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Abstract We study supersymmetric AdS3 flux vacua of
massive type-IIA supergravity on anisotropic G2 orien-
tifolds. Depending on the value of the F4 flux the seven-
dimensional compact space can either have six small and
one large dimension such that the “external” space is scale-
separated and effectively four-dimensional, or all seven com-
pact dimensions small and parametrically scale-separated
from the three external ones. Within this setup we also discuss
the Distance Conjecture (including appropriate D4-branes),
and highlight that such vacua provide a non-trivial example
of the so-called strong Spin-2 Conjecture.
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1 Introduction

Deducing the existence of an effectively lower-dimensional
theory of gravity from ten-dimensional (or eleven-dimensional)
string/M-theory is both pivotal for realistic model building
and also presents an interesting theoretical question on its
own right. In particular, supersymmetric AdS vacua with
scale separation are interesting for a variety of reasons: for
example, in some cases such vacua can be uplifted to de Sitter
[1], while in principle they are also of interest in holography.

The status of scale-separated AdS remains however
unclear, even though one would expect supersymmetry to
provide an advantage. For instance, the classical construc-
tions with scale separation that appeared in [2] (see also
[3–7] for closely related work) invoke type-IIA supergravity
with Romans mass and (smeared) O6-planes, the latter pos-
sibly being an essential ingredient of scale separation in any
case [8–10]. The consistency of each of these ingredients or
their combination has also been under debate [11–13], while
various steps in resolving or at least understanding some of
the intricacies have been taken in [14–29]. More recently,
an analysis of the holographic duals was performed in [30–
35], and some extensions with anisotropies are discussed in
[36,37], where also massive type-IIA compactifications on
toroidal orbifolds are presented and the possibility to have
a T-dual orientifold desciption within massless type-IIA is
highlighted. Controlled type-IIB vacua with scale separa-
tion are not known classically [38,39], and the only known
examples are the ones that require quantum corrections [1]
(and have a series of open issues [40–43]), while there seems
to be a scaling argument behind this difficulty [44]. Argu-
ments from supergravity also indicate the difficulty in con-
structing scale-separated AdS with extended supersymmetry
[45–48].1 In the mean time AdS3 constructions with mini-

1 See also [49,50] for restrictions on scale separation in higher dimen-
sional AdS spaces.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-024-12427-z&domain=pdf
http://orcid.org/0009-0001-9141-5329
mailto:matteomorittu1995@gmail.com


98 Page 2 of 16 Eur. Phys. J. C (2024) 84 :98

mal supersymmetry and scale separation (but still with the
same ingredients) have appeared in the literature [51–54].2

For a pedagogical and up-to-date review of the status of flux
vacua with moduli stabilization and scale separation see e.g.
[58,59].

In this work we will assume that smeared O6-planes are a
consistent ingredient of flux compactifications and that there
does exist an actual solution in string theory that is described
in the low energy regime by such an approximation. In our
constructions we will therefore build on the G2 orientifolds
of [51] which originally give rise to scale-separated AdS3

vacua with a seven-dimensional (almost fully) isotropic com-
pact internal space. However, our aim is to create a large
anisotropy in the internal space such that: 1. Six of the inter-
nal dimensions, always maintaining large volume (to have
a good supergravity approximation), become considerably
small with respect to the typical length scale of the non-
compact three-dimensional (AdS3) external space, LAdS; 2.
Only one becomes large and comparable in magnitude to
the same LAdS. In this way the actual external space is
four-dimensional whereas the six-dimensional internal one is
scale-separated (not parametrically though) from the exter-
nal one. When instead the F4 flux is made parametrically
large, one recovers a seven-dimensional small internal com-
pact space, albeit anisotropic, together with the AdS3 external
space.

2 Massive type-IIA on G2 orientifolds

We will work within the general setup discussed in [51,54];
therefore, here, we only need to mention the salient features
of such flux compactifications and establish our conventions.
(Let us also note right away that we fix α′ = 1).

The setup is massive type-IIA supergravity compactified
on a G2 space, which we take to be a toroidal orbifold X7 =
T 7/(Z2)

3 with coordinates {yi }i=1,...,7. The Z2 involutions
generate a group � = {�α,�β,�γ }, and are defined as

�α : (y1, . . . , y7) → (−y1,−y2,−y3,−y4, y5, y6, y7) ,

�β : (y1, . . . , y7) → (−y1,−y2, y3, y4,−y5,−y6, y7) ,

�γ : (y1, . . . , y7) → (−y1, y2,−y3, y4,−y5, y6,−y7) ;
(2.1)

one should also include in � all their combinations, e.g.
�αβ = �α�β , etc.. Since the compact space is seven-
dimensional, a three-dimensional non-compact space is left,
which in [51,54] is AdS3. Eventually the ten-dimensional
Einstein-frame metric involved in the compactification has

2 Recent work on type-II AdS3 flux vacua with minimal or extended
supersymmetry but without scale separation can be found, for example,
in [55–57].

the form

ds2
10 = (Vol(X7))

−2ds2
3 +

7∑

i=1

r2
i dy2

i , i = 1, . . . , 7, (2.2)

and Vol(X7) = ∏7
i=1 r

i . Such G2 compactification would
in principle preserve four real Killing spinors,3 but, because
one also includes mutually supersymmetric O2/O6-planes in
these constructions, the number of supersymmetry is further
reduced by half. The O2-planes fill the non-compact space,
whereas the O6-planes have three dimensions that fill the
non-compact space while the remaining four wrap 4-cycles
in the seven-dimensional compact space as follows:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

O6α : × × × × − − −
O6β : × × − − × × −
O6γ : × − × − × − ×
O6αβ : − − × × × × −
O6βγ : − × × − − × ×
O6γα : − × − × × − ×
O6αβγ : × − − × − × ×

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.3)

where the “×” indicates a direction parallel to the given O6-
plane and the “−” a direction orthogonal to it. The O6-planes
would be localized in a full string theory solution, but here
we consider them to be smeared along those directions. The
full construction works nicely making the O6-planes actually
the images of the O2-planes under the Z2 involutions.

Due to the various ingredients the only fluxes that can
have non-zero background values are the F4 flux, the H3

flux and the Romans mass F0, which are properly expanded
on the basis of harmonic forms with the correct parities. The
harmonic three-forms

�i ={dy127,−dy347,−dy567, dy136,−dy235, dy145, dy246}
(2.4)

provide a proper basis for the H3 background flux and the
harmonic four-forms �i , which are defined by
∫

X7

�i ∧ � j = δi j , (2.5)

provide the proper basis for the F4 flux. In the mean time
the only allowed moduli are the dilaton and the seven radii
r i of the toroidal orbifold or, equivalently, the volumes of
the seven 3-cycles �i , which we will indicate as si and are
defined as

s1 = r1r2r7, s2 = r3r4r7, s3 = r5r6r7, s4 = r1r3r6,

s5 = r2r3r5, s6 = r1r4r5, s7 = r2r4r6. (2.6)

3 More concretely, one can think of this in terms of gravitini such that
the counting is valid also when supersymmetry is spontaneously broken.
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All the other closed string scalars are automatically trun-
cated due to the orbifold/orientifold action. We ignore the
open string moduli here: we assume that, being compact,
they will be stabilized independently at their supersymmet-
ric positions.

In our analysis it is favorable to work with the moduli x ,
y (not to be confused with the yi coordinates of the internal
space) and s̃a (with a = 1, . . . , 6), which have the follow-
ing properties: the moduli x and y are a combination of the
overall compact space volume Vol(X7) and the dilaton φ,
namely

x = −3
√

7

8
φ + 1

2
√

7
log[Vol(X7)],

y = −3

2
log[Vol(X7)] − 1

8
φ. (2.7)

Then, since we treat the volume Vol(X7) as an independent
modulus, one of the seven moduli si is made redundant and
can be eliminated by working with the six s̃a scalars that are
deduced from the relations

si = Vol(X7)
3/7s̃i with i = 1, . . . , 7,

s̃7 =
6∏

a=1

1

s̃a
with a = 1, . . . , 6. (2.8)

To recap, we have six independent “shape” moduli s̃a (with
a = 1, . . . , 6), while a seventh shape modulus, s̃7, is given
in terms of the other six.

Having discussed the moduli, let us turn to the tadpole con-
ditions. The contribution of the O2-planes to the tadpole will
be cancelled by appropriately distributed D2-branes, whereas
the O6-plane contribution will be cancelled by fluxes. There-
fore, from the Bianchi identity dF6 = 0 we have

0 =
∫

X7

H3 ∧ F4 (2.9)

due to vanishing net D2 charge. When integrating over each
i th 3-cycle, the Bianchi identity dF2 = 0 is given by

0 =
∫

i
H3 ∧ F0 − 2π × 16 , (2.10)

where we have taken into account that NO6 = 23 per 3-
cycle. This setup has been analyzed extensively in [51,54]:
here, we refrain from getting into more details and refer the
reader directly to the aforementioned articles.

With these ingredients the direct dimensional reduction
of the ten-dimensional Einstein-frame action down to three
dimensions produces the bosonic sector

L3√
−det[g(3)

μν ]
= 1

2 R3 − 1
4 (∂x)2 − 1

4 (∂y)2 − 1
4

×
7∑

i=1

1

(s̃i )2 ∂ s̃i∂ s̃i − V (x, y, s̃), (2.11)

where V (x, y, s̃) indicates the three-dimensional scalar
potential. The latter can also be described by a superpotential
that can be found in [51] and will be presented momentarily.
When deducing the metric of the moduli space of (2.11) one
should not forget the restrictions (2.8).

3 AdS3×S1 scale-separated vacua

3.1 Supersymmetric conditions

In this section, always referring to the base of harmonic
forms, we work with the specific flux choices

H3 = h
7∑

i=1

�i , F4 = f (�1 + �2 + �3 − 3�4)

+q (�5 + �6 − 2�7) , (3.1)

such that H3 ∧ F4 ≡ 0 and the O2-tadpole cancels indeed
with D2-branes. We also include a Romans mass F0 = m. Let
us note that the parameters f and q can be made arbitrarily
large and are not bounded by the tadpoles. Moreover, as far
as our analysis is concerned, we are going to assume, consis-
tently both with the tadpole cancellation condition and flux
quantization, that f, q > 0 and that m, h < 0. This choice of
signs for the fluxes is forced upon us, among other reasons,
due to moduli stabilization. We could also have f, q < 0
and m, h > 0, which is the same setup, but we could not
achieve moduli stabilization in our numerical examples if
we assumed m > 0 and h < 0 (or vice-versa).

In order to achieve scale separation in the large volume
and weak coupling regime we are going to use the large f
limit, while we are going to take q large to make the seventh
radius, i.e. r7, considerably bigger than the remaining com-
pact dimensions. In that case four dimensions will be large
and external (in the sense that the r7 KK-modes can not be
ignored for a consistent low-energy EFT) while the other six
will be made considerably smaller with a clear separation of
the corresponding scales.

The flux quantization conditions, for α′ = 1, are

h = (2π)2K , m = (2π)−1M, f = (2π)3N ,

q = (2π)3Q, (3.2)

and from the cancellation of the O6-tadpole without any D6-
branes we simply have KM = 16. As we noted earlier, in our
setup we have m, h < 0, which means that K , M < 0; we
will therefore sometimes denote −K = |K | and −M = |M |.

For this setup the three-dimensional scalar potential can be
written in terms of a real superpotential P that was derived in
[51]. Furthermore, in [53] it was explicitly verified that min-
imizing this superpotential corresponds to solving the full
ten-dimensional supersymmetry equations in the bispinor
formalism. In terms of the s̃a moduli (with a = 1, . . . , 6)
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the superpotential is

P

(2π)7 = m

8
exp

[
y

2
−

√
7x

2

]
+ h

8
exp

[
y + x√

7

]

×
(

6∑

a=1

1

s̃a
+

6∏

a=1

s̃a
)

+1

8
exp

[
y − x√

7

][
f
(
s̃1 + s̃2 + s̃3 − 3s̃4

)

+q

(
s̃5 + s̃6 − 2

6∏

a=1

1

s̃a

)]
. (3.3)

Having in mind supersymmetric critical configurations, let us
observe that, since on a supersymmetric vacuum the vacuum
energy is 〈V 〉 = −4P2, the AdS3 length scale is character-
ized by P as LAdS = 1√|V | ∼ P−1 (for a constant three-
dimensional Planck mass, which here, and from now on, we
set to be unit).

A supersymmetric vacuum requires to have Px = Py =
Pa = 0. Once we perform the variations, we implement an
ansatz for the various shape moduli s̃a , each one associated
with the volume of a corresponding 3-cycle, of the form

〈s̃1〉 = 〈s̃2〉 = 〈s̃3〉 = σ, 〈s̃4〉 = ρ, 〈s̃5〉 = 〈s̃6〉 = τ.

(3.4)

We further define

μ = m

f
exp

[
− y0

2
− 5x0

2
√

7

]
, χ = h

f
exp

[
2x0√

7

]
,

γ = q

f
, (3.5)

simply denoting 〈x〉 = x0 and 〈y〉 = y0. Let us furthermore
remind the reader that 〈s̃7〉 = 1/

∏6
a=1〈s̃a〉. Then, with the

above definitions the supersymmetric equations lead to the
following independent set of conditions:

0 = −7μ

2
− 3σ − 2γ τ + 3χ

σ
+ 2χ

τ
+ χ + 2γ

σ 3τ 2

ρ

+ρ (σ 3τ 2χ + 3),

0 = μ

2
+ 3σ + 2γ τ + 3χ

σ
+ 2χ

τ
+ χ − 2γ

σ 3τ 2

ρ

+ρ (σ 3τ 2χ − 3), (3.6)

and

0 = 1 + 2γ

ρσ 4τ 2 − χ

σ 2 + ρσ 2τ 2χ,

0 = −3 + 2γ

ρ2σ 3τ 2 − χ

ρ2 + σ 3τ 2χ,

0 = γ + 2γ

ρσ 3τ 3 − χ

τ 2 + ρσ 3τχ. (3.7)

Once the values of the various parameters have been deter-
mined, we can extract

x0 =
√

7

2
log

[
f χ

h

]
,

y0 = 2 log

[
m

f μ

]
− 5

2
log

[
f χ

h

]
, (3.8)

which in turn give the dilaton φ and the volume Vol(X7)

using (2.7). In particular,

gs = e〈φ〉 = h

f 3/4χ

(μ

m

)1/4
,

Vol(X7) = f 49/16
(χ

h

)7/4 (μ

m

)21/16
. (3.9)

It is clear from the above expressions that, when f is large
enough, the volume can be made large and the coupling can
be made weak. This happens because μ and χ are actually
fully determined independently from the value of f as we
will show momentarily in the next paragraph by analytically
solving Px = 0 = Py . (In our examples we explicitly verify
this independence). Of course, one has to check the radii one-
by-one and make sure that each one is independently large, in
case the space is very anisotropic. We will do this in a while;
for the moment, let us simply note that the actual volumes of
the 3-cycles are given by si = Vol(X7)

3/7s̃i .
We can solve the two equations of (3.6), which actually

correspond to Px = 0 = Py , to deduce

μ = 3(ρ − σ)

2
+ γ

ρσ 3τ 2 − γ τ,

χ = 9ρ(ρ − σ)σ 3τ 2 + 6γ (1 − ρσ 3τ 3)

4σ 2τ(2ρσ + 3ρτ + στ + ρ2σ 4τ 3)
. (3.10)

Substituting then (3.10) into (3.7) will give us three equations
with four unknowns, i.e. (σ, ρ, τ, γ ): as a result, we have
one free parameter which can be conveniently chosen to be
γ as it controls the relative anisotropy within the F4 flux
components. It is precisely this freedom that will allow us to
break scale separation in one compact dimension and thus
make the external/large space effectively four-dimensional.
The three equations that have to be solved are then

0 = 1 + 2γ

ρσ 4τ 2

+3(ρσ 4τ 2 − 1)[3ρσ 3τ 2(ρ − σ) + 2γ (1 − ρσ 3τ 3)]
4σ 4τ(2ρσ + 3ρτ + στ + ρ2σ 4τ 3)

,

0 = −3 + 2γ

ρ2σ 3τ 2

+
3
(
σ 3τ 2 − 1

ρ2

)
[3ρσ 3τ 2(ρ − σ) + 2γ (1 − ρσ 3τ 3)]

4σ 2τ(2ρσ + 3ρτ + στ + ρ2σ 4τ 3)
,

0 = γ + 2γ

ρσ 3τ 3
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+3
(
ρσ 3τ 3 − 1

) [3ρσ 3τ 2(ρ − σ) + 2γ (1 − ρσ 3τ 3)]
4σ 2τ 3(2ρσ + 3ρτ + στ + ρ2σ 4τ 3)

.

(3.11)

Ideally we would like to solve the equations in (3.11) ana-
lytically and express the solutions as functions of γ , that is
σ = σ(γ ), ρ = ρ(γ ) and τ = τ(γ ), and further deduce
from (3.10) μ = μ(γ ) and χ = χ(γ ). However, due to the
highly nonlinear polynomial structure of (3.11) it does not
seem possible to directly find its analytic solutions; therefore,
from now on we will turn to numerical methods.

3.2 Proceeding numerically

As we already wrote, our aim is to achieve a large volume
and weak coupling regime where the seventh radius r7 is
made large, namely of the same order of magnitude of the
AdS3 radius (or even bigger), and the remaining six radii
ra remain small. The comparison between the relevant KK-
mode scales associated with each of the radii ri and the AdS
length scale LAdS is made by a formula that is derived, for
example, in [54]: for the lowest-lying KK-mode of a tower
of states related to some radius ri ,

m2
KK,i = (2π)2

(Vol(X7))2 r2
i

×
(

(2π)7

2

)2

(3.12)

and, as a consequence,

L2
KK,i

L2
AdS

= |〈V 〉|
m2

KK,i

= 4

π2

(
P

(2π)7

)2

(Vol(X7))
2 r2

i , (3.13)

where |〈V 〉| = 1/L2
AdS. As we are going to see exploring

what happens for different values of γ and f , it is indeed
possible to achieve

L2
KK,a

L2
AdS

→ 0,
L2

KK,7

L2
AdS

� 1, gs 
 1, ri � 1, (3.14)

so that the large external space becomes four-dimensional
(again in the sense that the r7 KK-modes cannot be ignored
for a consistent EFT) and the small hidden space six-
dimensional. In such cases the three-dimensional theory is
not a good EFT and should be considered only as a con-
sistent truncation; however, the vacuum equations are still
valid because they are deduced from the superpotential (3.3),
which also captures the full ten-dimensional supersymmetry
conditions/vacuum equations as it is shown in [53].

We would like to emphasize that the anisotropy between
the radius r7 and the other six radii ra in our constructions
is not parametric. This happens because such anisotropy is
controlled by the parameter γ that is consistent with moduli
stabilization only for a finite range of values. Nevertheless,
as we sill see, within those values we could find quite a large
anisotropy. It is not clear of course whether there could be

another choice of fluxes that can make the anisotropy which
singles out r7 parametric. (Such a setup does exist for the
case of parametric scale separation between r2,4,6 and the
rest of the radii; it was studied in [54]).

We would also like to stress that, once r7 is made of the
same order of magnitude of LAdS, the large external space is
not AdS4, but AdS3×S1, also underlying the fact that we have
a supersymmetric vacuum with two (and not four) Killing
spinors.

3.2.1 Having γ ∼ O(1) and (almost) no anisotropy

For values of γ ∼ O(1) it is easy to check that (almost) no
anisotropy is generated between the seven radii ri : the system
therefore behaves essentially like in [51]. Explicitly, solving
the equations in (3.11) for γ = 1, we find

σ ≈ 1.95, ρ ≈ 0.18, τ ≈ 1.95. (3.15)

Then, from (3.9) with the proper numerical values of μ and
χ evaluated from (3.10) we can extract the behaviour of the
string coupling

gs ≈ 2.897 × |K |
N 3/4|M |1/4 , (3.16)

and the behaviour of the radii

r1,3

2πN7/16

|M|3/16|K |1/4

≈ 0.93,
r2,4

2πN7/16

|M|3/16|K |1/4

≈ 0.95,

r5

2πN7/16

|M|3/16|K |1/4

≈ 3.04,
r6

2πN7/16

|M|3/16|K |1/4

≈ 0.29, (3.17)

and

r7

2πN7/16

|M|3/16|K |1/4

≈ 3.04. (3.18)

By appropriately choosing the flux units we can end up hav-
ing large internal volume Vol(X7) (it is sufficient to take
N 7/16|M |−3/16|K |−1/4 � 1) and a small coupling gs . We
also clearly notice that all the seven radii ri are comparable in
magnitude and therefore (almost) no anisotropy is generated
yet.

In any case, since

L2
KK,i

L2
AdS

≈ 0.21 × K 2|M |
N

, (3.19)

for parametrically large N we can get parametric scale sep-
aration between the AdS3 external space and the seven-
dimensional internal one. For example, consistently with the
tadpoles, one can have K = −16, M = −1 and N = 104, or
any other parametrically large value of N . The fact that for
parametrically large N we recover AdS3 as external space is
a general feature of the construction we are presenting here.
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Table 1 This table presents the critical values of σ , ρ and τ as γ takes
the values γ = 103, 106

γ σ ρ τ

103 93.12 0.02 0.06

106 4823.5 0.0012 0.0032

3.2.2 Intermediate γ values

To try to detach the seventh radius r7 from the other six inter-
nal radii ra and make the former comparable in magnitude to
the AdS length scale LAdS, we will now increase γ and con-
sider the cases γ ∼ O(103) and γ ∼ O(106). This choice
opens a window of values of N within which the above sce-
nario can be realized. (When γ becomes smaller than O(1),
then r5 is detached; we analyze this in the appendix).

For the aforementioned values of γ the equations in (3.11),
which determine the properties of the solution and verify
moduli stabilization, are solved for the values of σ , ρ and τ

that we present in Table 1. For such values, from (3.9) and
with the proper μ and χ evaluated thanks to (3.10), we can
consequently estimate gs to be

gs ≈ 1.92 × |K |
N 3/4|M |1/4 (3.20)

(which is roughly the same for both the values of γ under
consideration). In addition, the radii take the values that we
gather in Table 2. From (3.20) and Table 2 we readily see
that the large volume (i.e. large radii) and weak coupling
regime can be realized by adopting appropriate choices of
the flux units, e.g. by choosing (always in accordance with
the tadpole cancellation condition) K = −16, M = −1 and
N sufficiently large.

As already emphasized, the arbitrarily parametrically
large N limit always leads to full scale separation. At this
stage, however, we would like to understand if for some mod-
erate (but still sufficiently large) value of N only six of the
compact dimensions can remain small while the seventh one
can become of the same order of magnitude of the AdS3

length scale (or even larger). This means that we want to
investigate whether

L2
KK,7

L2
AdS

= 4

π2

(
P

(2π)7

)2

(Vol(X7))
2 r2

7 � 1,

L2
KK,a

L2
AdS


 1. (3.21)

More precisely, we have the ratios

L2
KK,7

L2
AdS

∣∣∣
γ=103

≈ 6.418 × 104 × K 2|M |
N

,

L2
KK,7

L2
AdS

∣∣∣
γ=106

≈ 6.412 × 1010 × K 2|M |
N

, (3.22)

which offer a wide range of values of N that can be checked.
Indeed, when (once more) fixing K = −16 and M = −1,
we find, for γ = 103, the results that are presented in Table
3, and, for γ = 106, we find the values that are reported
in Table 4, together with the relative behaviour of the string
coupling and the other radii. We observe that, as γ increases,
the possibility to decouple the seventh radius r7 from the
other six radii ra becomes more and more achievable, with a
simultaneous extension of the range of the values of N (once
K and M have been fixed) we can refer to.

3.2.3 Large γ values and maximal anisotropy

In this subsection we will work with γ ∼ O(109). This
is roughly the largest value that γ can have while keeping
moduli stabilization intact. Indeed, from our numerics we
see that γ ≈ 2.5305 × 109 appears to (approximately) be
the limiting value that γ can take before solutions to the
extremization of (3.3) with the ansatz (3.4) cease to exist.

Solving the equations in (3.11) we get the results presented
in Table 5, together with

gs ≈ 1.92 × |K |
N 3/4|M |1/4 , (3.23)

and the values presented in Table 6 as far as the radii ri are
concerned. We can also check that a consistent anisotropy,
where only six of the compact dimensions remain small while
the seventh one becomes of the same order of magnitude
of the AdS3 length scale (or even larger) can be achieved.
Focusing, as a matter of illustration, on γ = 109, we search
for a realization of

L2
KK,7

L2
AdS

≈ 6.412 × 1016 × K 2|M |
N

� 1,

L2
KK,a

L2
AdS

≈ 10−3 × K 2|M |
N


 1. (3.24)

We also choose to keep the same K and M units of flux as
before, i.e.

K = −16, M = −1, (3.25)

so that the tadpole cancellation condition is satisfied and we
can simply vary the value of N .

In particular, if we take N ∼ 1019, we find (always in
appropriate string-length units, since α′ = 1)

gs ∼ 10−13, ra ∼ 108, r7 ∼ 1018, (3.26)

and

L2
KK,7

L2
AdS

∼ 1,
L2

KK,a

L2
AdS

∼ 10−19. (3.27)

123



Eur. Phys. J. C (2024) 84 :98 Page 7 of 16 98

Table 2 This table shows the values of the radii ri as γ takes the values γ = 103, 106. One can clearly notice that, as γ becomes larger, r7 becomes
bigger than the other six radii ra (for fixed flux units)

γ
r1,3

2πN7/16

|M |3/16 |K |1/4

r2,4
2πN7/16

|M |3/16 |K |1/4

r5
2πN7/16

|M |3/16 |K |1/4

r6
2πN7/16

|M |3/16 |K |1/4

r7
2πN7/16

|M |3/16 |K |1/4

103 1.09 0.94 1.88 0.54 2821

106 1.086 0.941 1.881 0.543 2.822 × 106

Table 3 This table shows the three interesting regimes one can end up
with while changing N for γ = 103, once the other flux units have
been fixed, namely K = −16 and M = −1. When a circumstance like
(a) realizes, one has full scale separation; if, instead, one works with
cases similar to (b) or (c), then the radius r7 disentangles from the other

six radii and the external space becomes effectively AdS3×S1. For the
in-between values of N one gets of course intermediate results. Note
that N can not be too small in order for the large volume/weak coupling
condition to still be satisfied

N gs ra r7
L2

KK,7

L2
AdS

L2
KK,a

L2
AdS

(a) 1010 9.72 × 10−7 O(104) 2.10 × 108 1.64 × 10−3 O(10−10)

(b) 107 1.73 × 10−4 O(103) 1.02 × 107 1.64 O(10−7)

(c) 104 0.03 O(10) 4.98 × 104 1.64 × 103 O(10−4)

Table 4 This table shows three interesting regimes one can end up
with while changing N for γ = 106, once the other flux units have
been fixed, namely K = −16 and M = −1. One can again see a sim-
ilar behaviour with respect to the case γ = 103, which is presented in

Table 3: a pattern indeed emerges. For the in-between values of N one
gets of course intermediate results, while one can appreciate that the
windows for the various regimes cover now a wider range of values of
N

N gs ra r7
L2

KK,7

L2
AdS

L2
KK,a

L2
AdS

(a) 1019 1.73 × 10−13 O(108) 1.82 × 1015 1.64 × 10−6 O(10−19)

(b) 1013 5.46 × 10−9 O(106) 4.32 × 1012 1.64 O(10−13)

(c) 107 1.73 × 10−4 O(103) 1.02 × 1010 1.64 × 106 O(10−7)

As we expect, because the characteristic length scale associ-
ated with r7 is comparable to the AdS3 length scale, the pre-
vious relation shows that the external space becomes effec-
tively four-dimensional (that is, the r7 KK-modes can not be
ignored), while the internal space is six-dimensional and it
is scale-separated from the large external one.

It is also possible to choose values of N such that a dif-
ferent separation of scales is achieved, of the form

L2
KK,7 � L2

AdS � L2
KK,a . (3.28)

For example, when N ∼ 109,

gs ∼ 10−6, ra ∼ 104, r7 ∼ 1013 (3.29)

and

L2
KK,7

L2
AdS

∼ 1010
L2

KK,a

L2
AdS

∼ 10−9. (3.30)

The four-dimensional external space is again AdS3×S1, still
well scale-separated from the six-dimensional internal one;
however, since the radius of the seventh compact dimension
is larger than the AdS length scale, one could say that the
external space effectively becomes AdS3 × R

1.

Table 5 This table exhibits the critical values of σ , ρ and τ as γ takes
the values γ = 109, 2.5305 × 109

γ σ ρ τ

109 249833 0.0000555 0.0001666

2.5305 × 109 424673 0.0000373 0.0001119

We note once more that, when the integer N takes para-
metrically large values, even though the compact space may
remain highly anisotropic, scale separation makes the inter-
nal space seven-dimensional and the external space AdS3.

Moreover, let us observe that our flux choices do not
exhaust all the possible options that would give such an
anisotropy; we leave a general scan of the various possi-
bilities for future work.

4 Mass spectrum

We now turn to the study of the mass spectrum of the model
of interest focusing on the closed string moduli that we con-
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Table 6 This table shows the values of the radii ri as γ takes the values γ = 109, 2.3502 × 109. One can clearly notice that r7 is much bigger than
the other six radii ra for fixed flux units

γ
r1,3

2πN7/16

|M |3/16 |K |1/4

r2,4
2πN7/16

|M |3/16 |K |1/4

r5
2πN7/16

|M |3/16 |K |1/4

r6
2πN7/16

|M |3/16 |K |1/4

r7
2πN7/16

|M |3/16 |K |1/4

109 1.086 0.941 1.881 0.543 2.822 × 109

2.5305 × 109 1.086 0.941 1.881 0.543 7.140 × 109

sidered until now. Once we divide the masses of the scalar
fields x , y and s̃a by the vacuum energy, we see that the anal-
ysis does not depend on the specific choice of the units N of
the F4 flux, but only on μ, χ and γ . Therefore here we will
collect some results and considerations involving the mass
spectrum of the model simply as γ takes the values γ = 1,
103, 106 and γ ∼ O(109). We should remember of course
that the relative magnitude of the r7 KK-mode masses com-
pared to the AdS length scale depends on N . This means that
depending on the value of N the three-dimensional theory
with only the x , y and s̃a is either a consistent truncation
of a four-dimensional theory or an actual three-dimensional
effective theory.

As anticipated, for the evaluation of the masses we will
proceed by considering the AdS3 construction with the eight
moduli x , y and s̃a . We will firstly focus on the γ = 109 case
since it is the circumstance with the larger window for the
values of N and thus covers all the interesting cases.

The scalar potential takes the form

V

(2π)14 = F(s̃a) e
2y− 2x√

7 + H(s̃a) e
2y+ 2x√

7

+C ey−
√

7x + T (s̃a) e
3y
2 − 5x

2
√

7 (4.1)

with

F = 1

16

[
f 2

(
3∑

a=1

(s̃a)2 + 9((s̃4)2)

)
+ q2

(
6∑

a=5

(s̃a)2

)

+4q2
6∏

a=1

(s̃a)−2

]
,

H = h2

16

(
6∑

a=1

(s̃a)−2 +
6∏

a=1

(s̃a)2

)
(4.2)

and

C = m2

16
, T = −hm

8

(
6∑

a=1

1

s̃a
+

6∏

a=1

s̃a
)

. (4.3)

From here we evaluate the Hessian matrix and its eigenval-
ues:

Eigen

[ 〈VI J 〉
|〈V 〉|

]
= {8.872 × 108, 3.204 × 107,

2.604 × 107,−8.038,

4.152, 1.720 × 10−10, 6.409 × 10−11,

6.399 × 10−11}, (4.4)

where the eight indices I, J run over the x , y and s̃a . More-
over, once the fields have been properly normalized, we get

m2L2
AdS = Eigen

[
〈KI J 〉−1 〈VI J 〉

|〈V 〉|
]

≈ {49.192, 8, 8, 8, 3.934, 2.095, 1.778,−0.998},
(4.5)

the matrix KI J being

KI J = 2 ×
⎡

⎣
1/4 0 0
0 1/4 0
0 0 Gab

⎤

⎦ , where Gab = 1 + δab

4 s̃a s̃b
.

(4.6)

Let us importantly observe that, once the modes have been
canonically normalized, the tachyon respects the Breitenlohner–
Freedman (BF) bound, which for AdS3 is

m2 ≥ 〈V 〉 = − 1

L2
AdS

. (4.7)

In the case at hand we see that the canonically normalized
tachyon mass is (m2L2

AdS)tachyon � −0.998 > −1. Inter-
estingly, the possibly generic existence of a tachyonic scalar
mode within specific AdS setups was investigated in [25]
within the scope of the so-called AdS-TCC (or ATCC).

In Table 7 we present the normalized masses of the scalars
x , y and s̃a as the parameter γ takes also the values 1 (when
the seven-dimensional internal space is almost isotropic),
103, 106, repeating the γ = 109 for comparison, and includ-
ing also the limiting case γ = 2.5305×109. A negative mass
eigenvalue is present in all these cases and its value is always
above the Breitenlohner–Freedman bound. Looking at the
behaviour of this mass, one could suspect that for some value
of γ around 2.5305×109 the BF bound may be saturated by
the tachyonic scalar, giving precisely (m2L2

AdS)tachyon = −1,
while above such critical value of γ supersymmetric vacua of
(3.3) within (3.4) cease to exist. However, without an analytic
solution for (3.11), we can not verify this explicitly.
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Table 7 This table exhibits the (rounded-up numerical values of the) masses of the closed string moduli as the parameter γ takes the values 1, 103,
106, 109 and 2.5305 × 109. The negative eigenvalue remains always slightly above the BF bound

γ m2L2
AdS

1 {49.254, 7.581, 5.435, 5.435, 5.435, 5.435, 2.405,−0.9799}
103 {49.19188, 7.99867, 7.99467, 7.99467, 3.93721, 2.09572, 1.78518,−0.997995}
106 {49.19179, 8, 7.99999, 7.99999, 3.93391, 2.09457, 1.77779,−0.998051}
109 {49.19179, 8, 8, 8, 3.93391, 2.09457, 1.77778,−0.998051}
2.5305 × 109 {49.19179, 8, 8, 8, 3.93391, 2.09457, 1.77778,−0.998051}

5 Swampland considerations

As we have seen by analysing the mass spectrum of the model
under consideration, our setup provides a realization of the
conjectured negative mass of [25]. We can now discuss some
further interesting aspects of the Swampland Program within
our construction, related (in particular) to the Distance Con-
jecture and the Spin-2 Conjecture.

5.1 The Distance Conjecture

Clearly, it is interesting to study the interpolation between the
vacua that are characterized by full scale separation and those
ones that have a large radius, and see how the KK-modes
behave. This can be done by following the setup of [26,60],4

varying the value of N with the use of D4-branes while keep-
ing γ fixed. Specifically, for appropriate (and fixed) values
of γ and when N is not parametrically large, we have a large
value of r7; by increasing N , we appreciate that full scale
separation takes place, while the tower of KK-modes has, as
we will see, an exponentially dropping mass to realize the
Distance Conjecture.

To be precise, let us remind the reader that we have

F4 = (2π)3N [(�1 + �2 + �3 − 3�4)

+γ (�5 + �6 − 2�7)
]
, (5.1)

and H3 = (2π)2K
∑

i �i . Similarly to [26], where it is
shown that with the inclusion of appropriate D4-branes the
value of N can change at the cost of introducing a new scalar
in the moduli space, let us consider Ñi D4-branes wrapping
the three-dimensional external space and a 2-cycle within
an internal 3-cycle �3,i .5 We furthermore parametrize the
metric as

ds2
10 = e2αvds2

3 + s
2
3
i

[
dψ2

i + w2
i (ψi )gmndymdyn

]

4 For another perspective on the evaluation of the distance see also [61].
5 We will not discuss here the scaling of the potential to justify the use
of such D4-branes within the effective description: it is fairly accepted
at this point that D4-branes are admitted and facilitate the flux jump. In
any case we do not have more convincing or newer arguments to offer
on top of the ones presented in [26].

+e2βvds2
4,i , (5.2)

where ψi is the transverse coordinate to the 2-cycle along
(ym , yn), which the D4-brane occupies within �3,i . Here the
real scalar v is a convenient rewriting of the volume modulus
with

eβv = Vol(X7)
1/7, eαv = Vol(X7)

−1, (5.3)

where the constants α and β take the values α = √
7/4 and

β = −1/(4
√

7).
The full D4-brane action in the Einstein frame then takes

the form

SD4,i = SDBI
D4,i + SCS

D4,i (5.4)

with

SDBI
D4,i = −|Ñi |T4

×
∫

d5ξ e
φ
4

√
−det

[
gAB + e− φ

2 (2π FAB − BAB)
]

SCS
D4,i = |Ñi |T4

∫ (
∑

r

Cr ∧ e−B2

)
∧ e2πF

∣∣∣∣∣
5

, (5.5)

the tension of a D4-brane being T4 = 1
(2π)4 (as its charge),

once α′ = 1. In the absence of world-volume flux and
expressing the B2 field as

B2,i = [B2]mn,i (ψi )dy
m ∧ dyn

= (2π)2Ui (ψi )εmn
√

det[gpq ]dym ∧ dyn, (5.6)

which has to satisfy
∫
�3,i

dB2,i = h = (2π)2K and for

which Ui (sgn(Ñi )π f ) = sgn(Ñi ) f h (in order to resolve the
anomaly due to the potential appearance of a net D2 charge),
we get

SD4,i = − (2π)21|Ñi |T4

8

∫

AdS3

d3x
√

−det[g(3)
μν ]

×
∫

2−cycle
d2y

√
det[g(2)

mn]

×e
φ
4 e3αv

√√√√
1 + 4s

2
3
i e

−2αv

(2π)14 (∂ψi )2
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√

s
4
3
i wi (ψi )4 + e−φ(2π)4Ui (ψi )2 + . . . , (5.7)

or

SD4,i = − (2π)21|Ñi |T4v2,i

8

∫

AdS3

d3x
√

−det[g(3)
μν ]

×e
φ
4 e3αv

√√√√
1 + 4s

2
3
i e

−2αv

(2π)14 (∂ψi )2

√

s
4
3
i wi (ψi )4 + e−φ(2π)4Ui (ψi )2 + . . . , (5.8)

where we have rescaled the three-dimensional metric g(3)
μν

as g(3)
μν → (2π)14

4 g(3)
μν to make contact with the standard con-

ventions for three-dimensional supergravity theories, and the
“dots” stand for terms that do not play a role for the upcom-
ing discussion. From the expression above we can extract the
field space metric of the position scalar ψi that is

gψiψi = (2π)7|Ñi |T4v2,i

2
e

φ
4 −7βvs

2
3
i

√

s
4
3
i wi (ψi )4 + e−φ(2π)4Ui (ψi )2

= λe
φ
4 −3βv s̃

4
3
i

√

wi (ψi )4+s̃
− 4

3
i e−φ−4βv(2π)4Ui (ψi )2.

(5.9)

Other than gψiψi , in order to evaluate the distance between
the vacuum where a radius (e.g. r7) is large and the one where
full scale separation is realized, we need the metric compo-
nents gφφ , gvv and gs̃a s̃b , which can be extracted from the
dimensionally reduced ten-dimensional action over the G2
space, once the fields φ, v and s̃a have been canonically nor-
malized:

gφφ = 1

2
, gvv = 1

2
and gs̃a s̃b = 1 + δab

2s̃a s̃b
for a, b = 1, ..., 6. (5.10)

The field space distance of interest is

� =
∫ ζ=1

ζ=0
dζ

√

gIJ
dϕI
dζ

dϕJ
dζ

, (5.11)

where the indices I,J run over the fields ϕ = {ψi , φ, v, s̃a}
and gI,J denotes the corresponding metric element. By
exploiting reparametrization invariance we can impose that
ζ = 0 corresponds to the circumstance where the radius r7 is
large and ζ = 1 is associated with the realization of full scale
separation. When considering the contributions from the rel-
evant 3-cycles �3,i ≡ �i for i = 1, ...7, and redefining σ , ρ
and τ as

σ = e3s, ρ = e3r , τ = e3t , (5.12)

we get

� =
∫ 1

0
dζ

[
7∑

i=1

λe
φ
4 −3βv s̃

4
3
i

√

wi (ψi )4 + s̃
− 4

3
i e−φ−4βv(2π)4Ui (ψi )2

(
dψi

dζ

)2

+1

2

(
dφ

dζ

)2

+ 1

2

(
dv

dζ

)2

+ 54

(
ds

dζ

)2

+ 9

(
dr

dζ

)2

+27

(
dt

dζ

)2

+ 27
ds

dζ

dr

dζ
+ 54

ds

dζ

dt

dζ
+ 18

dr

dζ

dt

dζ

] 1
2

.

(5.13)

Keeping in mind that we are simply interested in extracting
how � scales with N and considering the numerical results of
Sect. 3.2, let us massage the previous expression by grouping
the 3-cycles �3,i according to their approximate size: in par-
ticular, we are going to set s1 = s2 = s3 = e3βvσ = e3βv+3 s

and s4 = e3βvρ = e3βv+3r ∼ e3βv+3t = e3βvτ = s5 =
s6 ∼ s7; we will denote as ŝ1 and ŝ2 the typical sizes of these
two classes of 3-cycles. Moreover, we will refer to the posi-
tion scalars corresponding to such two groups as ψ̂1 and ψ̂2,
respectively. Then, if r ∼ t � u,

� ≈
∫ 1

0
dζ

⎡

⎣λe
φ
4 −3βv

×
⎛

⎝3e4s
√

ŵ1(ψ̂1)4 + e−φ−4βv−4s(2π)4Û1(ψ̂1)2

(
dψ̂1

dζ

)2

+4e4u
√

ŵ2(ψ̂2)4 + e−φ−4βv−4u(2π)4Û2(ψ̂2)2

(
dψ̂2

dζ

)2
⎞

⎠

+1

2

(
dφ

dζ

)2

+ 1

2

(
dv

dζ

)2

+54

(
ds

dζ

)2

+ 54

(
du

dζ

)2

+ 81
ds

dζ

du

dζ

⎤

⎦

1
2

. (5.14)

Let us importantly observe that, since the functions wi (ψi )

and Ui (ψi ) do not scale with N , and because of the scalings
with N of eφ and eβv ,
√

ŵk(ψ̂k)4 + e−φ−4βv ˜̂sk− 4
3
(2π)4Ûk(ψ̂k)2 ≈ ŵk(ψ̂k)

2,

(5.15)

the factor e−φ−4βv , which carries the dependence on N and
accompanies Ûk(ψ̂k)

2, being O(N−1), i.e. consistently sup-
pressed for large N . As a consequence, we obtain

� ≈
∫ 1

0
dζ

[
e

φ
4 −3βv+4s

(
dχ̂1

dζ

)2

+e
φ
4 −3βv+4u

(
dχ̂2

dζ

)2
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+1

2

(
dφ

dζ

)2

+ 1

2

(
dv

dζ

)2

+ 54

(
ds

dζ

)2

+54

(
du

dζ

)2

+ 81
ds

dζ

du

dζ

] 1
2

, (5.16)

where we also exploited the following field re-definitions:

dχ̂1

dψ̂1
= √

3λ|ŵ1(ψ̂1)| and
dχ̂2

dψ̂2
= √

4λ|ŵ2(ψ̂2)|. (5.17)

In order to identify the geodesic path we have to recognize
(at least approximately) the geometric structure of the scalar
field space under consideration. To this end we firstly observe
that the second term in the first line of (5.16) is highly sup-

pressed, by e4u−4 s ∼ (
ρ
σ

) 4
3 ∼ (

τ
σ

) 4
3 
 1, with respect to

the term that precedes it in the same (5.16)6. We are therefore
going to ignore such contribution from the open string moduli
sector and retain only that associated with the bigger internal
3-cycles, with volumes s1, s2 and s3. This being established,
we have to perform some useful field transformations. We
trade s for

s = s̆ − 3

4
u (5.18)

and we further rescale s̆ and u as

s̆ = š√
108

and u =
√

4

189
ǔ. (5.19)

Moreover, we can perform an O(4) transformation via the
orthogonal matrix7

O =

⎛

⎜⎜⎜⎜⎝

− 1
8 − 3β

2
1

3
√

3
− 1√

21
3β
2 − 1

8 − 1√
21

− 1
3
√

3

− 1
3
√

3
1√
21

− 1
8 − 3β

2
1√
21

1
3
√

3
3β
2 − 1

8

⎞

⎟⎟⎟⎟⎠

with det[O] =
(

1213 + 27216β2

12096

)2

(5.20)

so that
⎛

⎜⎜⎝

φ

v

š
ǔ

⎞

⎟⎟⎠ = 12096

1213 + 27216β2

×

⎛

⎜⎜⎜⎜⎝

− 1
8 − 3β

2
1

3
√

3
− 1√

21
3β
2 − 1

8 − 1√
21

− 1
3
√

3

− 1
3
√

3
1√
21

− 1
8 − 3β

2
1√
21

1
3
√

3
3β
2 − 1

8

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎝

z1

z2

z3

z4

⎞

⎟⎟⎠ . (5.21)

6 This, in accordance to the numerical results of Sect. 3.2 when consid-
ering, for instance, the (relevant) cases γ = 103, 106 or γ ∼ O(109).
7 As required by the orthogonal group, the matrix O is satisfies OOT =
(det[O]) 1

2 �4.

Then, after redefining ψ̂1 to be

ψ̂1 = 1√
2(det[O]) 1

4

ĥ1, (5.22)

we get

� ≈ 1√
2(det[O]) 1

4

×
∫ 1

0
dζ

√√√√e−2z1

(
dĥ1

dζ

)2

+
(

dz1

dζ

)2

+
(

dz2

dζ

)2

+
(

dz3

dζ

)2

+
(

dz4

dζ

)2

.

(5.23)

By further redefining z1 so that ĥ2 = e−z1 the distance �

takes the form

� ≈ 1√
2(det[O]) 1

4

∫ 1

0
dζ

√√√√√ 1

ĥ2
2

⎡

⎣
(

dĥ1

dζ

)2

+
(

dĥ2

dζ

)2
⎤

⎦ +
(

dz2

dζ

)2

+
(

dz3

dζ

)2

+
(

dz4

dζ

)2

.

(5.24)

The geodesic path can thus be approximated as

ĥ1 = l sin[ f (ζ )] + ĥ1,0, ĥ2 = l cos[ f (ζ )] (5.25)

with

f (ζ ) = 2 arctan

[
sinh

[
d1ζ + d2

2

]]
(5.26)

and

z2 = d3ζ + d4, z3 = d5ζ + d6, z4 = d7ζ + d8, (5.27)

so that the geodesic distance is estimated to be

� ≈ 1√
2(det[O]) 1

4

√
d2

1 + d2
3 + d2

5 + d2
7 , (5.28)

where the coefficients {d j } j=1,3,5,7 are determined by the
boundary values of the fields ĥ1, ĥ2, z2, z3 and z4 corre-
sponding to the two vacuum configurations we are interpo-
lating between, namely the one where a radius (e.g. r7) is
large (at ζ = 0) and the one where full scale separation
is achieved (at ζ = 1). Accounting for the scalings (up to
numerical factors)

ψ̂1 ∼ N , φ ∼ log N , v ∼ log N (5.29)

we can deduce, again up to numerical factors, the behaviours

ĥ1 ∼ N ∼ ĥ2, zk ∼ log N for k = 2, 3, 4 (5.30)

so that

d j ∼ log N for j = 1, 3, 5, 7, (5.31)

and eventually

� ∼ δ log N , (5.32)
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δ being a numerical coefficient that can be crudely estimated
to be δ � 24.6. The crucial result here is the logarithmic
behaviour, which is precisely the way � should scale with
N , if the Distance Conjecture

mKK(ζ = 1)

mKK(ζ = 0)
∼ e−κ�, κ ∼ O(1) (5.33)

is realized. This happens because we already have

mKK(ζ = 1)

mKK(ζ = 0)
∼ N− 7

2 , (5.34)

as one can easily infer from (3.12) accounting for the scaling
with N of the volume Vol(X7) and the radii ri .

We conclude that for the highly anisotropic vacua under
analysis the Distance Conjecture is realized, always with the
inclusion of the appropriate D4-branes. This distance is along
the path that connects AdS3×S1 and fully scale-separated
AdS3, with the tower of the r7 KK-modes turning full scale
separation on and off.

5.2 The Strong Spin-2 Conjecture

A further interesting connection of our work with the Swamp-
land Program has to do with the Strong Spin-2 Conjecture
[62], which states that in any theory with massive spin-2 fields
there has to be a tower of states related to the massive spin-2
modes even in the absence of a massless spin-2 excitation.
Indeed, since standard gravity in three dimensions does not
have local excitations (i.e. there are no massless gravitons),
the only spin-2 states are the ones related to the KK-modes
of the graviton. Since they are KK-modes, these states essen-
tially form a tower that has as characteristic mass scale the
mass of the lowest one, which also defines the cut-off of the
three-dimensional effective theory �UV ∼ mspin−2. In AdS
space having such low cut-off is not an inconsistency per se,
if one is protected by supersymmetry; it just means that the
system is not inherently three-dimensional. In this way our
construction provides a non-trivial example in favour of [62].

This observation also tells us that, even though we have
been able to find AdS3×S1 solutions, we would not be able
to find dS3×S1 solutions within a controlled setup. This hap-
pens because, if we were able to have dS3 and to lower the
KK-modes such that mspin−2 
 H , then we would also

have �UV 
 H which signals an inherent inconsistency
for de Sitter. Actually, such an inconsistency can be directly
deduced from the Higuchi bound [63], which in three dimen-
sions is

m2
spin−2 ≥ H2.

Therefore, one can never make a single radius parametrically
grow in de Sitter and break scale separation as we did here
for the AdS case.

6 Discussion

In this work we have studied classical flux vacua of massive
type-IIA supergravity with appropriate numbers of branes
and orientifold planes. All the constructions that we have ana-
lyzed are characterized by proper flux quantization, closed
string moduli stabilization, large volume and weak coupling,
while the O6-planes are smeared. In such setup the com-
pact space is a seven-dimensional G2 toroidal orbifold and
the non-compact space is AdS3. Our aim was to find con-
figurations that induce a considerable anisotropy in the com-
pact space such that one dimension can become large and
comparable to the non-compact space length scale, whereas
the other six dimensions become considerably smaller than
the non-compact space length scale. In this way the orig-
inal ten-dimensional space reduces to a product of a large
four-dimensional external one and a small six-dimensional
one, with (non-parametric) scale separation between the two.
When, instead, the F4 flux takes parametrically large val-
ues we recover AdS3 parametrically scale-separated from
the seven-dimensional internal space, while preserving (as γ

is fixed) the amount of anisotropy between one of the inter-
nal dimensions (e.g. LKK,7) and the remaining six ones (i..e.
LKK,a). This behaviour can be schematically described by
the figure below for some F4 flux N (N’ being the value that
allows one large radius):

This happens because such vacua have the interesting
property that, while N increases, both LKK,i and LAdS

increase; however, their ratio changes proportionally to
L2

KK,i/L
2
AdS ∼ 1/N , thus always restoring full scale sep-

aration at parametrically large N .
Our work leaves a series of open questions for future inves-

tigation. Firstly, a full analysis of all types of flux vacua that
can be constructed from the G2 orientifold of [51] is missing.
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The full list of choices that one can make for the F4 and the H3

flux are still not classified; any development in that direction
would be welcome. Secondly, in all of these constructions the
open string moduli are assumed to be stabilized. However, a
careful analysis that checks this and clarifies the full moduli
space and superpotential would be interesting. Thirdly, we
are still working with a toroidal orbifold here; the explicit
study of different G2 spaces or G2-structure manifolds is
still an open question (however, see [56] for general condi-
tions on the G2-structure from type-IIB), and the only explicit
development providing a superpotential in this direction was
the analysis of type-IIB supergravity on co-calibrated G2
toroidal orbifolds with O5/O9-planes [39], while a general
superpotential for such type-II constructions was derived in
[53]. Finally, as far as the more fundamental issues are con-
cerned, one could try to go to higher orders in the O6-plane
backreaction since, for the moment, only the leading order
was analyzed in [52].
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A Small γ values with different anisotropy

As a complement to what we discussed in the bulk of the
paper, it is interesting to investigate what happens when γ

takes small values. For the sake of the presentation, we will
focus on two representative values of γ , namely γ = 10−3

and γ = 5 × 10−6 (being conscious of the fact that for
γ ∼ 4 × 10−6 moduli stabilization of (3.3) within the ansatz
(3.4) ceases to exist, and that, since q = γ f , γ N ∈ Z, which
is satisfied in our examples.).

The equations in (3.11) are solved by the values of σ , ρ

and τ that are reported in Table 8; as a consequence, we also
get that the string coupling is given by

Table 8 This table presents the critical values of σ , ρ and τ as γ takes
the values γ = 10−3, 5 × 10−6

γ σ ρ τ

10−3 0.212 0.033 268.4

5 × 10−6 0.047 0.007 11811.8

gs ≈ 71.33 × |K |
N 3/4|M |1/4 , for γ = 10−3 (A.1)

or

gs ≈ 1.0085 × 103 × |K |
N 3/4|M |1/4 , for γ = 5 × 10−6,

(A.2)

and that the radii take the values that Table 9 exhibits. We see
once again that, after fixing K and M consistently with the
tadpole conditions (e.g. K = −16 and M = −1 ), we can
end up in the desired weak string coupling and large internal
volume regime by taking a sufficient amount of N units of
the F4 flux.

Besides the possibility to recover full scale separation by
taking N parametrically large, we would like to understand
once more if for some moderate (but still sufficiently large)
value of N we could effectively obtain a four-dimensional
external space, AdS3 × S1, scale-separated from a six-
dimensional internal one. This means that, in light of our
previous discussion and the results presented in Table 9, we
want to investigate whether

L2
KK,5

L2
AdS

= 4

π2

(
P

(2π)7

)2

(Vol(X7))
2 r2

5 � 1,

L2
KK,i �=5

L2
AdS


 1. (A.3)

More precisely, we have the ratios

L2
KK,5

L2
AdS

∣∣∣
γ=10−3

≈ 9 × 104 × K 2|M |
N

,
L2

KK,5

L2
AdS

∣∣∣
γ=5×10−6

≈ 3.6 × 109 × K 2|M |
N

, (A.4)

which offer quite a wide range of values of N that can be
checked. Indeed, when fixing K = −16 and M = −1, we
find, for γ = 10−3, the results that are presented in Table 10,
and, for γ = 5 × 10−6, we end up with the values that are
reported in Table 11, together with the relative behaviour of
the string coupling and the other radii.

Taking now also into account the behaviour of the sys-
tem for γ > 1, we can observe that for given K , M and
N , as we vary the value of γ from γ 
 1 to γ � 1, the
length of the radius r5 decreases while the radius r7 increases
in magnitude. As a result, if we start having scale-separated
AdS3×S1(r5) with r5 � r7, by increasing γ we pass through
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Table 9 This table shows the values of the radii ri as γ takes the values γ = 10−3, 5 × 10−6. One can clearly notice that, as γ becomes smaller,
r5 becomes bigger than the other six radii ra (with a �= 5) and r7, for fixed flux units

γ
r1,3

2πN7/16

|M |3/16 |K |1/4

r2,4
2πN7/16

|M |3/16 |K |1/4

r5
2πN7/16

|M |3/16 |K |1/4

r6
2πN7/16

|M |3/16 |K |1/4

r7
2πN7/16

|M |3/16 |K |1/4

10−3 0.402 0.469 36.37 0.005 0.029

5 × 10−6 0.207 0.242 265.2 0.0002 0.001

Table 10 This table shows the three interesting regimes one can end
up with while changing N for γ = 10−3, once the other flux units have
been fixed, namely K = −16 and M = −1. When a circumstance like
(a) realizes, one has full scale separation; if, instead, one works with
cases similar to (b) or (c), then the radius r5 disentangles from the other

six radii and the external space becomes effectively AdS3×S1. For the
in-between values of N one gets of course intermediate results. Note
that N can not be too small in order for the large volume/weak coupling
condition to still be satisfied

N gs ri<5 ri>5 r5
L2

KK,5

L2
AdS

L2
KK,i<5

L2
AdS

L2
KK,i>5

L2
AdS

(a) 1010 O(10−5) O(104) O(102÷3) 2.7 × 106 2.3 × 10−3 O(10−7) O(10−11)

(b) 107 O(10−3) O(103) O(101÷2) 1.3 × 105 2.3 O(10−4) O(10−8)

(c) 105 O(10−1) O(102) O(100÷1) 1.8 × 104 2.3 × 102 O(10−2) O(10−6)

Table 11 This table shows the three interesting regimes one can end
up with while changing N for γ = 5 × 10−6, once the other flux units
have been fixed, namely K = −16 and M = −1. One can again see a

similar behaviour with respect to the case γ = 10−3, which is presented
in Table 10

N gs ri<5 ri>5 r5
L2

KK,5

L2
AdS

L2
KK,i<5

L2
AdS

L2
KK,i>5

L2
AdS

(a) 1018 O(10−10) O(107) O(104÷5) 6.3 × 1010 9.2 × 10−7 O(10−14) O(10−19)

(b) 1012 O(10−5) O(105) O(102) 1.5 × 108 0.92 O(10−7) O(10−12)

(c) 106 O(10−1) O(102) O(10−1÷0) 3.5 × 105 9.2 × 105 O(10−2) O(10−7)

Table 12 This table exhibits the
(rounded-up numerical values of
the) masses of the closed string
moduli as the parameter γ takes
the values 10−3 and 5 × 10−6.
The negative eigenvalue remains
always slightly above the BF
bound

γ m2L2
AdS

10−3 {49.4952, 7.9987, 7.996, 5.8683, 3.6456, 3.6456, 2.3506,−0.999965}
5 × 10−6 {49.4958, 8, 8, 5.8683, 3.6428, 3.6428, 2.3504,−0.99996}

a regime where r5 ∼ r7 and end up into the regime where
r5 
 r7 with scale-separated AdS3×S1(r7). This means that,
while we are varying γ , there is a tower of KK-modes becom-
ing light and simultaneously another tower of KK-modes
becoming heavy. Here, we are not going to precisely discuss
a mechanism that allows to vary γ and realize the Distance
Conjecture, but it can be done probably with actual jumping
fluxes, in analogy with [27], or with the use of D4-branes
similarly to [26], and actually following the same steps as in
Sect. 5.

As we did in Sect. 4, we can also evaluate the normalized
masses for the moduli x , y and s̃a . Their numerical values are
reported in Table 12, where we again notice the presence of
a negative mass mode that is consistent with the BF bound.
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