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Abstract The Bethe–Salpeter equation for system of two
oppositely charged particles not only reproduces the Coulomb
spectrum, but, for enough large coupling constant C > π

4 ,
predicts additional levels not predicted by the Schrödinger
equation. These relativistic states (called abnormal), in con-
trast to the normal ones, are dominated, for more than 90–
99%, by Fock states involving the exchange particles—the
photons, whereas contribution of two massive charged parti-
cles themselves is rather small (1–10%). Since the carrier of a
large (positive) charge is a heavy ion, and the negative charge
is provided by electron, the masses of two constituents are
very different. It is shown that in a system with so different
masses the abnormal states still exist. Moreover, the effect
of unequal masses is attractive. The balance between pho-
tons and charged constituents is weakly sensitive to the mass
ratio, so the photons still predominate.

1 Introduction

The Bethe–Salpeter (BS) equation [1] for a hydrogen atom
reproduces the Coulomb levels with the relativistic correc-
tions. However, spectrum of the BS equation for electron in
strong Coulomb field contains more than the usual Coulomb
states. In their seminal studies [2,3] of properties of the
BS equation for two particles interacting via scalar mass-
less exchange (reduced, in the non-relativistic case, to the
Coulomb potential), Wick and Cutkosky have found that, in
addition to the Coulomb spectrum, there exist levels which
have no non-relativistic counterparts. They appear if the cou-
pling constant C is rather large: C > π

4 (in the units when for
the electron charge e2 = 1

137 ). However, the energies of these
levels are small (they are highly excited in full spectrum).
These states, not predicted by the Schrödinger equation, were
called “abnormal”. After their theoretical discovery, there

a e-mail: karmanovva@lebedev.ru (corresponding author)

was discussion devoted to their existence in nature (see for
review [4]). Some researchers considered them as manifes-
tation of an unknown defect of the BS equation. Other ones
argued that since these levels are predicted by the BS equa-
tion on the same ground as the Coulomb ones, they cannot be
ignored and must exist in nature. In their opinion (which we
share), this is inconsistent to believe in one series of levels
(the Coulomb one) and to deny the physical meaning of other
series (overlapping with the Coulomb one), predicted by the
same equation with the same interaction. The nature of these
states was clarified in the recent paper [5]. It was found that
the abnormal states, in contrast to the normal ones, are dom-
inated by the exchange particles—the photons (which are
scalar in the Wick–Cutkosky model). That’s why they are
beyond the realm of the non-relativistic Schrödinger equa-
tion.

This puts on the agenda the experimental detection of
the abnormal states. Therefore the theoretical predictions
should be made in situation as close as possible to an exper-
imental one. The works [2,3,5] were concentrated on the
principal problems and therefore studied the systems of the
charged particles with equal masses (though, the unequal
masses equation was also presented in [3]). The systems
with two large opposite charges and equal masses are formed
by nucleus-antinucleus with a heavy enough antinucleus, to
obtain a large coupling constant C as the product of two
charges. At the present, these heavy antinuclei can be hardly
created and used in experiments. The system with large
charge which can be studied in laboratory is a heavy ion
and electron. This means that the constituents have very dif-
ferent masses. Therefore, the systems containing light and
heavy charged particles are of particular interest.

The equation for the weight function determining the BS
amplitude was derived by Cutkosky [3] both for the cases of
equal and unequal masses. However, in contrast to [3], some
very important “subtlety” will be taken into account in our
studying the spectrum in the unequal masses case: m1 �= m2.
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Namely, we will show that the coupling constant λ, entering
in the Cutkosky equation, is related to the Coulomb constant
C by a mass-dependent factor (see Eq. (6) below) and, for
fixed C, for large values of the ratio

r = m1

m2
, (1)

the constant λ decreases like ∼ 1
r . In Ref. [3] λ was not related

to the Coulomb constant C and assumed independent of the
constituent masses. This was a different, mathematically cor-
rect, but unrealistic statement of problem. We imply that the
particle 2 is electron, so the mass m2 is fixed, whereas the
ion mass m1 is large relative to m2. It varies from ion to ion.
For the transuranic elements, which are the only ones that
can provide a sufficiently large charge, the ratio r > 106.
In this case, the limit r → ∞ is a very good approximation
to the realistic situation. In principle, the decrease of λ with
increase of r might eliminate the abnormal solutions. We will
see that this does not happen.

In the present work, we will check the existence of the
abnormal states in the system of unequal masses and study
the dependence of the level energies and the Fock sector
content of the state vector on the ratio r . We will show that
in spite of decrease of λ vs. r , the heavy ion and electron are
still forming the abnormal states and the effect of unequal
masses in comparison to the equal ones, due to other mass-
dependent terms in the equation, leads even to an increase of
the binding energy up to a factor of two. This could make it
easier to detect the abnormal states.

Following Wick and Cutkosky, we don’t include spin
effects. Therefore the “photons” filling the abnormal states
are scalar in the Wick–Cutkosky model. Inclusion of spin
could precise the predictions, but it hardly removes the abnor-
mal states since it does not eliminate strong Coulomb attrac-
tion and relativistic retardation of the numerous exchanged
photons (i.e., finite flying time needed for exchange)

due to which they fill in the intermediate states and dom-
inate the Fock sectors.

In Sect. 2 we give a brief summary of the results [2,3] con-
cerning the integral representation of the BS amplitude and
the equation in the unequal masses case. In Sect. 3 depen-
dence of the binding energy on the mass ratio r is studied.
In Sect. 4 the relation between the BS amplitude and the
light-front two-body wave function is extended to the case
of unequal masses. The two-body constituent contribution to
full normalization integral is calculated in Sect. 5. The corre-
sponding normalization factor is found in Sect. 6. Numerical
results are given in Sect. 7. Concluding remarks are presented
in Sect. 8. The Appendices A and B contain some technical
details—the mentioned above r -dependent relation between
the product of chargesC used in the present paper and the cou-
pling constant λ used in Refs. [2,3], as well as the relation

between the four-vector scalar products and the light-front
variables R⊥, x .

2 BS amplitude in the unequal-masses case

Like in Ref. [5], our consideration is based on the integral
representation of the BS amplitude, found in [2,3] also for
the unequal masses case, and on the equation for the weight
function, determining this representation. In the present sec-
tion we give summary of these results.

In the unequal masses case m1 �= m2, for a general kernel
K , the equation for the BS amplitude Φun in Minkowski
space has the form:

(k2
1 − m2

1)(k
2
2 − m2

2)Φun(k1, k2; p)

= −i
∫

K (k1, k
′
1; p)Φun(k

′
1, k

′
2; p)δ(4)(k′

1 + k′
2 − p)

d4k′
1

(2π)4 .

(2)

We use the subscript “un” (abbreviation from “unequal”)
to emphasize that this amplitude satisfies the equation
with unequal masses. Corresponding amplitude in the equal
masses case will be denoted Φeq .

Following Cutkosky [3], we introduce the relative momen-
tum k as:

k = μ2k1 − μ1k2, (3)

where

μ1,2 = m1,2

m1 + m2
, μ1 + μ2 = 1.

The particle momenta k1,2 are expressed via k and p:

k1 = μ1 p + k, k2 = μ2 p − k, k1 + k2 = p. (4)

We assume that the kernel K (k1, k′
1; p) corresponds to

exchange by a massless particle. Then, in the notations
adopted in [3], the Eq. (2) is rewritten as1:

[(μ1 p + k)2 − m2
1][(μ2 p − k)2 − m2

2]Φun(k, p)

= iλm2
12

π2

∫
Φun(k′; p)d4k′

(k − k′)2 + iε
, (5)

where

m12 = 1

2
(m1 + m2)

and p2 = M2, M is the total mass of the bound system,
determined by the Eq. (5), M = m1 + m2 − B, B is the
module of the binding energy: B = |Eb|.

1 We restore in r.h.-side of Eq. (5) the factor m2
12 which is set to 1 in

[3].
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We deal with two particles with the charges e1 and e2 so
that their interaction is determined by the product

C = e1e2.

As mentioned above, we imply the units in which for electron
e2 ≈ 1

137 . This Coulomb constant C will be used as input.
Whereas, the BS Eq. (5) contains the constant λ. The latter
is not product of charges but, as we will see, differs from it
by a factor. In Appendix A we express λ via C. The relation
(38) between these two constants can be represented in the
form

λ = (1 − Δ2)
C
π

= 4r

π(r + 1)2 C, (6)

where

Δ = m1 − m2

m1 + m2
= r − 1

r + 1
(7)

and r is defined in Eq. (1). That is2

m1 = m12(1 + Δ), m2 = m12(1 − Δ). (8)

From Eq. (6) it follows that for fixed C the value of λ vs.
r > 1 decreases.

Comparing Eqs. (2) and (5), we find the kernel in Eq. (2):

K (k1, k
′
1; p) = K (k − k′) = − 16π2λm2

12

(k − k′)2 + iε

= −16πCm2
12(1 − Δ2)

(k − k′)2 + iε
. (9)

Note, appearing due to the relation (6), the factor (1 − Δ2)

which will be cancelled in the equation for the weight func-
tion g. This factor does not appear in the corresponding
equation in Ref. [3], containing the constant λ. It drastically
changes the spectrum when r → ∞ (Δ → 1).

The BS amplitude Φ = Φ(k, p), both in equal and
unequal masses cases, is characterized by the principal quan-
tum number n. For the S-wave and n = 1 it has the follow-
ing representation in the form of integral over the variable z
(Eqs. (12), (29) from [3], taken for n = 1, and for the angular
momentum l = 0, rewritten in the Minkowski space and in
different notations):

Φun(k, p) = −im3
12

∫ 1

−1
dz gun(z,Δ)

× 1

[m2
12(1 − η2

un)(1 + 2zΔ + Δ2) − k2 − kp(z + Δ) − iε]3
,

(10)

2 In the unequal masses case Cutkosky [3] takes: m1 = 1 + Δ, m2 =
1 − Δ that implies m1 + m2 = 2. We introduce the arbitrary masses
m1,m2 explicitly.

where

η2
un = M2

4m2
12

,

M is the total mass of the system defined after Eq. (5). With
the factorm3

12 in (10) the function gun(z,Δ) is dimensionless.
With the relation (6) between the coupling constants, the

BS Eq. (5) is reduced to the following integral equation for
the auxiliary weight function gun(z,Δ), determining via the
integral (10) the BS amplitude (see Eq. (30) from [3]):

gun(z,Δ) = C(1 − Δ2)

2πn

∫ 1

−1
Rn(z, ξ)

gun(ξ,Δ)

Q(ξ,Δ)
dξ, (11)

where

R(z, ξ) =
{

1−z
1−ξ

, if ξ < z
1+z
1+ξ

, if ξ > z
(12)

and

Q(ξ,Δ) = (1 + 2ξΔ + Δ2)(1 − η2
un) + η2

un(ξ + Δ)2.

(13)

The Eq. (11) is valid for the case of arbitrary principal quan-
tum number n. The generalization of the integral representa-
tion (10) for this case n > 1 can be found in Refs. [3,5].

The integral equation (11) is equivalent to the following
differential (with respect to z) equation (Eq. (31) from [3]):

g′′
un(z,Δ) + [

2(n − 1)zg′
un(z,Δ) − n(n − 1)gun(z,Δ)

+ C(1 − Δ2)

πQ(z,Δ)

]
gun(z,Δ)

(1 − z2)
= 0, (14)

with the boundary conditions gun(z = ±1,Δ) = 0.
For the equal masses m1 = m2 (Δ = 0) Eq. (10) turns

into Eq. (6) from [5] (taken for n = 1 and without the nor-
malization factor):

Φeq(k, p) =
∫ 1

−1

−im3
2geq(z)dz

[m2
2(1 − η2

eq) − k2 − p·k z − iε]3
(15)

with η2
eq = M2

4m2
2
. As noted above, by the subscript “eq” we

mark the quantities related to the case of equal masses. Then
the integral Eq. (11) turns into

geq (z) = C
2πn

∫ 1

−1

Rn(z, ξ)geq (ξ)[
1 − η2

eq(1 − ξ2)
]dξ, (16)

and the corresponding differential one differs from (14) by
the last term:

g′′
eq(z) +

[
2(n − 1)zg′

eq(z) − n(n − 1)geq(z)

+ C
π [1 − η2

eq(1 − z2)]

]
geq(z)

(1 − z2)
= 0. (17)
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The factor (1−Δ2) at the front of the constant C in Eqs. (11),
(14) disappears in Eqs. (16), (17).

The principal quantum number n enters in Eqs. (11), (14),
(16) and (17) as a parameter. For fixed n all these homoge-
neous equations create another infinite series of levels labeled
by κ = 0, 1, 2, 3, . . .. This is the origin of the abnormal solu-
tions. The value κ = 0 corresponds to the normal state, the
non-zero κ’s correspond to the abnormal ones. It was shown
[6] that the states with odd κ don’t contribute to the S-matrix
and are not observable. Therefore we considered in Ref. [5]
and will consider in the present article the abnormal states
with even κ only.

Cutkosky has shown [3] that the unequal mass equation
(11) can be transformed to the form of the equal mass one
(16). This sophisticated transformation is achieved by the
following replacement of variable and the function3:

z = (z̄ − Δ)

(1 − Δz̄)
↔ z̄ = (z + Δ)

(1 + Δz)
, (18)

gun(z,Δ) = geq(z̄)

(1 − Δz̄)n
=

(
1 + Δz

1 − Δ2

)n

geq

(
z + Δ

1 + Δz

)
.

(19)

After this replacement, the Eq. (11) for gun(z,Δ) turns into
Eq. (16) for geq(z) with

η2
eq = η2

un − Δ2

1 − Δ2 . (20)

That is, in order to find the solution of the unequal masses
Eq. (11), it is enough to solve the equal masses Eq. (16).
Then the eigenvalues η2

un , which enter in (11) via Q(ξ,Δ),
Eq. (13), are expressed through η2

eq , found as eigenvalues of
Eq. (16), by the relation:

η2
un = Δ2 + (1 − Δ2)η2

eq (21)

and the solution gun(z,Δ) of Eqs. (11), (14) is expressed
through the solution geq(z) of Eq. (16) by the relation (19).

We emphasize that the equal masses Eqs. (16) and (17),
where η2

eq is considered as eigenvalue, don’t contain any
masses at all. The non-equal masses Eqs. (11) and (14) con-
tain the masses only in the form of the ratio Δ. The particle
masses (not their ratios) appear in the relations between the
eigenvalues η2

eq , η
2
un and the corresponding binding energies.

Note that numerically solving the unequal masses differ-
ential Eq. (14) is not more complicated and is as fast as solv-
ing the equal masses one (17). There is no practical advantage
of Eq. (17) over (14) (or Eq. (16) over (11)) in this respect.
However, great advantage of reduction of Eq. (11) to the
form (16) is in the fact that it allows to find the dependence

3 The replacement of variable given in [3] below Eq. (31) contains a
misprint. It differs from the correct one–Eqs. (18), (19) of the present
paper—by the sign at the front of Δ. In spite of that, the result—Eq.
(33) in [3] (Eq. (16) in the present article)—is correct.

of the function gun(z,Δ) and of the eigenvalue η2
un on the

mass ratio Δ analytically by Eqs. (19) and (21) respectively.
Therefore it considerably simplifies the study the effect of
the unequal masses. At r = m2

m1
→ ∞ it allows to find the

limiting value of the two-body contribution N2 to the state
vector.

3 Binding energy

Presence of the mass-dependent factor (1−Δ2) in the expres-
sion (6) for λ through C drastically affects the spectrum rel-
ative to the equation (33) from [3] in which, by definition, λ

does not depend on masses. As mentioned, this factor appears
in Eq. (11) and it does not appear in Eq. (16) since it is can-
celling as a result of transformations. The equation (33) from
[3] differs from Eq. (16) only by the constant at the front of
the integral: instead of C

π
it contains λ

(1−Δ2)
. If Δ increases

from 0 to 1 (the constituent mass m1 increases up to infinity)
and if it is assumed that λ does not depend on masses, the
“effective constant” λ

(1−Δ2)
increases up to infinity. Whereas,

if it exceeds 2, the eigenvalue η2
eq (i.e., M2) for the ground

state n = 1 becomes negative. Yet, this fact itself does not
mean appearance of negative mass M2 < 0 since η2

eq , in the
non-equal masses problem, is an auxiliary quantity. The true
eigenvalue is determined by η2

un via Eq. (21). However, for
large enough r , η2

un also becomes negative. The numerical
calculations show that the negative second term (1−Δ2)η2

eq
in Eq. (21) increases in the absolute value with increase of r in
spite of the factor (1 − Δ2) which tends to zero. This leads,
starting with some r , to negative value η2

un . This unequal
masses solution also corresponds to tachyon with M2 < 0.
For any small λ, there exists large r providing the tachyon
solution. This large r undoubtedly exists since for available
ion masses r > 105. This situation—appearance of tachy-
onic solutions—looks unsatisfactory. This does not happen
in the equation (16), where C is fixed and if it is smaller than
2π [2,3]4. As mentioned, the dependence of η2

un on masses
in Eq. (11) is completely determined by Δ in Eq. (21). By
means of (7), Eq. (21) is rewritten as

η2
un = 1 − 4r

(r + 1)2 (1 − η2
eq). (22)

We will increase m1 (the ion mass), keep m2 (the electron
mass) fixed and see the variation of the binding energy. Since
ηun = M

m1+m2
, M = m1 + m2 − Bun , we find the binding

4 In Refs. [2,3] it is shown that the condition M2 > 0 (absence of
tachyons) is fulfilled if the coupling constant λ, used in these papers,
satisfies the condition λ < 2. For the equal masses case, described by
Eq. (16), we have C = πλ (see Eq. (38) from Appendix A, taken for
m1 = m1), that provides the condition C < 2π .

123



Eur. Phys. J. C (2024) 84 :58 Page 5 of 10 58

energy:

Bun

m2
= (r + 1) −

√
(r − 1)2 + 4rη2

eq , (23)

where ηeq—the eigenvalue of Eq. (16)—does not depend on
masses. Therefore the formula (23) determines analytically
the dependence of the ratio Bun/m2 on the ratio r = m1/m2.

In the limit m1 
 m2 (r → ∞) the formula (23) gives
Bun = 2m2(1−η2

eq), that is, with ηeq = (2m2−Beq)/(2m2),

Bun = 2

(
1 − Beq

4m2

)
Beq , (24)

that for small binding energy Beq � m2 is reduced to

Bun = 2Beq . (25)

That is, when mass of one of the particles increases up to
infinity, the binding energy increases up to two times. But, as
mentioned above, for fixed value of the Coulomb coupling
constant C < 2π , there are no tachyon solutions for any mass
ratio r .

4 Two-body Fock component

The BS amplitude is the matrix element taken from the T-
product of two Heisenberg field operators (corresponding to
electron and heavy ion in our case) between the state vectors
corresponding to vacuum and to the bound system.5 In the
coordinate space it reads

Φ(x1,x2, p) = 〈0 |T (ϕ(x1)ϕ(x2))| p〉. (26)

The bound state vector |p〉 is represented by infinite number
of the Fock sectors corresponding to the states with different
numbers of particles. The coefficients of this decomposition
are the two-, three-, . . . body wave functions—the Fock com-
ponents. The Heisenberg operators ϕ(x1,2) turn into the free
ones on the quantization plane. Depending on the quantiza-
tion scheme, this can be either the equal time plane t = 0
(in the instant form quantization), or the light-front one (in
the front form). We work in the explicitly covariant version
of the light-front dynamics with the quantization plane of
general orientation defined by the equation ω·x = 0, where
ω = (ω0,ω) with ω2 = 0. The four-vector ω determines the
orientation of the light-front plane in the Minkowski space.
For the product of two free operators ϕ(x1)ϕ(x2), only the
two-body Fock component of the state vector |p〉 contributes
into the matrix element (26). Therefore, the BS amplitude
with the argument constrained to the light-front plane is
related to the two-body Fock component ψ(k1, k2, p, ωτ)

5 We hesitate to call this bound system “atomic electron-ion system”,
since an atomic system is composed from the charge particles, whereas,
as mentioned, the abnormal system is dominated by photons.

of the state vector defined on the light-front plane. The four-
momenta—the arguments of this wave function—satisfy the
conservation law k1+k2 = p+ωτ and are on the correspond-
ing mass shells: k2

1 = m2
1, k2

2 = m2
2, p2 = M2, (ωτ)2 = 0,

but off-energy shell. The value τ = ((k1+k2)
2−M2)/(2ω·p)

determines the measure of deviation of the wave function
from the energy shell (see for review [7]).

The traditional and convenient parametrization of the light
front wave function uses the variables k⊥, x , denoted below6

asR⊥, x . Construction of these variables in terms of the four-
momenta k1, k2, p, ωτ is explained in the Appendix B. The
derivation of the relation between the light front wave func-
tion ψ(R⊥, x) and the BS amplitude Φ(k, p) in the momen-
tum space is given in [7]. It has the form:

ψ(R⊥, x) = x(1 − x)

π
√
Nun
tot

∫ ∞

−∞
Φ

(
k + βω

ω·p , p

)
dβ, (27)

where Nun
tot = 〈p|p〉.

We will limit ourselves mainly to the ground state with
n = 1. Therefore, we substitute in Eq. (27) the BS amplitude
(10). We get:

ψ(R⊥, x) = − i x(1 − x)

π
√
Nun
tot

m3
12

∫ 1

−1
gun(z,Δ) dz

×
∫ ∞

−∞
dβ

(βa + b − iε)3 , (28)

where gun(z,Δ) is the solution of the unequal masses Eqs.
(11), (14),

a = 1 − 2x − z,

b = 1

4x(1 − x)
{R2⊥ − x(1 − x)M2 + m2

12[(1 + Δ)2

−4xΔ]}[1 − (1 − 2x)z − (1 − 2x − z)Δ].
To derive Eq. (28), we need to express the scalar prod-
ucts k1,2·p, k1·k2 which appear in (27) through the variables
R⊥, x . These expressions are found in the Appendix B.

The integral over β in (28) gives the delta-function:
∫ ∞

−∞
dβ

(βa + b − iε)3 = iπ

b2 δ(a).

By means of this delta-function, we integrate over z. Then b
obtains the form:

b = R2⊥ + m2
12Q(z,Δ),

where z = 1 − 2x , Q(z,Δ) is defined in (13). In this way,
we get:

ψ(R⊥, x) = (1 − z2)

4
√
Nun
tot

m3
12gun(z,Δ)

[R2⊥ + m2
12Q(z,Δ)]2

, (29)

6 The space-time coordinate is denoted x to not be confused with the
momentum ratio x .
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with Nun
tot = F(0). Appearance of the electromagnetic form

factor F(0) instead of Nun
tot and its calculation are explained

in Sect. 6. F(0) is given by Eq. (34) below.

5 Contribution N2 of the electron-ion Fock sector to the
total norm Nun

tot

The contribution N2 of the two-body electron-ion Fock sector
to the total norm Nun

tot is determined by the two-body Fock
component ψ(R⊥, x):

Nun
2 = 1

(2π)3

∫
|ψ2(R⊥, x)|2 d2R⊥dx

2x(1 − x)

= 1

3·27π2Nun
tot

∫ 1

−1

(1 − z2)g2
un(z,Δ)dz

Q3(z,Δ)
, (30)

We substituted in the first integral of Eq. (30) the wave func-
tion (29) and calculated the integral over d2R⊥. The normal-
ization of the function gun(z,Δ) is not important since the
normalization factor enters in Eq. (30) both in numerator and
denominator (via Nun

tot ) and cancels.
We replace in (30) the integration variable z by z̄ defined

by Eqs. (18) and express Δ by Eq. (7) via the ratio r =
m1/m2. In this way, Eq. (30) is transformed as:

Nun
2 = (1 + r)8

3·215π2r4Nun
tot

∫ 1

−1

(1 − z̄2)g2
eq(z̄)dz̄

[1 − (1 − z̄2)η2
eq ]3

∣∣∣∣∣
r→∞

= r4

3·215π2Nun
tot

∫ 1

−1

(1 − z̄2)g2
eq(z̄)dz̄

[1 − (1 − z̄2)η2
eq ]3 . (31)

The limit r → ∞ is taken in order to get the leading degree
of r . We see that the dependence of Nun

2 on the mass ratio r
(without taking into account the r -dependence of the factor
Nun
tot ) is very simple and at large r is reduced to the factor r4.

The asymptotical behavior of Nun
tot at r → ∞ will be found

in the next section.

6 Normalization of the BS amplitude

Normalization of the state vector |p〉, entering in the defini-
tion (26) of the BS amplitude, determines the normalization
of this amplitude. In its turn, the latter determines the nor-
malization of the electromagnetic form factor of the whole
system F(q) (q is the momentum transfer)which is expressed
through the BS amplitude. F(q) incorporates all the Fock
components, but, as explained above, it is calculated taking
into account the coupling of photon with electron only, but
not with the ion. The condition 〈p|p〉 = 1 is equivalent to
F(0) = 1 (see e.g. [4]). Therefore, identifying, for arbitrary
normalized state vector |p〉, Ntot = F(0) and dividing the
state vector by

√
Ntot , we get the state vector and the elec-

tromagnetic form factor normalized to 1. This results in the
factor 1/

√
Ntot in the expression (27) for ψ(R⊥, x).

To ensure the condition F(0) = 1 with the state vector
normalized to 1, the form factor should be calculated with
true vector photon, whereas the nature of forces providing
the bound state is irrelevant. In the general case of different
masses, the q-behavior of the electromagnetic form factor
depends on the choice which particle the photon couples to.
However, at q = 0 this dependence disappears, since in this
case the photon does not probe the structure of system but
gives information about its total charge only, which for a
nucleus with the charge Ze and electron is (Z −1)e. Thus, if
we take the electron contribution only and remove the nega-
tive charge −e, we obtain the form factor F(q) normalized
to 1 at q = 0. Therefore, it is convenient to consider only
this contribution. The electromagnetic form factor F(q) is
related to the electromagnetic current Jμ of a bound system
as Jμ = (p+ p′)μF(q). Jμ corresponds to the triangle graph
which is calculated by the Feynman rules (see for details e.g.
Refs. [5,7]). Taking the contribution resulting from the inter-
action of the photon with the electron (the light particle No.
2), we obtain:

F(0) = p·J
2M2 = i

M2

∫
d4k1

(2π)4 (p·k2)(k
2
1 − m2

1)

×Φ̄ (k, p) Φ (k, p) . (32)

The factor p·k2 results from the electromagnetic current of
the particle 2: (k2μ + k′

2μ).
After expressing the momentum k1 and k2 via k by Eq.

(4) the form factor becomes:

F(0) = i

M2

∫
d4k

(2π)4 (μ2M
2 − pk)

×(μ2
1M

2 + 2μ1 pk + k2 − m2
1)Φ̄ (k, p) Φ (k, p) .

(33)

The calculation of this integral is standard. Each BS ampli-
tude in their product in Eq. (33) is represented in the integral
form (10), symbolically:

Φ̄ (k, p) Φ (k, p) =
∫ 1

−1
dz . . .

g(z)

D3(k, z)

∫ 1

−1
dz′ . . .

g(z′)
D3(k, z′)

,

D3(k, z) is the denominator of the integrand in (10). We use
the relation:

1

D3(k, z)D3(k, z′)
=

∫ 1

0

30u2(1 − u)2du

[uD(k, z) + (1 − u)D(k, z′)]6 .

Then we shift the integration momentum k = k′ + cp and
find c from the condition that the terms linear in k′ are absent
in the denominator uD(k, z)+ (1−u)D(k, z′). By the Wick
rotation k′

0 = ik′
4 we transform the integral to the Euclidean
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Table 1 The ratios B/m2 and two-body norms N2 for the principal
quantum number n = 1, for the normal (κ = 0) and abnormal (κ = 2,
κ = 4) states, for the coupling constant value C = 5 and for equal
(r = 1) and unequal (r = 10,∞) masses

No. κ r B/m2 N2

1 0 1 0.99926 0.65

2 0 10 1.45983 0.65

3 0 ∞ 1.99852 0.65

4 2 1 3.51169 · 10−3 0.094

5 2 10 6.38114 · 10−3 0.102

6 2 ∞ 7.02338 · 10−3 0.093

7 4 1 1.54091 · 10−5 6.19 · 10−3

8 4 10 2.80165 · 10−5 6.86 · 10−3

9 4 ∞ 3.08182 · 10−5 6.67 · 10−3

space, where k′2 = k′2
0 − k′2 = −k′2

4 − k′2 → −k′2
E . In the

numerator, the odd degrees of the scalar products k′·p can
be omitted, the 2nd degree is replaced as (k′·p)2 → 1

4 M
2k′2

and the 4D integral (33) is reduced to a 1D one: d4k′ →
i2π2k′3

Edk
′
E . Calculating the integral over k′

E analytically,
we find:

F(0) = m6
12

32π2

∫ 1

−1
gun(z

′,Δ)dz′
∫ 1

−1
gun(z,Δ)dz

×
∫ 1

0
du u2(1 − u)2

×m2
1ξ(2 + 3ξ) − m2

2(1 − ξ)(1 − 3ξ) − 2M2ξ(1 − ξ)

[m2
1ξ + m2

2(1 − ξ) − M2ξ(1 − ξ)]4
,

(34)

where

ξ = 1

2
(1 + z)u + 1

2
(1 + z′)(1 − u).

For a test of our calculations, we also calculated the form
factor assuming that the photon interacts with the heavy par-
ticle 1. The obtained formula has a form which does not
coincide, at first glance, with Eq. (34). However, the numer-
ical value of F(0) found in this way is the same as given by
Eq. (34).

We can find now the dependence of the form factor F(0)

on r at r → ∞ analytically. To this aim, by Eq. (19), we
express in Eq. (34) the function gun(z,Δ) for non-zero Δ,
satisfying Eq. (11), via the function geq(z) for the equal
masses (Δ = 0), satisfying Eq. (16). In addition, we rep-
resent the mass M2 of the bound system for unequal con-
stituent masses as M2 = 4m2

12η
2
un and express η2

un by means

of Eq. (21) through the value η2
eq = M2

eq

4m2 for equal masses
m1 = m2 = m, for the same coupling constant C. Since, after
that, the integral contains the function geq(z) which does not
depend on Δ, all the Δ dependence is hidden in the integrand,
in the analytical factor multiplying the product geq (z)geq(z′).

Fig. 1 Upper panel: geq (z), equal masses (r = 1) for the normal state
No. 1 of the Table 1. Lower panel: gun(z,Δ), non-equal masses (r =
10 → Δ = 9

11 ), for the normal state No. 2 of the Table 1

Decomposing this factor in series of r at r → ∞, we find

Nun
tot (r → ∞) = F(0)|r→∞ = Ar4. (35)

The coefficient A is given by a three-dimensional integral,
resulting from Eq. (34). The degree r4 is the same as in Eq.
(31) for N2. Therefore, the factor r4 in (31) cancels and we
find analytically that Nun

2 at r → ∞ tends to a finite limit.
This limiting value will be calculated numerically in the next
section.

7 Numerical results

We will study numerically the influence of the unequal
masses, i.e., the dependence on the factor r of the solution
gun(z,Δ) and corresponding binding energy B, and of the
two-body contribution N2. All the calculations will be car-
ried out for the coupling constant C = 5. The results for B
and N2, for n = 1 and κ = 0, 2, 4, at r = 1, 10,∞, are
shown in the Table 1. We see that if mass m1 of the con-
stituent 1 increases, the binding energy also increases. In the
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Fig. 2 Upper panel: geq (z), equal masses (r = 1) for the abnormal
state No. 4 (κ = 2) of the Table 1. Lower panel: gun(z,Δ), non-equal
masses (r = 10 → Δ = 9

11 ), for the abnormal state No. 5 (κ = 2) of
the Table 1

limit m1 → ∞ the binding energy increases twice relative
to its value at r = 1, in accordance with Eq. (25).

The solutions of the Eqs. (16), (17) for geq(z) and the
Eqs. (11), (14) for gun(z,Δ) at n = 1, κ = 0, 2, 4 and
for r = 1, 10, 103 are shown in Figs. 1, 2, 3 and 4. All
these solutions are normalized so that their maximal values
achieved in the figures are equal to 1. The numerically found
binding energies and the solutions gun(z,Δ) exactly coincide
with those found from the relations (21) and (19). The number
of nodes of the function gun(z,Δ) vs. z is the same as for
geq(z) and still coincides with the quantum number κ though
they are shifted to the smaller values of z.

8 Conclusions

The spectrum of the system of two charged particles with
large enough product of charges C > π

4 , in addition to the
Coulomb levels, contains also infinite series of highly excited
levels called abnormal [2,3]. These states are dominated by
Fock states containing photons in addition to the two massive

Fig. 3 Upper panel: geq (z), equal masses (r = 1) for the abnormal
state No. 7 (κ = 4) of the Table 1. Lower panel: gun(z,Δ), non-equal
masses (r = 10 → Δ = 9

11 ), for the abnormal state No. 8 (κ = 4) of
the Table 1

charged particles, whereas the contribution of Fock state for
two particles only is small [5]. Therefore these many-photons
states are not predicted by the Schrödinger equation. They
arise due to transformation, in the strong Coulomb field, of an
atomic state of two charged particles, interacting by exchange
by single photons, to the states dominated by photons. The
theoretical prediction and understanding the nature of the
abnormal states put the experimental detection of such states
on the agenda. To detect the abnormal states, it would be
ideal to carry out experiments with nucleus-antinucleus ions.
In this case, the ions and antiions with Z = 11 (Natrium
and Antinatrium) would be enough to create a system with
the product of charges C = 1

137 Z
2 ≈ 0.88 > π

4 ≈ 0.79.
In absence at our disposal of antinuclei with large enough
charge, the experiments should be carried out with heavy
ions and electrons. Then to provide C = 1

137 Z > π
4 we need

the ions with Z ≥ 108 (Hassium and subsequent elements).
Heavy ion and electron have very different masses. That’s
why we need to extend the searchers [2,3,5] for the case of
constituents with unequal masses.

It turned out that the effect of unequal masses is “attrac-
tive” – the binding energy increases when the mass ratio
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Fig. 4 gun(z,Δ) for r = 103. Upper panel: for κ = 0, 2, 4 (the curves
are indistinguishable from each other in this scale). Middle panel:κ = 2,
in the interval −1 ≤ z ≤ −0.99. Lower panel: κ = 4, in the interval
−1 ≤ z ≤ −0.99

r = m1
m2

increases. In the limit r → ∞ (which, in practice,
is very close to the mass ratio of heavy ion and electron), the
binding energy increases up to a factor two. The two-body
constituent contribution N2 is changing insignificantly and
remains small. That is, the abnormal states are still domi-
nated by the massless exchanges. They manifest themselves
not only in deviation from the Coulomb spectrum, but also
in special behavior of the electromagnetic form factors [5].

The same effect—increase of the Coulomb binding energy
by a factor of two when mass of one particles increases up
to infinity—takes place in the non-relativistic Schrödinger
equation, where the binding energy is proportional to the
reduced mass m∗ = m1m2

m1+m2
= rm2

r+1 . For m1 = m2 (r =
1): m∗ = 1

2m2, whereas at r → ∞: m∗ → m2—is two
times larger. This cannot be expected in advance since the
dynamics of two systems—abnormal and the Coulomb non-
relativistic ones, governed by the corresponding equations,
are very different and the relation (23), in general, does not
provide the dependence on the reduced mass.

Let us note that there exists the maximal value of the
ion’s electric charge (the critical charge Zc). If the ion charge
exceeds this value, then an electron-positron pair is created in
the strong electric field. The electron is absorbed by the large
ion charge, not allowing it to exceed the critical value, while
the positron goes to infinity. This critical value is Zc = 137
for the point-like charge and it increases up to Zc = 170
due to finite size of nucleus (see for review [8]). The ion
charge Z > 137π/4 ≈ 108, needed for existence of the
abnormal states in the system ion-electron, is less than the
critical value Zc and therefore it is not forbidden. The inter-
val 108 ≤ z ≤ 170 is rather wide, though the number of
known long-living enough isotopes suitable for experiments
is restriced.

We did not take into account spins of constituents and
photons. Spin-spin interaction can change the positions of
the levels (the fine structure is not “fine” in the strong field),
but it does not weaken the electric field. Moreover, the parti-
cles with opposite spins (e.g., electron and positron) interact
stronger than the spinless ones. Therefore, there is no reason
to expect that the spins can eliminate the abnormal states.

The interaction creating the abnormal states is not nec-
essary electric. This could be exchange by gluons between
quarks. In this case, the strong coupling constant can be
enough for creation of the abnormal states which could have
the hybrid nature [5].

The abnormal solutions for massive particle exchange
(though for small exchange masses) also exist. Our study
of them is in progress.

In any case, the predicted abnormal states deserve the
experimental study.
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A Relation between λ and C

For any elastic amplitude K calculated by the Feynman rules
the cross section (in the c.m. frame) reads

dσ

dΩ
= 1

64π2s
|K |2 = 1

64π2(m1 + m2)2 |K |2.

We follow the conventions given in the book [9]. For sim-
plicity we consider the low energy system since the rela-
tion between the coupling constants does not depend on the
energy. Substituting here K defined by Eq. (9) we find:

dσ

dΩ
= π2λ2(m1 + m2)

2

4q4 . (36)

On the other hand, by definition, C is the constant deter-
mining the Coulomb potential:

V (r) = −C
r

.

The well known Born amplitude reads:

f = m∗

2π
V (q),

where m∗ = m1m2
m1+m2

and

V (q) =
∫ ∞

0
V (r) exp(−iq·r)d3r = 4πC

q2 .

It is related to the cross section as:

dσ

dΩ
= | f |2.

Hence

dσ

dΩ
= 4m2

1m
2
2C2

(m1 + m2)2q4 . (37)

Comparing the cross sections (36) and (37), we find:

λ = 4m1m2

π(m1 + m2)2 C (38)

that can be rewritten in the form (6). For equal masses and
C = α it is reduced to the relation λ = α

π
used in [5].

B Variables R⊥, x and the scalar products

The light-front variables R⊥, x are constructed as follows.
We define the four-vectors R1 = k1 − x1 p, R2 = k2 −

x2 p with x1,2 = (ω·k1,2)/(ω·p), x1 + x2 = 1 and chose
their components as: R1 = (R10,R1‖,R1⊥) with R1‖ ‖ ω,
R1⊥·ω = 0. And similarly for R2. Since ω·R1 = ω0(R10 −
R1‖) = 0, we get R10 = R1‖, therefore R2

1 = −R2
1⊥. The

relation R1 + R2 = ωτ gives R1⊥ = −R2⊥ and R1·R2 =
R2⊥. We denote R1⊥ ≡ R⊥, x1 ≡ x . Then the light front
wave function is parametrized as ψ = ψ(R⊥, x).

To express the scalar product k1·p through the variables
R⊥, x , we take square: R2

1 = −R2⊥ = m2
1 − 2x(k1·p) +

x2
1 M

2. From here we find the scalar product k1·p (the four-
vectors k1, k2 are on the corresponding mass shells k2

1,2 =
m2

1,2). Similarly for k2·p. To find k1·k2, we take the product

R2⊥ = R1·R2 = (k1 − x1 p)·(k2 − x2 p). In this way, we find
the following expressions for the scalar products:

k1·p = 1

2x1
(R2⊥ + m2

1 + x2
1 M

2),

k2·p = 1

2x2
(R2⊥ + m2

2 + x2
2 M

2),

k1·k2 = R2 + x1(k2·p) + x2(k1·p) − x1x2M
2,

k2 = μ2
2m

2
1 − 2μ1μ2(k1·k2) + μ2

1m
2
2,

where k = μ2k1 − μ1k2 and μ1,2 are defined in (3). Using
these relations, we can find the scalar products appearing in
(27):

(
k + βω

ω·p
)2

= k2 + 2(μ2x1 − μ1x2)β,

p ·
(
k + βω

ω·p
)

= μ2k1·p − μ1k2·p + β.
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