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Abstract In this paper, we investigate the validity of the
so-called cosmic no-hair conjecture in the framework of
anisotropic inflation models of non-canonical scalar fields
non-minimally coupled to a two-form field. In particular, we
focus on two typical k-inflation and Dirac–Born–Infeld infla-
tion models, in which we find a set of exact anisotropic power-
law inflationary solutions. Interestingly, these solutions are
shown to be stable and attractive during an inflationary phase
using the dynamical system analysis. The obtained results
indicate that the non-minimal coupling between the scalar
and two-form fields acts as a non-trivial source of generating
stable spatial anisotropies during the inflationary phase and
therefore violates the prediction of the cosmic no-hair conjec-
ture, even when the scalar field is of non-canonical forms. In
connection with the Planck 2018 data, tensor-to-scalar ratios
of these anisotropic solutions are investigated. As a result,
it appears that the tensor-to-scalar ratio of the anisotropic
power-law inflationary solution of k-inflation model turns
out to be more highly consistent with the Planck 2018 data
than that of Dirac-Born-Infeld model.

1 Introduction

Cosmic inflation was firstly introduced as a solution to the
longstanding puzzles in the standard Big Bang cosmology,
such as the horizon, flatness, and primordial monopole prob-
lems [1–3]. More interestingly, a rapid expansion during the
inflationary phase will stretch the primordial density pertur-
bations, which are created from quantum fluctuations, from
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microscopic scales to galactic scales, and therefore the large-
scale structure of the present universe can be produced from
these primordial density perturbations [4]. For a recent inter-
esting review on cosmic inflation, see Ref. [5].

Notably, observational data of the cosmic microwave
background radiation (CMB) from the Wilkinson Microwave
Anisotropy Probe (WMAP) [6] and the Planck satellite [7,8]
have been consistent very well with theoretical predictions of
the standard inflationary models, whose underlying assump-
tion is the cosmological principle, which states that our
universe is spatially homogeneous and isotropic on large
scales. In cosmology, there exists a unique spacetime called
the Friedmann–Lemaitre–Robertson–Walker (FLRW) met-
ric, which has both spatial homogeneity and isotropy. This
is a reason why the FLRW metric has been widely used as a
background spacetime in standard inflationary models [9].

However, some unavoidable anomalies in the CMB map,
such as the cold spot and hemispheric asymmetry, have pre-
sented challenges to the standard inflationary models based
on the cosmological principle [10]. In other words, if the
cosmological principle is valid during the inflationary phase,
the probability of the existence of the CMB anomalies is
very small. It is worth noting that some other interesting
observational evidences against the validity of cosmologi-
cal principle have been summarized in a recent interesting
review [11]. Therefore, violating the cosmological principle
during the inflationary phase might be a reasonable resolu-
tion. And one of the simplest ways to archive this violation
is replacing the standard FLRW spacetime with the Bianchi
spacetimes, which are spatially homogeneous but anisotropic
[12]. Consequently, we will end up with an anisotropic infla-
tion [10]. Very interestingly, many theoretical predictions for
anisotropic inflation had been worked out even when the
observed anomalies were not detected [13,14]. It turns out
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that anisotropic inflation has been considered seriously by
many people, e.g., see Ref. [15] and references therein.

Besides the cosmological principle, there has existed the
so-called cosmic no-hair conjecture proposed by Hawking
et al. a long time ago, which is also about the homogeneity
and isotropy of universe’s spacetime [16,17]. Basically, this
conjecture implies that the late-time state of any accelerat-
ing universe is independent of its initial state. Eventually, the
universe becomes isotropic and homogeneous as an attractor
of cosmic evolution. Physicists and cosmologists have long
been challenged by the cosmic no-hair conjecture. However,
they have made notable progress in providing partial proofs
for this conjecture. Remarkably, the first proof, specifically
for the Bianchi spacetimes, which are homogeneous but
anisotropic metrics, in the presence of a positive cosmologi-
cal constant �, has been proposed by Wald using an approach
based on energy conditions [18]. It should be noted that
the Wald’s proof deals only with background anisotropies.
Remarkably, Starobinsky pointed out independently that the
cosmological constant is the best “isotropizer”, i.e., it is capa-
ble of eliminating or extending over very large scales of all
types of inhomogeneities [19]. Furthermore, he concluded
that the cosmic no-hair conjecture should be valid locally, i.e.,
inside the future de Sitter event horizon. More interestingly,
an inhomogeneous time-independent tensor (we can regard it
as hairs) existing outside of the future de Sitter event horizon
may have an arbitrarily large amplitude. In order to archive
this conclusion, Starobinsky considered an inhomogeneous
metric, whose scale factors depend on not only a cosmic
time but also three spatial coordinates. This metric is nothing
but an extension of de Sitter one with small inhomogeneous
perturbations. In a follow-up study, Starobinsky and his col-
leagues showed that inhomogeneous time-independent hairs
also exist in a power-law inflation model of scalar field [20].
It is worth noting that similar conclusions have been archived
later by other people in different scenarios, in which back-
ground spacetimes are of exact anisotropic and/or inhomo-
geneous forms like the so-called Tolman–Bondi spacetime
[21–23]. According to these papers, one could state that the
cosmic no-hair conjecture is invalid globally in the view of
inhomogeneous hairs (a.k.a. constant perturbation modes in
the super-Hubble regime) and may therefore be valid locally.
Interestingly, these hairs could even be observable after the
end of inflation and we could expect to see them directly in
fluctuations of CMB temperature and polarization.

Recently, various cosmological models have been
employed to test the validity of the cosmic no-hair con-
jecture, such that the higher curvature models [24–27], the
Lorentz Chern–Simons theory [28], and the Horndeski mod-
els [29–31]. It turns out that some claimed counterexamples
from these models no longer hold due to their instability
during the inflationary phase as indicated in Refs. [32–35].
From 2009 to 2010, a vivid counterexample to the cosmic

no-hair conjecture was successfully constructed by Kanno,
Soda, and Watanabe (KSW) within a supergravity-motivated
model involving a non-minimal coupling between the U (1)

gauge and scalar fields such as f 2(φ)FμνFμν [36,37]. As a
result, the KSW model admits homogeneous and anisotropic
Bianchi type I solutions, whose spatial anisotropies turn
out to be stable during the inflationary phase, in contrast
to the prediction of the cosmic no-hair conjecture. Subse-
quently, several non-trivial extensions of the KSW model
have been proposed by considering non-canonical scalar
fields instead of canonical one, such as the Dirac–Born–
Infeld (DBI) model [38–41], the generalized ghost conden-
sate model [39], supersymmetric DBI model [42], and the
k-inflation model [43]. As a result, the cosmic no-hair con-
jecture is always violated in these non-canonical extensions.
For CMB imprints of non-canonical anisotropic inflation, see
Refs. [42–44], while that of canonical one can be found in
Refs. [45–50]. All these results indicate that the non-minimal
coupling, f 2(φ)FμνFμν , has played a leading role in order
to generate stable spatial anisotropies during the inflation-
ary phase. Interesting reviews on cosmological implications
of the anisotropic inflation based on the vector field can be
found in Refs. [51,52].

One might ask if spatial anisotropies can also be caused
by other mechanisms. Interestingly, people have figured out
that a non-minimal coupling between scalar and two-form
fields such as f 2(φ)HμνρHμνρ could play a similar role as
the coupling f 2(φ)FμνFμν [53–57]. It is well known that
a two-form field Bμν can be found in string theory [58].
In Ref. [53], the authors have pointed out that the anisotropy
induced by the two-form field corresponds to the prolate type,
i.e., the expansion of the Universe slows down in the (y, z)
plane, in contrast to the oblate type stemming from the vec-
tor field (a.k.a. one-form field). In Ref. [54], the authors have
derived the corresponding observational constraints of two
anisotropic inflation models, one for the vector field and the
other for the two-form field. Very interestingly, some signif-
icant gaps between observational predictions of these two
types of anisotropic inflation have been identified accord-
ingly. The authors have come to the main conclusion that
the precise measurements of g∗ as well as the TB correlation
will clarify which anisotropic model is favored over the other
[54]. In Ref. [55], the authors have investigated anisotropic
hairs in the presence of both one-form and two-form fields.
As a result, they have obtained an important conclusion that
there always exists one stable anisotropic fixed point in this
model. In Ref. [56], the authors have indicated that the five-
dimensional (5D) two-form field can be shown to be equiv-
alent to a 5D gauge field via a Routh transformation. Inter-
estingly, the cosmic no-hair conjecture has been shown to
be broken down in this 5D model. In Ref. [57], the authors
have considered a more general scenario, which involves not
only one- and two-form fields but also a three-form one. It
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should be noted that all these studies of anisotropic inflation
in the presence of the two-form field have only been done for
the canonical field. Other physical and cosmological impli-
cations of two-form field can be found in Refs. [59–69].

Motivated by studies of anisotropic inflation models of
non-canonical scalar fields [38,39,42,43] and anisotropic
inflation models of two-form fields [53–57], we would like
to investigate in the present paper the validity of the cos-
mic no-hair conjecture in a mixed scenario, in which a non-
canonical scalar field is allowed to non-minimally coupled
to the two-form field. Specifically, we focus on two well-
known types of non-canonical scalar fields, one is from the
k-inflation model [70,71] and the other is from the string-
inspired DBI inflation model [72–75]. As a result, we are
able to find exact anisotropic power-law solutions for both
non-canonical scalar fields. Furthermore, we confirm, using
the dynamical system method, that these solutions are indeed
stable and attractive during the inflationary phase and there-
fore act as additional counterexamples to the cosmic no-hair
conjecture. In connection with the Planck 2018 data [7,8]
as well as future detections like the CMB-S4 project [76],
we will derive a tensor-to-scalar ratio for a general case of
non-canonical scalar field non-minimally coupled to the two-
form field. Then we will focus on the two mentioned models,
i.e., k-inflation and DBI ones, to see whether the correspond-
ing ratios are consistent with the Planck 2018 data or not.
Very interestingly, the obtained tensor-to-scalar ratio of the
k-inflation two-form field model turns out to be highly con-
sistent with the Planck 2018 data.

As a result, this paper will be organized as follows: (i) An
introduction of our study has been written in Sect. 1. (ii) A
general action of studied models will be presented in Sect. 2.
(iii) In Sect. 3, we derive the corresponding set of anisotropic
power-law solutions for k-inflation model and investigate its
stability. (iv) In Sect. 4, we extend our analysis to the DBI
model. (v) In Sect. 5, we compare the anisotropic parameter
|�/H | derived in this paper with that obtained in the pre-
vious papers for heuristic reasons. (vi) In Sect. 6, tensor-to-
scalar ratios of the obtained anisotropic power-law inflation-
ary solutions will be investigated. (vii) Finally, concluding
remarks will be written in Sect. 7. Additional calculations
will be presented in the Appendix.

2 General action

Let us begin by introducing a general action of non-canonical
extension of the KSW model [39,44],

S =
∫

d4x
√−g

[
R

2
+ P(φ, X) − 1

4
f 2(φ)FμνF

μν

]
, (1)

where P(φ, X) is an arbitrary function of scalar field φ and
its kinetic term defined as X ≡ −(1/2)∂μφ∂μφ [70]. In

addition, f (φ) is the gauge kinetic function depending only
on φ, while the rank-2 tensor Fμν = ∂μAν − ∂ν Aμ is the
field strength of the field Aμ. It is noted that we have set the
reduced Planck mass as one, i.e., Mp = 1, just for conve-
nience. Specific forms of P(φ, X) have been considered in
previous papers [38,39,42,43].

In this paper, we would like to investigate a modification of
the above action, in which the one-form field Aμ is replaced
by a two-form field Bμν . As a result, the corresponding action
is given by

S =
∫

d4x
√−g

[
R

2
+ P(φ, X)− 1

12
f 2(φ)HμνρH

μνρ

]
,

(2)

where

Hμνρ = ∂μBνρ + ∂νBρμ + ∂ρBμν. (3)

Without the loss of generality, one can assume that the (y, z)
plane aligns with the direction of the two-form field. Conse-
quently, we can express Bμν in the following form [53–55]

1

2
Bμνdx

μ ∧ dxν = vB(t)dy ∧ dz, (4)

where vB(t) is a function of cosmic time t . In this paper,
we will study action (2) for two typical non-canonical scalar
fields, one is from the k-inflation model [43,70] and the other
is from the string-inspired DBI inflation model [38,72–75].

3 K -inflation case

In this section, we focus on the k-inflation model [43,70],
in which the function P(φ, X) takes the following form
P(φ, X) = K (φ)X+L(φ)X2. Thus, the action (2) becomes

S =
∫

d4x
√−g

[
R

2
+ K (φ)X + L(φ)X2

− 1

12
f 2(φ)HμνρH

μνρ

]
, (5)

here K (φ) and L(φ) are arbitrary functions of φ. Following
Refs. [53–55], we will adopt the Bianchi type I metric,

ds2 = −N 2(t)dt2 + e2α(t)[e−4σ(t)dx2

+e2σ(t)(dy2 + dz2)], (6)

as the background spacetime for the cosmic evolution. Here,
N (t) represents the lapse function that allows us to derive the
Friedmann constraint equation, while α represents the aver-
age expansion measured in terms of the number of e-foldings
and σ corresponds to the spatial anisotropy. By substituting
the background metric into the action (5), we obtain the fol-
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lowing expression,

S =
∫

d4xe3α

[
3
(σ̇ 2 − α̇2)

N
+ K (φ)

2N
φ̇2

+ L(φ)

4N 3 φ̇4 + f 2(φ)

2N
e−4(α+σ)v̇2

B

]
, (7)

where an overdot stands for a derivative with respect to the
cosmic time t . The equation of motion for the two-form field
can be solved to give a non-trivial solution of vB(t) as

v̇B = pB f −2eα+4σ , (8)

where pB is a constant of integration [53–55]. By varying
the above action (7) with respect to N , α, σ , as well as φ,
we are able to derive the following background equations of
motion,

α̇2 = σ̇ 2 + φ̇2

6
K + φ̇4

4
L + e4σ−2α p2

B

6 f 2 , (9)

α̈ = −3α̇2 + φ̇4

4
L + e4σ−2α p2

B

3 f 2 , (10)

σ̈ = −3α̇σ̇ − e4σ−2α p2
B

3 f 2 , (11)

φ̈
(
K + 3φ̇2L

)
= −3α̇φ̇K − 3α̇φ̇3L − 1

2
φ̇2

× Kφ − 3

4
φ̇4Lφ + e4σ−2α p2

B fφ
f 3 , (12)

after setting N = 1, respectively. Here, the subscript in
Kφ, Lφ and fφ indicates a derivative with respect to the field
φ, i.e., Kφ ≡ ∂K/∂φ. To figure out analytical solutions for
these derived field equations, we will consider the following
ansatz as used in many previous papers [37,38,43,53–55],

α = ζ log (t); σ = η log (t); φ = ξ log (t) + φ0, (13)

along with the exponential functions of the scalar field,

K (φ) = k0e
κφ, (14)

L(φ) = l0e
λφ, (15)

f (φ) = f0e
ρφ, (16)

where k0, l0, f0, ζ , η, ξ , φ0, λ, κ , and ρ are all constant. For
convenience, we will introduce the following new parameters
to aid in our analysis,

u = l0 exp[λφ0], (17)

w = p2
B f −2

0 exp[−2ρφ0]. (18)

Thus, the field Eqs. (9), (10), (11), and (12) can be simplified
to the following algebraic equations,

−ζ 2 + η2 + k0ξ
2

6
+ ξ4u

4
+ w

6
= 0, (19)

3ζ 2 − ζ − ξ4u

4
− w

3
= 0, (20)

3ζη − η + w

3
= 0, (21)

3ζk0ξ − k0ξ + 3ζ ξ3u − 3ξ3u

2
− ρw = 0. (22)

In addition to these equations, we have the following con-
straint equations that ensure all terms in the field equations
are proportional to t−2,

λξ = 2, (23)

κ = 0, (24)

−2ζ + 4η − 2ξρ = −2. (25)

Apparently, the condition for κ = 0 gives us a constant value
of K (φ) = k0 for the ansatz (13).

3.1 Anisotropic power-law inflation

We will focus on seeking anisotropic solutions. From Eq.
(25) we have

η = ζ

2
+ ξρ

2
− 1

2
. (26)

On the other hand, we have from Eqs. (21) and (22) that

u = −λ2
(
9ζ 2λρ − 12ζλρ + 18ζρ2 + 12ζk0 + 3λρ − 4k0 − 6ρ2

)
24(2ζ − 1)

,

(27)

w = −3
(
3ζ 2λ − 4ζλ + 6ζρ + λ − 2ρ

)
2λ

, (28)

thanks to the constraint equation (23) as well as the relation
shown in Eq. (26). Substituting η, u, and w defined above into
either Eq. (19) or Eq. (20), we can find non-trivial solutions
of ζ such as

ζ± = 5

12
− 5ρ

12λ
±

√
(λ − ρ)(λ + 23ρ) − 32k0

12λ
. (29)

Now, we rewrite Eq. (26) as follows

ζ = 2η − 2ρ

λ
+ 1. (30)

This equation implies an important point that the ratio −2ρ/λ

will mainly determine the value of ζ since η should be much
smaller than ζ . Therefore, the constraint for the existence
of inflation, ζ � 1, will imply that ζ � −2ρ/λ � 1, or
equivalently |ρ| � |λ|. Consequently, we observe that only
the solution,

ζ = ζ− = 5

12
− 5ρ

12λ
−

√
(λ − ρ)(λ + 23ρ) − 32k0

12λ
, (31)
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is suitable for describing the inflationary phase. Note that the
positivity of ρ will imply the negativity of λ, or vice versa. In
this paper, we will prefer the choice, in which ρ is assumed to
be positive and λ will be negative. Then, the corresponding
expression for η turns out to be

η = − 7

24
+ 19ρ

24λ
−

√
(λ − ρ)(λ + 23ρ) − 32k0

24λ
, (32)

while the corresponding anisotropy parameter reads

�

H
≡ σ̇

α̇
= η

ζ−

= 8k0 − 3(λ − 2ρ)
[
3λ − 3ρ + √

(λ − ρ)(λ + 23ρ) − 32k0
]

12(λ − ρ)(λ − 2ρ) + 16k0
.

(33)

The real values of ζ and η require that k0 must satisfy the
following constraint,

k0 ≤ (λ − ρ)(λ + 23ρ)

32
� −23

32
ρ2. (34)

However, the smallness of η implies, according to Eq. (32),
the following constraint,
√

(λ − ρ)(λ + 23ρ) − 32k0

24λ
� 19ρ

24λ
, (35)

which leads to an approximated value of k0 such as

k0 � −12ρ2, (36)

due to the constraint, ζ � −2ρ/λ. It is clear that this value is
consistent with the inequality (34). Consequently, the value
for ζ and η can be approximate as follows

ζ � 5

12
− 2

ρ

λ
� −2

ρ

λ
, (37)

η � − 6

19
< 0. (38)

It is clear that the negativity of η is consistent with the posi-
tivity of w, according to Eq. (21). However, the negativity of
η in this model of two-form field is indeed in contrast to the
positivity of η required in models of vector field [37,38,43].
This result is consistent with the previous investigation for
canonical scalar field [55].

As a result, the following approximated value of the
anisotropy parameter turns out to be

�

H
= η

ζ
� 3λ

19ρ
< 0. (39)

Of course the absolute value of this ratio is much smaller
than one, i.e., |�/H | 	 1 as expected. In fact, to be consis-
tent with the cosmological observation the absolute value of
the anisotropy parameter, i.e., |�/H |, must be much smaller
than one [36,37]. For heuristic reasons, we will compare
|�/H | derived in our current model with that obtained in

the KSW model [37] and the k-inflation model [43] of vec-
tor field, as well as with that derived in Ref. [55] for the
canonical scalar field coupled to the two-form field, using
specific values of field parameters such as |λ| = 0.1 and
ρ = 50. As a result, we obtain the corresponding val-
ues as |�/H |KSW � 0.0004, |�/H |k-one-form � 0.0005,
|�/H |canonical-two-form � 0.0008, and |�/H |k-two-form �
0.0003 < |�/H |canonical-two-form. It turns out that the
anisotropy induced by the two-form field non-minimally cou-
pled to the k-inflation field is the smallest one among these
four values.

3.2 Stability analysis

To investigate the stability of the anisotropic power-law
solution defined above we will introduce the corresponding
dynamical variables [55],

x ≡ σ̇

α̇
, y ≡ φ̇

α̇
, z ≡ pB

e−α+2σ

f (φ)α̇
, (40)

along with two auxiliary variables [43],

ωκ ≡ eκφ/2, ωλ ≡ √
l0α̇e

λφ/2. (41)

As a result, the corresponding dynamical system of autono-
mous equations are defined to be

dx

dα
= σ̈

α̇2 − x
α̈

α̇2 , (42)

dy

dα
= φ̈

α̇2 − y
α̈

α̇2 , (43)

dz

dα
= z

(
2x − ρy − α̈

α̇2 − 1

)
, (44)

dωλ

dα
= λ

2
yωλ + α̈

α̇2 ωλ, (45)

dωκ

dα
= κ

2
yωκ. (46)

Here, α = ∫
α̇dt is understood as a new time coordinate

[37,38,43,55]. In the above equations, there exist α̈, σ̈ , and φ̈,
which can be determined from the field equations (10), (11),
and (12) with the help of the Friedmann constraint equation
(9), which now becomes as

1

6
k0y

2ω2
κ + x2 + 1

4
y4ω2

λ + z2

6
− 1 = 0. (47)

As a result, explicit expressions of autonomous equations can
be defined to be

dx

dα
= 1

6
k0ω

2
κ xy

2 + x3 − xz2

6
− x − z2

3
, (48)

dy

dα
= 1

4
(
k0ω2

κ + 3y2ω2
λ

)
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×
[
−2

3
k0yω

2
κ

(
−k0y

2ω2
κ − 6x2 + z2 − 12

)

−2y3ω2
λ

(
−k0y

2ω2
κ − 6x2 + z2 − 12

)
− 2κk0y

2ω2
κ

−12k0yω
2
κ − 3λy4ω2

λ − 12y3ω2
λ + 4ρz2

]
, (49)

dz

dα
= z

(
1

6
k0ω

2
κ y

2 + x2 + 2x − ρy − z2

6
+ 1

)
, (50)

dωλ

dα
= −ωλ

(
k0ω

2
κ y

2

6
+ x2 − z2

6
+ 2

)
+ 1

2
λyωλ, (51)

dωκ

dα
= 1

2
κyωκ. (52)

Now, we are going to find out anisotropic fixed points with
x 
= 0 to this dynamical system by solving the following
equations,

dx

dα
= dy

dα
= dz

dα
= dωλ

dα
= dωκ

dα
= 0. (53)

First, the equation dωκ/dα = 0 gives κ = 0 and then
ωκ = 1, consistent with the power-law solution derived in the
previous subsection. As a result, the equation dωλ/dα = 0
gives

k0y2

6
+ x2 − λy

2
− z2

6
+ 2 = 0, (54)

while the equation dz/dα = 0 implies

k0y2

6
+ x2 + 2x − ρy − z2

6
+ 1 = 0. (55)

Then, we can obtain the expression for y from these two
equations,

y = 2 − 4x

λ − 2ρ
. (56)

On the other hand, by using two equations, dx/dα = 0 and
dz/dα = 0, we can obtain the expression for z2 as

z2 = −3x(2x − ρy + 2). (57)

Thanks to these results, we are able to obtain non-trivial solu-
tions for x from either equation dy/dα = 0 or dz/dα = 0,

x± = −3(λ − 2ρ)
[
3λ − 3ρ ± √

(λ − ρ)(λ + 23ρ) − 32k0
] + 8k0

4 (3(λ − ρ)(λ − 2ρ) + 4k0)
.

(58)

It is clear that the solution x+ is absolutely equivalent to the
anisotropic power-law one found in the previous subsection
due to the result x+ = η/ζ−. This indicates that the stability
of the anisotropic fixed point is also that of the anisotropic
power-law solution.

As a result, approximated values for the anisotropic fixed
point can be defined as

x � 3λ

19ρ
, (59)

y � − 1

ρ
, (60)

z2 � − 27λ

19ρ
, (61)

ω2
λ � 12ρ4 − 94λρ3

19
, (62)

using the constraints pointed out above, i.e., ρ � |λ|, k0 �
−12ρ2, and ζ � −2ρ/λ � 1, for the inflationary phase.
To examine the stability of the anisotropic fixed point, we
perturb the autonomous equations around this fixed point as
follows

dδx

dα
� −3δx + 12λ

19
δy − 2

√
− 3λ

19ρ
δz, (63)

dδy

dα
� − 6λ

19ρ2 δx − 7δy + 5

4

√
−3λ

19ρ3 δz +
√

3

2ρ3 δωλ, (64)

dδz

dα
� 6

√
−3λ

19ρ
δx + 9

√−3λρ

19
δy + 39λ

38ρ
δz, (65)

dδωλ

dα
� −12

19

√
3λρδx − 8

√
3ρ3δy

+ 6

√−λ

19
ρ3δz − 14λ

19ρ
δωλ. (66)

Then, we take exponential perturbations,

δx = Ax exp[ωα], (67)

δy = Ay exp[ωα], (68)

δz = Az exp[ωα], (69)

δωλ = Aω exp[ωα], (70)

to obtain the corresponding matrix equation,

M

⎛
⎜⎜⎝
Ax

Ay

Az

Aω

⎞
⎟⎟⎠ ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

−ω − 3 12λ
19 −2

√
−3λ
19ρ

0

− 6λ
19ρ2 −ω − 7 5

4

√ −3λ
19ρ3

√
3

2ρ3

6
√

−3λ
19ρ

9
√

−3λρ
19 −ω + 39λ

38ρ
0

− 12
19

√
3λρ −8

√
3ρ3 6

√
−λ
19 ρ3 −ω − 14λ

19ρ

⎞
⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎝
Ax

Ay

Az

Aω

⎞
⎟⎟⎠ = 0. (71)

It is well known that this matrix equation admits non-trivial
solutions if and only if

det M = 0, (72)

which can be expanded to be a polynomial equation for ω as
follows

a4ω
4 + a3ω

3 + a2ω
2 + a1ω + a0 = 0, (73)
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Fig. 1 Numerical results demonstrate the attractive behavior of the
obtained anisotropic fixed point (displayed as a black point). Here, the
parameters have been chosen as λ = −0.1 and ρ = 50

where

a4 = 1 > 0, (74)

a3 � 10 − 11λ

38ρ
, (75)

a2 � 33 − 229λ

76ρ
, (76)

a1 � 36 − 1677λ

76ρ
, (77)

a0 � −891λ

19ρ
. (78)

Apparently, the constraint that λ < 0 and ρ > 0 will indi-
cate the fact that all the coefficients ai (i = 0 − 3) are
positive. Hence, the polynomial equation (73) only admits
negative roots ω < 0. Therefore, the anisotropic fixed point
turns out to be stable against perturbations. In addition, the
numerical result shown in Fig. 1 confirms that the anisotropic
fixed point is clearly attractive since trajectories with differ-
ent initial conditions all converge to the anisotropic fixed
point (displayed as the black point) rather than an isotropic
fixed point with x = z = 0. For now, we can conclude that
the anisotropic power-law solution is stable and attractive
during the inflationary phase. And this model provides us
one more counterexample to the cosmic no-hair theorem.

4 Dirac–Born–Infeld case

In this section, we extend our analysis to the DBI model,
whose origin comes from string theory [72–75]. Anisotropic
power-law inflation for the DBI model in the presence of one-
form field has been firstly studied in Ref. [38] then revisited
in Refs. [39–41]. An action of the Dirac–Born–Infeld model
in the presence of the two-form field is given by

S =
∫

d4x
√−g

[
R

2
− 1

f (φ)

(√
1 + f (φ)∂μφ∂μφ − 1

)

−V (φ) − 1

12
h2(φ)HμνρH

μνρ

]
, (79)

where we have renamed the gauge kinetic function as
f (φ) → h(φ) to avoid any misunderstanding. It turns out
that the action (79) will become that of canonical scalar field
considered in Refs. [53–55] if the limit f (φ) → 0 is taken.

Similar to the previous case, we will use the Bianchi type
I metric shown in Eq. (6) to define the corresponding form
of the action (79),

S =
∫

d4xe3α

⎡
⎣3

(σ̇ 2 − α̇2)

N
− N

f

⎛
⎝

√
1 − f

φ̇2

N 2 − 1

⎞
⎠

−NV + h2

2N
e−4(α+σ)v̇2

B

⎤
⎦ . (80)

As a result, the corresponding field equations of this model
are given by

α̇2 = σ̇ 2 + γ 2

3(γ + 1)
φ̇2 + V

3
+ p2

B
e4σ−2α

6h2 , (81)

α̈ = −3α̇2

2
− 3σ̇ 2

2
+ V

2
− γ φ̇2

2(γ + 1)
+ p2

Be
4σ−2α

12h2 , (82)

σ̈ = −3α̇σ̇ − p2
Be

4σ−2α

3h2 , (83)

φ̈ = −3α̇φ̇

γ 2 − Vφ

γ 3 − γ 2φ̇4 fφ
2(γ + 1)2

− γ φ̇4 fφ
(γ + 1)2 + p2

Be
4σ−2αhφ

γ 3h3 , (84)

here we have used the following definition,

f ≡ γ 2 − 1

γ 2φ̇2
, (85)

as well as the solution of vB(t),

v̇B = pBh
−2 exp[α + 4σ ]. (86)

It is noted that γ ≡ 1/
√

1 + f (φ)∂μφ∂μφ is called the
Lorentz factor characterizing the motion of the D3-brane
[72,73,75]. The positivity of f (φ) implies that γ > 1. The
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model of canonical scalar field studied in Ref. [55] will cor-
respond to γ = 1.

4.1 Anisotropic power-law solution

With the above setting, to find exact anisotropic power-law
solutions to the DBI model we continue to use the ansatz
shown in Eq. (13) along with exponential functions such as
[38]

V (φ) = V0 exp[λφ], (87)

f (φ) = f0 exp[τφ], (88)

h(φ) = h0 exp[ρφ], (89)

where V0, f0, h0, λ, τ , and ρ are all constant. We also defined
new variables [38],

u = V0 exp[λφ0], (90)

w = p2
Bh

−2
0 exp[−2ρφ0], (91)

κ = f0 exp[τφ0]. (92)

It turns out that the corresponding γ is given by

γ = 1√
1 − κξ2t−2+ξτ

. (93)

Obviously, if τξ = 2 then γ will become a constant γ0

defined as

γ = γ0 = |τ |√
τ 2 − 4κ

. (94)

Now, we are going to find out ζ and η from the field equations
because their values will determine whether the inflationary
phase exists or not. Similar to the previous analysis, we will
define a set of the algebraic equations from the field Eqs.
(81), (82), (83), and (84) to be

ζ 2 = γ 2
0 ξ2

3γ0 + 3
+ η2 + u

3
+ w

6
, (95)

−ζ = − γ0ξ
2

2γ0 + 2
− 3ζ 2

2
− 3η2

2
+ u

2
+ w

12
, (96)

−η = −3ζη − w

3
, (97)

−ξ = −3ζ ξ

γ 2
0

+ 2ξ − 2γ0ξ

γ 2
0 + γ0

+ ξ − γ0ξ

γ0 + 1
+ 2u

γ 3
0 ξ

+ ρw

γ 3
0

,

(98)

with the help of the corresponding constraints,

τξ = 2, (99)

λξ = −2, (100)

−2ζ + 4η − 2ξρ = −2. (101)

As a result, the relation between λ and τ can be expressed as
follows

τ = −λ. (102)

Hence, the positivity of λ will imply the negativity of τ and
vice versa. After some algebra, a set of non-trivial solutions
is found to be

ζ = 4γ0 + λ2 + 5λρ + 6ρ2

3λ2 + 3λρ
, (103)

η = 4γ0 + λ2 + 5λρ + 6ρ2

2
(
3λ2 + 3λρ

) − ρ

λ
− 1

2
, (104)

u = 2

(γ0 + 1) λ3(λ + ρ)2

[
γ 2

0

(
−λ2 + 4λρ + 9ρ2 + 4

)

+γ0

(
2λ2ρ2 + λ2 + 7λρ3 + 8λρ + 6ρ4 + 11ρ2

)

+4γ 3
0 + ρ2

(
2λ2 + 7λρ + 6ρ2

)]
, (105)

w = 4γ0λ
2 − 12γ0ρ

2 − 8γ 2
0 + 4λ3ρ + 14λ2ρ2 + 12λρ3

λ2(λ + ρ)2 .

(106)

As a result, the scale factors for this model are given by

ζ + η = 2γ0 + ρ(λ + 2ρ)

λ(λ + ρ)
, (107)

ζ − 2η = 2ρ

λ
+ 1. (108)

Apparently, the positive scale factors require that bothλ andρ

are positive definite. Therefore, τ should be negative accord-
ing to Eq. (102). As a result, the corresponding anisotropy
parameter is given by

�

H
≡ σ̇

α̇
= η

ζ
= 2γ0 − λ(λ + 2ρ)

4γ0 + (λ + 2ρ)(λ + 3ρ)
. (109)

It is straightforward to verify that these solutions will recover
that defined in Ref. [55] in the canonical limit γ0 → 1. For
the anisotropic power-law inflation with ρ � λ, the ratio
�/H is indeed much smaller than one as expected. It appears
that �/HDBI-two-form � 0.0005 < �/Hcanonical-two-form �
0.0008 provided λ = 0.1, ρ = 50, and γ0 = 1.5. This result
indicates that the larger γ0 is, the smaller �/H is. Therefore,
the anisotropy parameter �/H seems to be reduced in the
context of non-canonical scalar field models, according to
this result as well as that in the previous case.

4.2 Stability analysis

The stability of the obtained anisotropic power-law solution
of the DBI model will be investigated in this subsection. To
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do this task, we firstly introduce the corresponding dimen-
sionless dynamical variables as

x ≡ σ̇

α̇
, y ≡ φ̇

α̇
, z ≡ pB

e−α+2σ

hα̇
. (110)

Consequently, the field Eqs. (81), (82), (83), and (84) will
be converted into the corresponding dynamical system of
autonomous equations given by

dx

dα
= 3x3 + xy2

2γ̂
+ xz2

6
− 3x − z2

3
, (111)

dy

dα
= 3γ̂ 2 [

γ̂ λ
(
x2 − 1

) − y
] + 3x2y

+ y3

2γ̂
+ y2 2γ̂ 2(λ + τ) − γ̂ τ − τ

2
(
γ̂ + 1

)

+ yz2

6
+ 1

2
γ̂ 3z2(λ + 2ρ), (112)

dz

dα
= 3x2z + 2xz + y2z

2γ̂
− ρyz + z3

6
− z, (113)

dγ̂

dα
= −

(
γ̂ 2 − 1

)
6γ̂ 2y

[
yγ̂

(
18x2 − 3τ y + z2) − 6γ̂

dy

dα
+ 3y3

]
.

(114)

Here, we have defined an auxiliary variable as γ̂ = 1/γ for
the completeness of dynamical system [38,75]. Now, we are
going to seek anisotropic fixed points with x 
= 0 to this
dynamical system by solving a set of equations,

dx

dα
= dy

dα
= dz

dα
= dγ̂

dα
= 0. (115)

Combining both equations, dx/dα = 0 and dz/dα = 0, will
yield an equation of z2,

z2 = −3x(2x − ρy + 2). (116)

On the other hand, the equation dγ̂ /dα = 0 gives

− γ̂
(

18x2 + z2
)

− 3y2 + 3 ˆγ τ y = 0. (117)

Finally, the equation dz/dα = 0 implies

− 6γ̂ + 18γ̂ x2 + 12γ̂ x + 3y2 − 6γ̂ ρy + γ̂ z2 = 0. (118)

Thanks to these useful results, an important expression for y
can be revealed to be

y = 2(2x − 1)

2ρ − τ
. (119)

Now, we are about to obtain an equation of x by substituting
Eqs. (116) and (119) into the equation for dz/dα = 0,

(2x − 1)
(−2γ̂ ρτ + γ̂ τ 2 + 6γ̂ ρ2x − 5γ̂ ρτ x + γ̂ τ 2x + 4x − 2

)
γ̂ (τ − 2ρ)2 = 0.

(120)

Solving this equation gives a non-trivial solution for x ,

x = γ̂ τ (2ρ − τ) + 2

γ̂
(
6ρ2 − 5ρτ + τ 2

) + 4
. (121)

Very interestingly, the equation dy/dα = 0 can be rewritten
as

(λ + τ)
y

6x2

[
−3x2 − y2

γ̂
(
γ̂ + 1

) − z2

2
+ 3

]
= 0, (122)

which clearly implies that τ = −λ, or equivalently γ̂ = γ̂0

with γ̂0 = 1/γ0. This result is indeed consistent with the
power-law solution found above. It is also consistent with
Ref. [38], in which the DBI field is non-minimally coupled to
the vector field. Consequently, a complete set of anisotropic
fixed point solution could be represented in terms of λ, ρ,
and γ̂0 as follows

x = 2 − γ̂0λ(λ + 2ρ)

γ̂0
(
λ2 + 5λρ + 6ρ2

) + 4
, (123)

y = − 6γ̂0(λ + ρ)

γ̂0
(
λ2 + 5λρ + 6ρ2

) + 4
, (124)

z2 = 18
(
γ̂0λ

2 + 2γ̂0λρ − 2
) (

2γ̂0λρ + 3γ̂0ρ
2 + 2

)
(
γ̂0λ2 + 5γ̂0λρ + 6γ̂0ρ2 + 4

)2 . (125)

It is clear that the positivity of z2 will be ensured if the
following inequality,

γ̂0λ
2 + 2γ̂0λρ > 2, (126)

is satisfied. Furthermore, this anisotropic fixed point is
exactly equivalent to the anisotropic power-law inflation
solution found in the previous subsection. Therefore, we
will examine the stability of the anisotropic fixed point solu-
tion, which will tell us the stability of the corresponding
anisotropic power-law solution.

To do this, we will first take approximated values for x ,
y, and z2, during the inflationary phase,

x � 1 − γ̂0λρ

3γ̂0ρ2 , (127)

y � − 1

ρ
, (128)

z2 � 3
(
2γ̂0λρ + γ̂0λ

2 − 2
)

2γ̂0ρ2 . (129)

Taking exponential perturbations,

δx = Ax exp[ωα], (130)

δy = Ay exp[ωα], (131)

δz = Az exp[ωα], (132)
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we are able to define the following perturbed equations,
which can be written in a matrix equation given by

B
⎛
⎝Ax

Ay

Az

⎞
⎠

≡

⎛
⎜⎜⎜⎝

−3 − ω
γ̂0λρ−1
3γ̂ 2

0 ρ3 − 1
ρ

√
2λγ̂0(λ+2ρ)−4

3γ̂0

− 2(γ̂0λρ−1)
(
γ̂ 3

0 λρ−1
)

γ̂0ρ3 −3γ̂ 2
0 − ω 6γ̂ 3

0

√
λγ̂0(λ+2ρ)−2

6γ̂0

6
ρ

√
λγ̂0(λ+2ρ)−2

6γ̂0
−

√
3λγ̂0(λ+2ρ)−6

2γ̂0

λ(9λ+10ρ)

12ρ2 − 1
3γ̂0ρ2 − ω

⎞
⎟⎟⎟⎠

×
⎛
⎝Ax

Ay

Az

⎞
⎠ = 0. (133)

Consequently, the corresponding equation for ω is defined as

b3ω
3 + b2ω

2 + b1ω + b0 = 0 (134)

where

b3 = 1 > 0, (135)

b2 � 3
(
γ̂0

2 + 1
)

> 0, (136)

b1 � 3γ̂ 2
0

(
2λργ̂0 + 1

)
> 0, (137)

b0 � 9γ̂ 2
0

(
2λργ̂0 + λ2γ̂0 − 2

)
> 0. (138)

It is noted that the positivity of the last coefficient b0 is
ensured by the positivity of z2. It is crystal that Eq. (134)
with all positive coefficients will always admit negative roots
of ω. Thereby, the anisotropic fixed point of the DBI case is
indeed stable during the inflationary phase. Consistently, the
numerical result displayed in Fig. 2 points out that this fixed
point is attractive. It is safe to conclude that the anisotropic
power-law of the DBI case is stable and disfavors the cosmic
no-hair conjecture.

5 Comparisons of |�/H| for different models

5.1 Two-form field models

For heuristic reasons, we would like to compare the anisotropy
parameter, |�/H |, for three different anisotropic power-law
inflation models of two-form field. As a result, the expression
of |�/H | for the canonical scalar field can be found in Eq.
(48) of Ref. [55]. According to Fig. 3, it appears that |�/H |
varies at different rates for the canonical, k-inflation, and
DBI scalar fields. Specifically, Fig. 3a contains three curves
of |�/H | for the fixed values ρ = 50 and γ0 = 1.5, along
with |λ| running from 0.03 to 0.5. On the other hand, Fig. 3b
is plotted for the fixed values |λ| = 0.1 and γ0 = 1.5, along
with ρ varying from 15 to 100. Note that the ranges for |λ| and
ρ have been chosen to accommodate the stability conditions

Fig. 2 Attractive behavior of the anisotropic fixed point of the DBI
case (displayed as a black point) for the parameters chosen as λ = 0.1,
ρ = 50, and γ0 = 1.5

for the canonical model [55] (λ >
√

ρ2 + 2 − ρ � 0.02
for a fixed value of ρ = 50 and ρ > 1/λ − λ/2 = 9.95
for a fixed value of λ = 0.1) as well as the DBI model

(126) (λ >

√
γ̂ 2

0 ρ2 + 2γ̂0/γ̂0 − ρ � 0.03 for fixed values

ρ = 50 and γ0 = 1.5 and ρ > 1/(γ̂0λ) − λ/2 = 14.95 for
fixed values λ = 0.1 and γ0 = 1.5). Also note that, these
ranges are automatically consistent with the stability of the
k-inflation model. It is crystal, according to these two figures,
that the values of |�/H | for non-canonical scalar fields, i.e.,
the k-inflation and DBI ones, are always smaller than that of
the canonical scalar one during the inflationary phase with
ρ � |λ|. More interestingly, the value of |�/H | for the k-
inflation case turns out to be smallest among three types of
scalar fields. This result would be useful to investigate the
observational constraints of anisotropic inflation due to the
two-form field.

5.2 One-form field vs. two-form field

One might ask about more comparisons among six anisotropy
parameters |�/H | derived in two types of anisotropic power-
law inflation, one is due to the one-form field (a.k.a. vector
field) and the other is due to the two-form field, for three dif-
ferent kinds of scalar fields. In this subsection, therefore, we
would like to make such comparisons. First, we should note
that the derivations of |�/H | for one-form anisotropic infla-
tion have been shown in Eq. (2.34) of Ref. [37], Eq. (3.34) of
Ref. [38], and Eq. (3.21) of Ref. [43] for the canonical, DBI,
and k-inflation scalar fields, respectively. In particular, Fig. 4a
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Fig. 3 (Left) The anisotropy parameter |�/H | as a function of |λ| for the fixed values, ρ = 50 and γ0 = 1.5. (Right) The anisotropy parameter
|�/H | as a function of ρ for the fixed values, |λ| = 0.1 and γ0 = 1.5

contains six curves of |�/H | for the fixed values ρ = 50 and
γ0 = 1.5, along with |λ| ∈ [0.06, 0.5]. On the other hand,
Fig. 4b is plotted for the fixed values |λ| = 0.1 and γ0 = 1.5,
along with ρ ∈ [30, 100]. Once again, the value ranges of |λ|
and ρ have been chosen to accommodate the stability condi-
tions for all six models we have been interested in. According
to two Fig. 4a, b, we observe that the |�/H | of k-inflation
two-form anisotropic inflation tends to be one of the small-
est ones among that of six models when ρ increases or |λ|
decreases during the inflationary phase. More interestingly,
it turns out that the values of |�/H | of canonical and DBI
two-form anisotropic inflation are always larger than that
of canonical and DBI one-form anisotropic inflation, respec-
tively. In contrast, |�/H | of k-inflation two-form anisotropic
inflation is always smaller than that of k-inflation one-form
anisotropic inflation. All these remarkable points would be
useful when judging which anisotropic inflation model is
cosmologically viable in the light of observational data.

6 Tensor-to-scalar ratio

In connection with the Planck 2018 data [7,8] as well as
future detections like the CMB-S4 project [76], we would
like to investigate in this section the corresponding tensor-
to-scalar ratio of the present non-canonical anisotropic infla-
tionary models, following our previous works [42–44] for the
one-form field as well as other works in Refs. [45–50] for the
one-form field and in Refs. [53,54] for the two-form field.

As discussed earlier, the anisotropy deviation σ should
be much smaller than the isotropy parameter α in order to
be consistent with the observations of WMAP and Planck.
Therefore, it is reasonable to regard the background metric
as the spatially flat Friedmann–Lemaitre–Robertson–Walker

(FLRW) metric, rather than the Bianchi type I metric, for
simplicity as done in Refs. [42–50] for the one-form field as
well as Refs. [53,54] for the two-form field.

It is important to mention that when the statistical isotropy
of CMB is broken down the scalar power spectrum will be
modified, according to Ref. [78], to be

P ζ̃
k,ani = P ζ̃ (0)

k

(
1 + g∗ cos2 θ

)
, (139)

where g∗ is a non-trivial constant characterizing a devia-
tion from the spatial isotropy and is expected to be smaller

than one, i.e., |g∗| < 1. In addition, P ζ̃ (0)
k is nothing but

the isotropic scalar power spectrum, while θ is the angle
between the wave number k and the privileged direction V
close to the ecliptic poles [78]. On the observation side, it
is worth noting that small values of g∗ have been identi-
fied via several analyses in Refs. [79–83]. On the theoretical
side, the analytical formula of g∗ has been derived within the
context of the anisotropic inflation of one-form field in sev-
eral published papers, e.g., in Refs. [45,54] for the canonical
scalar field and in Refs. [42–44] for the non-canonical scalar
field. More interestingly, the analytical formula of g∗ for the
anisotropic inflation of two-form field has been determined
in Refs. [53,54]. However, this formula is limited only to the
canonical scalar field. We will therefore derive in this section
a more general formula of g∗ for non-canonical scalar fields.

6.1 Scalar perturbations

Following our previous works done in Refs. [42,44] as well
as the seminal paper [71], the metric of scalar perturbations
is given by

ds2 = a2(η̃)
[
−(1 + �)dη̃2 + (1 + 2�)δi j dx

i dx j
]
, (140)

123



105 Page 12 of 18 Eur. Phys. J. C (2024) 84 :105

Fig. 4 Comparisons among six anisotropy parameters |�/H | derived
in two types of anisotropic power-law inflation, one is due to the one-
form field and the other is due to the two-form field, for three different

kinds of scalar fields. The left figure is plotted for the fixed values,
ρ = 50 and γ0 = 1.5, while the right figure is plotted for the fixed
values, |λ| = 0.1 and γ0 = 1.5

with η̃ ≡ ∫
a−1dt is a conformal time. In order to compute

the scalar power spectrum, we adopt the spatially flat gauge
with � = 0, which has been used in our previous paper [44]

ζ̃ = −H

φ̇
δφ, (141)

here H is the Hubble parameter. It is noted that this gauge
has also been used in many previous papers on anisotropic
inflation, e.g., see Refs. [50,53,54]. It is also noted that we
have used modified notations such as η̃ and ζ̃ , since ζ and
η have been used for the power-law solution in the previous
sections.

In the absence of non-minimal coupling between the scalar
and two-form fields, the isotropic scalar power spectrum

P ζ̃ (0)
k can be obtained [43,44]

P ζ̃ (0)
k = P ζ̃ (0)

k,nc = 1

8π2M2
p

H2

csε

∣∣∣∣∣
c∗
s k∗=a∗H∗

, (142)

which is identical to that firstly obtained in Ref. [71]. Here,
the notation ‘∗’ implies the pivot scale (a.k.a. horizon-exit
scale), where the spacetime of universe can be approximated
as the de Sitter one with a∗ � −(H∗η̃∗)−1, while the super-
script (0) stands for the de Sitter background. In addition, ε

is the slow-roll parameter defined as ε ≡ −Ḣ/H2, while cs
is the speed of sound, whose definition is given by [71]

c2
s ≡ ∂X p

∂Xρ
= ∂X P(φ, X)

∂X [2X∂X P(φ, X) − P(φ, X)] , (143)

where p and ρ the pressure and energy density parameters,
respectively.

In the presence of non-minimal coupling between the non-
canonical scalar field and the two-form field, the full scalar

power spectrum turns can be calculated, following our pre-
vious works [42,44] as well as Refs. [53,54], to be

P ζ̃
k,nc = P ζ̃ (0)

k + δP ζ̃
k , (144)

where the correction term δP ζ̃
k is given by (see the Appendix

A for derivations)

δP ζ̃
k = E2

yzc
4
s N

2
csk

cos2 θ

4π2ε2M4
p

. (145)

Here, Eyz ≡ h/a3H0yz = h/a3B ′
yz is the background value

of the two-form field [53,54], a ≡ eα = −(η̃H)−1 is a scale
factor of the background de Sitter spacetime, ′ represents a
derivative with respect to the conformal time η̃, i.e., B ′

yz =
dByz/dη̃, and h is nothing but the gauge kinetic function. It
is noted that the key element to derive the above formula is
the standard Bunch–Davies (BD) vacuum state for the non-
canonical scalar field, whose definition has been shown in
Ref. [84] as

ζ̃
(0)
k (η̃) = H

2
√
csεMpk3/2 (1 + icskη̃)e−icskη̃. (146)

This BD vacuum state has also been used in our previous
papers [42,44] to compute the CMB imprints of the non-
canonical anisotropic inflation based on the one-form field.
As a result, the full scalar power spectrum can be expressed
as

P ζ̃
k,nc = P ζ̃ (0)

k,nc

(
1 + 2c5

s E
2
yz N

2
csk

εH2M2
p

cos2 θ

)
, (147)
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with Ncsk � 60 is the e-fold number. Therefore, the corre-
sponding g∗ for non-canonical scalar fields can be defined
as

g∗ = c5
s

2E2
yz N

2
csk

εH2M2
p

= c5
s g

0∗ > 0, (148)

where

g0∗ = 2E2
yz N

2
csk

εH2M2
p

> 0, (149)

for the canonical scalar field [53,54]. Subsequently, the scalar
spectral index can be shown as

ns − 1 ≡ d lnP ζ̃
k,nc

d ln k

∣∣∣∣∣∣
c∗
s k∗=a∗H∗

� −2ε − η̄ − s

−
(

2

Ncsk
− 5s

)
g∗ cos2 θ

1 + g∗ cos2 θ
, (150)

where η̄ ≡ ε̇/(εH) and s ≡ ċs/(cs H) [71,74]. Given that
the average value of cos2 θ is 〈cos2 θ〉 = 1/3 [53,54], Eq.
(150) now becomes

ns − 1 � −2ε − η̄ − s −
(

2

Ncsk
− 5s

)
g∗

3 + g∗
. (151)

It is important to note that g0∗ and g∗ have been shown to
be negative definite for the one-form field [42–45,54], while
they turn out to be positive definite for the two-form field,
according to Eqs. (148) and (149). This difference is a very
interesting point, which could be useful to distinguish two
types of anisotropic inflation, one is due to the one-form
field and the other is due to the two-form field, in the light of
observational constraints [79–83].

6.2 Tensor perturbations

In this subsection, we consider tensor perturbations for a
model of non-canonical scalar fields non-minimally coupled
to the two-form field. It is important to note that tensor pertur-
bations for models of a canonical scalar field non-minimally
coupled to either the one-form or two-form field have been
investigated in the literature, e.g., see Refs. [53,54]. Addi-
tionally, tensor perturbations for a model of non-canonical
scalar fields non-minimally coupled to the one-form field
have been presented in our previous papers [42,44]. Accord-
ing to these papers, the metric of tensor perturbations can be
expressed as

gμν = a2(η̃)
[
−dη̃2 + (δi j + hi j )dx

idx j
]
, (152)

with hi j is the traceless (δi j hi j = 0) and transverse (∂ i hi j =
0) tensor perturbations satisfying the condition |hi j | 	 1. As

a result,hi j has two degrees of freedom,h+ andh×, which are
denoted as polarizations. Since the gravitational sector is not
affected by the scalar field as well as the non-minimal cou-
pling between the non-canonical scalar and two-form fields
[53,54], then the tensor power spectrum for anisotropic infla-
tion remains identical to that for isotropic inflation, which can
be found in Ref. [71], i.e.,

Ph
k,nc = Ph(0)

k,nc = 16csεP ζ̃ (0)
k,nc . (153)

Consequently, the tensor spectral index reads

nt ≡ d lnPh
k,nc

d ln k

∣∣∣∣∣
k∗=a∗H∗

� −2ε. (154)

6.3 Full tensor-to-scalar ratio

Based on the results derived above, we now end up with the
full tensor-to-scalar ratio for the two-form case as follows

rnc ≡ Ph
k,nc

P ζ̃
k,nc

= 16csε

1 + c5
s g

0∗ cos2 θ
, (155)

which can be reduced to

rnc = 16csε
3

3 + c5
s g

0∗
, (156)

if we take 〈cos2 θ〉 = 1/3 [53,54]. Apparently, this tensor-
to-scalar ratio will recover that derived in Ref. [54],

rnc → r = 16ε
3

3 + g0∗
, (157)

in the canonical limit cs → 1.

6.4 Application to the anisotropic power-law solutions

The tensor-to-scalar ratio is perhaps the most significant
parameter of any inflationary model, by which we can judge
how viable it is in the light of Planck 2018 data [7,8] or
future detections like the CMB-S4 project [76]. Therefore,
we will consider in this subsection whether the obtained
anisotropic power-law inflationary solutions are consistent
with the Planck 2018 data. It is noted that the results derived
in the previous subsections are general, which could be valid
for many types of non-canonical scalar field.

We first consider the k-inflation model, which was firstly
mentioned in the one-form case [43] and has been investi-
gated in Sect. 3, with the corresponding P(φ, X) is given
by

P(φ, X) = k0X + l0e
λφX2. (158)
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As a result, the corresponding speed of sound turns out to be

c2
s = k0 + 2l0eλφX

k0 + 6l0eλφX
. (159)

Furthermore, c2
s becomes, for the anisotropic power-law

inflationary solution derived in Sect. 3, as

c2
s = k0 + uξ2

k0 + 3uξ2 � − 5λ

228ρ
� 5

114ζ
	 1 (160)

along with the corresponding slow-roll parameter given by

ε ≡ − Ḣ

H2 = 1

ζ
� 114

5
c2
s 	 1. (161)

Next, we consider the DBI inflation model with the cor-
responding form of P(φ, X) given by

P(φ, X) = − 1

f (φ)

(√
1 − 2X f (φ) − 1

)
− V (φ). (162)

It turns out that the corresponding speed of sound is defined
as

c2
s = 1

γ 2 . (163)

It is apparent that γ = γ0 for the power-law inflation as
pointed out in Sect. 4, i.e., c2

s = γ −2
0 . In addition, the corre-

sponding slow-roll parameter reads

ε ≡ − Ḣ

H2 = 1

ζ
� λ

2ρ
. (164)

It is clear that ε will not be expressed in terms of cs in this
DBI case, unlike the k-inflation case.

Due to the fact that η̄ = s = 0 for the power-law solutions,
the corresponding scalar spectral index for both models reads

ns − 1 � −2ε − 2c5
s g

0∗
Ncsk

(
3 + c5

s g
0∗
) , (165)

where Ncsk � 60 will be chosen as usual.
In order to compare with the Planck 2018 data [7,8], we

are going to plot the ns − rnc diagram. First, we will choose
g0∗ = +0.03, according to the analytical formula shown in
Eq. (149) as well as the recent observational constraints of
g0∗ published in Refs. [80–83] for both k-inflation and DBI
models. In addition, we consider a range for the speed of
sound as 0 < cs ≤ 0.035 for the k-inflation model. For
the DBI inflation model, we choose a range of the ratio λ/ρ

as 0 < λ/ρ ≤ 0.055 along with the fixed value for speed of
sound is cs � 0.077 (equivalent to γ = γ0 = 13). According
to Fig. 5, it is obvious that the k-inflation model turns out to be
more viable, in the light of the Planck 2018 data, than the DBI
one. Indeed, the anisotropic power-law inflationary of the k-
inflation model is highly consistent with the Planck 2018
data [7,8], similar to the solution found in Ref. [43] for the

Fig. 5 The ns − rnc diagram of anisotropic power-law inflationary
solution of k-inflation two-form field model (lower curve) and that of
DBI two-form field model (upper curve) are plotted all together for
comparisons. Four colored points are displayed to indicate a prediction
region, which overlaps with the most confidence level region for ns of
the Planck 2018 data, in which 0.96 ≤ ns ≤ 0.975

one-form field. More interestingly, it appears that the tensor-
to-scalar ratio of k-inflation one-form field model [43] turns
out to be smaller than that of k-inflation two-form field model
(see Fig. 6 for the detailed comparison). It should be noted
that we have used a more precise formula, c2

s � −λ/(48ρ),
instead of an approximated formula shown in Eq. (5.15) of
Ref. [43] in order to plot the ns − rnc diagram of k-inflation
one-form field model as displayed in Fig. 6. Remarkably, the
tensor-to-scalar ratios of both k-inflation one-form and two-
form models seem to be relevant to a forecast of the CMB-S4
project [76].

7 Conclusions

We have studied the anisotropic power-law inflation in the
presence of the two-form field non-minimally coupled to
non-canonical scalar fields. For this purpose, we have focused
on examining two typical non-canonical forms of scalar field,
which come from the k-inflation [43,70,71] and DBI infla-
tion [38–41,72,73,75]. As a result, the anisotropic inflation-
ary solutions derived in these models become stable and
attractive as confirmed by the stability analysis based on
the dynamical system method. Our present work together
with the previous ones by other people in Refs. [53–57]
demonstrate that the cosmic no-hair conjecture proposed by
Hawking et al. [16,17] is extensively violated due to the exis-
tence of non-minimal coupling between the scalar and two-
form fields such as h2(φ)HμνρHμνρ . More interestingly, we
have pointed out, by taking some simple comparisons, that
the non-canonical property of scalar field seems to reduce
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Fig. 6 The ns − rnc diagram of anisotropic power-law inflationary
solution of k-inflation one-form field model (lower curve) vs. that of
k-inflation two-form field model (upper curve). Four colored points
are displayed to indicate a prediction region, which overlaps with the
most confidence level region for ns of the Planck 2018 data, in which
0.96 ≤ ns ≤ 0.975

the magnitude of anisotropy parameter |�/H |. This inter-
esting point would be useful when investigating observa-
tional constraints of the anisotropic inflation based on two-
form field. Additionally, we have made comparisons among
six anisotropy parameters |�/H | derived in two types of
anisotropic power-law inflation, one is due to the one-form
field and the other is due to the two-form field, for three differ-
ent kinds of scalar fields. As a result, the |�/H | of k-inflation
two-form inflation tends to be one of the smallest ones among
six anisotropy parameters. This additional interesting point
would also be useful when judging which anisotropic infla-
tion model is cosmologically viable in the light of observa-
tional data. In connection with the Planck 2018 data [7,8]
and future detections like the CMB-S4 project [76], we
have investigated the tensor-to-scalar ratio of the obtained
anisotropic power-law solutions. It turns out that the tensor-
to-scalar ratio of the anisotropic power-law solution of k-
inflation model is more consistent with the Planck 2018 data
than that of DBI model. More interestingly, additional anal-
ysis has shown that the tensor-to-scalar ratio of k-inflation
one-form field model is more viable than that of k-inflation
two-form field model in the light of Planck 2018 data [7,8].
Furthermore, these tensor-to-scalar ratios seem to be relevant
to a forecast of the CMB-S4 project [76]. We hope that our
study would contribute a new perspective on counterexam-
ples to the cosmic no-hair theorem. It should be noted that the
research on the CMB imprints of anisotropic inflation model,
in which the canonical scalar field is non-minimally coupled
to the two-form field, has been investigated in Refs. [53,54].
Our next step would therefore be a study of the effect of non-
canonical scalar fields on the CMB imprints of two-form

anisotropic inflation like what we have done in Ref. [44].
Besides, we will continue to examine whether anisotropic
inflation could be caused by other non-minimal couplings
between scalar and other fields such as the Yang–Mills one
[77]. We leave these issues for our future works.
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Appendix A: The second order correction to the full
scalar power spectrum

It turns out that the full power spectrum can be calculated as
follows [53,54]

P ζ̃
k (η̃, k) = 〈0| ˆ̃ζk(η̃)

ˆ̃
ζk′(η̃)|0〉

� 〈0| ˆ̃ζ (0)
k (η̃)

ˆ̃
ζ

(0)

k′ (η̃)|0〉

− i
∫ η̃

η̃min

〈0|[Hζ̃ (η̃1),
ˆ̃
ζ

(0)
k (η̃)

ˆ̃
ζ

(0)

k′ (η̃)]|0〉dη̃1

+
∫ η̃

η̃min,1

dη̃1

∫ η̃1

η̃min,2

dη̃2

× (−i)2

2
〈0|[[ ˆ̃ζ (0)

k (η̃)
ˆ̃
ζ

(0)

k′ (η̃), Hζ̃ (η̃1)], Hζ̃ (η̃2)]|0〉

= P ζ̃ (0)
k −

∫ η̃

η̃min,1

dη̃1

∫ η̃1

η̃min,2

× dη̃2〈0|[[ ˆ̃ζ (0)
k (η̃)

ˆ̃
ζ

(0)

k′ (η̃), Hζ̃ (η̃1)], Hζ̃ (η̃2)]|0〉, (A1)

where ˆ̃
ζ

(0)
k (η̃) is defined as

ˆ̃
ζ

(0)
k (η̃) = ζ̃

(0)
k (η̃)a(k) + ζ̃

(0)∗
k (η̃)a†(−k). (A2)
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Here, ζ̃
(0)
k (η̃) is the standard BD vacuum state for the non-

canonical scalar field, whose formula has been shown in Eq.
(146). In addition, a†(−k) and a(k) are the creation and
annihilation operators, respectively, which satisfy the follow-
ing commutation relations as [a(k), a†(−k′)] = δ3(k+ k′),
[a(k), a(k)] = 0, and [a†(k), a†(k)] = 0.

What we need to define for now is the interacting Hamil-
tonian Hζ̃ in the above equation in order to obtain the cor-
rection to the power spectrum arising from the non-minimal
coupling term −h2(φ)H2/12. To do this, we first define the
corresponding tree-level interacting Lagrangian as follows
[53,54]

Lint = − a4

12

(
〈h2〉 + ∂〈h2〉

∂φ
δφ

) (〈Hμνλ〉 + δHμνλ

) (〈Hμνλ〉 + δHμνλ
)

� a4Eyz

(
2δEyz ζ̃ − δxzhxy − δEyzhzz + δExyhxx

)
, (A3)

here we have only kept the second-order terms of pertur-
bations. Next, we apply the Fourier transform to δEi j (x, η̃)

such as [53,54]

δEi j (x, η̃) =
∫

d3k

(2π)3/2 e
ik·xδEi j (k, η̃), (A4)

As a result, we can obtain a solution in the super-Hubble
regime (|kη̃| 	 1) as [53,54]

δEi j (k, η̃) = 3H2

√
k3

[
b(k) + b†(−k)

]
εi j (k), (A5)

where b†(−k) and b(k) are creation and annihilation opera-
tors, respectively, which satisfy the following commutation
relations as [b(k), b†(−k′)] = δ3(k+k′), [b(k), b(k)] = 0,
and [b†(k), b†(k)] = 0. In addition, εi j (k) ≡ iεi jl kl/(

√
2k)

is the polarization tensor, whose explicit components can be
found in Ref. [54]. Consequently, the interacting Hamilto-
nian Hζ̃ can be defined to be [53,54]

Hζ̃ (η̃) = − 2Eyz

H4η̃4

∫
d3kδEyz(k, η̃)

ˆ̃
ζ (0)(−k, η̃), (A6)

according to the relation, Hζ̃ = − ∫
d3xLζ̃ , where Lζ̃ is

nothing but the first term in Eq. (A3). Consequently, we are
able to define

δ〈0| ˆ̃ζk,η̃ ˆ̃
ζk′,η̃|0〉 = P ζ̃

k (η̃, k) − P ζ̃ (0)
k (η̃, k)

� −1

2

∫ η̃

η̃min,1

dη̃1

∫ η̃1

η̃min,2

× dη̃2〈0|[[ ˆ̃ζ (0)
k (η̃)

ˆ̃
ζ

(0)

k′ (η̃), Hζ̃ (η̃1)], Hζ̃ (η̃2)]|0〉

= −1

2

∫ η̃

η̃min,1

dη̃1

∫ η̃1

η̃min,2

dη̃2

(
4E2

yz

H8

) ∫
d3k1

∫
d3k2

× 1

η̃4
1 η̃

4
2

〈0|[ ˆ̃ζ (0)

k,η̃
ˆ̃
ζ

(0)

k′,η̃
ˆ̃
ζ

(0)

k1,η̃1

− ˆ̃
ζ

(0)

k1,η̃1

ˆ̃
ζ

(0)

k,η̃
ˆ̃
ζ

(0)

k′,η̃,
ˆ̃
ζ

(0)

k2,η̃2
]δEyz(η̃1,k1)δEyz(η̃2,k2)|0〉

= −2E2
yz

H8

∫ η̃

η̃min,1

∫ η̃1

η̃min,2

dη̃2

∫
d3k1

∫
d3k2

× 1

η̃4
1η̃

4
2

〈0|
[ ˆ̃
ζ

(0)

k,η̃ [ ˆ̃ζ (0)

k′,η̃,
ˆ̃
ζ

(0)

k1,η̃1
] + [ ˆ̃ζ (0)

k,η̃ ,
ˆ̃
ζ

(0)

k1,η̃1
] ˆ̃ζ (0)

k′,η̃,
ˆ̃
ζ

(0)

k2,η̃2

]

× δEyz(η̃1,k1)δEyz(η̃2,k2)|0〉. (A7)

Now, using the commutation relation,
[ ˆ̃
ζ (0)(η̃,k),

ˆ̃
ζ (0)(η̃′,k′)

]

� − i H2c2
s

6εM2
p
(η̃3 − η̃′3)δ3(k + k′), (A8)

we obtain

δ〈0| ˆ̃ζk,η̃ ˆ̃
ζk′,η̃|0〉

� 2i E2
yz

H8

H2c2
s

6εM2
p

∫ η̃

η̃min,1

dη̃1

∫ η̃1

η̃min,2

dη̃2

×
∫

d3k2
1

η̃4
1η̃

4
2

〈0|[2(η̃3 − η̃3
1)

ˆ̃
ζ

(0)

k′,η̃,

ˆ̃
ζ

(0)

k2,η̃2
]δEyz(η̃1,k)δEyz(η̃2,k2)|0〉

= 4E2
yz

H8

(
H2c2

s

6εM2
p

)2 ∫ η̃

η̃min,1

dη̃1

×
∫ η̃1

η̃min,2

dη̃2
1

η̃4
1η̃

4
2

(η̃3 − η̃3
1)(η̃

3 − η̃2
2)

× 〈0|δEyz(η̃1,k)δEyz(η̃2,k′)|0〉

= E2
yzc

4
s

9H4ε2M4
p

∫ η̃

η̃min,1

dη̃1
η̃3 − η̃3

1

η̃4
1

×
∫ η̃1

η̃min,2

dη̃2
η̃3 − η̃3

2

η̃4
2

〈0|δEyz(η̃1,k)δEyz(η̃2,k′)|0〉,
(A9)

which will be identical to that defined in the case of canonical
scalar field [53,54] if we take limit cs → 1.

Thanks to the expression (A5), which can be written
explicitly as [54]

δEyz(η̃1,k) = 3H2

√
k3

[
b(k) + b†(−k)

] i√
2

cos θ, (A10)

we are able to define the following formula,

〈0|δEyz(η̃1,k)δEyz(η̃2,k′)|0〉

= 〈0| − 9H4

2
√
k3k′3

[
b(k) + b†(−k)

]

×
[
b(k′) + b†(−k′)

]
(− cos2 θ)|0〉

= 9H4

2k3 δ3(k + k′) cos2 θ. (A11)
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And thus we have

δ〈0| ˆ̃ζk,η̃ ˆ̃
ζk′,η̃|0〉 = E2

yzc
4
s

2k3ε2M4
p
δ3(k + k′) cos2 θ

×
∫ η̃

−1/(csk)
dη̃1

η̃3 − η̃3
1

η̃4
1

∫ η̃1

−1/(csk′)
dη̃2

η̃3 − η̃3
2

η̃4
2

. (A12)

The integral in the above equation can be calculated as fol-
lows [44,53]

∫ η̃

−1/(csk)
dη̃1

η̃3 − η̃3
1

η̃4
1

∫ η̃1

−1/(csk′)
dη̃2

η̃3 − η̃3
2

η̃4
2

� 1

2
N 2
csk,

(A13)

here Ncsk ≡ ln |η̃csk| is the e-fold number and the approxi-
mation |η̃csk| 	 1 has been used. Thus, we have

δ〈0| ˆ̃ζk,η̃ ˆ̃
ζk′,η̃|0〉 = E2

yzc
4
s N

2
csk

cos2 θ

4π2ε2M4
p

2π2

k3 δ3(k + k′), (A14)

which implies that

P ζ̃
k,ani(k) ≡ P ζ̃ (0)

k + δP ζ̃
k = P ζ̃ (0)

k

(
1 + 2c5

s E
2
yz N

2
csk

H2M2
pε

cos2 θ

)
.

(A15)
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