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Abstract In this article, a new class of exact solutions for
anisotropic compact objects is presented. Admitting the mod-
ified Chaplygin equation of state p = Hρ − K

ρn , where
H , K and n are constants with 0 < n ≤ 1, and employ-
ing the Buchdahl-I metric within the framework of the gen-
eral relativity stellar model is obtained. Recent observations
on pulsars and GW events reveal that the observed maxi-
mum mass of compact stars detected so far is approximately
2.59+0.08

−0.09 M�. Since massive stars cannot be supported by
a soft equation of state, a constraint of the equation of state
must hold. The choice of a suitable equation of state for the
interior matter of compact objects may predict useful infor-
mation compatible with recent observations. TOV equations
have been solved using the modified Chaplygin equation of
state to find the maximum mass in this model. In particular,
the theory can achieve 3.72 M�, when H = 1.0, K = 10−7

and n = 1. The model is suitable for describing the mass
of pulsars PSR J2215+5135 and PSR J0952-0607 and the
mass 2.59+0.08

−0.09 M� of the companion star in the GW 190814
event. The 3.72 M� is hardly achievable theoretically in gen-
eral relativity considering fast rotation effects too. To check
the physical viability of this model, we have opted for the
stability analysis and energy conditions. We have found that
our model satisfies all the necessary criteria to be a physically
realistic model.

1 Introduction

Stellar evolution is one of the most fascinating phenomena in
astrophysics. Observational results of the stellar bodies have
provided the pathway to make new theories to study stellar
properties. With the development of general relativity, Ein-
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stein opened new vistas to test various theories in the grand-
est of scales. In general, compact objects are the end state
of stellar evolution. Therefore, the study of compact objects
provides theoretical insights into highly dense matter config-
urations. In the last decade, progress in the area of theoretical
modeling has made it smoother to transition from a theoret-
ical perspective to analytical solutions. In the recent past, a
large number of data from pulsars and GW events have been
collected and analysed by many investigators. Their analy-
sis predicted accurate estimations of many physical param-
eters of such astrophysical objects. The accurate estimation
of the mass of a compact object with the help of the Shapiro
delay [1] yielded a mass of (2.14)+0.10

−0.09 M� for the com-
pact object millisecond pulsar PSR J0740+6620. Since then,
the topic of the maximum mass of compact objects has also
been discussed. Apart from that, it is also argued that a hand-
ful of compact objects may exist that may achieve greater
masses than the mass of PSR J0740+6620 [1] in the group of
interacting systems. The gravitational wave event denoted as
GW 190814 has shown that the companion star has a mass
of 2.5 − 2.67 M� with 90% confidence [2]. However, it is
not clear to astrophysicists whether this component is a very
massive compact star or a light black hole. Hence, if the first
possibility is correct, then it is obviously necessary to include
a new concept in the theory to increase the range of maxi-
mum mass to accommodate such high mass values. Such
formalism would be important for the study of the internal
composition of dense matter above saturation density.

In this context, anisotropy in pressure plays a crucial role
in the maximum mass and radius of compact objects, as the
maximum mass and stability both increase with increasing
anisotropy. Following the work of Ruderman [3] and Canuto
[4], it is observed that anisotropy in the high density regime
(ρ > 1015 g/cm3) may appear locally and play a very impor-
tant role in describing the properties of the interior matter of
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compact objects. The origin of anisotropy in highly dense
compact objects can be explained with the natural examples
such as fermionic fields, electromagnetic fields in Neutron
stars [5], Pion condensation [6], Superfluidity [7] etc.. In
the review article [8], the origin of the local anisotropy was
investigated in detail. Additionally, it was established that the
possible source of local anisotropy may be viscosity [9].

To generalise the models of compact stars, Bowers and
Liang [10] imposed the idea of pressure anisotropy and
explored the dependence of stellar properties such as com-
pactness, and the mass–radius of the star, which exhibit a high
redshift. Heintzmann and Hillebrandt [11] studied the rela-
tivistic properties of anisotropic neutron stars and found that
in the context of arbitrarily large anisotropic factors, there
is, in principle, neither mass nor a redshift limit. A consider-
able number of works [12–20] have been devoted to studying
the spherically symmetric anisotropic stellar configuration
in static equilibrium after the pioneering work of Carter and
Langlois [7]. In addition, Kalam et al. [21] showed the depen-
dence of central density on the value of the anisotropy param-
eter. Anisotropic spherically symmetric modeling provides a
more generalised way to employ the equation of state (hence-
forth EoS). If the EoS is known, we can also distinctively
use the Tolman–Oppenheimer–Volkoff equation [22,23] to
determine the internal structure of the stellar configuration
as well as their maximum possible mass and radius.

It is well established that our present universe is passing
through an accelerated phase and that the ordinary matter and
fields of standard cosmology are not sufficient to sustain the
theories of an expanding universe. Significant modifications
regarding the matter distributions in Einstein gravity theories
are necessary to withstand the present-day observational cos-
mological results. In this backdrop, a new notion for matter
distribution has come up that must exert negative pressure.
Interestingly, exotic matter contains negative pressure, and
until now, the exact exotic matter EoS has not been identi-
fied. There are many EoSs that are used to describe exotic
matter, and the Chaplygin gas EoS is one such prime example.
The Chaplygin gas EoS [24–26] is represented as p = − A

ρ
,

where A > 0 and p and ρ are known as pressure and energy
density, respectively. This EoS has been generalised by Bento
et al. [27] in the form, p = − A

ρn , where n is a free param-
eter characterised by a range 0 < n ≤ 1. Consequently,
n = 1 generates the original Chaplygin EoS. A modified
form of the Chaplygin gas EoS (henceforth MCG) has been
considered by Liu and Li [28] in the context of cosmology
given as, p = Hρ − K

ρn . The MCG EoS is a more gener-
alised form taking three free parameters into consideration,
and it also covers the whole aspect of the original Chaplygin
gas EoS. Inside the very massive compact objects, it may be
possible that exotic matter may exist, which may be charac-
terised by MCG EoS. Benaoum [29] studied the accelerated
universe under the framework of the FRW metric incorpo-

rating MCG EoS. Gorini et al. [30] studied the solutions
of Tolman-Oppenheimer-Volkoff equations in static spheri-
cally symmetric space-time, including both the phantom and
non-phantom cases. Thakur et al. [31] explored MCG as a
viable choice for dark energy and obtained the numerical con-
straints of the free parameters. Bhar et al. [32] constructed
an anisotropic compact star model where the interior mat-
ter sector is characterised by MCG and the obtained mass
and radius results from the model are compared with the
observational results to a high degree of accuracy. To find
the exact solutions of EFE, the choice of metric potential
is very much important. For the spherically symmetric dis-
tribution of perfect fluid in static equilibrium, Delgaty and
Lake [33] tabulated a list of metric ansatzes to evaluate the
exact or closed solutions of EFE. Such solutions are impor-
tant to predict viable physical features of compact objects.
The Buchdahl-I metric [34] is very useful for studying the
properties of compact objects in this context. Durgapal and
Banerji [35] rederived the Buchdahl-I metric ansatz [34] for
the analytical modeling of relativistic fluid spheres in spher-
ically symmetric space-time. Maurya et al. [36] studied the
anisotropic compact star in the Buchdahl metric ansatz with
a simplified notion that the EoS can be approximated as a lin-
ear function of energy density. In another study, Maurya et al.
[37] used the Buchdahl metric ansatz to study the hydrostatic
equilibrium conditions for stellar structures within the frame-
work of modified f (R, T ) gravity theory. Apart from that
modeling of compact objects (both neutron star and exotic
star) in the framework of modified theory of gravity has been
studied in the articles [38–52].

Recent observations on pulsars and GW events along with
the latest accurate measurement of the maximum mass of a
compact object using Shapiro delay yields 2.14+0.1

−0.09 M� [1]
for millisecond pulsar MSP J0740+6620. Detection of GW
event GW190814 reveals that one component of the binary
system may have a mass of approximately 2.59+0.08

−0.09 M�,
which has puzzled the astrophysicist community. Therefore,
keeping in mind the stand of measurements, compact stars
may not be all made of self-bound hadronic matter, even
considering the anisotropic effect, which increases the max-
imum mass limit fairly above the 2 M� figure. Therefore,
necessary theory is essential to incorporate such a mass limit.
Therefore, it would be very important for the composition of
interior matter or simply the microphysics of the dense mat-
ter higher than the saturation density. Recently, the fastest
and heaviest pulsar PSR J0952-0607 detected in the disk of
the Milky Way galaxy of mass 2.35 M� may contain strange
quark matter in its composition, as observational evidence
supports it [53]. From the theory of the normal neutron star
model in GR, the prediction of such a high value of maxi-
mum mass is hardly obtainable even considering fast rotation
effects.

123



Eur. Phys. J. C (2024) 84 :77 Page 3 of 11 77

The above observational evidence motivated us to revisit a
class of self-bound stellar models taken into consideration in
the last couple of decades to allow feasible stellar sequences
to act in accordance with such a high maximum mass. The
solutions are presented and will be used to make comparisons
with recently published data for compact objects. The basic
aim of this study is to construct a suitable stellar model to
explain the properties of newly observed high-mass compact
objects which may be exotic kind of objects (composed of
dark energy or dark matter) and their physical features, such
as maximum mass, radius, energy density (ρ), radial (pr )
and transverse (pt ) pressures and pressure anisotropy (Δ).
Using the model, the radii of many pulsars and secondary
objects of GW events may be predicted.

The paper is organised as follows: In Sect. 2, a spheri-
cally symmetric line element is considered, and we solve the
Einstein field equations incorporating both the MCG EoS
[29] and Buchdahl metric ansatz [34] for the grr compo-
nent. In this section, we have determined the corresponding
metric potential (ν), energy density (ρ), radial (pr ) and tan-
gential (pt ) pressures and also the anisotropic factor (Δ). In
Sect. 3, we have matched the interior solutions with the exte-
rior vacuum geometry to compute the constants present in the
ansatz. Section 4 provides the necessary limits on the values
of free MCG parameters for a physically realistic model. In
Sect. 5, we graphically show the relationship between the
maximum mass and radius for this model. Here, we have
also predicted the radius of some recently observed com-
pact objects and compared them with the available values
estimated from observations. Section 6 deals with the graph-
ical representation of basic properties of a stellar configura-
tion. Section 6.1 is used to present the viability of the model
through the causality criteria. The energy conditions and their
radial variations are depicted through graphical representa-
tions in Sect. 6.2. In Sect. 7, we analyse the stability of the
model through the well-established methods of the gener-
alised TOV equation, the cracking condition proposed by
Herrera, the value of the adiabatic index and stability against
small radial oscillation through the Lagrangian perturbation
procedure, and it is found that the model obeys all the neces-
sary stability conditions. Finally, we conclude by discussing
the main findings in this model in Sect. 8.

2 Einstein field equations and their solutions with the
modified Chaplygin EoS

The spherically symmetric space-time in static equilibrium
is characterised by the line element given below:

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2θdφ2). (1)

The Einstein’s field equations (henceforth EFE) connecting
the matter and geometry are expressed as:

Ri j − 1

2
gi j R = 8πTi j , (2)

In relativistic units, G = c = 1 and Ti j is the stress-energy
tensor for the static matter distribution. The most general
anisotropic form of Ti j is given by

Ti j = diag(−ρ, pr , pt , pt ). (3)

Using Eqs. (1) and (3) in Eq. (2), the EFEs are given in the
following form

2e−2λλ′

r
+ (1 − e−2λ)

r2 = 8πρ, (4)

2e−2λν′

r
− (1 − e−2λ)

r2 = 8πpr , (5)

e−2λ

(
ν′′ + ν′2 − λ′ν′ + ν′

r
− λ′

r

)
= 8πpt , (6)

where overhead prime (′) denotes derivative w.r.t. r . In this
formulation, we consider the form of the Buchdahl-I metric
[34] as given below [33]:

e2λ(r) = 2(1 + χr2)

2 − χr2 , (7)

where χ is a constant whose dimension is Km−2. Using
Eq. (7) in Eq. (4), we express the energy density (ρ) in the
form:

ρ = 3χ(3 + χr2)

16π(1 + χr2)2 . (8)

The modified Chaplygin equation of state (henceforth EoS)
is given in the following form [29]:

pr = Hρ − K

ρn
, (9)

where, H and K are positive constants. Throughout this
model formalism, we consider n = 1, therefore, Eq. (9) takes
the form:

pr = Hρ − K

ρ
. (10)

Here, H is dimensionless, whereas the dimension of K is
Km−4. Using Eqs. (7), (8) and (10) in Eq. (5), we have
solved Eq. (5) to obtain the value of metric potential ν in
the following form:

ν = 1

60χ2

(
(−15χ2(5H + 3) + 6912π2K )log(2 − χr2)

+30Hχ2log(χr2 + 1) + 128π2K (5χr2(χr2 + 4)

+16log(χr2 + 3))
)
, (11)
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where we have considered the integration constant to be zero.
Using Eq. (8) in Eq. (10), we obtain the radial pressure pr :

pr = 3χH(χr2 + 3)

16π(1 + χr2)2 − 16πK (1 + χr2)2

3χ(χr2 + 3)
. (12)

Similarly using Eqs. (7) and (11), we can obtain the expres-
sion for tangential pressure pt from Eq. (6) in the following
form:

pt = − 1

14400π

(
A + B + 1638400K 2π4r4

χ

+1638400K 2π4r6 + C + D + E + F + G + I
)
,

(13)

where,

A = −12800Kπ2(3χ2(9H + 8) + 640Kπ2)

χ3 ,

B = 38400Kπ2(χ2(1 − 3H) + 384Kπ2)r2

χ2 ,

C = 6(25χ2(H+1)−2304Kπ2)(5χ2(5H+3) − 2304Kπ2)

χ3(χr2 − 2)
,

D = 2700Hχ(H − 3)

(1 + χr2)3 ,

E = 450χ(3 + H(2H + 11))

(1 + χr2)2 ,

F = −75χ(H + 1)(23H + 3)

(1 + χr2)
,

G = 61400Kπ2(15χ2 − 512Kπ2)

χ3(χr2 + 3)2 ,

I = 1024Kπ2(80896Kπ2 − 135χ2)

χ3(χr2 + 3)
.

The anisotropy factor (Δ) is defined as the difference
between pt and pr , i.e.

Δ = pt − pr . (14)

At the center of the star, Δ = 0, i.e., pt = pr .
The total gravitational mass contained within the sphere of
radius R is obtained as:

m(r) = 4π

∫ R

0
ρr2dr. (15)

3 Boundary condition

We match the interior space-time with the exterior Schwarzs-
child space-time at the surface of the compact object to core-
late and evaluate the constants in the metric elements. The
exterior Schwarzschild metric is given as:

ds2 = −
(

1 − 2M

r

)
dt2 + 1

(1 − 2M
r )

dr2

+r2(dθ2 + sin2θdφ2). (16)

At the surface (r = R) of the compact object, the continuity
of the two metric potentials yields,

e−2λ = 1 − 2u, (17)

and

e2ν = 1 − 2u. (18)

Here, u = M
R is the compactness of the star. Again, the

boundary of the star is defined as the surface where radial
pressure drops to zero, i.e.,

pr (R) = 0. (19)

Now, using Eqs. (16)–(18), we determine the constants χ and
K in the form:

χ = 4u

R2(3 − 4u)
, (20)

K = 9χ2H(3 + χR2)2

256π2(1 + χR2)4 . (21)

4 Bounds on the modified Chaplygin EoS parameters
H and K

For a physically realistic model, the energy density and pres-
sure must be positive and finite at the center (r = 0). Using
Eq. (8), the central density can be written as:

ρ0 = 9χ

16π
= 9u

4πR2(3 − 4u)
, (22)

Using Eq. (12), the expression for central pressure is:

pr (0) = 9χH

16π
− 16πK

9χ
. (23)

From Eq. (22), the positivity of the energy density is only
ensured for χ > 0. Within this notion, for the positive cen-
tral pressure, it is noted that in this model, there exist some
bounds on parameters H and K , which obey the following
equality:

H

K
>

256π2

81χ2 , (24)

i.e., the ratio ( HK ) depends on the compactness u and radius R
of the star. Thus, the values of H and K could not be chosen
arbitrarily. We have chosen the values of H and K obeying
Eq. (24).

5 Mass–radius relation from the TOV equation

Following the work mentioned in Ref. [54] and using the con-
dition of Eq. (24), we have solved the TOV [22,23] equations
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Fig. 1 Mass radius plot for K = 10−7 and different values of H

Table 1 MCG EoS parameters and maximum mass–radius (K fixed at
10−7)

H Max mass (M/M�) Radius (km)

0.20 1.18 7.18

0.30 1.69 8.79

0.40 2.11 10.05

0.50 2.47 11.10

0.56 2.66 11.66

0.60 2.78 11.99

0.70 3.05 12.78

0.80 3.29 13.48

0.90 3.52 14.16

1.00 3.72 14.72

to determine the mass–radius relation of compact objects in
this model and are plotted in Fig. 1 for the parametric choice
of H and K . We have obtained a wide range of maximum
mass (Mmax ) from 1.18 M�−3.72 M� and their correspond-
ing radii from 7.179−14.72 rmKm for n = 1, K = 10−7

and H = 0.2 − 1.0. The range of parameter H is taken from
Ref. [54] and K = 10−7. From Table 1 it is noted that the

maximum mass and radius both increase with increasing H .
Apart from this range (H = 0.2 − 1.0), it is not possible to
solve the TOV equations in the present context.
It is evident that the employment of the MCG equation of
state may increase the maximum mass range, which means
that compact objects can contain more mass against their
gravitational collapse in the presence of MCG. In the follow-
ing table, we present a list of pulsars and secondary objects
of GW events whose mass and radius may be predicted as
well as compared from our formalism. From Table 2, it is
evident that one may predict the radius of a large number of
pulsars and secondary objects of GW events by adjusting the
value of constants H and K . Thus, the model is suitable for
determining the radii of a wider class of compact objects.

6 Physical application of the model

In this section, we have analysed the behavior of the basic
compact object parameters such as energy density ρ, radial
pressure pr , tangential pressure pt and anisotropy factor Δ

with radius r (Km). For physical application, we have con-
sidered PSR J0740+6620 with a mass of 2.072 M� and a
radius of 12.39 Km [56] and a corresponding compactness
of u = 0.246. For physical analysis, we consider H = 0.3,
and using Eq. (21), we have computed the value of K for
some known compact objects and are tabulated in Table 3.
It is noted that the value of K depends on H and the stellar
mass and radius. The corresponding central density, surface
density and central pressure are also tabulated in Table 3.

From Figs. 2, 3 and 4 we note that the energy density, radial
pressure and tangential pressure decrease from the center to
the surface which is a viable condition for a stellar configu-
ration in stable equilibrium (Fig. 5).

Table 2 Predicted radius (Km) of some recently observed pulsars and companion objects of GW events (K = 10−7) from our model

Compact object Measured mass (M/M�) Measured radius (Km) Predicted radius from model (Km)

H = 0.50 H = 0.56 H = 0.70 H = 1.0

GW 190814 [2] 2.59+0.08
−0.09 – – 11.90 12.83 13.90

PSR J0952-0607 [53] 2.35 – 11.37 11.83 12.54 13.53

PSR J0030+0451 [55] 1.44 13.02 10.15 10.38 10.85 11.58

PSR J0740+6620 [56] 2.072 12.39 11.18 11.50 12.11 12.99

GW 170817 [57] 1.4 – 10.04 10.30 10.75 11.50

PSR J1614-2230 [58] 1.97 11-13 11.05 11.36 11.95 12.80

PSR J2215+5135 [59] 2.27 – 11.35 11.75 12.42 13.38

4U 1608-52 [60] 1.74 9.3±1.0 10.07 10.97 11.50 12.32
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Table 3 Evaluation of physical parameters of few known compact objects

Compact object Mass (M�) Radius (Km) H K Central den-
sity (ρc)

(g/cm3)

Surface den-
sity (ρs)

(g/cm3)

Central pres-
sure
(pc)
(dyn/cm2)

PSR J0030+0451 1.44 13.02 0.115 ×10−7 0.396 ×1015 0.265 ×1015 0.594 ×1035

PSR J0740+6620 2.072 12.39 0.3 0.269 ×10−7 0.771 ×1015 0.404 ×1015 1.51 ×1035

4U 1608-52 1.74 9.3 0.991×10−7 1.62 ×1015 0.775 ×1015 3.39 ×1035

Fig. 2 Radial variation of energy density (ρ) for H = 0.3 and K =
0.269 × 10−7

6.1 Causality condition

For a realistic model of an anisotropic compact star, one way
of characterising its interior dense matter is through the study
of the velocity of sound waves given by v2

r = (
dpr
dρ ) and v2

t =
(
dpt
dρ ), where ρ is the energy density including the rest mass

energy of the constituent particles, and pr and pt represent
radial and tangential pressures, respectively. Here, we use the
system of units as h = c = 1. The causality condition on
sound velocities implies an absolute upper bound as v2

r ≤ 1
and v2

t ≤ 1. On the other hand, the thermodynamic stability
ensures that v2

r > 0 and v2
t > 0. Therefore, within the stellar

composition, the conditions 0 < v2
r ≤ 1 and 0 < v2

t ≤ 1
should hold simultaneously. Due to the complexity of the
expressions of sound velocities, we have shown the variations
of v2

r and v2
t graphically in Figs. 6 and 7, respectively. It is

evident from Figs. 6 and 7 that the causality conditions are
well obeyed in this model.

6.2 Energy conditions

In gravitational theory, the energy conditions are imposed
on matter distributions to obtain a physically viable energy
momentum tensor. Qualitatively, these conditions are a way
to seek the nature of matter distribution without the need
for explicit specifications about the internal matter content.

Fig. 3 Radial variation of radial pressure (pr ) for H = 0.3 and K =
0.269 × 10−7

Fig. 4 Radial variation of tangential pressure (pt ) for H = 0.3 and
K = 0.269 × 10−7

Hence, it is possible to obtain the physical features of extreme
events, viz., gravitational collapse or existence of geometri-
cal singularity, etc., without the knowledge of energy den-
sity or pressure. In essence, the study of energy conditions is
an algebraic problem [61], more specifically the eigenvalue
problem of the energy momentum tensor. In 4-dimensional
space-time, the study of energy conditions leads to the roots
of a 4-degree polynomial, which is complicated due to the
presence of analytical solutions of eigenvalues. Even though
the general solution is difficult to obtain, a physically realis-
tic fluid distribution should follow the null, weak, strong and
dominant energy conditions [61–63] simultaneously within
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Fig. 5 Radial variation of anisotropy (Δ) for H = 0.3 and K =
0.269 × 10−7

Fig. 6 Variation of (v2
r ) vs r for H = 0.3 and K = 0.269 × 10−7

Fig. 7 Variation of (v2
t ) vs r for H = 0.3 and K = 0.269 × 10−7

the stellar boundary. Here, we have studied the energy condi-
tions [64,65] for the present stellar configuration and found
that they are well satisfied.

In the case of a physically viable model of a compact star,
the necessary energy conditions [64,65] must be fulfilled at
all internal points as well as at the surface of compact stars.
For the present model, we have checked the energy condi-
tions within the parameter space used here and found that

Fig. 8 Radial variation of (ρ+ pr ) for H = 0.3 and K = 0.269×10−7

Fig. 9 Radial variation of (ρ+ pt ) for H = 0.3 and K = 0.269×10−7

they are in good agreement with the prescribed conditions.
We have shown the energy energy conditions through graph-
ical representation. The study includes the verification of the
following energy conditions:

1. Null energy condition (NEC): ρ + pr ≥ 0, ρ + pt ≥ 0.
2. Weak energy condition (WEC): ρ ≥ 0, ρ + pr ≥ 0, ρ +

pt ≥ 0.
3. Strong energy condition (SEC): ρ + pr ≥ 0, ρ + pt ≥

0, ρ + pr + 2pt ≥ 0.
4. Dominant energy condition (DEC): ρ ≥ 0, ρ − pr ≥

0, ρ − pt ≥ 0.

The fulfillment of the above energy conditions is shown in
Figs. 2, 8, 9, 10, 11 and 12.

7 Stability analysis

The stability of this model is explored on the basis of the
following methods:

(i) Generalized TOV equation,
(ii) Cracking condition proposed by Herrera,
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Fig. 10 Radial variation of (ρ − pr ) for H = 0.3 and K = 0.269 ×
10−7

Fig. 11 Radial variation of (ρ − pt ) for H = 0.3 and K = 0.269 ×
10−7

Fig. 12 Radial variation of (ρ + pr + 2pt ) for H = 0.3 and K =
0.269 × 10−7

(iii) Variation of the adiabatic index and
(iv) Lagrangian oscillation.

7.1 Generalised TOV equation

It is important to study the stability of a model under the influ-
ence of different forces. For an anisotropic compact object,
the stability analysis is based on the following force com-

Fig. 13 Variation of different forces with radial distance r for H = 0.3
and K = 0.269 × 10−7

ponents – (i) the gravitational force (Fg), (ii) the hydrostatic
force (Fh) and (iii) the anisotropic force (Fa). The model
should be in equilibrium under the combined influence of
these forces. In this context, we have studied the stability
using the generalised Tolman–Oppenheimer–Volkoff (TOV)
equation [22,23] of the form given below:

− MG(r)(ρ + pr )

r2 eλ−ν − dpr
dr

+ 2Δ

r
= 0, (25)

where, MG is referred to as the active gravitational mass
derived from the mass formula of Tolman–Whittaker [66]
given as:

MG(r) = r2ν′eν−λ. (26)

Substituting Eq. (26) in Eq. (25), we obtain

− ν′(ρ + pr ) − dpr
dr

+ 2Δ

r
= 0. (27)

Here,

Fg = −ν′(ρ + pr ), (28)

Fh = −dpr
dr

, (29)

and

Fa = 2Δ

r
. (30)

Using Eqs. (8), (12) and (13), we can compute the expres-
sions of Eqs. (28)–(30). We have chosen to represent the
equilibrium conditions of the model through graphical rep-
resentation (Fig. 13).

7.2 Cracking condition proposed by Herrera

Anisotropic models should be stable under fluctuations in
their physical parameters. Herrera [67] instigated a “crack-
ing” condition to check the stability of such models. On the
basis of Herrera’s concept Abreu et al. [68] put forward a cri-
terion that determines the stability of an anisotropic stellar
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Fig. 14 Variation of |v2
r − v2

t | with radial distance r for H = 0.3 and
K = 0.269 × 10−7

model if according to Abreu et al. [68], the square of radial
velocity (v2

r ) and tangential velocity (v2
t ) obey the condition

0 ≤ |v2
r − v2

t | ≤ 1, (31)

thus, it may be termed a stable structure. From Fig. 14, it is
noted that the Abreu inequality given in Eq. (31) is satisfied
at all points of PSR J0740+6620. Therefore, the numerical
choice of H and K parameter values is viable.

7.3 Variation of the adiabatic index

The adiabatic index for the relativistic anisotropic stellar
model is expressed as:

Γ = ρ + pr
pr

dpr
dρ

= ρ + pr
pr

v2
r . (32)

According to the work of Heintzmann and Hillebrandt [11],
the condition for the stability of an isotropic stellar model
is represented as Γ > 4

3 (Newtonian limit). Furthermore, in
the case of an anisotropic star (both pr and pt exist), such a
condition is modified by Chan et al. [69] and is given as:

Γ > Γ ′
max , (33)

where,

Γ ′
max = 4

3
−

[
4

3

(pr − pt )

|p′
r |r

]
max

. (34)

From Fig. 15, it is evident that the condition imposed by Chan
et al. [69] as given by Eq. (33) is well satisfied throughout
the interior of the model.

7.4 Lagrangian oscillation

To study the stability of our model under small radial oscilla-
tion, we graphically represent the variation of the Lagrangian
change in radial pressure at the surface of a compact object
with frequency (ω2). Pretel [70] introduced the procedure to

Fig. 15 Radial variation of the adiabatic index (Γ ) for H = 0.3 and
K = 0.269 × 10−7

show the frequency dependence of the Lagrangian perturba-
tion. In this model, we consider β = 0 [70] and the coupled
equations demonstrating the radial oscillation are expressed
as:

dζ

dr
= −1

r

(
3ζ + Δpr

Γ pr

)
+ dν

dr
ζ, (35)

dΔpr
dr

= ζ

(
ω2

c2 e
2(λ−ν)(ρ + pr )r − 4

dpr
dr

−8πG

c4 (ρ + pr )e
2λrpr + r(ρ + pr )

(dν

dr

))

−Δpr

(
dν

dr
+ 4πG

c4 (ρ + pr )re
2λ}

)
, (36)

where ζ is the eigen function of the radial part of the
Lagrangian displacement and is given by ζ = δ(r)

r . In this
adaptation, ζ is normalised such that ζ(0) = 1. To remove
the central singularity in Eq. (35), the term with ( 1

r ) should
vanish as r → 0. Therefore, we obtain the following condi-
tion:

Δpr = −3Γ ζ pr . (37)

At the stellar surface (r = R), the Lagrangian change in
radial pressure must also vanish, i.e.

Δpr = 0. (38)

From Fig. 16 it is noted here that ω2 > 0 for all normal modes
of radial oscillation in this model and the correct values of
normal frequency modes are characterised by the minima
of the plot shown in Fig. 16. From the above criteria, we
may assert that this model configuration is also stable against
small radial oscillatory perturbations.
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Fig. 16 Radial variation of Lagrangian oscillation for H = 0.3 and
K = 0.269 × 10−7

8 Conclusion

In this paper, we have presented a new generalised model
of anisotropic compact objects by employing the modi-
fied Chaplygin gas equation of state in the context of the
Buchdahl-I metric ansatz as described in Ref. [33]. Constants
χ in Eq. (7) and K in Eq. (10) are determined using the conti-
nuity of metric functions at the stellar boundary. Positivity of
central density puts a bound on χ > 0. Moreover, positivity
of central pressure ensures that in this model, a corelation
exists between the constants H and K which is shown in
Eq. (24). We have determined the mass–radius relation for
compact objects by solving the TOV equation [22,23] along
with the MCG EoS, as shown in Fig. 1. The dependence of
maximum mass with Chaplygin parameter H is tabulated
in Table 1, when K = 10−7. It is noted that the maximum
mass of the compact object varies from 1.18-3.72M� and
the corresponding radius varies from 7.18−14.72 Km when
H varies from 0.2 to 1.00. The value of H is restricted in the
range 0.2 to 1.00 because outside this range it is not possi-
ble to solve TOV equation to obtain mass–radius plot in this
model. We note that maximum mass and radius both increase
with increasing H . It is also noticed that the model is suit-
able to predict the radius of star having comparatively higher
mass. As for example, median value of estimated radius 11.76
Km of lighter object in GW190814 event may be predicted
with this model having n = 1, K = 10−7 and H = 0.5373.
It is evident that the employment of MCG EoS may increase
the maximum mass range, which means that compact objects
can contain more mass against their gravitational collapse
in the presence of MCG. Therefore, employing MCG EoS,
it is possible to describe a wide range of mass of pulsars
and lighter objects of GW events based on recent observa-
tions. We have also predicted the radius of the companion
star of GW170817 event and the pulsars PSR J0952-0607,
PSR J2215+5135 and 4U 1608-52, as tabulated in Table 2.

From Table 2, it is evident that by adjusting the values of K
and H , one may predict the value of the radius of a com-
pact object of a wide range of mass. However, this model
is not suitable for low mass compact objects. This may be
explained as follows: the Chaplygin EoS may be considered
for exotic matter, which probably may exist inside a compact
object with a higher mass. Therefore, as EoS is an important
parameter to explain the properties of compact objects, it
may be concluded that the interior of such high mass pul-
sars may contain MCG EoS. For physical analysis, we have
studied the basic characteristic properties, i.e., the variations
of energy density, radial, tangential pressure and pressure
anisotropy, for the compact object PSR J0740+6620 and
found that they are suitable for a realistic model. The causal-
ity conditions and the energy conditions are well maintained
throughout the star. To define the stability of the model, we
have used the generalised TOV equation, Herrera cracking
condition, the adiabatic index variation. Also to show the
stability against small radial oscillations, we have studied
the variation of Lagrangian perturbation of radial pressure
at the surface of the star with normal mode frequencies in
Fig. 16. From Fig. 16 it is noted that all normal mode fre-
quencies are positive indicating that model is stable against
small radial oscillations. Considering all these arguments,
it may be possible to say that present model in the context
of modified Chaplygin gas EoS is suitable to describe the
mass–radius relation and other internal properties of exotic
compact objects preferably in the high mass region and also a
generalised stable and viable representation of an anisotropic
compact object.
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