

r2 dr + 2
∫ rq̄

rv̄

esr
2

r2 dr

+3k
e−2sr2

v

rv

√
f (rv) + 3k

e−2sr2
v̄

rv̄

√
f (rv̄)

+2n
e

1
2 sr

2
q̄

rq̄

√
f (r q̄)

)
+ 2c.

(16)

It can be observed from Eq. (16) that energy is a function
of rv , α, and rh . To obtain the energy of this configuration,
we will solve the position of the light antiquark. One crucial
condition for equilibrium is that the net forces exerted on the
vertices and antiquarks must cancel out. According to the

model, the force (shown in Fig. 1) balance equation in the r
direction at rq̄ is given by:

2 fq̄ + e
′
4 + e

′
5 = 0. (17)

Here ei is the string tension [56]. By varying the action

with respect to rq̄ , we get the force fq̄=
(

0,−gn∂rq̄ (
e

1
2 sr2q̄

rq̄

√
f (rq̄))

)
, e

′
4=e

′
5=gw

(
rq̄

)
(0,−1) on the antiquark. Hence,

the Eq. (17) becomes

− 2nsr2
q̄ ( f

3
2 (rq̄)) + 2n( f

3
2 (rq̄)) − nrq̄ f

′(rq̄)

− 2 f (rq̄)e
sr2
q̄

2 = 0. (18)

rq̄ (the position of the light antiquark) is only a function of rh .
This equation gives us the position rq̄ at a fixed temperature.
Then, at rv̄ , the force balance equation is

fv̄ + e′
3 + e4 + e5 = 0. (19)

Here fv̄ is the force on the antibaryon vertex, and each force
is determined by

fv̄ =
(

0,−3 gk∂rv̄

(
e−2sr2

v̄

rv̄

√
f (rv̄)

))
,

e′
3 = gw (rv̄) (0,−1),

e4 = e5 = gw (rv̄) (0, 1).

Then, the force balance equation changes

(
4sr2

v̄ + 1
)
k
√

f (rv̄)e
−3sr2

v̄

− 1

2
kre−3sr2

v̄ f ′ (rv̄) + 1

3

√
f (rv̄) = 0. (20)

At fixed temperature, rv̄ can be determined via the above
equation. At rv , the force balance equation is

fv + e1 + e2 + e3 = 0, (21)

here the force on the baryon vertex is fv =(
0,−3gk∂rv (

e−2 sr2
v

rv

√
f (rv))

)
, and the string tensions at the

rv are e3 = gw (rv) (0, 1), e1 = gw
(
rv

)( − f (rv)√
tan2α+ f (rv)

,

− 1√
f (rv)cot2α+1

)
, e2 = gw (rv)

(
f (rv)√

tan2α+ f (rv)
,− 1√

f (rv)cot2α+1

)
.

α is the angle shown in Fig. 1. Putting these forces into
Eq. (21), the force balance equation becomes

(4sr2
v + 1)k

√
f (rv)e

−3sr2
v − 1

2
kre−3sr2

v f ′(rv)
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Fig. 2 A static configuration is formed by a slightly larger separation
distance of a heavy-quark pair. The baryon vertex and the antibaryon
vertex are in the same position. The force acting on the point is indicated
by the black arrow

+ 1

3

√
f (rv)(1 − 2√

f (rv) cot2 α + 1
) = 0. (22)

By taking the variation of the action with respect to rv , we
can deduce the relationship between rv and α.

3.2 Slightly larger L

The second configuration is shown in Fig. 2, and we consider
the second configuration as one in which a string (3) contracts
to a single point. The total action is now expressed by

S =
5∑

i=1,i �=3

S(i)
NG + 2Sv + 2Sq̄. (23)

We choose the same static gauge as before and the boundary
conditions are

x (1)(0) = −1

2
�, x (2)(0) = 1

2
�,

x (i) (rv) = x (4,5)
(
rq̄

) = 0. (24)

The separation distance of the slightly larger L is still
determined by Eq. (11), which is the same as that used for
the small L . Compared to the first configuration, the string
(3) in the second configuration contracts to a point. There-
fore, we need to consider other string tensions that satisfy
Eqs. (13)–(15). Then, the energy of the slightly larger L can
be expressed as

EQQq̄q̄ = g

(
2

∫ rv

0

(
esr

2

r2

√
1 + f (r) (∂r x)2 − 1

r2

)
dr

− 2

rv
+ 2

∫ rq̄

rv

esr
2

r2 dr + 3k
e−2sr2

v

rv

√
f (rv)

+3k
e−2sr2

v̄

rv̄

√
f (rv̄) + 2n

e
1
2 sr

2
q̄

rq̄

√
f (r q̄)

)
+ 2c.

(25)

As before, we will now proceed with solving the force
balance equation. The location of rq̄ can be determined using
Eq. (18). Then, the force balance equation at the point r =
rv = rv̄ is

fv + fv̄ + e1 + e2 + e4 + e5 = 0. (26)

Each force is determined by

fv = fv̄ =
(

0,−3gk∂rv (
e−2sr2

v

rv

√
f (rv))

)
,

e1 = gw(rv)

(
− f (rv)√

tan2α + f (rv)
,− 1√

f (rv)cot2α + 1

)
,

e2 = gw(rv)

(
f (rv)√

tan2α + f (rv)
,− 1√

f (rv)cot2α + 1

)
,

e4 = e5 = gw (rv) (0, 1) .

Then, the Eq. (26) becomes

(24sr2
v f (rv) + 6 f (rv) − 3r f ′(rv))ke−3sr2

v

− 2√
f (rv) cot2 α + 1

+ 2
√

f (rv) = 0. (27)

3.3 Intermediate L

The third configuration, as shown in Fig. 3, is characterized
by the compression of points rq̄ , rv̄ and rv into a single loca-
tion. The configuration of the total action is given by

S =
2∑

i=1

S(i)
NG + 2Sv + 2Sq̄. (28)

Choosing the static gauge in the Nambu–Goto actions as
before, then the boundary conditions can be obtained

x (1)(0) = −1

2
�, x (2)(0) = 1

2
�, x (i) (rv) = 0. (29)

Equation (11) gives us the separation distance in this config-
uration. To calculate the energies, we only need to consider
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Fig. 3 Static configuration at an intermediate separation distance of
a heavy-quark pair. The baryon vertex, antiquark and the antibaryon
vertex are in the same position. The force acting on the point is indicated
by the black arrow

the range from r = 0 to r = rv , as specified by Eq. (13).
Naturally, the energy of the configuration is

EQQq̄q̄ = g

(
2

∫ rv

0

(
esr

2

r2

√
1 + f (r) (∂r x)2 − 1

r2

)
dr

− 2

rv
+ 6k

e−2srv̄2

rv̄

√
f
(
rv̄)

+2n
e

1
2 sr

2
q̄

rq̄

√
f (r q̄)

)
+ 2c.

(30)

The force balance equation at the point r = rv = rv̄ = rq̄ is

fv + fv̄ + 2 fq̄ + e1 + e2 = 0. (31)

Each force is determined by

fv = fv̄ =
(

0,−3gk∂rv (
e−2sr2

v

rv

√
f (rv))

)
,

e1 = gw(rv)

(
− f (rv)√

tan2α + f (rv)
,− 1√

f (rv)cot2α + 1

)
,

e2 = gw(rv)

(
f (rv)√

tan2α + f (rv)
,− 1√

f (rv)cot2α + 1

)
,

fq̄ =
(

0,−gn∂rq̄ (
e

1
2 sr2

q̄

rq̄

√
f (rq̄))

)
.

Here rq̄ = rv̄ = rv , then, the Eq. (31) becomes

ke−2srv (24sr2
v f (rv) + 6 f (rv) − 3rv f

′(rv))

+ ne
1
2 sr

2
v (2 f (rv) − 2sr2

v f (rv)

− rv f
′(rv)) − 2

√
f (r)esr

2
v√

f (rv) cot2 α + 1
= 0. (32)

Fig. 4 Static configuration at a large separation distance of a heavy-
quark pair. There are two turning points at strings (1) and (2) and they
are symmetric about the Y-axis. The force acting on the point is indicated
by the black arrow

3.4 Large L

Figure 4 illustrates the fourth configuration. The total action
for this configuration, denoted as intermediate L , is given by
Eq. (28). We choose another static gauge ξ1 = t and ξ2 = x
in the Nambu–Goto actions and the boundary conditions are

r (1)(−L/2) = r (2)(L/2) = 0, r (i)(0) = rv. (33)

Then, the total action becomes

S =gT
( ∫ 0

−L/2

esr
2

r2

√
f (r) + (∂r x)2dx

+
∫ L/2

0

esr
2

r2

√
f (r) + (∂r x)2dx

+ 6k
e−2sr2

v

rv

√
f (rv) + 2n

e− 1
2 sr

2
q̄

rq̄

√
f (rq̄)

)
. (34)

The action for string (1) is given by the first term in Eq. (34).
The subsequent step is to compute the first integral.

I = w(r) f (r)√
f (r) + (∂xr)2

. (35)

I is a constant. At the r0 and rv points, we can obtain, respec-
tively

w(r) f (r)√
f (r) + (∂xr)2

= w(r0)
√

f (r0). (36)

w(rv) f (rv)√
f (rv) + tanα2

= w(r0)
√

f (r0). (37)
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Here ∂xr can be obtained from Eqs. (36), (37)

∂xr =
√

w(r)2 f (r)2 f (r0) − f (r)w(r0)2 f (r0)2

w(r0)2 f (r0)2 . (38)

The large L configuration has a turning point at r0, so the
distance between heavy quarks is calculated in two parts.
Then, the separation distance can be expressed as

L = 2(L1 + L2) = 2

(∫ r0

0

1

r ′ dr +
∫ r0

rv

1

r ′ dr
)

. (39)

Here r ′ denotes ∂xr . By substituting Eq. (38) into Eq. (39), the
separation distance can be obtained. The energy of string (1)

was calculated in two parts, which is similar to the separation
distance. Therefore, the energy of string (1) is given by

E1 = ER1 + ER2 = g
∫ r0

0
w(r)

√
1 + f (r)x ′2dr

+ g
∫ r0

rq̄
w(r)

√
1 + f (r)x ′2dr.

(40)

Same as the case of small L , we also need to subtract the
divergent term here. Thus, Eq. (40) can be expressed as

E1 = g
∫ r0

0

(
w(r)

√
1 + f (r)x ′2 − 1

r2

)
dr

+ g
∫ r0

rv
w(r)

√
1 + f (r)x ′2dr − 1

r0
+ 2c. (41)

String (2) is calculated in the same way as string (1). There-
fore, the total energy of the configuration is

EQQq̄q̄ =2g
∫ r0

0
(w(r)

√
1 + f (r)x ′2 − 1

r2 )dr

+ 2 g
∫ r0

rv
w(r)

√
1 + f (r)x ′2dr − 2g

r0

+ 6kg
e−2srv̄

rv̄

√
f (rv̄) + 2ng

e
1
2 sr

2
q̄

rq̄

√
f (rq̄) + 2c.

(42)

The force balance equation is the same as that for inter-
mediate L , and the expressions of force are also the same
as intermediate L . Equation (37) represents the functional
relationship between rv and α when the temperature is fixed.
We can first solve Eqs. (32) and (37), and then substitute the
numerical values into Eqs. (39) and (42) to obtain the solu-
tions for L and EQQq̄q̄ . For α, at small separate distance of
heavy quarks, as rv increases, the distance between the heavy
quarks increases, and the curvature of the string between
heavy quarks increases, causing α to decrease. When the
string reaches α = 0 and rv increases further, the string will
become an M-shape, at which point α becomes negative.

Fig. 5 r0 as a function of rv in the larger L configuration, where the
black line is r0 at T = 0, while the blue line is r0 at T = 0.08 GeV. rw
indicates the position of a dynamic wall

4 Numerical results and discussion

4.1 T = 0.08 GeV

At a low temperature of 0.08 GeV, the configurations of
QQq̄q̄ are confined. Below the black-hole horizon, there
exists a dynamic wall that prevents the string from cross-
ing. In this part, we investigate four configurations of QQq̄q̄
at this temperature.

First, we will give a discussion about the dynamic wall at
finite temperature. Different from the quark–antiquark pair,
the configuration of QQqq shows a “M” shape at large sep-
aration distance. Thus, the maximum value of r0 at infi-
nite separation distance gives the position of dynamic wall.
By calculating the position of the dynamic wall, we obtain
rw = 1.40 GeV−1 at T = 0 and rw = 1.45 GeV−1 at
T = 0.08 GeV as shown in Fig. 5. The increase of tem-
perature leads to an increase of the position of dynamic wall
in the r direction.

For small L , we use Eq. (18) to calculate the position
of the antiquark. The result shows that at a temperature of
0.08 GeV, rq̄ = 1.13 GeV−1. Subsequently, the antibaryon
vertex position can be calculated using Eq. (20), which yields
rv̄ = 0.445 GeV−1. Within the range of 0 < r < rv , we can
calculate α using Eq. (22), as illustrated in Fig. 6. It can be
observed that α exhibits a decreasing trend as rv increases.
Then, the separation distance of a heavy-quark pair and its
corresponding energy can then be obtained using Eqs. (11)
and (16), respectively. These results are presented in Fig. 10
and Fig. 11.
When rv increases to rv̄ , it reaches a critical value and tran-
sitions to the second configuration. In the second config-
uration, we can still determine the position of antiquark
using Eq. (18). Subsequently, we use Eq. (27) to obtain α,
as depicted in Fig. 7. α exhibits an increasing trend as rv
increases, reaching its peak when rv = rv̄ . Next, we can
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Fig. 6 α as a function of rv in the small L configuration. The unit for
rv is GeV−1

Fig. 7 α as a function of rv in the slightly larger L configuration. The
unit for rv is GeV−1

obtain the separation distance and energy of the second con-
figuration using Eqs. (11) and (25), and it is observed that as
rv increases, L and E also exhibit an upward trend. When rv
reaches rv̄ , it attains its maximum value. Beyond this point,
the configuration switches to the third configuration.

In the third configuration, rv̄ overlaps with the rq̄ point.
Using Eq. (32), we can establish a functional relationship
between rv and α, as shown in Fig. 8. Clearly, α exhibits a
linear decrease with increasing rv until it reaches 0. E and
L can be obtained using Eqs. (11) and (30). In this config-
uration, E varies linearly with L . When rv exceeds rq̄ , the
configuration shifts into the fourth configuration.

Then, in the configuration with large L , as rv increases
below the dynamic wall, strings (1) and (2) exhibit turning
points. α continues to decrease as rv increases, as shown
in Fig. 9. However, unlike before, α becomes negative. As
shown in Fig. 9, the maximum value of rv is 1.40 GeV−1,
which corresponds to the position of the dynamic wall at
rw ≈ r0 ≈ 1.45 GeV−1. We can obtain E and L using
Eqs. (39) and (42).

At T = 0.08 GeV, the separation distance and energy
plots for the tetraquark configuration are illustrated in

Fig. 8 α as a function of rv in the intermediate L configuration. The
unit for rv is GeV−1

Fig. 9 α as a function of rv in the large L configuration. The unit for
rv is GeV−1

Fig. 10 Separation distance L as a function of rv , where the black line
represents the configuration with small L , blue represents slightly larger
L , orange represents intermediate L , and red represents larger L . The
unit of L is in fm and that of rv is in GeV−1

Figs. 10 and 11, respectively. As can be observed from the
figure, there is a smooth connection of L for each configura-
tion. As rv increases, L also approaches infinity. This implies
that rv cannot be infinite, and when the maximum value is
exceeded, the configuration will decay into another state. We
will discuss this further in the upcoming section. The energy
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Fig. 11 Energy E as a function of separation distance L at T = 0.08
GeV. The black line represents the configuration with small L , blue line
represents slightly larger L , orange line represents intermediate L , and
red line represents larger L . The unit of E is in GeV and that of rv is in
GeV−1

increases as the separation distance increases. Notably, the
energy is dominated by Coulomb potential at small separa-
tion distances and linear potential at large distances.

4.2 T = 0.115 GeV

At a temperature of T = 0.115 GeV, the configurations of
QQq̄q̄ are deconfined. For a deconfined QQq̄q̄, the melting
of QQq̄q̄ can happen at a certain separation distance. If the
separation distance of heavy quark–antiquark pair is small
enough, the QQq̄q̄ will not melt even at high temperature.
When increasing the distance of heavy quark–antiquark pair,
the color screening becomes important and the QQq̄q̄ will
melt. In summary, the dynamic wall disappears and QQq̄q̄
will melt at a sufficiently far distance in this stage.

Firstly, similar to T = 0.08 GeV, we focus on the first
configuration. The position of the antiquark can be deter-
mined using Eq. (18), which yields rq̄ = 1.1677 GeV−1

when T = 0.115 GeV. Next, we can calculate the posi-
tion of the antibaryon vertex using Eq. (20), which yields
rv̄ = 0.4626 GeV−1, and then use Eq. (22) to determine α.
L and E can still be obtained from Eqs. (11) and (16), respec-
tively. We can then proceed to investigate the second and third
configurations using a similar approach as the T = 0.08 GeV
calculation. This will enable us to determine the separation
distance and energy. As the value of rv continues to increase,
the value of L also exhibits a tendency to increase. However,
as L approaches a maximum value, it will tend towards infin-
ity, indicating that the quark is now free and large L configu-
rations will no longer be possible as shown in Fig. 12 [57–59].
First, similar to T = 0.08 GeV, we focus on the first configu-
ration. The position of the antiquark can be determined using
Eq. (18), which yields rq̄ = 1.1677 GeV−1 when T = 0.115
GeV. Next, we can calculate the position of the antibaryon
vertex using Eq. (20), which yields rv̄ = 0.4626 GeV−1,

Fig. 12 Energy E as a function of separation distance L at T = 0.115
GeV. The black line represents the configuration with small L , blue line
represents slightly larger L and orange line represents intermediate L .
The unit of E is in GeV and that of rv is in GeV−1

Fig. 13 Energy E as a function of separation distance L at T = 0.12
GeV. The black line represents the configuration with small L and blue
line represents slightly larger L . The unit of E is in GeV and that of rv
is in GeV−1

and then use Eq. (22) to determine α. L and E can still be
obtained from Eqs. (11) and (16), respectively. Subsequently,
we can investigate the second and third configurations at this
temperature by adopting the same method as the T = 0.08
GeV calculation, which allows us to determine the separa-
tion distance of heavy quarks and energy. As the value of
rv continues to increase, the value of L also exhibits a ten-
dency to increase. However, as L approaches a maximum
value (Lmax = 1.56fm), it will tend towards infinity, indi-
cating that the quark is now free and large L configurations
will no longer be possible [57–59]. The diagram of energy
and separation distance is shown in Fig. 12.

4.3 T = 0.12 GeV

To begin with, we can use Eq. (18) to determine the posi-
tion of the antiquark, which is rq̄ = 1.1785 GeV−1 when
T = 0.12 GeV. Next, we can use Eq. (20) to calculate the
position of the antibaryon vertex, which yields rv̄ = 0.46574
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Fig. 14 Energy E as a function of separation distance L at T = 0.15
GeV. The black line represents the configuration with small L . The unit
of E is in GeV and that of rv is in GeV−1

GeV−1. Following this, we can similarly obtain functional
expressions for α, L , and E as rv increased, which are illus-
trated in Fig. 13. As depicted in the figure, both L and E
exhibit linear growth with respect to rv , and the energy func-
tion E shows a Cornell-like potential. At slightly larger L ,
Eqs. (11) and (25) are employed to calculate the separation
distance and energy. However, at this temperature, as rv keeps
increasing, the configuration will eventually collapse, lead-
ing to the quark becoming a free state. Therefore, there exists
a maximum value of L , beyond which L will tend towards
infinity. Consequently, large values of L are not possible at
this temperature.

4.4 T = 0.15 GeV

At this temperature, using the force balance equation, the
position of the quark or antibaryon vertex is determined to
be rv̄ = 0.4726 GeV−1. However, we have discovered that
at this temperature there is no solution for the position of the
antiquark, rq̄ . Therefore, we have computed the separation
distance and energy for the first configuration, which are dis-
played in Fig. 14. As rv̄ surpasses a certain value, the QQq̄q̄
configuration collapses, resulting in the quark becoming free.

4.5 Short summary

Based on the calculation results of the QQq̄q̄ potential at the
above mentioned four temperatures, it shows that both rq̄
and rv̄ become larger and gradually approach the position of
the dynamic wall as the temperature increases. Furthermore,
the melting of the QQq̄q̄ configuration happens at a small
distance as the temperature increases. Comparing the two
lines for T = 0 and T = 0.11 GeV in Fig. 15, we observe
that as temperature increases, the same separation distance
L corresponds to a lower energy value. Besides, at small
distances, QQq̄q̄ exhibits Coulombic behavior, whereas at

Fig. 15 The blue dash line is the energy at zero temperature, while the
black line is the energy at T = 0.11 GeV

large distances, the behavior is linear at finite temperature
[60–62].

5 Decay modes

5.1 QQq̄q̄

During the confinement phase, quarks are confined within
hadrons. However, as the distance between heavy quarks
increases, the strings connecting them eventually break [63].
In this context, we shall consider three decay modes for QQq̄q̄
configurations.

↗ Qq̄ + Qq̄

QQq̄q̄ → QQq + q̄q̄q̄

↘ Qqq̄q̄ + Qq̄.

(43)

Figure 16 displays the configuration diagram for the three
possible decay modes. We will proceed to analyze the energy
of each disconnected configuration. Qq̄ consists of a funda-
mental string and an antiquark, with the total action given
by SQq̄ = SNG + Sq. QQq comprises two strings, a ver-
tex, and a light quark. The total action can be written
as SQQq = ∑2

i=1 S
(i)
NG + Svert + Sq̄ . On the other hand,

Qqq̄q̄ consists of four strings, a vertex, a antibaryon ver-
tex, a light quark and two antiquarks. The total action is
SQqq̄q̄ = ∑4

i=1 S
(i)
NG + Sv + Sv̄ + 2Sq̄ + Sq . Furthermore,

q̄q̄q̄ consists of a antibaryon vertex and three antiquarks, with
the total action Sq̄q̄q̄ = Sv̄ + 3Sq̄ . We employ the same static
gauge as before and obtain the total action for each config-
uration by specifying appropriate boundary conditions. The
detailed calculation process of the energy of each config-
uration is given in Refs. [48,49,55,56]. Subsequently, The

123



Eur. Phys. J. C (2024) 84 :101 Page 11 of 14 101

Fig. 16 Three disconnected configuration of QQq̄q̄

action of each decay is then calculated.

S1 = SQq̄ + SQq̄

S2 = SQQq + Sq̄q̄q̄

S3 = SQqq̄q̄ + SQq̄ .

(44)

The results of the calculation are shown in Fig. 17. Here,
we define the string-breaking distance as the intersection
point of the two energies. As shown in Fig. 17b, we can
see that when LQQq̄q̄ = 0.1870 fm, QQq̄q̄ will decay into
Qq̄ + Qq̄, and when LQQq̄q̄ = 1.3036 fm, QQq̄q̄ will decay
into Qqq̄q̄ + Qq̄. However, at zero temperature (as shown in
Fig. 17a), the former decay takes place at LQQq̄q̄ = 0.1874
fm, while the latter occurs at LQQq̄q̄ = 1.3147 fm. The
first scenario is linked to the process of vertex annihila-
tion, whereas the second pertains to the occurrence of string
breaking through the production of light quark pairs. The
QQq̄q̄ −→ Qq̄ + Qq̄ is the most possible decay mode.
The presence of small temperature will increase the string-
breaking distance a little bit. There is always a energy differ-
ence for QQq̄q̄ and QQq + q̄q̄q̄ as shown in Fig. 17. Thus, the
decay mode QQq̄q̄ −→ QQq + q̄q̄q̄ also will not happen.

5.2 The relation between QQq and QQq̄q̄

In this part, we will discuss the difference between QQq̄q̄
and QQq at a temperature of 0.08 GeV. The QQq configu-
ration has also garnered widespread attention. Similar to the
QQq̄q̄ configuration, the decay process QQq −→ Qqq + Qq̄
will occur in the QQq configuration at high temperatures. As
shown in Fig. 18, we calculated the two configurations sep-
arately as well as the energy after their decay. Then, QQq̄q̄
decays to Qq̄ at E = 2.3806 GeV(L = 0.1980 fm), and
QQq decays to Qqq + Qq̄ at E = 3.0167 GeV(L = 1.2646
fm). At lower energies and smaller separation distances, the
QQq̄q̄ configuration will decay, while QQq is more stable.
This difference may result from two distinct mechanisms:
string breaking by light quarks for QQq and string junction
annihilation for QQq̄q̄.

Here, we also consider another relation in [29,37], which
is EQQqq = EQQq +EQqq −EqQ̄ . This relationship is derived
from heavy quark–diquark symmetry, as illustrated in Fig. 19.
Furthermore, similar to the case at zero temperature, we find
that relationship occurs at a very small separation distance
when T = 0.08 GeV. After L = 0.2662 fm, the poten-
tial energy of QQq̄q̄ and QQq + Qqq − qQ̄ continues to
increase. So there’s a slight difference in energy, specifi-
cally, the energy of QQq + Qqq − qQ̄ will be slightly higher
than that of QQq̄q̄. In addition, we find that the energy dif-
ference between before and after equation will occur after
L = 0.2396 fm when it is at zero temperature, and after
L = 0.2662 fm when it is at T = 0.08 GeV. The increase in
temperature will increase the critical distance for the appear-
ance of energy difference.

6 Summary and conclusion

This paper focuses on the melting and breaking of strings
in QQq̄q̄ at finite temperatures by using the five-dimensional
effective string model, and compares it with QQq under same
conditions. During the confinement phase, a dynamic wall
which strings cannot penetrate forms below the black-hole
horizon. As the temperature increases, the system enters the
deconfinement phase. In this phase, the dynamic wall dis-
appears, causing the QQq̄q̄ string to melt and the quarks to
become free. We investigate the energy of QQq̄q̄ at which
string melting occurs at four different temperatures. Subse-
quently, the study of three decay modes of QQq̄q̄ configura-
tion at high temperature is continued, and the temperature at
which the different decay modes occur is calculated. Finally,
we compare the decay model of the QQq̄q̄ configuration at
T = 0.08 GeV with that of the QQq and conclude that the
QQq configuration is more stable under the same conditions.
Ultimately, we aim to provide additional insights for experi-
ments through our study of the effective string model in the
future work.
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