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Abstract According to gauge/gravity correspondence, we
study the holographic Schwinger effect within an anisotropic
background. Firstly, the separate length of the particle–
antiparticle pairs is computed within the context of an
anisotropic background which is parameterized by dynami-
cal exponent ν. It is found that the maximum separate length x
increases with the increase of dynamical exponent ν. By ana-
lyzing the potential energy, we find that the potential barrier
increases with the dynamical exponent ν at a small separate
distance. This observation implies that the Schwinger effect
within an anisotropic background is comparatively weaker
when contrasted with its manifestation in an isotropic back-
ground. Finally, we also find that the Schwinger effect in the
transverse direction is weakened compared to the parallel
direction in the anisotropic background, which is consistent
with the top-down model.

1 Introduction

It is known that the pair production of electron and positron
under a strong external electric field is named as Schwinger
effect [1]. This phenomenon shows a general feature of vac-
uum instability in the presence of the external field. A quali-
tative understanding of this phenomenon can be obtained by
looking at the potential energy of the pair in the presence of
an electric field E [2]

V (x) = 2m − Ex − αs

x
, (1)
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where αs � 1/137 is the fine-structure constant and vir-
tual pairs are separated by a distance x. The pair production
is described as a tunneling process that creates a particle–
antiparticle pair. From the above formula, one can find that
the potential barrier decreases with the increase of elec-
tric field, and vanishes at a certain critical electric field
Ec. It is instructive to mention that, comparing with the
Schwinger case, one can find that there exists a critical field
eEc = (

4π/e2
)
m2 in the Affleck-Alvarez-Manton(AAM)

[3] case. The critical value does not satisfy the weak-field
condition eE � m2.

Anti-de Sitter/Conformal Field Theory correspondence
[4–7] provides a way to study the Schwinger effect at the
strong coupling and there is no constraint for the values
of external fields [8,9]. Then it is natural to consider the
Schwinger effect in the holographic method. The holographic
Schwinger effect was formally proposed in Ref. [9] and they
studied the particles produced in the N=4 super-Yang Mills
theory which is dual to the N D3-brane with a probe D3-
brane placed at a finite radial position in the bulk [10]. In
the usual studies, the test particles are assumed to be a heavy
quark limit. To avoid pair creation suppressed by the diver-
gent mass, the location of the probe D3-brane is at a finite
radial position rather than at the AdS boundary [9,25]. Fol-
lowing this idea, lots of works have been carried out to study
the holographic Schwinger effect [11–24].

In Refs. [25,26], they discuss the holographic Schwinger
effect in the extreme conditions created in the high-energy
physics experiment. In addition to high temperature, large
chemical potential, and strong magnetic field, partonic sys-
tem generated in ultra-relativistic heavy-ion collisions can
not be homogeneous and isotropic at the very early time
of collision [27]. Asymptotic weak-coupling enhances the
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longitudinal expansion substantially more than the radial
expansion so the system becomes colder in the longitudi-
nal direction than in the transverse direction [28]. Thus, the
momenta of the partons along the longitudinal direction are
lower than that in the transverse direction. In other words,
in the anisotropic stage, the longitudinal and transverse pres-
sures satisfy PL < PT with the corresponding momenta of
the partons

〈
p2
L

〉
<

〈
p2
T

〉
. Moreover, the experimental energy

dependence of the total multiplicity can be reproduced in the
anisotropic background, but all attempts to reproduce this
dependence in isotropic models failed [45]. Therefore, it is
inspired to know how the holographic Schwinger effect per-
forms in an anisotropic background.

Some interesting results of anisotropy through the holo-
graphic method have been carried out in recent years. For
example, the thermodynamics and instabilities of anisotropic
plasma are discussed in Ref. [29]. In Refs. [30,31], they study
the jet quenching and drag force in anisotropic plasma. Ther-
mal photon production in the anisotropic plasma was also
researched in Ref. [32]. The quarkonium dissociation was
discussed in Ref. [33]. In particular, the anisotropic back-
ground discloses a more abundant structure than that in the
isotropic case with the small/large black holes phase transi-
tion [34]. Other related works can be found in Refs. [35–44].

In this work, we mainly focus on the holographic
Schwinger effect in the anisotropic 5-dimensional Einstein-
dilaton-two-Maxwell system [45] and the anisotropic back-
ground is parameterized by dynamical exponent ν. The
remainder of this paper is organized as follows: in Sect. 2, we
introduce the 5-dimensional Einstein-dilaton-two-Maxwell
system. In Sect. 3, we mainly focus on the potential analysis
in anisotropic background. In Sect. 4, we study the potential
analysis in finite chemical potential and different warp factor
coefficients. The conclusion can be found in Sect. 5.

2 Background geometry

The 5-dimensional Einstein-dilaton-two-Maxwell system
was introduced in Ref. [45], which describes an anisotropic
background parameterized by the dynamical exponent ν.
This background can give the total multiplicity dependence
on energy, which agrees with the experimental data [45]. And
the action in the Einstein frame is given by

S =
∫

d5x

16πG5

√
− det

(
gμν

)

×
[
R − f1(φ)

4
F2

(1) − f2(φ)

4
F2

(2) − 1

2
∂μφ∂μφ − V (φ)

]
,

(2)

where F1 is Maxwell field with field strength tensor F (1)
μν =

∂μAν − ∂ν Aμ, and F2 is the other Maxwell field with field

strength tensor F (2)
μν = qdy1 ∧ dy2. f1(φ), f2(φ) are the

gauge functions that correspond to the two Maxwell fields.
V (φ) is the scalar potential. The metric ansatz of the black
brane solution in the anisotropic background is

ds2 = L2b(z)

z2

[

−g(z)dt2 + dx2 + z2− 2
ν

(
dy2

1 + dy2
2

)
+ dz2

g(z)

]

φ = φ(z), A(1)
μ = At (z)δ

0
μ

F(2)
μν = qdy1 ∧ dy2,

(3)

where b(z) = ecz
2/2 is the warp factor, and c represents the

deviation from conformality. g(z) is the blackening function.
As we know, the hot matter produced in the early stage of
relativistic heavy ion collisions is anisotropic where the lon-
gitudinal and transverse expansion are different. Therefore,
our goal is to use the anisotropic metric to qualitatively sim-
ulate this anisotropy of relativistic heavy ion collisions by
the dynamical exponent ν. Following Ref. [45], we take all
physical quantities as dimensionless units and set the AdS
radius L to one. By solving the equation of motion obtained
from the above action, the function g(z) can be calculated as

g(z) = 1 − z2+ 2
ν

z
2+ 2

ν

h

G
( 3

4cz
2
)

G
( 3

4cz
2
h

) − μ2cz2+ 2
ν e

cz2h
2

4

(
1 − e

cz2h
4

)2 G
(
cz2

)

+ μ2cz2+ 2
ν e

cz2h
2

4

(
1 − e

cz2h
4

)2

G
( 3

4cz
2
)

G
( 3

4cz
2
h

)G
(
cz2

h

)
, (4)

and

G(x) =
∞∑

n=0

(−1)nxn

n! (1 + n + 1
ν

) . (5)

Then the temperature can be given as

T (zh , μ, c, ν) = g′ (zh)

4π
= e−

3cz2h
4

2π zh

∣
∣
∣
∣∣
∣
∣
∣∣
∣
∣

1

G
(

3
4 cz

2
h

)

+ μ2cz
2+ 2

ν

h e
czh

4

4

(

1 − e
cz2h

4

)2

⎛

⎝1 − e
cz2h

4

G
(
cz2

h

)

G
(

3
4 cz

2
h

)

⎞

⎠

∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣

. (6)
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3 Potential analysis in anisotropic background

The coordinates of the particle pairs in parallel case can be
written as

t = τ, y1 = σ, x = y2 = 0, z = z(σ ). (7)

Similarly, the transverse direction is defined as

t = τ, x = σ, y1 = y2 = 0, z = z(σ ). (8)

The Nambu–Goto action reads

S = TF

∫
dσdτL = TF

∫
dσdτ

√− det gαβ, (9)

where TF is the string tension and gαβ is the induced metric.
The Lagrangian density in the parallel case can be written as

L = √
det gαβ = b(z)

z2

√
g(z)z2− 2

ν + ż2. (10)

L does not rely on σ , so it must satisfy the follow equation

L − ∂L
∂ ż

ż = C. (11)

Moreover, the boundary condition gives

dz

dσ
= 0, z = zc (zh < zc < z0) , (12)

here one should note that the probe D3 brane locates at z =
z0. So, the conserved quantity can be evaluated as

C = b(zc)

z2
c

√

g(zc)z
2− 2

ν
c . (13)

Combining Eqs. (11) and (13), one finds

ż = dz

dσ

=

√√√√√
√√g(z)z2− 2

ν

⎛

⎜⎜
⎝

b(z)2g(z)z2− 2
ν

z4

b(zc)2g(zc)z
2− 2

ν
c

z4
c

− 1

⎞

⎟⎟
⎠, (14)

then the separating length of the test particle pairs can be
obtained by integrating Eq. (14)

x = 2
∫ z0

zc
dz

1
√√√√√
√g(z)z2− 2

ν

⎛

⎜
⎝

b(z)2g(z)z2− 2
ν

z4

b(zc)2g(zc)z
2− 2

ν
c

z4c

− 1

⎞

⎟
⎠

. (15)

With the separating length and Lagrangian density in hand,
the sum of Coulomb potential and static energy is

V(CP+SE) = 2TF

∫ x
2

0
dσL

= 2TF

∫ z0

zc
dz

√
b(z)2g(z)z2− 2

ν

z4
b(z)2

z4

√
b(z)2g(z)z2− 2

ν

z4 − b(zc)2g(zc)z
2− 2

ν
c

z4
c

.

(16)

To obtain the critical electric field, one should compute the
DBI action of the probe D3 brane, namely

SDBI = −TD3

∫
d4x

√
− det

(
Gμν + Fμν

)
. (17)

To simplify the analysis, assuming that the external electric
field is oriented along the x direction, one can find

Gμv + Fμv =

⎛

⎜⎜⎜⎜
⎝

−g(z) b(z)
z2 2πα′E 0 0

−2πα′E b(z)
z2 0 0

0 0 b(z)
z2 z2− 2

ν 0

0 0 0 b(z)
z2 z2− 2

ν .

⎞

⎟⎟⎟⎟
⎠

(18)

Then we can rewrite Eq. (17) at z = z0 as

SDBI = −TD3

∫
d4x

√

b (z0)
2 z

−4− 4
ν

0

×
√

−b (z0)
2 g (z0) + (

2πα′z2
0

)2
E2. (19)

If the equation has a physical meaning, then we require

− b(z0)
2g(z0) +

(
2πα′z2

0

)2
E2 ≥ 0. (20)

By simple calculation, one can find that the critical electric
field is
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Fig. 1 The separating length x as a function of zc with the given values
of the chemical potential μ = 3, the temperature T = 0.5 and the warp
factor coefficient c = −0.3. The transverse direction is indicated by the
dashed line, while the parallel direction is denoted by the solid line. The
blue line is ν = 1, the black line is ν = 1.5 and the red line is ν = 2,
respectively

Ec = TF

√
b(z0)2g(z0)

z4
0

. (21)

If we define a dimensionless parameter β ≡ E
Ec

, then the
total potential of the particle–antiparticle pair will be

Vtot =V(CP+SE) − Ex

=2TF

∫ z0

zc
dz

√
b(z)2g(z)z2− 2

ν

z4
b(z)2

z4

√
b(z)2g(z)z2− 2

ν

z4 − b(zc)2g(zc)z
2− 2

ν
c

z4
c

− 2TFβ

∫ z0

zc
dz

√
b(z0)2g(z0)

z4
0

√√
√√√√g(z)z2− 2

ν

⎛

⎜
⎝

b(z)2g(z)z2− 2
ν

z4

b(zc)2g(zc)z
2− 2

ν
c

z4c

− 1

⎞

⎟
⎠

.

(22)

The transverse case can be calculated in a similar way. Now
we can investigate the Schwinger effect in the anisotropic
background. First of all, we calculate the separating length x
which is given by Eq. (15).

The dependence of separating length on zc is shown in
Fig. 1. For diverse values of the dynamical exponent ν, it
is evident that the U-shaped string configuration manifests
instability at smaller zc values while displaying stable behav-
ior at larger zc values. Note that space attains isotropy when

ν = 1. From the picture, we can find that the maximum value
of separating length increases with the dynamical exponent
ν. Then it may indicate that the Schwinger effect is weakened
in the anisotropic background compared with the isotropic
one. Furthermore, our investigation demonstrated that in the
absence of an external electric field (in the x-direction), the
maximum value of separating length in the parallel direction
exceeds that in the transverse direction.

Utilizing Eq. (16), we analyze the correlation between the
total potential of a particle–antiparticle pair and the separa-
tion length x , as shown in Fig. 2. We find that the potential
barrier is amplified by the dynamical exponent ν at small
values of separating length. This enhanced potential bar-
rier translates to a weaker Schwinger effect. The result is in
partly qualitative agreement with the top-down holographic
approach of the anisotropic Schwinger effect in [46]. Under
the condition of an externally applied electric field in the x-
direction, we find that the maximum total potential energy
in the transverse direction is greater than that in the parallel
direction. This implies that the Schwinger effect in the trans-
verse direction is attenuated relative to the parallel direction.
Furthermore, the potential barrier decreases with the increase
of the external electric field. The decrease in the potential
barrier signifies an increased propensity for particle produc-
tion. It is easy to find that the potential barrier is present
when E < Ec(β < 1). In this context, particle production
can be regarded as a tunneling process. As the electric field
gradually surpasses the critical threshold, the vacuum will
become very unstable and the potential barrier will vanish [2].
According to Eq. (22), if the total potential energy increases,
the critical electric field will be an increasing function of
the dynamic exponent. This trend is vividly demonstrated in
Fig. 3. This implies that virtual particles require more energy
from the outside to become real particles. This observation
not only corroborates the results presented in Fig. 2 but also
aligns with the conclusions put forth in Ref. [46]. Because
the external electric field is identical in both the parallel and
transverse directions, we exclusively performed calculations
for the parallel direction to provide a representative depic-
tion.

4 Potential analysis with chemical potential and warp
factor coefficient

The effect of the chemical potential on the total poten-
tial in different external electric fields is examined in Fig. 4.
It is found that the total potential is reduced by the chemi-
cal potential in small distance x , particularly with β = 0.8.
Thus we we infer that the yield of particles increases with the
increase of chemical potential, which is qualitatively consis-
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Fig. 2 a The total potential Vtot as a function of separating length x for
different dynamical exponent ν with the given values of the chemical
potential μ = 3, the temperature T = 0.5 and the warp factor coeffi-
cient c = −0.3. The transverse direction is indicated by the dashed line,
while the parallel direction is denoted by the solid line. The red line is

ν = 2, the black line is ν = 1.5 and the blue line is ν = 1, respectively.
b The total potential Vtot against separating length x at different β with
ν = 2. The red line is β = 0.4, black line is β = 0.6 and blue line is
β = 1.1

Fig. 3 Ec versus dynamical exponent ν with the given values of the
temperature T = 0.5, warp factor coefficient c = −0.3 and the chemi-
cal potential μ = 3

Fig. 4 The total potential Vtot as a function of separating length x at
difference chemical potential with the given values of the temperature
T = 0.58, β = 0.8, and the warp factor c = −0.3. The transverse
direction is indicated by the dashed line, while the parallel direction
is denoted by the solid line. The red line is μ = 3, the black line is
μ = 2.98 and the blue line is μ = 2.96, respectively

Fig. 5 Ec versus chemical potential μ with the given values of the
temperature T = 0.58, warp factor coefficient c = −0.3, and the
dynamical exponent ν = 4.5

tent with the results in Ref. [26]. One potential explanation
for the enhancement of the Schwinger effect by a chemical
potential is that the presence of the chemical potential pro-
vides an additional energy source for the created particles.
This allows the particles to extract more energy from an exter-
nal electric field, leading to an increase in the overall energy
available for pair production and consequently enhancing the
Schwinger effect. Specifically, our results reveal a notable
disparity between the total potential energy in the trans-
verse and parallel directions. To be precise, the total potential
energy in the transverse direction was found to be consider-
ably higher compared to the parallel direction. As a result,
this discrepancy indicates a correspondingly lower particle
yield in the transverse direction. Additionally, we also can
find that the external critical field demonstrates a decrement-
ing trend in response to the chemical potential in Fig. 5. This
suggests that real particles are easier to produce in the pres-
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Fig. 6 The total potential Vtot versus separate length x for different
warp factor coefficients c. The temperature T = 0.5, β = 0.8 and
chemical potential μ = 2. The transverse direction is indicated by the
dashed line, while the parallel direction is denoted by the solid line. The
red line is c = −0.9, the black line is c = −0.6 and the blue line is
c = 0, respectively

Fig. 7 Ec versus warp factor coefficient c. The chemical potential μ =
2, the temperature T = 0.5 and the dynamical exponent ν = 2

ence of the external field which is consistent with the result
in Fig. 4.

The effect of the warp factor coefficient on the total poten-
tial in different external electric fields is plotted in Fig. 6.
Here, c signifies the degree of deviation from conformality.
Notably, the warp factor coefficient is zero in the context
of pure AdS, a conformal theory. However, the real QCD is
inherently non-conformal, leading to non-zero values for c.
Here we take c = −0.6,−0.9. In Fig. 6, one can find that
the total potential is reduced by warp factor coefficient c in
small distance x . This implies that the warp factor coefficient
can reduce the Schwinger effect. Similar to the case with dif-
ferent chemical potentials, we find that the total potential
energy in this scenario is also higher in the transverse direc-
tion compared to the parallel direction. To further explore
this relationship, we depict Ec as a function of c in Fig. 7.
The critical electric field increases with the increase of warp
factor coefficient c. This implies that more energy needs to

be obtained from the external electric field to overcome the
potential barrier.

5 Summary and conclusions

In this paper, we study the Schwinger effect in the Einstein-
dilaton-two-Maxwell-scalar system in an anisotropic back-
ground. The anisotropic models can reappear properties such
as the anisotropic pressure of QGP in heavy-ion collision.
Then it is natural to study how the Schwinger effect is
changed in the anisotropic case.

The separate length of the particle–antiparticle pair in the
anisotropic background is computed. As the dynamical expo-
nent ν rises, the U-shaped string exhibits instability at small
zc, while stability prevails at large zc values. Through the
utilization of the Dirac–Born–Infeld (DBI) action for prob-
ing D3 branes, we determine the critical electric field Ec and
compute the total potential. It is found that the dynamical
exponent ν enlarges the potential barrier. This means that
the production of particles is suppressed. In comparison to
the parallel direction, our findings indicate a reduction in the
strength of the Schwinger effect in the transverse direction.
We also find the critical electric field is reduced by the chem-
ical potential but enhanced by the warp factor coefficient c
and the dynamical exponent.

Since the Schwinger effect is an important mechanism
to create a plasma of gluons and quarks from initial color-
electric flux tubes [47], we hope that the Schwinger effect in
the anisotropic background could provide some new insights
into the understanding of the QGP. Moreover, the potential
analysis in the holographic shock wave model may be worth
discussing [48] in future work.
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