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Abstract Explicit symplectic integrators are powerful and
widely used for Hamiltonian systems. However, once the
post-Newtonian (PN) effect is considered to provide more
precise modeling for the N-body problem, explicit symplec-
tic methods cannot be constructed due to the nonseparability
of the Hamiltonian. Thus, the available symplectic method
is either fully implicit or semi-implicit, which decreases the
efficiency because of the implicit iteration used during the
evolution. In this paper, we aim to explore efficient explicit
methods whose performance is mostly like symplectic meth-
ods for PN Hamiltonian systems. Taking the small parameter
ε appearing in PN terms into consideration, we replace the
implicit symplectic solver with explicit solvers in the mixed
symplectic method to solve the PN term and then derive
three explicit methods. It is theoretically shown that the pro-
posed methods are respectively second-order, fourth-order,
and pseudo-fourth-order, and that their closeness to the cor-
responding symplectic methods are O(ε3h3), O(ε5h5), and
O(ε3h3). That is, they are explicit near-symplectic methods
with the presence of the small parameter ε. Numerical exper-
iments with the Hamiltonian problem of spinning compact
binaries show that the energy errors and orbital errors of the
proposed explicit near-symplectic methods are indistinguish-
able from the corresponding mixed semi-implicit symplectic
methods. The very small magnitude of the difference between
the proposed explicit near-symplectic methods and the mixed
symplectic methods confirms our theoretical analysis of their
closeness to symplecticity. Finally, the much less CPU time
consumed by the proposed methods highlights their most
important advantage of high efficiency over the mixed sym-
plectic methods.

a e-mail: bxhanm@126.com
b e-mail: lihuang@pmo.ac.cn (corresponding author)

1 Introduction

Post-Newtonian (PN) approximation is an effective approach
to modeling the relativistic gravitational problems, which has
been the major analytic tool to study the dynamics and wave-
forms of the system of compact objects (neutron stars and/or
black holes) in the early stage of the inspiral. In particular,
the consistency of PN waveforms with numerical relativity
[1] greatly support the effectiveness of PN approximation.

The PN Hamiltonian approximation and the PN Lagrangian
approximation are the two major PN approaches and used in
many problems, such as the compact binaries [2–5], the rela-
tivistic restricted three-body problem [6–8], and the general
relativistic N -body problem [9–11]. However, the research
on the dynamics of PN systems mainly depends on effec-
tive numerical integrations for such systems. For example,
the chaoticity of the system needs the calculation of chaotic
indicators such as the Lyapunov characteristic exponent [12–
14], the fast Lyapunov indicator [15,16], and the generalized
alignment index [17] by numerically solving the system.

Although there exist some discrepancies between the PN
Hamiltonian and the PN Lagrangian, the authors of [18] show
that structure-preserving (symplectic or energy-preserving)
integrators of PN Lagrangian systems still have to be con-
structed with the help of Hamiltonian frame. This point fur-
ther highlights the importance of efficiently solving for PN
Hamiltonian systems. Therefore, the aim of this paper is just
to establish accurately efficient explicit methods that possess
some good properties such as the symplecticity for the PN
Hamiltonian systems.

In Hamiltonian systems, the phase flow of the system is
a symplectic mapping from the state at one point to another
due to the presence of the symplectic structure. Therefore,
the symplectic method becomes the natural and sometimes
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the default candidate for Hamiltonian systems [19,20]. The-
oretical analyses in the literature show that the global error
of symplectic methods increases linearly with time for (near)
integrable Hamiltonian systems, while the energy error does
not have a secular long-term increase with time but oscillates
in a bounded region of a small magnitude [19,21]. This con-
firms the superiority of symplectic methods over traditional
methods such as the Runge–Kutta methods whose global
error and energy error respectively grow quadratically and
linearly.

Among all the symplectic methods, explicit symplectic
methods are more favoured because of the high efficiency
that consumes less CPU time to obtain numerical solutions
of given precision in comparison with implicit ones. For the
Hamiltonian system of Newtonian N-body problems, explicit
methods have been well developed based on the feasible
separation of integrable sub-Hamiltonians, such as the stan-
dard T + V splitting methods [22,23], the H0 + εH1 split-
ting methods [24], the force gradient methods [25–27], and
the pseudo-high-order methods [28–31]. In particular, the
group of Wu proposed some explicit symplectic methods in
Schwarzschild- and Kerr-type black hole spacetimes via an
integrable multiple-part separation [32–36].

However, different from the Newtonian Hamiltonian sys-
tem, the PN Hamiltonian system at least contains the inter-
action terms of the generalized position and the generalized
momentum. This interaction disables the explicit solving for
the corresponding sub-Hamiltonian. That is, even for the PN
Hamiltonian system of compact binaries that only involves
orbital term and thus is integrable, explicit symplectic meth-
ods are hardly constructed except for some particular sepa-
rable Hamiltonian [37]. In addition, the consideration of the
spinning effect that contains interaction terms of the general-
ized position, the generalized momentum, and the spin vari-
ables further makes it impossible to establish explicit sym-
plectic methods for general PN Hamiltonian systems. The
existing symplectic methods for PN Hamiltonian systems
are either fully implicit like the Gauss collocation method
[38,39] or semi-implicit like the mixed methods [40–42]
that mix the explicit solving for the Newtonian term and the
implicit symplectic solving for the PN term.

In fact, efforts for explicit symplectic methods have
existed for many years. For example, the explicit extended
phase space method is symplectic in the sense of extended
phase space [43–46]. Although this class of methods is no
longer symplectic in the original phase space of the Hamil-
tonian, its symmetry still ensures a nonsecular growth of
energy errors. We also note that the author of [44] proved
the linear global error growth of the explicit extended phase
space method for integrable Hamiltonian systems. However,
the linear global error growth for near-integrable or nonin-
tegrable Hamiltonian systems is still uncertain. That is, the
application of extended phase space methods to PN Hamilto-

nian systems may lose the most important property of linear
global error growth.

In this paper, by observing the presence of the small
parameter ε in the PN Hamiltonian, we consider replacing the
implicit symplectic solver for the PN term with explicit ones
in the mixed symplectic method. Then, the derived meth-
ods are certainly explicit. Furthermore, we present a theo-
retical analysis that the new method is O(ε p+1h p+1) close
to symplectic methods. That is, the proposed methods are
really explicit and near-symplectic. The numerical experi-
ments with the spinning compact binaries show that the pro-
posed methods behave very like symplectic methods so that
their discrepancy are indistinguishable in the same plot, while
the CPU time consumed by the proposed methods are much
less than the corresponding mixed symplectic methods. This
strongly supports the good near-symplecticity and high effi-
ciency of the new methods.

The rest of this paper is organized as follows. In Sect. 2, we
introduce the PN Hamiltonian of spinning compact binaries
and then present a brief discussion on the canonical conjugate
spin variables and integrability of the system. We derive the
formulation of explicit near-symplectic methods and provide
the theoretical analysis in Sect. 3. Numerical experiments
with the spinning compact binaries are presented in Sect. 4
by showing the comparison of energy errors, orbital errors,
and CPU time between the proposed methods and the mixed
symplectic methods. Conclusions are drawn in the last sec-
tion.

2 Post-Newtonian Hamiltonian formulation

In comparison with the Newtonian term, the PN term is usu-
ally small, regardless of the number of bodies in the sys-
tem. Without loss of generality, we consider the conservative
PN Hamiltonian of spinning compact binaries in Arnowitt–
Deser–Misner (ADM) coordinates and in the center-of-mass
frame, in which chaos may occur due to the high nonlinearity.

To describe the Hamiltonian, the following notations are
used throughout this paper. Let P be the momenta of body
1 relative to the center, Q be the position coordinates of
body 1 relative to body 2, N = Q/r be the unit vector,

r = |Q| =
√
q2

1 + q2
2 + q2

3 be the distance of body 1 relative
to body 2, and Si (i = 1, 2) be the spins of the two compact
bodies. The mass of the two compact bodied are respectively
denoted by m1 and m2 (m1 ≤ m2). Then, we have the total
mass M = m1 + m2, the reduced mass μ = m1m2/M
and the mass ratio β = m1/m2. Another frequently used
parameter is η = μ/M = β/(1 + β)2. It is also noted that
Si (i = 1, 2) are usually expressed by Si = �i Ŝi , where Ŝi
are the unit vectors, and �i = χim2

i /M
2 (χi ∈ [0, 1]) are

spin magnitudes. Finally, the time t, space Q, momentum P,
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and spin Si are respectively rescaled and measured in GM,

GM, μ, and M2 (see, e.g. [6,8,47–49]).
With the above notations, the PN Hamiltonian considered

in this paper is written as follows:

H(Q, P, S1, S2) = HN + 1

c2 H1PN + 1

c4 H2PN

+ 1

c6 H3PN + 1

c3 H
SO
1.5PN + 1

c5
HSO

2.5PN

+ 1

c7 H
SO
3.5PN + 1

c4 H
SS
2PN . (1)

In this formulation, HN , H1PN , H2PN and H3PN are respec-
tively the Newtonian term (i.e., the Kepler flow), the 1PN-,
2PN-, and 3PN-order orbital contributions. The spin-orbit
couplings, i.e., the leading-order term HSO

1.5PN , the next-to-
leading-order term HSO

2.5PN , and the next-to-next-to-leading-
order term HSO

3.5PN , are respectively accurate up to 1.5PN,
2.5PN, and 3.5PN order by adopting the assumption that the
rotational speed of the compact object is in the same magni-
tude of c. The last term HSS is the spin-spin couplings and
accurate up to 2PN order.

Following [50], the orbital terms can be expressed as fol-
lows

HN = P2

2
− 1

r
, (2)

H1PN = 1

8
(3η − 1)P4 − 1

2

[
(3 + η)P2 + η(N · P)2]1

r

+ 1

2r2 , (3)

H2PN = 1

16
(1 − 5η + 5η2)P6 + 1

8

[
(5 − 20η − 3η2)P4

−2η2(N · P)2P2 − 3η2(N · P)4]1

r

+1

2

[
(5 + 8η)P2 + 3η(N · P)2] 1

r2

−1

4
(1 + 3η)

1

r3 , (4)

H3PN = 1

128
(−5 + 35η − 70η2 + 35η3)P8 + 1

16

[
(−7

+42η − 53η2 − 5η3)P6 + (2 − 3η)η2 · (N

·P)2P4 + 3(1 − η)η2(N · P)4P2 − 5η3(N

·P)6]1

r
+

[
1

16
(−27 + 136η + 109η2)P4

+ 1

16
(17 + 30η)η(N · P)2P2 + 1

12
(5 + 43η)

·η(N · P)4
]

1

r2 +
{[

− 25

8
+

(
1

64
π2 − 335

48

)
η

−23

8
η2

]
P2 +

(
− 85

16
− 3

64
π2 − 7

4
η

)
η(N

·P)2
}

1

r3 +
[

1

8
+

(
109

12
− 21

32
π2

)
η

]
1

r4 . (5)

Let S = S1 + S2, S∗ = 1
β
S1 + βS2, and L be the orbital

angular momentum vector L = Q × P . According to [51],
the Hamiltonian of spin-orbit coupling terms are respectively
written as

HSO
1.5PN = 1

r3

(
2S + 3

2
S∗

)
· L, (6)

HSO
2.5PN = 1

r3

[(
19

8
ηP2 + 3

2
η(N · P)2 − (6 + 2η)

1

r

)
S

+
(

−
(

5

8
+ 2η

)
P2 + 3

4
η(N · P)2 − (5

+2η)
1

r

)
S∗

]
· L, (7)

HSO
3.5PN = 1

r3

{[
− 9

8
η

(
1 − 22

9
η

)
P4 − 3

4
η

(
1 − 9

4
η

)
P2

·(N · P)2 + 5

16
η2(N · P)4 + 1

r

[
− 157

8
η

(
1

+ 39

314
η

)
P2 − 16η

(
1 + 45

256
η

)
(N · P)2

+1

r

21

2
(1 + η)

]]
S +

[
1

16
(7 − 37η + 39η2)

·P4 + 9

16
η(2η − 1)P2 · (N · P)2 + 1

r

[
1

8
(27

−129η − 39

2
η2)P2 − 6η

(
1 + 15

32
η

)
(N

·P)2+1

r

(
75

8
+ 41

4
η

)]]
S∗

}
· L. (8)

Finally, the spin-spin Hamiltonian HSS is quadratic in the
two spins and has the following formulation

HSS
2PN (Q, S1, S2) = 1

2r3

[
3(S0 · N)2 − S2

0

]
, (9)

where

S0 = S + S∗ =
(

1 + 1

β

)
S1 + (1 + β)S2.

As explained in [7,8,52,53], to conveniently describe spe-
cific physical phenomena whose quantities are measured
in the International System of Units, we should readjust
the parameter c once the geometric unit G = M = 1 is
employed. For example, the parameter c should be readjusted
to c ≈ 1.0067 × 104 for the solar system. In general, we
can roughly say that a smaller value of c for (1) indicates a
stronger PN effect.

Note that the PN Hamiltonian (1) is not expressed by com-
pletely canonical conjugate variables, because its evolution
equations read [50]

d Q
dt

= ∂H

∂ P
,

d P
dt

= −∂H

∂ Q
,

123



76 Page 4 of 12 Eur. Phys. J. C (2024) 84 :76

dSi
dt

= ∂H

∂Si
× Si , i = 1, 2, (10)

which clearly indicate that the spin variables Si are not con-
jugate to each other. Fortunately, the authors of [54] intro-
duced the canonical conjugate spin variables θ = (θ1, θ2)

and ξ = (ξ1, ξ2):

Si =
⎛
⎜⎝

ρi cos(θi )

ρi sin(θi )

ξi

⎞
⎟⎠ , i = 1, 2, (11)

where ρ2
i + ξ2

i = �2
i and ρi > 0. According to (10), it is

yielded that the spin magnitudes �i = |Si | are conserved
for the system. Then, the usage of new variables makes
the original 12-dimensional system H(Q, P, S1, S2) of (1)
reduce to a 10-dimensional canonical Hamiltonian system
H(Q, P, θ , ξ), whose evolution equations read

d Q
dt

= ∂H

∂ P
,

d P
dt

= −∂H

∂ Q
,

dθ

dt
= ∂H

∂ξ
,

dξ

dt
= −∂H

∂θ
. (12)

It should be noticed that the variables ρi defined in (11) differ
slightly from that [54] by a factor of �i .

For the 10-dimensional canonical Hamiltonian system
H(Q, P, θ , ξ), there exists only four independent constants,
i.e., the total angular momentum vector

J = L + S1 + S2, (13)

and the total energy

E = H(Q, P, θ , ξ). (14)

This means that the spinning Hamiltonian (1) is noninte-
grable, and hence chaos may occur in this system. We also
note that once the spin-spin term HSS is excluded from (1),
there exists an additional constant, i.e., the length of the
orbital angular momentum vector

|L| =
√
L2. (15)

In this case, the system will be completely integrable accord-
ing to the integrability theory of canonical Hamiltonian sys-
tems.

3 Explicit near-symplectic methods

According to the formulation of (1), it is yielded that
the Hamiltonian H(Q, P, θ , ξ) is nonseparable because
of the nonlinear interactions between Q and P, and that
between θ and ξ . This point means that the construction
of explicit symplectic methods is impossible for the Hamil-
tonian H(Q, P, θ , ξ). Given that the integrable separation
cannot be applied, implicit symplectic methods, such as the

Gauss Runge–Kutta collocation methods, are the inevitable
choice for H(Q, P, θ , ξ).

3.1 Mixed symplectic methods

Since fully implicit symplectic methods such as the Gauss
collocation methods are usually expensive for the consumed
CPU time, an effective approach to increase the computa-
tional efficiency is to explicitly solve the Hamiltonian as
much as possible. This idea is followed by the mixed sym-
plectic methods for PN Hamiltonian systems [40–42], which
combine the explicit exact solver for the Newtonian part and
the implicit numerical solver for the nonseparable PN part.

To illustrate the idea, by letting ε = 1
c2 we separate the

Hamiltonian (1) with the canonical conjugate spin variables
(θ, ξ) into two typical parts as follows:

H(Q, P, θ , ξ) = HN (Q, P) + εHPN (Q, P, θ , ξ), (16)

where HN (Q, P) is just the Newtonian term (2) and
HPN (Q, P, θ , ξ) represents the PN term that includes the
PN orbital terms (3)(4)(5), the spin-orbit terms (6)(7)(8), and
the spin-spin term (9). Because HN is integrable and an exact
analytical solution exists in principle, one can exactly solve
this part by an exact operator S0(h) that is naturally sym-
plectic. However, the PN part HPN (Q, P, θ , ξ) can only be
solved by implicit symplectic operator M(h). Then, the com-
bination of S0(αh) and M(γ h) with different coefficients α

and γ yields symplectic methods for the Hamiltonian (16).
Once the symplectic implicit midpoint method IRK2 with

the stepsize h is used as M(h) to numerically solve HPN , the
typical second-order mixed symplectic method S2(h) [40–
42] is given as follows:

S2(h) ≡ IRK2
(1

2
h
)

◦ S0(h) ◦ IRK2
(1

2
h
)
. (17)

Then a fourth-order mixed symplectic method by Yoshida’s
triple product of S2(h) can be derived as follows:

S4(h) = IRK2
(λ

2
h
)

◦ S0(λh) ◦ IRK2
(λ

2
h
)

◦IRK2
(1 − 2λ

2
h
)

◦ S0
(
(1 − 2λ)h

) ◦ IRK2
(1 − 2λ

2
h
)

◦IRK2
(λ

2
h
)

◦ S0(λh) ◦ IRK2
(λ

2
h
)
, (18)

where λ = 1
2−21/3 . The fourth-order method S4(h) is essen-

tially a nine-operator method. It is noted that the collection of
neighboring operators IRK2(γ h) in (18) results in a seven-
operator method in Forest–Ruth formula as follows:

FR(h) = IRK2
(λ

2
h
)

◦ S0(λh) ◦ IRK2
(1 − λ

2
h
)

◦S0
(
(1 − 2λ)h

) ◦ IRK2
(1 − λ

2
h
)
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◦S0(λh) ◦ IRK2
(λ

2
h
)
. (19)

However, the numerical solutions of IRK2(h) for HPN only
have second-order accuracy, this leads to that the symplectic
method (19) is also of order two for (16).

The mixed symplectic methods take two advantages over
the fully implicit symplectic methods for PN Hamiltonian
systems. First, the mixed method always consumes less CPU
time since the dominant part of the Hamiltonian is explicitly
solved. Second, according to the particular formulation of the
separation (16), the small parameter ε = 1

c2 will appear in
the dominant local truncation error of the mixed symplectic
method, i.e., O(εh p+1) for a pth-order method, while the
local error is O(h p+1) for fully implicit symplectic methods.
On account of the small magnitude of ε, the mixed symplectic
method always has a smaller truncation error than the same
order fully implicit symplectic method. Details on the mixed
symplectic method can be referred to [8,42].

3.2 Near-symplectic methods

Suppose that � : Zn → Zn+1 is a numerical method of the
2d-dimensional Hamiltonian system H(Z).We introduce the
following definition concerning near-symplectic methods.

Definition 1 A numerical method of the Hamiltonian system
H(Z) is called near-symplectic, if there exists an integer r
such that the condition
(∂Zn+1

∂Zn

)ᵀ
J2d

(∂Zn+1

∂Zn

)
= J2d + O(hr )

holds for all n, where J2d =
(

O Id
−Id O

)
, Id is the identity

matrix of size d, and h is the stepsize.

Before the construction of near-symplectic methods, we
present the Butcher tableau of the implicit midpoint method
IRK2, the explicit second-order method RK2, and the con-
ventional fourth-order method RK4 [19] as follows:

IRK2:
1/2 1/2

1
, RK2:

0

1/2 1/2

0 1

,

RK4:

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

.

Now, we turn to the adaption of the mixed symplectic
method. Due to the small parameter ε appearing in the PN

term, we consider using explicit methods as M(h) to numer-
ically solve HPN . If replacing the implicit midpoint method
IRK2 with the explicit second-order Runge–Kutta method
RK2, we then derive the counterpart of S2(h) as follows:

S∗
2 (h) ≡ RK2

(1

2
h
)

◦ S0(h) ◦ RK2
(1

2
h
)
. (20)

For the fourth-order symplectic method S4(h), replacing
IRK2(h) with the explicit fourth-order method RK4(h) in
(18) yields

RK4
(λ

2
h
)

◦ S0(λh) ◦ RK4
(λ

2
h
)

◦ RK4
(1 − 2λ

2
h
)

◦S0
(
(1 − 2λ)h

) ◦ RK4
(1 − 2λ

2
h
)

◦ RK4
(λ

2
h
)

◦S0(λh) ◦ RK4
(λ

2
h
)
.

Given that RK4 has the same order with S4(h), collecting the
neighbouring operators RK4

(
λ
2h

)
and RK4

( 1−2λ
2 h

)
finally

yields a Forest–Ruth-type integrator similar to (19) as follows

S∗
4 (h) ≡ RK4

(λ

2
h
)

◦ S0(λh) ◦ RK4
(1 − λ

2
h
)

◦S0
(
(1 − 2λ)h

) ◦ RK4
(1 − λ

2
h
)

◦S0(λh) ◦ RK4
(λ

2
h
)
. (21)

Unlike (19) which only has second-order accuracy, the usage
of RK4 allows S∗

4 (h) to retain fourth-order accuracy. This fact
will be illustrated in the remaining content.

A further improvement for (21) is to replace RK4 with
RK2, which reads

S̃∗
4 (h) ≡ RK2

(λ

2
h
)

◦ S0(λh) ◦ RK2
(1 − λ

2
h
)

◦S0
(
(1 − 2λ)h

) ◦ RK2
(1 − λ

2
h
)

◦S0(λh) ◦ RK2
(λ

2
h
)
. (22)

This improvement is based on the two following facts. First,
the second-order method RK2 has fewer stages than RK4,

thus the less computation amount of S̃∗
4 (h) makes it consume

less CPU time than S∗
4 (h). Second, since RK2 is used to

numerically solve the perturbed PN term εHPN (Q, P, θ , ξ),

the presence of ε makes the local truncation error of RK2
have the particular formO(ε3h3), which leads to S̃∗

4 (h) being
a pseudo-fourth-order method whose local truncation error
readsO(ε3h3+εh5). Both theoretical analysis and numerical
comparison in the remaining content show that for a small ε

and large h, the two methods S∗
4 (h) and S̃∗

4 (h) nearly behave
the same, and the difference between them will be very small
until it disappears for a threshold value of ε.
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3.3 Property of near-symplectic methods

To analyze the property of the new methods S∗
2 (h), S∗

4 (h),

and S̃∗
4 (h), we introduce the following Lie derivative opera-

tors defined by the Poisson brackets {·, ·} as follows

X = {·, H} = ∂H

∂ P
∂

∂ Q
− ∂H

∂ Q
∂

∂ P
+ ∂H

∂ξ

∂

∂θ
− ∂H

∂θ

∂

∂ξ
,

which corresponds to the Hamiltonian H. Then, the operators
corresponding to HN and HPN are respectively denoted by

A = {·, HN } = ∂HN

∂ P
∂

∂ Q
− ∂HN

∂ Q
∂

∂ P
,

and

B = {·, HPN } = ∂HPN

∂ P
∂

∂ Q
− ∂HPN

∂ Q
∂

∂ P

+∂HPN

∂ξ

∂

∂θ
− ∂HPN

∂θ

∂

∂ξ
.

The partial derivative operators regarding ξ and θ disappear
in the operator A because HN only involves the variables P
and Q. This definition derives X = A + εB.

Using the exponential map exp(τ X) to denote the phase
flow of the Hamiltonian H, we then express the standard
leapfrog method as

exp
(1

2
εhB

)
exp(hA) exp

(1

2
εhB

)
. (23)

Note that the phase flows exp(τ X), exp(τ A), and exp(τεB)

are all symplectic maps. In addition, the integrability of HN

enables an explicit solving for exp(τ A). However, since HPN

is nonintegrable as discussed in Sect. 2, we cannot explicitly
express exp(τ B) to get the exact solution of HPN . Even so,
with the Baker–Campbell–Hausdorff (BCH) formula, we can
derive the following theoretical expression

exp
(1

2
εhB

)
exp(hA) exp

(1

2
εhB

)

= exp
(
h(A + εB) + εh3S3 + · · · ), (24)

where S3 = − 1
24 [A, [A, B]] + 1

12ε[B, [B, A]], [A, B] =
AB − BA, and the dots · · · in the formula indicates higher-
order odd-power terms of h. The formula (24) explains that
the leapfrog method is second-order, symmetric, and sym-
plectic because the composition of symplectic phase flows is
still symplectic.

Suppose that the numerical method M(h) is of order
q. Applying M(h) to solve the PN term εHPN derives
that the local truncation error possesses the particular form
O(εq+1hq+1) due to the presence of ε in the differential
equations of the Hamiltonian εHPN . Then, we further have

M(h) = exp(εhB + εq+1hq+1Bq+1 + · · · ) (25)

for some vector fields Bq+i (i = 1, 2, . . .). Note that even
though the method M(h) could be expressed by an exponen-

tial map, the properties of M(h) will depend on Bq+i and
thus M(h) cannot always be symplectic for arbitrary Bq+i .

For the special symmetric case of M(h), there only exist the
terms involving odd powers of εh.

If M(s) is selected as the second-order symplectic implicit
midpoint method IRK2, we then have

IRK2(h) = exp(εhB + ε3h3B3 + ε5h5B5

+O(ε7h7) + · · · ). (26)

On noting that exp(hA) exactly solves HN and can act as
S0(h), replacing exp(εhB) with (26) in the leapfrog formula
(24) derives

S2(h) = exp
(
h(A + εB) + εh3S3 + ε3h3B3

+O(εh5 + ε5h5) + · · · ), (27)

which only contains odd-power terms of h. A compari-
son between the formula (27) and the exact phase flow
exp(hX) = exp

(
h(A + εB)

)
yields that the mixed method

S2(h) is really second-order. The symplecticity and symme-
try of S2(h) follow from that of the phase flow exp(hA) and
the midpoint method IRK2. This result has been discussed
in [42]. Readers can find more details therein.

Consider the explicit nonsymmetric second-order method
RK2. Similarly, applying RK2 to εHPN yields

RK2(h) = exp(εhB + ε3h3 B̄3 + ε4h4 B̄4

+O(ε5h5) + · · · ). (28)

Incorporating this formula into (20) gives

S∗
2 (h) = exp

(
h(A + εB) + εh3S3 + ε3h3 B̄3

+ε4h4 B̄4 + O(εh5 + ε5h5) + · · · ). (29)

This shows that the new method S∗
2 (h) is certainly of sec-

ond order as the dominant truncation part regarding h is
O(εh3 +ε3h3). Moreover, the difference between S∗

2 (h) and
S2(h) (or the leapfrog method (24)) is O(ε3h3), which rep-
resents the closeness of S∗

2 (h) to a symplectic method. That
is, for a certain stepsize h, with the decrease of the param-
eter ε, the explicit method S∗

2 (h) becomes closer to a sym-
plectic method. In this sense, S∗

2 (h) can be called a near-
symplectic method for the Hamiltonian (16). For S∗

2 (h), we
finally point out that it is not symmetric due to the pres-
ence of the term ε4h4 B̄4. In conclusion, S∗

2 (h) is an explicit
second-order near-symplectic method.

For the standard fourth-order Forest–Ruth method

exp
(λ

2
εhB

)
exp(λhA) exp

(1 − λ

2
εhB

)
exp

(
(1 − 2λ)hA

)

◦ exp
(1 − λ

2
εhB

)
exp(λhA) exp

(λ

2
εhB

)
,

if we denote the dominant term of its local truncation error
by εh5D, it can be derived the following expression for the
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mixed symplectic method S4(h):

S4(h) = exp
(
h(A + εB) + εh5D + ε5h5B5

+O(εh7 + ε7h7) + · · · ), (30)

whose even-power terms of h vanish. In a similar way, we
express the fourth-order method RK4 applying to εHPN as
follows:

RK4(h) = exp(εhB + ε5h5 B̂5 + ε6h6 B̂6

+O(ε7h7) + · · · ). (31)

Then, RK4 introduce the additional error terms ε5+i h5+i B̂5+i

(i = 0, 1, . . .) into the new method S∗
4 (h) as

S∗
4 (h) = exp

(
h(A + εB) + εh5D + ε5h5 B̂5

+ε6h6 B̂6 + O(εh7 + ε7h7) + · · · ). (32)

A comparison between (30) and (32) shows that the new
method S∗

4 (h) is also of order four, and that the difference
between S∗

4 (h) and a symplectic method (such as S4(h) or the
standard Fourth–Ruth method) is aboutO(ε5h5) which tends
to zero with the decrease of ε. Hence, S∗

4 (h) is an explicit
fourth-order near-symplectic method.

For the improved method S̃∗
4 (h) obtained by replacing

RK4 with RK2 in S∗
4 (h), we can similarly derive

S̃∗
4 (h) = exp

(
h(A + εB) + εh5D + (ε3h3 B̄3

+ε4h4 B̄4 + · · · ) + O(εh7) + · · · ). (33)

Unlike S∗
4 (h), this formula shows that S̃∗

4 (h) is essentially not
fourth-order as the lowest power of h in the dominant error
termO(ε3h3+εh5) is 3. In fact, the method S̃∗

4 (h) is pseudo-
fourth-order in the sense of pseudo-high-order method [28–
31]. In the case ε 
 τ (at least ε ≈ τ ), this method behaves
the same as a fourth-order method. Only in the case ε > τ,

this method reduces to second order.
As considered in this paper that the parameter ε always

takes a small value, the method S̃∗
4 (h) can be regarded as a

fourth-order method once O(εh5) dominates the error terms.
In this case, the difference between S̃∗

4 (h) and S4(h) (or the
standard Forest–Ruth method) isO(ε3h3), which has a larger
magnitude than that between S∗

4 (h) and S4(h), i.e., O(ε5h5).

This point will be stressed by numerical experiments in the
following section.

Although the proposed explicit near-symplectic methods
up to (pseudo) fourth-order are designed for the system of
spinning compact binaries, they are valid for any Hamiltonian
that admits the separation of a dominant integrable part and a
perturbed nonintegrable part. Meanwhile, the construction of
(pseudo) higher-order explicit near-symplectic methods can
be conducted in a similar way by composition or splitting
approach.

4 Numerical experiments

During our numerical experiments, the initial conditions
are selected as Q = (25.34, 0, 0), P = (0, 0.18, 0), θ =
(71.57◦, 35.54◦), and ξ = (0.0445, 0.0705) with the spin
magnitudes �1 = 0.0479 and �2 = 0.6104. The mass ratio
is set to β = 0.28. As we mentioned in Sect. 2 and discussed
in [7,8,52,53], the parameter c should be readjusted to match
different PN effects under the setting G = M = 1. In this
case, a larger readjusted c thus a smaller ε as ε = 1

c2 indicates
a weaker PN effect.

During our test, a fully implicit symplectic method, i.e.,
the eighth-order Gauss collocation method is used with a tiny
stepsize to obtain the reference solutions. We mention here
that this method is very expensive and the CPU time up to
the integration time T = 105 is about 8 min (480 s), which
is much larger than the new methods proposed in this paper.
The orbit evolution for two different cases c = 101/2 and c =
103/2 are presented in Fig. 1. As the initial z-component is set
to zero, the orbit of the Newtonian term HN will be an ellipse
restricted to the x–y plane. It can be seen from Fig. 1 that the
larger the value of c, the smaller z-component of the orbit will
be. This point coincides with the fact that a larger c makes
the whole Hamiltonian H closer to the Newtonian term HN

thus the z-component is closer to zero. The energy errors of
the reference solutions are shown in Fig. 2. The magnitude
of about 10−15 in Fig. 2 indicates the high accuracy of the
reference solutions.

The energy errors and orbital errors of the proposed
explicit near-symplectic methods S∗

2 (h), S∗
4 (h), and S̃∗

4 (h)

are presented in Fig. 3, where the stepsize for S∗
2 (h) is set to

h = 5 while h = 20 for S∗
4 (h) and S̃∗

4 (h). We first see that the
results of S̃∗

4 (h) are nearly the same as S∗
4 (h), which confirms

that the pseudo-fourth-order method S̃∗
4 (h) performs nearly

the same as a real fourth-order method. From this figure, it
can be derived that all the energy errors do not have a secular
increase with time, while the orbital errors linearly increase
with time (i.e., the slope of the red orbital error curves is
near to 1). The numerical results show that the newly pro-
posed methods are very close to symplectic methods whose
energy errors oscillate in a bounded region and global errors
linearly increase with time.

We do not show the energy errors and orbital errors of
the corresponding mixed symplectic methods, because they
overlap the near-symplectic methods. Figure 4 gives more
details on the difference between the proposed explicit near-
symplectic methods and the corresponding mixed symplectic
methods. A comparison between Fig. 4 and Fig. 3 shows that
the difference between explicit near-symplectic methods and
mixed symplectic methods are much smaller than the errors
of the former in both the two cases c = 101/2 and c = 103/2.

In particular, the difference error between S∗
4 (h) and S4(h)

in the case c = 101/2 is smaller than that between S̃∗
4 (h) and
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Fig. 1 Orbital evolution of the reference solutions: a c = 101/2; b c = 103/2

Fig. 2 Energy errors |�H | of the reference solutions corresponding to Fig. 1: a c = 101/2; b c = 103/2

S4(h). This point supports our analysis in Sect. 3 that their
theoretical difference are respectivelyO(ε5h5) andO(ε3h3).

In the case c = 103/2, the difference error between S∗
4 (h) and

S4(h) is nearly the same as that between S̃∗
4 (h) and S4(h),

as we consider that the secondary error term O(εh7) in the
standard Forest–Ruth method will be larger than O(ε3h3)

and O(ε5h5), and thus dominates the difference errors. Fur-
thermore, the case c = 103/2 in Fig. 4 has a smaller difference
error than the case c = 101/2, which supports our analysis
that the proposed near-symplectic methods become closer to
symplectic methods with the decrease of the small parameter
ε (i.e., the increase of c as ε = 1

c2 ).
Figures 3 and 4 show that the proposed explicit near-

symplectic methods behave extremely like the mixed sym-
plectic methods. To compare their efficiency, Table 1 lists
the CPU time (in seconds) consumed by all the mentioned
methods that are written in Fortran and run on the Lenovo
desktop Qitian M437 with 3.10 GHz CPU i5-10500. For the
case c = 101/2, the CPU time of S∗

2 (h) is about 44.33%
of S2(h); the CPU time of S∗

4 (h) is about 52.98% of S4(h),

while the CPU time of S̃∗
4 (h) is 26.41% of S4(h). For the

weaker PN effect case c = 103/2, these values become
68.23%, 86.55%, and 43.71%. That is, in the two differ-
ent cases, the proposed near-symplectic methods are more
efficient than the corresponding mixed symplectic methods.
Meanwhile, the stronger PN effect (a smaller value of c)
increases the computation amount of the mixed methods,
while the CPU time is almost unchanged for the explicit
near-symplectic methods. In particular, the pseudo-fourth-
order method S̃∗

4 (h) consumes about half the time of S∗
4 (h),

even though the two methods behave almost the same. From
the point of view of efficiency, we recommend the explicit
near-symplectic methods S∗

2 (h) and S̃∗
4 (h) as substitutions of

S2(h) and S4(h).

We further display the dependence of the energy errors
and orbital errors on the readjusted parameter c in Fig. 5. As
shown in Fig. 5a and c, except for several small values (indi-
cating strong PN effect), the energy error curves of all the
presented methods (S2(h), S∗

2 (h), S4(h), and S∗
4 (h)) exhibit

a quadratic decrease with the increase of c as the slope is −2.

The case for the orbital errors has a slightly different perfor-
mance, where a clear inflection point whose different sides
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Fig. 3 Energy errors |�H | and orbital errors |�X | of different methods with different c: a S∗
2 (h) with c = 101/2; b S∗

2 (h) with c = 103/2; c S∗
4 (h)

with c = 101/2; d S∗
4 (h) with c = 103/2; e S̃∗

4 (h) with c = 101/2; f S̃∗
4 (h) with c = 103/2

have different slopes is shown in both Fig. 5b and d. The c
values of the inflection points are about 2.8 and 15.6 respec-
tively for Fig. 5b and d, which are nearly in the same mag-
nitudes as h = 5 and h = 20 that are used respectively for
second-order methods and (pseudo) fourth-order methods.
Moreover, the slopes of the orbital error curves on the right
side of the inflection points are both about −2. This is also
consistent with our theoretical analysis that once ε < h the
term O(εh3) or O(εh5) will dominate the truncation error,
which leads to a linear decrease of the global error with the

decrease of ε (thus a quadratic decrease of the global error
with the increase of c as ε = 1

c2 ). In this figure, we do not

display the result of S̃∗
4 (h), because its curves overlap the

curves of S∗
4 (h).

We finally display the dependence of the discrepancies
between the proposed explicit near-symplectic methods and
the mixed symplectic methods on the readjusted parameter
c in Fig. 6. It can be seen that once c is smaller than some
certain value, the discrepancies decrease with the increase of
c. Afterward, the discrepancies approximately reach a sta-
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Fig. 4 Energy errors |�H | and orbital errors |�X | between different methods with different c: a S∗
2 (h) and S2(h) with c = 101/2; b S∗

2 (h) and
S2(h) with c = 103/2; c S∗

4 (h) and S4(h) with c = 101/2; d S∗
4 (h) and S4(h) with c = 103/2; e S̃∗

4 (h) and S4(h) with c = 101/2; f S̃∗
4 (h) and S4(h)

with c = 103/2

ble value whose magnitudes are respectively about O(10−9)

for orbital errors and O(10−15) for energy errors. Especially
for that between S∗

2 (h) and S2(h), the discrepancy becomes
zero once c > 144.5 (since the discrepancy is plotted in
logarithmic scale, we technically set 10−17 to represent the
zero value in Fig. 6a). We consider that the stabilization of
the discrepancy is caused by the term O(εh5) that dominates
the difference once ε = 1

c2 is too small. Overall, the much
smaller discrepancies in Fig. 6 than the global (energy or

Table 1 CPU time (seconds) for each method with T = 105

S2(h) S∗
2 (h) S4(h) S∗

4 (h) S̃∗
4 (h)

c = 101/2 2.91 1.29 9.39 4.97 2.48

c = 103/2 1.92 1.31 5.65 4.89 2.47

orbital) errors in Fig. 5 sufficiently confirm the good near
symplecticity of the proposed explicit methods.
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Fig. 5 Dependence of energy errors |�H | and orbital errors |�X | on the parameter c

Fig. 6 The discrepancy between: a S∗
2 (h) and S2(h); b S∗

4 (h) and S4(h); c S̃∗
4 (h) and S4(h)

5 Conclusion

In the numerical simulation for Hamiltonian systems, explicit
symplectic methods are more favoured than implicit ones
due to their higher efficiency. However, the PN Hamilto-
nian involving the interactions of the generalized position,
the generalized momentum, and the spin variables in the PN
approximation approach is usually nonseparable. This dis-
ables the explicit symplectic solving for the PN Hamiltonian,
and the available symplectic methods are either fully implicit
or semi-implicit.

To take advantage of both the high efficiency of explicit
methods and the good long-term performance of symplec-
tic methods, we explored the construction of explicit near-

symplectic methods for PN Hamiltonian systems. On account
of the small parameter ε in the PN term, we considered replac-
ing the implicit symplectic solvers in the mixed symplectic
methods with conventional explicit nonsymplectic solvers
and derived three explicit methods. Then, the error analy-
sis based on the BCH formula showed that the three pro-
posed methods are respectively second-order, fourth-order,
and pseudo-fourth-order. Numerical results with the spin-
ning compact binaries showed that the proposed explicit
near-symplectic methods nearly have the same error behavior
as the corresponding semi-implicit mixed symplectic meth-
ods that the energy error oscillates in a bounded region
and the orbital error has a linear growth with time. Mean-
while, the proposed explicit methods are more efficient than
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their implicit counterparts by comparing the consumed CPU
time. Finally, the pseudo-fourth-order method S̃∗

4 (h) con-
sume much less CPU time than the fourth-order S∗

4 (h), and
thus we recommend the explicit near-symplectic methods
S∗

2 (h) and S̃∗
4 (h) as substitutions of S2(h) and S4(h).

In summary, we proposed three explicit near-symplectic
methods that almost preserve the property of symplectic
methods and possess the high efficiency of explicit meth-
ods. The new methods can be applied to PN Hamiltonians
that admit a dominant integrable part and a perturbed non-
integrable part. Following the idea in this paper, (pseudo)
higher-order explicit near-symplectic methods can be con-
structed in a similar way.
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