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Abstract A new class of exact solutions depicting anisotropic
compact objects is presented in the current work. This spher-
ically symmetric matter distribution assumes a specific form
of anisotropy to obtain the exact solution for the field equa-
tions. The obtained interior solutions are smoothly matched
with the Schwarzschild exterior metric over the bounding
surface of a compact star and together with the condition
that the radial pressure vanishes at the boundary, the form
of the model parameters are attained. One of the interesting
features of the obtained solutions is the codependency of the
metric potentials. We have considered the pulsar 4U1608-52
with its current estimated data (mass = 1.57+0.30

−0.29 M� and
radius = 9.8±1.8 km [Özel in Astrophys J 820(1):28, 2016])
to study the model graphically. Moreover, we have studied
the physical features and some important stability conditions
for the model. Tabular comparison with other known pul-
sars infers that the obtained model represents a compact star
within a radius of 8–12 km. Finally, we have found the angu-
lar momentum that causes the dragging of inertial frames of
the slowly rotating equilibrium compact objects.

1 Introduction

The study of nature and the internal structure of compact
objects, i.e. white dwarfs, neutron stars, black holes etc. is
one of the fascinating realms of Astrophysics. In the General
Theory of Relativity (GTR), since the astrophysical config-
urations primarily follow the local solutions of Einstein field
equations, obtaining one for spherically symmetric perfect
fluid solutions has been studied massively by researchers
across the world. The launchpad for examining the exact
solutions for spherically symmetric structures was provided
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in 1916 by the astounding work of Schwarzschild in obtain-
ing the first exterior solution [2] and the interior solution [3]
considering a uniform density sphere. Owing to the extreme
core density (> 1015 gm/cc), neutron stars provide one of
the best laboratories in the Universe to appraise many astro-
physical models in the strong gravitational field regime [4,5]
and are one of the most enigmatic stellar remnants with an
incredibly dense core and sturdy crust, enough to hold up
long-lived bulges that could produce potentially large ripples
in the space, known as gravitational waves [6]. The discov-
ery of the first pulsar in the year 1968 by Hewish et al. [7]
which was identified as a rotating neutron star, changed the
course of investigating neutron stars, although Tolman [8]
and Oppenheimer and Volkoff [9] developed a relativistic
theory of neutron stars even before its actual discovery.

Due to the high non-linearity of the Einstein field equa-
tions, several factors need to be taken care of for compact
stellar modelling. Among many other factors, the role of
pressure anisotropy (difference of the pressures) needs to be
considered due to the extreme and unusual conditions reign-
ing in the interior of compact objects [10]. Later, Leimatre
[11] examined the first anisotropic model entirely with tan-
gential pressure and constant density. In 1972, Ruderman
[12] theoretically observed that predominantly because of its
high density (> 1015 gm/cc) filled interior, the radial pressure
may not be equal to the tangential pressure in massive stellar
objects. It is well known that anisotropy can occur in any
astrophysical object due to several factors: very high mag-
netic field [13–20], pion condensation [21], phase transitions
[22], relativistic nuclear interactions [23], crystallization of
the core [24], superfluid core [25–27], viscosity [28–31]. In
recent times, Herrera [32] suggested that due to the asso-
ciation of various physical processes with highly compact
objects, anisotropic stress cannot be ignored in the interior
of a relativistic compact star. The relativistic compact object-
like neutron star configuration with anisotropic pressure was
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first modelled by Bowers and Liang [33]. The Bowers–Liang
model is primarily based on the following assumptions: (i)
the anisotropy should vanish quadratically at the origin. (ii)
the anisotropy should depend non-linearly on the radial pres-
sure, and (iii) the anisotropy is gravitationally induced [34].
Their study also claimed that the anisotropy might have non-
negligible effects on the surface redshift and the equilibrium
mass. A heuristic procedure to obtain interior solutions of
Einstein’s equations for anisotropic matter from any known
solutions for the isotropic matter was studied by Cosenza et
al. [35].

Several investigations have been conducted extensively
for anisotropic compact stellar objects, some of the remark-
able works are: the effect of the pressure anisotropy on the
maximum mass and the surface redshift is analysed in the
Vaidya–Tikekar model by Karmarkar et al. [36], and it is
shown that in the presence of anisotropic pressure, maxi-
mum compactness can be observed and also the red-shift and
the mass increase inside the structure, Dev and Gleiser [37]
studied the properties of spherically symmetric gravitation-
ally bound stellar objects with the anisotropic matter distribu-
tion and showed how drastically anisotropy might impact the
structure and the properties of a star, possible causes for the
appearance of local anisotropy (unequal principal stresses)
in self-gravitating systems and its main consequences are
studied by Herrera and Santos [38].

There are several known processes to solve the Einstein
field equations. Among all other prospects of obtaining an
analytic solution of the field equations, the simplest is to
assume that without the inclusion of electric charge, the mate-
rial content is isotropic, pr = pt . However, the inclusion of
anisotropy changes the number of unknown variables to five
(namely density ρ, radial pressure pr , transverse pressure
pt and two unknown metric potentials and with an electric
charge, the number rises to six), then it is necessary to pre-
scribe more information [39]. Another recipe to obtain the
solution is by imposing a specific equation of state (EoS)
or by making use of geometric constraints on the specific
spacetime geometry. This EoS links the main thermodynamic
functions of the fluid i.e., the energy density and pressure (in
the radial and tangential directions), and that describes the
microphysical processes of the system and it is estimated
to be a linear relationship between those physical observ-
ables. For a given EoS, the physical properties of a neutron
star can be analyzed by solving the Tolman-Oppenheimer-
Volkov equations. The simple linear form of EoS in the MIT
Bag model is assumed by many authors for studying compact
stellar modelling, [40–49] to name a few. Many investigators
have also assumed a quadratic form of EoS to model com-
pact stars [50–53]. Additionally, Chaplygin EoS [54], mod-
ified Chaplygin EoS [55], and Van der Waals type EoS [56]
are also considered for representing compact stellar models
with the anisotropic fluid. However, since the equation of

state of a compact star is not very clear yet, so by starting
with EoS, one generally lands on numerical methods lead-
ing to graphical results that lack the analysis of the local
properties of the matter close to the centre of such relativis-
tic stars. Thus, most researchers prefer to obtain the exact
solutions of the concerned Einstein’s field equations using
ad-hoc methods such as assuming one of the metric poten-
tials. The other metric potential is obtained using some addi-
tional conditions on the metric. Motivated by this conven-
tion, the current work assumes the metric potential grr in
the form of (1 + ar2)2 where a > 0 is the model param-
eter. One can easily see the metric potential resembles the
form of a modified Finch–Skea metric where the Finch–Skea
metric is of the form (1 + r2

R2 ), R > 0 being the curva-
ture parameter. The beauty of the Finch–Skea metric [57]
is that it is well-behaved, and it fulfills the criteria to be a
static spherically symmetric perfect fluid solution as sug-
gested by Delgaty and Lake [58] and also has been shown
to be consistent with the Walecka theory [59] for cold con-
densed stars. Moreover, the Finch–Skea metric is found to be
consistent with studying neutron stars, especially investigat-
ing the central densities of the neutron star in the relativistic
mean-field theory [60]. Recently, the Finch–Skea metric has
been studied in the background of mimetic gravity also [61].
One of the fascinating features of our obtained solution is
the codependency of the metric potentials. Although it does
not take the form of some known approaches such as embed-
ding class one method, conformally flat geometry and con-
formal motion, the link equations respectively being, eν =(
A + B

∫ √
eλ − 1dr

)2
, eν = C2r2 cosh2

(∫ eλ/2

r dr + D
)

and eν = c2r2exp
(−2k

B

∫ eλ/2

r dr
)

where A, B, C , D, c and

k are constants. However, the obtained solution and hence the
model is found to be stable under several conditions. Several
studies have been conducted using the Finch–Skea ansatz
and modified Finch–Skea ansatz for modelling anisotropic
compact stellar structure [62–73].

The study of rotating compact objects, in the context of
the general theory of relativity, is extremely significant as
it might generate information about unknown EoS at such
high densities [74]. Recent studies conducted by Neutron
Star Interior Composition Explorer (NICER) have placed
constraints on the masses and radii of X-ray pulsar PSR
J0740+6620 [75–77]. The study of slowly rotating compact
objects in the framework of general relativity was pioneered
by Hartle [78] in 1967 when his work provided the calcula-
tion for equilibrium configurations of slowly rotating stars to
the second order in the angular velocity. Hartle considered the
fluid interior to be characterized by one parameter EoS. Using
specific EoSs, Hartle–Thorne [79] studied equilibrium con-
figurations of rigidly rotating white dwarfs and neutron stars.
Later using Hartle’s method, Chandrasekhar and Miller [80]
studied the slow rotation of the homogeneous masses, which
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are characterized by constant energy density. They found that
the ellipticity of the configuration, for varying radius but con-
stant mass and angular momentum, displays the maximum
value at radius of the star(b)

Schwarzschild radius(bS)
≈ 2.4. Additionally, they found

that for stars having radius b = 9
8bS , the quadrupole mass

moment is very close to the value associated with the Kerr
metric to second order in the angular velocity. Motivated by
these, Posada [81] investigated the surface and integral prop-
erties of a slowly rotating Schwarzschild star in the unstud-
ied region of bS < b < 9

8 . Recently, the Hartle–Thorne
equations for slowly rotating relativistic masses, Posada and
Stuchlìk studied the slowly rotating Tolman VII fluid sphere,
at second order in the angular velocity [82]. A lot of literature
can be found in recent times that delve into approximating
slowly rotating compact configurations [83–87].

The layout of the present paper is given as: Sect. 2 offers
a brief highlight on the Einstein field equation and the novel
solution thus obtained describing the anisotropic configu-
ration. The expressions for the model parameter from the
smooth matching conditions at the boundary are discussed in
Sect. 3. The physical analysis and the stability analysis for the
obtained model are described in Sects. 4 and 5 respectively.
The nature of mass–radius, compactness and the equation of
state is described in Sect. 6. Considering the slow rotating
structure, we have studied the nature of the angular momen-
tum and the moment of inertia with respect to the radius and
central density in Sect. 7. Finally, the compatibility of our
model with some other known compact objects is illustrated
in Sect. 8 and the concluding remarks are given in Sect. 9.

2 Novel class of solutions of the Einstein field equations

The Einstein field equation is given by

Rαβ − 1

2
gαβR = 8πG

c4 Tαβ, (1)

where Ri j , gi j , R and Ti j are Ricci tensor, metric ten-
sor, Ricci scalar and energy–momentum tensor respectively.
Also, G represents the gravitational constant and c is the
speed of light. Now for the matter distribution of the stellar
interior to be anisotropic in nature, the energy–momentum
tensor is described as that of a perfect fluid and it is consid-
ered in the form,

Tαβ =
(

ρ + pt
c2

)
uαuβ − pt gαβ + (pr − pt )χαχβ, (2)

where ρ represents the energy density, pr and pt , respec-
tively denote fluid pressures along the radial and transverse
directions, uα is the 4-velocity of the fluid and χα is a unit
space-like 4-vector along the radial direction. Since we con-
sidered the configuration of our system to be in a comoving

coordinate system we have the following relations for the
4-vectors,

uαuα = 1; χαχα = −1; uαχα = 0. (3)

The energy–momentum tensor can always be brought in
the diagonal form Tαβ = diag(ρc2,−pr ,−pt ,−pt ). To
describe the space-time of the interior of a spherically sym-
metric star with zero angular momentum in Schwarzschild
coordinates i.e. in (t, r, θ, φ) coordinates we choose the line
element to be of the form as the following,

ds2 = −X2
0(r)dt2 + Y 2

0 (r)dr2 + r2(dθ2 + sin2 θdφ2), (4)

where X0(r) and Y0(r) are the gravitational potentials and
these metric functions are functions of the radial coordinate
r only.

Thus the spherically symmetric line element Eq. (4) then
provides the Einstein field equations governing the evolution
of the system (we set c = 1) as follows:

8πG

c2 ρ =
[

1

r2 − 1

r2Y 2
0

+ 2Y ′
0

rY 3
0

]
, (5)

8πG

c4 pr =
[
− 1

r2 + 1

Y 2
0 r

2
+ 2X ′

0

r X0Y 2
0

]
, (6)

8πG

c4 pt =
[

X ′′
0

X0Y 2
0

+ X ′
0

r X0Y 2
0

− Y ′
0

rY 3
0

− X ′
0Y

′
0

X0Y 3
0

]
, (7)

where ‘prime’ in Eqs. (5)–(7) denotes differentiation with
respect to the radial coordinate r . The system of field equa-
tions Eqs. (5)–(7) are highly non-linear as it consists of three
equations and five unknowns (ρ, pr , pt , X0, Y0) so to find
the exact solutions, any two of them can be chosen freely.
One of the methods of obtaining exact solutions is to specify
one metric potential and using another assumption (specific
equation of state or embedding condition etc.), we obtain
another one. In the present work, we are motivated to inves-
tigate the metric potential in this form considering it as a grr
metric and it is given by,

Y 2
0 (r) = (1 + ar2)2, (8)

where a > 0 is the model parameter. A similar kind of met-
ric potential was considered by Das et al. [88] for relativistic
anisotropic stellar models with spherically symmetric mat-
ter distribution in the Einstein Gauss–Bonnet (EGB) gravity.
The metric is finite, continuous and well-defined within the
stellar structure. Y 2

0 (r = 0) = 1 depicts the finite nature and
the non-singularity of the metric potential at the centre of the
stellar configuration. Also,

(
Y 2

0 (r)
)′
r=0 = 0 represents the

regularity of metric potentials at the centre. The anisotropic
parameter of the stellar system � is defined as the difference
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between two pressures [89] given in Eqs. (6) and (7),

�(r) = 8πG

c4 (pt − pr )

= X ′′
0

X0Y 2
0

− X ′
0

r X0Y 2
0

− Y ′
0

rY 3
0

− X ′
0Y

′
0

X0Y 3
0

− 1

r2Y 2
0

+ 1

r2

= ar
{
ar

(
ar2 + 3

)
X0(r) + r X ′′

0(r) − 3X ′
0(r)

}
(
ar2 + 1

)3
X0(r)

+ r X ′′
0(r) − X ′

0(r)

r
(
ar2 + 1

)3
X0(r)

. (9)

It is well known that anisotropy �(r) is assumed to vanish
at the interior of a stable stellar configuration i.e. pr (r) =
pt (r). The anisotropic force which is defined as 2�/r will
be repulsive or attractive in nature depending upon whether
pt > pr or pt < pr .

On rearranging Eq. (9) we get

X ′′
0(r)

X0(r)
− (1 + 3a2r)X ′

0(r)

r(a2r + 1)X0(r)

= r�(r)(ar2 + 1)3 − a2r3(ar2 + 3)

r(a2r + 1)
. (10)

Now the Eq. (10) can be solved for X0(r) if �(r) is specified
in a particular form. The anisotropy factor needs to be taken in
such a way that the regularity at the centre is satisfied and the
factor becomes a monotonically increasing function of the
radial coordinate ‘r ’ [90]. The increasing trend of anisotropy
generally yields a well-behaved solution. We are considering
anisotropy in a polynomial form such that the regularity and
the monotonically increasing condition are satisfied and at
the same time Eq. (10) can be easily integrable.
Thus we consider the second assumption by imposing that the
component gtt has no contribution to the anisotropy param-
eter, so,

�(r) = a2r2
(
ar2 + 3

)
(
ar2 + 1

)3 . (11)

The above choice for anisotropy is physically reasonable,
as at the centre (r = 0) anisotropy vanishes as expected.
Also d�(r)

dr is positive throughout the stellar structure as r
is positive, which makes �(r) a monotonically increasing
function. Now this choice of anisotropy provides a solution
to Eq. (10) in closed form. Substituting Eq. (11) in Eq. (10),
we obtain,

X ′′
0(r)

X ′
0(r)

−
(
3ar2 + 1

)

r(ar2 + 1)
= 0. (12)

We obtain a simple solution of the Eq. (12) in the form

X0(r) = Cr2

4

(
ar2 + 2

)
+ D, (13)

where C and D are integration constants and which will be
obtained from the boundary conditions. Interestingly one can
observe that both the obtained metric potentials are codepen-
dent and their link equation is given as,

Y 2
0 = 1 + 4a

C
(X0 − D). (14)

So one can argue that the line element takes the form of,

ds2 = −X2
0(r)dt2 +

[
1 + 4a

C
(X0(r) − D)

]
dr2 + r2(dθ2

+ sin2 θdφ2). (15)

With the choices of these metric potentials the matter den-
sity, radial pressure, transverse pressure and mass function
are now obtained as

8πG

c2 ρ = a
[
ar2

(
ar2 + 3

) + 6
]

(
ar2 + 1

)3 , (16)

8πG

c4 pr = 8C − aCr2{4 − ar2(ar2 + 4)} − 4aD(ar2 + 2)(
ar2 + 1

)2 (
aCr4 + 2Cr2 + 4D

) ,

(17)

8πG

c4 pt = 2C
[
3ar2

(
ar2 + 2

) + 4
] − 8aD

(
ar2 + 1

)3 [
Cr2

(
ar2 + 2

) + 4D
] . (18)

Moreover, the mass contained within a radius r of the
sphere is defined as

m(r) = 4π

∫ r

0
ω2ρ(ω)dω

= 1

2
ar3 2 + ar2

(1 + ar2)2 . (19)

3 Matching conditions at the stellar boundary

Since the Schwarzschild solution is the unique spherically
symmetric solution of the vacuum Einstein field equations,
so a spherically symmetric gravitational field in empty space
outside a spherical star must be static and asymptotically
flat. Now the continuity of the first fundamental form states
that the interior solution must match smoothly to the vacuum
exterior Schwarzschild solution at the boundary, provided
the mass remains the same as above [91]. Here the exte-
rior space-time for a non-radiating star can be described by
Schwarzschild metric and it is given as

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2(dθ2

+ sin2 θdφ2), (20)
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Fig. 1 Smooth matching of the metric potentials X2
0(r) and Y 2

0 (r) at
the boundary of the star

where r > 2 M , M being the mass of the stellar. This conti-
nuity of the metrices across the boundary leads to

X2
0(b) =

(
1 − 2M

b

)
and Y 2

0 (b) =
(

1 − 2M

b

)−1

.

(21)

Furthermore, the continuity of the second fundamental form
at the boundary states that the radial pressure drops to zero at
a finite value of r . This value is known as the radius of the star,
thus from the condition pr (r = b) = 0, one can easily find
the radius of the star (Fig. 1). Hence from the juxtaposition of
both first and second boundary conditions for the spacetime
and curvature, the model constants are determined in terms
of mass and radius of the star as,

a = b − 2M − √
b(b − 2M)

b2(2M − b)
,

C = M

b3 ,

D = M
[
b + 9

√
b(b − 2M)

] − 2M2 − 4b
√
b(b − 2M)

4b(2M − b)
.

(22)

The matching of metric potentials has been demonstrated in
Fig. 1.

4 Physical analysis of the obtained solution

This section dives into the analysis of the physical features of
the obtained result. For the graphical representation we have
chosen the pulsar 4U1608-52 with the mass = 1.57+0.30

−0.29 M�
and radius = 9.8±1.8 km [1] and the values of the constants
are found to be a = 0.00392534, C = 0.00246044 and D =
0.5858. For the sake of calculation, we have considered the

Fig. 2 Variation of the metric potentials X2
0(r) and Y 2

0 (r) with respect
to r

geometrized units as (G = c = 1). The detailed discussions
around some of the important physical features are given
below:

4.1 Regularity of the metric

The gravitational potentials for our model satisfy, X2
0(0) =

D = constant , Y 2
0 (0) = 1, i.e. both the metric potentials

are finite at the centre (r = 0). Also, we have (X2
0(r))′r=0 =

(Y 2
0 (r))′r=0 = 0, illustrates the regularity of the metric at the

centre and well-behaved nature throughout the stellar interior
(Fig. 2).

At the centre and throughout the structure, the matter vari-
ables should be regular and well-defined for a physically
acceptable model. Thus for a stable model, the density ρ,
radial pressure pr and the tangential pressure pt should be
positive inside the star and ρ(0), pr (0) and pt (0) should be
finite at the centre. Figure 3 shows that the density is posi-
tive throughout and the density decreases from its maximum
value at the center towards its boundary. Moreover, the cen-
tral density seems to be increased for the higher value of the
model parameter a. It is evident from the Figs. 4 and 5 that
our model satisfies the regularity of main thermodynamic
variables.

The radial and tangential pressures are also radially
decreasing outwards its boundary from its maximum value
at the centre. The radial pressure vanishes at the boundary
but the tangential pressure remains non-zero at the boundary.
A similar nature of transverse pressure can be seen in [92].
Additionally, the central density, central radial pressure and
central tangential pressure in this case are given as

ρ(0) = 6a, pr (0) = pt (0) = 2

D
(C − aD).

Since a is a positive quantity central density is always pos-
itive. The absence of anisotropy at the centre i.e. similarity
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Fig. 3 Radially symmetric profiles of the energy density (MeV/fm3)
is depicted corresponding to the compact star 4U1608-52

Fig. 4 Radially symmetric profiles of the radial pressure (MeV/fm3)
is depicted corresponding to the compact star 4U1608-52

of pr (0) and pt (0) can be seen in our model. However, the
anisotropy is increasing within the configuration as shown
in Fig. 6 indicating the direction of anisotropic force to be
outward, which proves the existence of a repulsive force
resulting in more compact objects using anisotropic force
rather than using isotropic force [93]. Using Zeldovich Con-
dition for density and pressure of stable configuration we
have, pr

ρ
≤ 1 at the center i.e. C

D ≤ 4a.

Fig. 5 Radially symmetric profiles of the transverse pressure
(MeV/fm3) is depicted corresponding to the compact star 4U1608-52

Fig. 6 Variation of anisotropy � against the radial coordinate r

4.2 Gradient

Any model is considered to be a viable model of anisotropic
compact star if the energy density and the pressure are maxi-
mum at the centre and are decreasing monotonically towards

the surface of the star i.e.
(
dρ
dr

)
r=0

= 0 =
(
dp
dr

)
r=0

and(
d2ρ

dr2

)
r=0

< 0,
(
d2 p
dr2

)
r=0

< 0 such that the gradients are

negative within 0 < r < b, b being the radius of the
star. Here the gradient of energy density, radial pressure and
tangential pressure are respectively obtained as follows,
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Fig. 7 Variation of the gradient of the radial pressure and the density
against the radial coordinate r

Fig. 8 Variation of different energy conditions plotted against radial
coordinate r

dρ

dr
= −2a2r

(
a2r4 + 4ar2 + 15

)
(
ar2 + 1

)4 ,

dpr
dr

= 2r
[
16a2D2

(
ar2+3

)+8aCD
(
a3r6+5a2r4+2ar2−4

)+C2
(
a5r10 + 7a4r8 − 8a3r6 − 60a2r4 − 64ar2 − 16

)]
(
ar2 + 1

)3 (
Cr2

(
ar2 + 2

) + 4D
)2 ,

dpt
dr

= −4r
[−8aCD

(
a2r4 + 2ar2 − 2

) − 48a2D2 + C2
(
9a4r8 + 36a3r6 + 56a2r4 + 40ar2 + 8

)]
(
ar2 + 1

)4 (
Cr2

(
ar2 + 2

) + 4D
)2 . (23)

The gradient of the density and radial pressure are shown to
be negative inside the stellar body in Fig. 7 throughout the
structure. However, the gradient of the tangential pressure is
seen to be non-negative in the configuration.

4.3 Energy conditions

The framework of General Relativity allows us to describe
energy conditions as the local inequalities that process a

Fig. 9 Static equilibrium under three different forces

relation between energy density ρ and pressures (pr , pt )
with some certain constraints. So a physically viable struc-
ture needs to satisfy some energy conditions throughout the
stellar interior. Although there are various ways to calculate
energy conditions, the focus mainly revolves around Null
Energy Condition (NEC), Weak Energy Condition (WEC),
Strong Energy Condition (SEC), Dominant Energy Condi-
tion (DEC) and Trace Energy Condition (TEC), defined as
follows

NECr : ρ(r) + pr (r) ≥ 0, NECt : ρ(r) + pt (r) ≥ 0,

WECr : ρ(r) ≥ 0, ρ(r) + pr (r) ≥ 0,

WECt : ρ(r) ≥ 0, ρ(r) + pt (r) ≥ 0,

DECr : ρ(r) − |pr (r)| ≥ 0, DECt : ρ(r) − |pt (r)| ≥ 0,

SEC : ρ(r) + pr (r) + 2pt (r) ≥ 0,

T EC : ρ(r) − pr (r) − 2pt (r) ≥ 0. (24)

For positive density and pressures, NECs and WECs are
bound to satisfy. So graphically we only have plotted both the
DECs, SEC and TEC in Fig. 8 and found that these energy
conditions are satisfied simultaneously by the presented solu-
tions. Now to obtain the bound on the model parameters let
us check the nature of TEC at the centre.

0 ≤ T EC |r=0 �⇒ C

D
≤ 2a.
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5 Stability analysis for the obtained solution

5.1 Stability under three forces

The stability of any star under hydrostatic equilibrium is anal-
ysed through the equation known as TOV equation [8,9] fol-
lowed by the name of Tolman–Oppenheimer–Volkoff. This
TOV equation states that any viable model must be stable
under three different forces viz. gravitational force, hydro-
statics force and anisotropic force and mathematically the
resultant forces must be zero throughout the star. TOV equa-
tion defines the internal structure of a spherically symmetric
compact stellar body and in the presence of anisotropy it is
defined as,

−MG

r
(ρ + pr )

X0(r)

Y0(r)
− dpr

dr
+ 2

r
(pt − pr ) = 0, (25)

where MG(r) is the effective gravitational mass and it can
be derived with the help of Tolman–Whittaker mass formula
given as,

MG(r) = rY0(r)X ′
0(r)

X0(r)2 . (26)

Using the expression of MG(r) in Eq. (26) we obtain the
expression as,

− X ′
0(r)

X0(r)
(ρ + pr ) − dpr

dr
+ 2

r
(pt − pr ) = 0, (27)

Equivalently Eq. (27) can be written as,

Fg + Fh + Fa = 0, (28)

where Fg, Fh, Fa are gravitational force, hydrostatics force
and anisotropic force respectively. Thus, the expressions for
gravitational force, hydrostatics force and anisotropic force
can be represented as,

Fg = − X ′
0(r)

X0(r)
(ρ + pr ), Fh = −dpr

dr
, Fa = 2

r
(pt − pr ),

respectively. For this model, the expressions for the several
different forces are as follows,

So
un

d 
Sp

ee
d

Fig. 10 Variation of sound velocity in the radial direction with the
radial coordinate r

Fg = −16Cr
[
C

(
3a2r4 + 6ar2 + 2

) + 4aD
]

(
ar2 + 1

)2 [
Cr2

(
ar2 + 2

) + 4D
]2 ,

Fh = −2r
[
16a2D2

(
ar2+3

)+8aCD
(
a3r6+5a2r4+2ar2−4

) + C2
(
a5r10 + 7a4r8 − 8a3r6 − 60a2r4 − 64ar2 − 16

)]
(
ar2 + 1

)3 (
Cr2

(
ar2 + 2

) + 4D
)2 ,

Fa = 2a2r
(
ar2 + 3

)
(
ar2 + 1

)3 . (29)

The variation of the several forces against the radial coor-
dinate is depicted in Fig. 9 and it can be seen that gravitational
force is negative, dominating in nature and is balanced by the
combined effect of hydrostatic forces and anisotropic forces
to keep the system in equilibrium.

5.2 Herrera cracking method

In an attempt to understand the (un)stability of any anisotropic
compact stellar objects, one of the important tests is to check
the overturning or the cracking of the model. The general idea
is that at both sides of the cracking point, the fluid elements
are accelerated with respect to each other. For self-gravitating
compact objects, the concept of cracking for anisotropic mat-
ter distribution is first studied by Herrera [94]. The cracking
condition suggests that for any stellar model to be physically
acceptable, the radial sound speed needs to satisfy the causal-
ity condition i.e. v2

r ≤ 1 (taking c = 1 and v = dp
dρ ). Also, Le

Chatelier’s principle suggests the sound speed to be positive
i.e. vr > 0. Now the expression for radial sound speed is
given as
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dpr
dρ

= −
(
ar2 + 1

)

a2
(
a2r4 + 4ar2 + 15

) [
Cr2

(
ar2 + 2

) + 4D
]2

×
[

16a2D2
(
ar2 + 3

)
+ 8aCD

(
a3r6 + 5a2r4 + 2ar2 − 4

)

+C2
(
a5r10 + 7a4r8 − 8a3r6 − 60a2r4 − 64ar2 − 16

) ]
,

dpt
dρ

= 2
[−8aCD

(
a2r4 + 2ar2 − 2

) − 48a2D2 + C2
(
9a4r8 + 36a3r6 + 56a2r4 + 40ar2 + 8

)]

a2
(
a2r4 + 4ar2 + 15

) [
Cr2

(
ar2 + 2

) + 4D
]2 . (30)

The fulfillment of the causality condition for our model is
shown in Fig. 10. Moreover, Abreu et al. [95] modified Her-
rera’s cracking concept to determine the stability of com-
pact objects by introducing a range for potentially stable
(or unstable) anisotropic compact structures. As per their
study, a potentially stable model should follow the inequality
−1 ≤ v2

t −v2
r ≤ 0 provided no sign change of v2

t −v2
r within

the stellar radius. Since the inequality −1 ≤ v2
t − v2

r ≤ 0
also holds for our model as shown in Fig. 11 so the model is
concluded to fulfill Herrera’s cracking concept. Furthermore,
to obtain the bound on the model parameter we obtain the
value of sound speed at the centre. Using causality condition
at the centre of the stellar structure leads to the following
inequality:

C(C + 2aD) ≤ 18a2D2.

5.3 Adiabatic index

Another basic test to examine the stability of stars is stabil-
ity against the adiabatic index. The nature of the equation
of state can be described by the adiabatic index for a fixed
energy density. Thus the stability of relativistic as well as
non-relativistic compact stars depends on the adiabatic index.
Now, for relativistic anisotropic structure, the adiabatic index

 is described as the ratio of two specific heats and is defined
as [96]


 = ρ + p

p

dp

dρ
, (31)

where dp
dρ is the velocity of sound in units of the velocity

of light. For a stellar structure to be stable, Bondi [97] sug-
gested for the Newtonian sphere the stability condition to
be 
 > 4

3 and for neutral equilibrium the stability condition
becomes 
 = 4

3 . Heintzmann and Hillebrandth [98] included
the anisotropy for a stellar sphere to be in equilibrium and
obtained the adiabatic index 
 must be > 4

3 . Later some
corrections were done by Chan et al. [96] for the case of
relativistic fluid and it is expressed as


 <
4

3

[
4

3

pt0 − pr0

r |p′
r0|

+ 8π

3

rρ0 pr0

|p′
r0|

]

max

, (32)

where ρ0, pr0 and pt0 are the initial density, radial and tan-
gential pressures respectively in unperturbed equilibrium.
Here the first term on the right-hand side of Eq. (32) cor-
responds to anisotropy and the second term represents the
relativistic corrections to the Newtonian perfect fluid. Now
critical value for the adiabatic index was introduced to tackle
the instability occuring from the correction term. This criti-
cal value depends on the compactness factor (u(r) ≡ m(r)

r )
and mathematically it is expressed as 
 ≥ 
cri t where

cri t = 4

3 + 19u
21 . We have checked the stability under the

adiabatic index for our model graphically in Fig. 12. Since
due to the presence of anisotropy, the growth of instability
might be slowed down which eventually leads to a gravita-
tional collapse in the radial direction [99], so we have plotted
only 
r and it shows that values of 
r are greater than 4

3
throughout the stellar configuration.

Fig. 11 Variation of the difference of sound speeds with radial coor-
dinate r
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Fig. 12 Variation of the adiabatic index with radial coordinate r

Fig. 13 Variation of the radial pressure with the density

6 Mass–radius for the model

6.1 Equation of state

One of the key aspects of studying compact stars is its equa-
tion of state (EoS). EoS primarily connects the radial pres-
sure of the model to its density and it follows p ≡ p(ρ).
The pressure-density relationship for the model is shown in
Fig. 13.

In the context of the pulsar 4U1608-52, the best fit for the
EoS of our model becomes pr = 0.050886ρ − 17.318 as
shown in Fig. 14.

6.2 Compactness and surface redshifts

Quite naturally the stability of any stellar model depends on
its mass and radius (Fig. 15). Thus the stellar stability can
be checked through a dimensionless ratio (mass to radius),
known as the compactness factor. Mathematically the ratio
2m
r should be less than 8

9 to be a stable compact structure.
This limit, known as Buchdhal limit [100], was suggested for
a spherically symmetric isotropic fluid sphere. However the
same can apply to the anisotropic sphere as suggested by sev-
eral works on compact stars. Additionally, the gravitational

Fig. 14 Linear fit (black dashed line) are shown for the pulsar 4U1608-
52

Fig. 15 Variation of mass function with radial coordinate r is increas-
ing in nature

interior redshift is given as

z =
(

1 − 2M

r

)−1/2

− 1. (33)

From Eq. (33) it is evident that interior redshift increases
with the increase of M

r . Since the compactness of a star satis-
fies Buchdahl’s condition there should exist an upper bound
for gravitational redshifts. For any self-gravitating compact
object, the surface redshifts zb should be less than universal
bounds when different energy conditions hold [101]. Specif-
ically for anisotropic fluid, the upper limit for the surface
redshifts become 5.211 and 3.842 in the presence of DEC
and SEC respectively [102].

6.3 Mass–radius relationship

The dynamic stability of any viable model can be examined
by observing its mass to radius relation. The mass of any
compact object opposing the gravitational collapse must be
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Fig. 16 Mass–radius relationship for the model

R
 (k

m
)

Fig. 17 Central density–radius relationship for the model

within the allowable mass for any stable structure [4]. For the
present model, we have chosen the surface density as ρ(r =
b) = 4 × 1014 gm/cc to obtain the mass–radius relationship
in Fig. 16. In Fig. 16 we have plotted some known compact
stars in the mass–radius plot which are best fit for our model
namely SAX J1748.9-2021 (mass = 1.81+0.25

−0.37M� and radius
= 11.7 ± 1.7 km), 4U1820-30 (mass = 1.46 ± 0.21M� and
radius = 11.1 ± 1.8 km), Vela X-1 (mass = 1.77 ± 0.08M�
and radius = 10.654 km), Her X - 1 (mass = 0.85 ± 0.15M�
and radius = 8.1 km) and GW170817 − 1 (mass = 1.45M�
and radius = 11.9 km).

For our model, it can be seen that our model allows max-
imum mass to be 3.841M� with the radius 12.4 km. This
model slightly exceeds the maximum allowable mass for a
neutron star, ≈ 3.2M� as suggested by Rhodes and Ruffini
[103] implying a more compact neutron star (Fig. 17).

6.4 Zeldovich–Harrison–Novikov condition

Any compact structure is considered to be stable if the
mass of the configuration increases with the increase of
central density. Mathematically any stable structure satisfies
dM(ρ(0))

ρ(0)
> 0. This stability criterion is known as Zeldovich–

Harrison–Novikov Condition [104,105]. Although this con-
dition is necessary one not a sufficient condition.

For our model, it is to be found,

M(ρ(0)) = 1

2

ρ(0)b3(2 + ρ(0)b2)

(1 + ρ(0)b2)2 ,

Fig. 18 Central density-mass relationship for the model

dM(ρ(0))

dρ(0)
= b3

(1 + ρ(0)b2)3 . (34)

We have plotted mass vs central density plot in Fig. 18 and it
is seen that mass is increasing with the increase of its central
density. Thus our model satisfies the Zeldovich–Harrison–
Novikov stability criteria. Additionally, we have also plotted
the radius vs central density plot in Fig. 17.

7 Slow rotating effect

Unlike Newtonian theory, the inertial frames within a
general-relativistic fluid do not remain stationary relative to
distant stars [106]. Instead, the local inertial frames are car-
ried along by the rotation of the fluid. This phenomenon,
rooted in general relativity, was initially explored by Thirring
in 1918 [107] and later examined in greater depth by Brill and
Cohen in 1966 [108], shedding light on its relationship with
Mach’s principle. Accurately determining the rate of rotation
becomes crucial for establishing equilibrium among gravita-
tional, pressure, and centrifugal forces. We now investigate
the effects of a slow rotation on these configurations.

7.1 Moment of inertia and time period

Recent studies on the masses and radii of X-ray radio pul-
sars are flourishing aspects of observational astrophysics and
obtaining moment of inertia plays a vital role in the mod-
elling of radio pulsars. Using Nuclear Spectroscopic Tele-
scope Array mission (NuSTAR) data, investigations on the X-
ray pulsars 1E 1145.1-6141 [109], IGR J19294+1816 [110]
have been studied in the recent past. Moment of inertia is
more sensitive to the EoS compared to other physical prop-
erties. With the change of soft EoS to the stiff one, theoreti-
cally the maximum mass of the star increases by a factor of
two, however, the maximum moment of inertia increases by a
factor of seven [111]. Thus it is relevant to study the moment
of inertia of a static system considering it as a slow rotating
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km
x I

Fig. 19 Moment of inertia with respect to mass for the model

one. Now let us study the stability of our model considering
a slow rotating system. One of the important features is to
observe the moment of inertia as it contains the square of the
radius. This means for a given mass, the moment of inertia
of a star is sensitive towards the stiffness of the equation of
state. It is examined by Bejger–Haensel [112]’s famous for-
mula that transforms a static system into a rotating one. The
formula is given by

I = 2

5
(1 + x)Mb2, (35)

where the parameter x is given by x = (M/M�)(km/b).
For the present work, taking the surface density ρ(r =

b) = 4 × 1014 gm/cc, we have plotted the moment of inertia
vs mass plot in the Fig. 19. The maximum mass here is found
to be 3.815M� with the corresponding moment of inertia of
515.5 km3. The decline of the maximum mass of the model
is about 0.68%. Since the difference of mass between non-
rotating and slow-rotating models at this rotation rate is of the
order of about 1% or less, it can be concluded the softening
of the equation of state without any strong high density due
to hyperonization or phase transition to an exotic state [113].
For any non-rotating structure, time period can be given as

τ ≈ 0.82

√
M�
M

(
b

10 km

) 3
2

ms. (36)

Now the variation of time period for the model with its mass
is given in Fig. 20 and the time period for the maximum
allowable mass for our model is 1.87 ms.

7.2 Moment of inertia vs central density relationship

Now we observe the moment of inertia in terms of the
static mass and the square of the static radius as a function
of the central density. Figure 21 depicts the nature of the
moment of inertia against the central density. It is seen that
with the increase of central density, the moment of inertia

Fig. 20 Profile for time period for the model

km
x I

Fig. 21 Nature of moment of inertia against the central density

decreases. Studies have shown that for higher central densi-
ties, a moment of inertia for static structure is almost similar
to that of rotating one [114,115]. For our model, the moment
of inertia decreases as some of the studies have suggested
[114].

7.3 Angular momentum-central density relationship

Let us now observe the nature of the angular momentum
of the model with the respect to central density. Figure 22
depicts that with the increase of central density, the angu-
lar momentum also increases. However, for our model, the
angular momentum is seen to be fixed around 0.28 kg m2/s .

7.4 Angular momentum–radius relationship

Another aspect of a slow-rotating structure is its nature of
angular momentum with the radius of the structure. We have
studied in Fig. 23, the profile of the angular momentum con-
sidering the structure as a rotating one. Here angular momen-
tum is seen to increase with the increase of the radius of the
configuration.

Additionally, Fig. 24 depicts the best fit for the angu-
lar momentum-radius curve and the best fit is found to be
exp[0.328b + 3.186].
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Fig. 22 Variation of angular momentum with the central density
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Fig. 23 Variation of angular momentum with the radius
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Fig. 24 Best fit for Fig. 23

Studying all the aforementioned profiles considering the
slowly rotating structure for the model, one can write the
spacetime for Kerr Metric in the form [116],

ds2 = −X2
0(r)dt2 + Y 2

0 (r)dr2 + r2(dθ2 + sin2 θdφ2)

+4J

r
sin2 θdφdt, (37)

where J can be approximated to be exp[0.328r + 3.186].
This angular momentum causes the dragging of inertial

frames and the metric given in Eq. (37) describes the grav-
itational field of the slowly rotating equilibrium compact
objects.

8 Compatibility of the model with some known stars

Let us investigate some important physical features and thus
the compatibility of the model with some known compact
objects. In Table 1, we have estimated the masses of the
known objects and thus compared the obtained radius with
the known one. Also, compactness and surface redshifts are
computed to test the stability of our model. For tabular calcu-
lation, additionally, we have considered an arbitrary massive
neutron star having mass 2.6 M� and radius 15.5 km [117].
In Table 1 it can be seen that for massive stars with radii
(> 12 km), the compactness factor fails to fall under the
prescribed limit. After checking the compatibility of masses
and radii of some of the known pulsars, we now check some
of the physical features of the model compatible with these
pulsars. Some of the thermodynamical properties, namely
density, sound speeds, and TEC: ρ − pr −2pt are calculated
in Table 2, both at the centre and at the surface. In Table 2, |0
and |b denote the value of these properties at the centre and
the surface respectively.

9 Concluding remarks

Our present work focuses on a simple anisotropic solution
that fulfils all the primary criteria of a compact stellar struc-
ture. We start off by selecting a specific form of metric
potential Y 2

0 (r). Imposing the additional condition on gtt
we obtain the specific form of anisotropy which leads us
to an exact solution. This solution is then matched with the
Schwarzschild exterior spacetime at the boundary to get the
expressions for the model parameters. We have examined
the obtained solutions for their physical regularity and sta-
bility under some important key features. For graphical illus-
tration, we have considered the pulsar 4U1608-52 with its
current estimated data (mass = 1.57+0.30

−0.29 M� and radius
= 9.8±1.8 km [1]). Some of the observations regarding our
results are as follows:

• Regularity of the metric and matter variables: We have
studied the metrices and the physical matter variables
ρ, pr , pt graphically in Figs. 2, 3, 4 and 5 and the met-
ric potentials and the matter variables are found to be
well-behaved and well-defined for the model. Also, the
anisotropy for the model increases throughout the struc-
ture as shown in Fig. 6 which forms a base for our model
to be a stable configuration.

• Negative gradients of matter variables: The derivatives
of radial pressure and density are found to be negative
throughout the stellar structure. However, the transverse
pressure gradient is seen to be non-negative in the config-
uration. Although right before reaching the surface (at 8.2
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Table 1 Mass and radius of some known compact objects

Compact objects Mass (M�) Observed radius (km) Estimated mass (M�) Compactness Redshifts

RXJ185635-3754 0.9 ± 0.2 6 0.3 0.0976 0.0527

Her X-1 0.85 ± 0.15 8.1 ± 0.41 0.7206 0.1779 0.10292

LMC X-4 1.04 ± 0.09 8.301 ± 0.2 0.7756 0.18686 0.10896

EXO 1785-248 1.3 ± 0.2 8.849 ± 0.4 0.9395 0.21235 0.12676

Vela X-1 1.77 ± 0.08 9.56 ± 0.08 1.1847 0.2478 0.15305

KS1731-207 1.61+0.35
−0.37 10 ± 2.2 1.356 0.2712 0.17136

EXO 1745-268 1.65+0.21
−0.31 10.5 ± 1.6 1.569 0.29898 0.19436

SAX J 17148.9-2021 1.81+0.25
−0.27 11.7 ± 1.7 2.1716 0.37123 0.2611

GW170817 1.45 ± 0.09 11.9 ± 1.4 2.28496 0.38403 0.27415

LIGO 1.4 12.9 ± 0.8 2.91 0.4513 0.3499

PSR J 1614-2230 1.97 ± 0.04 13 ± 2 2.9789 0.458 0.3586

Arbitrary Star 2.6 15.5 5.049 0.651 0.694

Table 2 Thermodynamic variables of the model

Compact objects ρ|0 ρ|b dpr
dρ |0 dpr

dρ |b T EC |0 T EC |b
RXJ185635-3754 0.05655 0.2798 0.01525 0.067668 0.05336 0.019094

Her X-1 0.0186 0.01183 0.005399 0.03497 0.0182334 0.009516

LMC X-4 0.02259 0.012903 0.008810 0.047506 0.02185 0.009715

EXO 1785-248 0.02517 0.0127 0.01426 0.06477 0.02384 0.00878

Vela X-1 0.031803 0.01246 0.03252 0.111564 0.02804 0.006987

KS1731-207 0.022804 0.010533 0.019322 0.07904 0.02118 0.006818

EXO 1745-268 0.01988 0.009413 0.017787 0.07485 0.01858 0.006211

SAX J 17148.9-2021 0.01562 0.00751 0.01688 0.07231 0.01464 0.005012

GW170817 0.01057 0.006151 0.008136 0.04517 0.01025 0.004686

LIGO 0.00767 0.004791 0.00592 0.03699 0.0075033 0.00381

PSR J 1614-2230 0.012241 0.006007 0.01577 0.06915 0.011528 0.004066

Arbitrary Star 0.01016 0.00449 0.022323 0.08695 0.00933 0.002806

km), the transverse pressure gradient becomes negative
for the rest of the configuration as seen in Fig. 7.

• Fulfillment of energy conditions: For any physically
acceptable model, their density and pressures undergo
some bounds, known as energy conditions. Several dif-
ferent energy conditions viz. DEC, WEC, NEC, SEC,
and TEC are studied for the model analytically. Graph-
ically, we have checked DEC, SEC and TEC in Fig. 8
and each energy condition is satisfied inside the stellar
structure. Additionally, we have tested TEC for various
known compact stars (both low mass and high mass) in
tabular form in Table 2.

• Stability under TOV equation: Effects of different forces
on the model for its stability are shown graphically in
Fig. 9, and it can be seen that the dominant gravitational
force is counterbalanced by the amalgamation of hydro-
static and anisotropic forces.

• Causality condition: The model satisfies the causality
condition (see Fig. 10) as the variation of the radial sound
speed is less than 1. To check the potentially (un)stable
region for any anisotropic model, the cracking method is
undoubtedly one of the important conditions for stability.
However, the model is shown to be in a potentially stable
region (−1, 0) as seen in Fig. 11 as suggested by Abreu
et al. [95].

• Stability under adiabatic index: The nature of the adi-
abatic index for the model is plotted in Fig. 12 and it
shows that the adiabatic index in radial direction becomes
greater than both 4

3 and also the critical value of the adia-
batic index from approximately 4.2 km. From the centre
to the radius of 4.2 km, the model does not fall under the
limit.

• Best fit for the EoS: Equation of state of any stellar struc-
ture is an important aspect in checking the properties
of the configuration. The relationship between density
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and pressure is depicted in Fig. 13, which shows the lin-
ear relationship. The linear relationship between pressure
and density is shown in Fig. 14 and the best fit is expressed
as pr = 0.050886ρ − 17.318.

• Compactness and surface redshifts: We have investigated
the mass function for the model graphically in Fig. 15,
and it can be seen it is an increasing function of r , and
it attains maximum value at the surface. Compactness
and surface redshifts are calculated in tabular form for
some known compact stars in Table 1. One interesting
feature of the model can be observed from Table 1 is that
for massive stars with radii (> 12 km), the compactness
factor fails to be under 0.44 as suggested by Buchdahl
[100].
Additionally, the surface redshifts for several different
stellar objects are seen to follow the upper bound ( < 2)
in Table 1.

• Discussions about central density: We have checked Har-
rison Zeldovich Novikov stability criteria by observing
the nature of the mass and central density profile, and
it is found that the mass of the model increases with the
increase of central density (see Fig. 18). Additionally, the
relationship between the angular momentum and central
density has also been observed in Fig. 22 and the model
is seen to fulfill increasing angular momentum with the
increase of central density. However, the value of angular
momentum later becomes fixed around 0.28 kg m2/s.

• Moment of inertia and time period: Considering the sur-
face density ρ(r = b) = 4 × 1014 gm/cc, we have stud-
ied the mass–radius relation for the model. The graph
is plotted in Fig. 16, and it can be seen that the model
assumes the maximum mass to be 3.84M� correspond-
ing to the radius 12.4 km. Additionally, we have plotted
some known compact objects in Fig. 16 for comparison
and here the pulsars SAX J 1748.9-2021 and 4U1820-30
are seen to be best fitted with the mass–radius plot of our
model.
One of the highlights of the present work is the obser-
vation of the structure as a rotating one. Using the
Bejger–Haensel formula we have studied the nature of the
moment of inertia of the model and hence obtain a graphi-
cal moment of inertia to mass relationship in Fig. 19. Here
the maximum allowable mass is 0.68% less than that of
our obtained maximum mass indicating the softening of
the equation of state of the model. Furthermore, the time
period of rotation considering the slow rotating configu-
ration is obtained to be 1.87 ms for our model as seen in
Fig. 20.

• Discussions around angular momentum: We have stud-
ied the profile of angular momentum for the model with
respect to central density (Fig. 22). Here the angular
momentum is seen to increase with the increase of central
density. However, for our model, the angular momentum

is seen to be fixed around 0.28 kg m2/s. We have also
investigated the angular momentum against the radius.
Figure 23 depicts the nature of angular momentum with
radius and it is seen to be increasing with the increasing
radius. Additionally, Fig. 24 depicts the best fit for the
angular momentum–radius curve and the best fit is found
to be exp[0.328b + 3.186] and this angular momentum
causes the dragging of the inertial frames in the system.
The Kerr metric considering the slowly rotating structure
is given in Eq. (37).

Another captivating fact regarding our model can be
inferred by comparing the work of Pandya et al. [118]. Apply-
ing the bounds on the model parameter one can get the fol-
lowing,

p|r=0 > 0 �⇒ 6C

D
> ρ0,

Zeldovich Condition �⇒ 3C

2D
≤ ρ0,

SEC |0 > 0 �⇒ 4C

D
≤ ρ0,

DEC |0 > 0 �⇒ 3C

2D
< ρ0,

Herrera Cracking �⇒
√

19C

18D
+ c

18D
< ρ0,

where ρ0 = 6a being the central density. Compiling all the
feasible conditions given above, the accepted bound for our

model turns out to be
√

19C
18D + c

18D < ρ0 < 6C
D . Additionally,

all the stability analyses vouch for the acceptability of the
model. It can be seen that the model depicts a stable model
with n = 2. Since Pandya et al. [118] have studied the upper
limit for the stable model to be n ≤ 4√

3
, the present work

can be considered as an extension of this paper with an extra
feature that that the obtained angular momentum causes the
dragging of inertial frames of the slowly rotating equilibrium
compact objects.

Hence, keeping in mind all of the above discussions it
can be concluded that a new class of model can be described
by the metric potentials. The fulfilment of several important
physical features and stability analysis support the model to
be a physically acceptable one.
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