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Abstract In this work, we study the existence of gradient
(proper) CKVs in locally rotationally symmetric spacetimes
(LRS), those CKVs in the space spanned by the tangent to
observers’ congruence and the preferred spatial direction,
allowing us to provide a (partial) characterization of gradi-
ent conformally static (GCSt) LRS solutions. Irrrotational
solutions with non-zero spatial twist admit an irrotational
timelike gradient conformal Killing vector field and hence
are GCSt. In the case that both the vorticity and twist van-
ish, that is, restricting to the LRS II subclass, we obtain the
necessary and sufficient condition for the spacetime to admit
a gradient CKV. This is given by a single wave-like PDE,
whose solutions are in bijection to the gradient CKVs on
the spacetime. We then introduce a characterization of these
spacetimes as GCSt using the character of the divergence of
the CKV, provided that the metric functions of the spacetimes
obey certain inequalities.

1 Introduction

The extensive role of symmetries in general relativity is evi-
denced by their diverse applications, from generating new
exact solutions to the Einstein field equations, their use in
geometry (conformal geometry), to roles in understanding
the thermodynamics of both static and dynamical black holes.
The ubiquity of symmetries in general relativity means that
new approaches to studying them are being introduced in
various contexts.

Special attention has been devoted to the spherically sym-
metric solutions to the Einstein field equations. The Bianchi
models, for example, have been extensively dealt with in the
literature [1–4], where their conformal algebras have been
completely classified. Conformal symmetries of imperfect,
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perfect, and anisotropic fluids have been extensively ana-
lyzed as well [5–12].

The class of locally rotationally symmetric (LRS) space-
times, a particular class of important solutions with diverse
applications, which admits specialized decomposition along
the timelike and spatial congruences, generalizes spherically
symmetric solutions. The existence of (proper) CKVs in
these spacetimes, when the vorticities of the timelike and
spatial congruences are both non zero, was relatively recently
considered by Singh et al. [13], where it was shown that these
spacetimes always admit a proper conformal Killing vector
in the subspace spanned by the tangents to the timelike and
spacelike congruences. (By proper here it is meant that the
divergence of the CKV is non-constant.) The proof largely
relied on a defining relationship between the vorticities of
the congruences. Van den Bergh [14], has also considered the
case of rotating and twisting LRS spacetimes, where explicit
solutions were provided using the existence of such symme-
tries. (Dyer et al. [15] have studied such symmetries in some
subclass of McVittie metrics [16–18], where conditions on
a particular metric function was obtained that ensures the
existence of CKVs in these metrics (also see the recent work
by Herrera et al. [19]).) In the case of the subclass with both
vorticities vanishing (the LRS II class), such relationship is
ill-defined and hence, their analysis was not adaptable to this
subclass of LRS spacetimes.

A spacetime which admits a timelike proper CKV is said
to be conformally stationary (CS), i.e. it is conformal to some
stationary spacetime, and if the conformal observers moving
along the conformal orbits experience no vorticity, the space-
time is said to be conformally static (CSt). If the CKV is a
gradient of some smooth function on the spacetime, referred
to as the potential function of the vector field, the space-
time is referred to as a gradient conformally stationary (GCS)
spacetime (GCSt spacetime, when there is no vorticity asso-
ciated to the CKV) [20]. If the gradient condition is global,

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-024-12425-1&domain=pdf
mailto:abbasmsherif25@gmail.com


69 Page 2 of 10 Eur. Phys. J. C (2024) 84 :69

then, these spacetimes are stably causal, i.e. the spacetime
admits a global time function, and thereby ensures the non-
existence of closed timelike curves (see [20] and associated
references for more details). GCS spacetimes generalizes the
wide class of generalized Robertson–Walker (GRW) space-
times (see the review [21] and associated references) that
includes many spacetime models which are of wide rang-
ing interests to the cosmology and astrophysics community.
For GCS spacetimes, in the region that the CKV is time-
like, the spacelike slices of the foliation determined by the
distribution of the vector field has constant mean curvature
(CMC), and is also of immense geometric interest, not least
that the CMC condition is useful in the study of the Einstein
field equations as an evolution problem (again, see [20] and
references therein).

In this work, we are interested in characterizing GCS LRS
spacetimes. The existence of gradient CKVs have been con-
sidered for perfect and anisotropic fluid spacetimes by Daf-
tardar and Dadhich [22], where the local forms of the space-
time metrics admitting the vector field were obtained. The
role of gradient CKVs in generating conformal Killing ten-
sors has also been studied extensively examined. For exam-
ple, using the Koutras algorithm for generating Killing an
conformal Killing tensors from existing Killing and con-
formal Killing vectors on the spacetime [23], Amery and
Maharaj [24], provided an explicit construction for the form
of Killing tensors in an Einstein spacetime, and additionally
demonstrating that the form of the Killing tensors is invariant
in the conformally related spacetime. Rani et al. [25], estab-
lished a generalization of Koutras results by eliminating the
orthogonality constraint imposed on the pair of (C)KVs from
which the tensor is constructed. Detailed analyses were then
carried out on the construction of (conformal) Killing tensors
(which the authors referred to as (conformal) Killing tensors
of gradient type) from gradient (C)KVs. Our aim here, how-
ever, is to provide an analysis of, and establish the necessary
and sufficient conditions for the existence of a gradient CKV
in the class of LRS spacetimes, and under which conditions
are the CKV timelike.

The approach to be employed here is the 1+1+2 formalism
[26,27], to be introduced shortly, which specifies the space-
times in terms of well defined covariant variables. Recently,
some of the physical and geometric implications arising from
employing this covariant approach have been uncovered. For
example, in [28], Chevarra et al. conducted an extensive anal-
ysis of the effects of the 1+1+2 decomposition on space-
times with conformal symmetry. Various constraints on the
spacetime variables were obtained. Fixing an equation of
state (assuming a functional dependence of the pressure and
energy density) and assuming a perfect fluid matter type, the
authors showed that the divergence of CKV obeys a damped
wave equation. In [29], Hakata et al. showed that only for
a restricted class of equations of state, obeying a non-linear

fourth order differential equation, can a shear-free perfect
fluid spacetime be homogeneous, thereby justifying the phys-
icality of these solution types. Crucially, the acceleration of
the 4-velocity and its expansion are sufficient to fully classify
these spacetimes. Chevarra et al. recently considered confor-
mal symmetries in the generalized Vaidy metric, demonstrat-
ing the dependence of the spacetime variables specified by
the temporal and spatial congruences, on the components of
the CKV and its divergence [30].

We organize this paper in the following manner. In Sect. 2,
we introduce the class of LRS spacetimes and briefly discuss
the 1+1+2 spacetime decomposition formalism, following
the standard literature. In Sect. 3, we investigate the exis-
tence of gradient CKVs in LRS spacetimes. We decompose
our analysis into the LRS II class and non-LRS II class. The
GCS non-LRS II case will be completely characterized. In
the LRS II case, the necessary and sufficient condition for
the spacetime to admit a gradient CKV will be given, and
the conditions on the kinematic variables ensuring the time-
like character of the CKV is provided, using the character
of the divergence of the CKV. We conclude in Sect. 5 with a
summary of our results.

2 LRS spacetimes and a semi-tetrad decomposition
of spacetime

We begin by introducing the 1 + 1 + 2 semitetrad covariant
formalism and locally rotationally symmetric spacetimes in
context of the formulation.

2.1 The 1+1+2 spacetime decomposition

Like the powerful 1+3 formalism [31–33] (also see refer-
ences therein) which allows for the threading of the space-
time along the fluid flow lines with unit tangent vector uμ,
the 1+1+2 formalism is a special case of the 1+3 formalism,
where the 3-space orthogonal to uμ is further decomposed
along a spacelike unit vector field, which we denote by eμ,
that is orthogonal to uμ [26,27]. Such decomposition allows
one to project tensor and vector quantities, as well as the
covariant derivative, along the unit directions and the result-
ing 2 space: the ˙ notation denotes derivative along the uμ

direction, ˆ denotes derivative along the eμ direction, and
δμ = N ν

μ ∇ν (∇μ is the 4-dimensional spacetime covariant
derivative) the derivative on the 2-space which results from
decomposing the 3-space, with Nμν projecting vectors and
tensors orthogonal to uμ and eμ, to the 2-space. (In the liter-
ature this 2-space is usually referred to as the “sheet”. This is
due to the non-symmetricity, in general, of δμδνψ for an arbi-
trary scalar, i.e. δ[μδν]ψ �= 0, and hence sometimes one has
the collection of tangent planes rather than a genuine surface.
However, in the case of LRS spacetime, the sheets are always
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genuine surfaces.) The spacetime metric also decomposes as

gμν = Nμν − uμuν + eμeν .

Spacetime vectors can accordingly be decomposed along
the two preferred directions and the sheet. For example, a
vector ψμ can be written in the form

ψμ = ψ1u
μ + ψ2e

μ + ψ̄μ,

with scalars ψ1 and ψ2 being the respective components
along uμ and eμ, and ψ̄μ denoting the part of ψμ lying in
the sheet.

The Bianchi and Ricci identities split along the preferred
directions so that the field equations can be written as a col-
lection of evolution and propagation equations of covariant
quantities, along with a set of constraints obtained via pro-
jection with Nμν .

The field equations in terms of these covariant quantities,
restricted to the LRS case (of interest to this work), are given
in Appendix 5. In addition, the following relation is useful in
the consistency check of the fields equations: given any scalar
ψ in the spacetime, the dot and hat derivatives commute as

ˆ̇ψ − ˙̂
ψ = −Aψ̇ +

(
1

3
Θ + Σ

)
ψ̂. (1)

Similar commutation relations for the dot and delta deriva-
tives, the hat and delta derivatives, etc., acting on scalars as
well as vectors and tensors, have been obtained (see the ref-
erences [26,27]). These are not needed for the purpose of this
work and therefore will not be included here.

2.2 LRS spacetimes

Locally rotationally symmetric (LRS) spacetimes are those
admitting a multiply transitive isometry group, with a contin-
uous isotropy group at each point of the spacetime. Locally,
these spacetimes admit a preferred spatial direction (see the
references [34,35] for more details). Due to the symmetry of
these spacetimes, one may write the local metric in coordi-
nates (t,R, y, z) as (see [35] for example)

ds2 = −A2dt2 + B2dr2 + C2dy2

+
(
(DC)2 + (Bh)2 − (Ag)2

)
dz2

+ 2
(
A2gdt − B2hdr

)
dz, (2)

where A, B and C are functions of coordinates t and r , and
the functions g and h are functions of y. The function D is a
function of y and k where k is a constant that fixes the func-
tion D (k = −1 corresponds to sinh y, k = 0 corresponds
to y, k = 1 corresponds to sin y). In the limiting case that
g = 0 = h, we recover the well studied LRS II class of

spacetimes, which generalizes spherically symmetric solu-
tions to the Einstein field equations. The time and spacelike
congruences are specified by the unit directions

ua = −A−1∂at ; ea = B−1∂ar .

These spacetimes can be specified entirely by the set of
covariant scalars [27]

D :≡ {ρ, p, Q,Π, E,H,A,Θ,Σ, φ,Ω, ξ},
whereρ ≡ Tμνuμuν is the energy density, p ≡ (1/3) hμνTμν

is the pressure (isotropic), Q = −Tμνeμuν is the heat flux,
Π = Tμνeμeν − p is the anisotropic stress, E = Eμνeμeν

encodes the electric part of the Weyl tensor Eμν , H =
Hμνeμeν (encodes the magnetic part of the Weyl tensor),
A = u̇μeμ is the acceleration, Θ ≡ Dμuμ is the expan-
sion, Σ = eμeνD〈νuμ〉 is the shear, φ = δμeμ denotes the
expansion of the 2-space (referred to as the sheet expansion),
Ω = ωμeμ (ωμ is the vorticity, and ξ = (1/2)εμνδμeν is the
spatial twist (the twist of eμ), with

Tμν = ρuμuν + (p + Π) eμeν + 2Qe(μuν)

+
(
p − 1

2
Π

)
Nμν, (3)

being the stress energy tensor, and the derivative operator
Dμ denoting the covariant derivative on the hypersurface to
which uμ is orthogonal.

The covariant derivatives of the unit vector fields uμ and
eμ for LRS spacetimes are given by

∇μuν = −Auμeν +
(

1

3
Θ + Σ

)
eμeν

+ 1

2

(
2

3
Θ − Σ

)
Nμν + Ωεμν, (4)

∇μeν = −Auμuν +
(

1

3
Θ + Σ

)
eμuν

+ 1

2
φNμν + ξεμν. (5)

The tensor εμν is the two-dimensional alternating tensor
defined as

εμν = εμνσ e
σ = uδηδμνσ e

σ ,

with εμνδ and ηδμνσ respectively denoting the 3-dimensional
and 4-dimensional alternating tensors, and where

εμνδ = eμενδ − eνεμδ + eδεμν.

For the rest of this work, by scalar we will always mean
those in the spacetime respecting the LRS symmetries (or
some combination thereof). That is, those in the covariant
set D.
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3 Conformal symmetries in LRS spacetimes

In this section we consider the existence of gradient CKVs
in LRS spacetimes. We will introduce conformal symmetries
in LRS spacetimes in context of the 1+1+2 decomposition.

A spacetime (M, gμν) is said to admit a conformal sym-
metry if there exists a vector field ημ such that the flow of
the metric along ημ scales the metric, i.e.

Lηgμν = 2ϕgμν, (6)

for some smooth function ϕ on M, where Lη denotes the
Lie derivative along η. The vector ημ is called a conformal
Killing vector (CKV) and ϕ is the associated conformal fac-
tor. In the particular case that ϕ is zero or a non-zero constant,
ημ is a Killing vector (KV) or a homothetic Killing vector
(HKV). Otherwise, ημ is referred to as a proper CKV.

The Eq. (6) can be expressed as

∇(μην) = ϕgμν, (7)

called the conformal Killing equation (or CKE for short),
with the round brackets indicating symmetrization on the
indices.

Now, the covariant derivative of any smooth vector field
Zμ admits the decomposition

∇νZμ = 1

2
LZgμν + Fμν, (8)

whereFμν = −Fνμ. In the literature the tensorFμν is some-
times referred to as the conformal bivector associated to Zμ.
Indeed, it follows that if (6) holds, then, substituting in ημ

and using (7) the Eq. (8) becomes

∇νημ = ϕgμν + Fμν, (9)

which is an equivalent definition of a CKV. If ϕ = 0, then
∇μην is antisymmetric. Thus, finding a vector field whose
covariant derivative is an antisymmetric tensor field may be
equated to finding a KV on the spacetime. (See [36] for details
and convention of indexing):

We will seek a CKV in the subspace spanned by the fluid
flow velocity and the preferred spatial direction:

xμ = α1u
μ + α2e

μ, (10)

for some smooth functions αi on the spacetime. In this case,
with the help of (4) and (5), expanding the CKE (7) and then
contracting with uμuν, eμeν, u(μeν) and Nμν results in the
covariant set of PDEs in αi :

ϕ = α̇1 + Aα2, (11)

ϕ = α̂2 +
(

1

3
Θ + Σ

)
α1, (12)

0 = α̇2 − α̂1 + Aα1 −
(

1

3
Θ + Σ

)
α2, (13)

2ϕ = α1

(
2

3
Θ − Σ

)
+ α2φ. (14)

In [13], it is this set of PDEs that were analyzed to check
the existence CKV for LRS solutions that are simultane-
ously rotating and twisting, where it was established that
there always exists a CKV of the form (10). In the next sec-
tion, we analyze the case of gradient CKV for the entire class
of LRS spacetimes.

4 Main results

We present our main results in this section. We are interested
in studying the existence of gradient CKV in LRS space-
times, with particular interest in the proper conformal Killing
case. This will be followed by the characterization of these
spacetimes as GCS.

4.1 Existence

Let xμ be a gradient CKV. Then, there exists a scalar Ψ

(which we refer to, henceforth, as the potential function) such
that ∇μΨ = xμ. Thus, one has

Ψ̇ = −α1 and Ψ̂ = α2. (15)

And since ∇[μ∇ν]ψ = 0 for any scalar ψ , the conformal
bi-vector Fμν must vanish. It is a straightforward exercise to
check that

Fμν = −2 (α̇2 + α1A) u[μeν] + (α1Ω + α2ξ) εμν, (16)

thereby giving the pair of constraints as necessary and suffi-
cient for the CKV to be gradient:

0 = α̇2 + α1A, (17)

0 = α1Ω + α2ξ. (18)

In the case that at least one of ξ or Ω = 0 is non-zero, we
establish the following

Theorem 1 For the LRS class of spacetimes with at least
one of the rotation or twist non-vanishing, only the subclass
with vanishing rotation and non-zero twist admits a timelike
gradient CKV in the subspace spanned by the canonical unit
directions ua and ea.

Proof We begin with the case with simultaneously Ω �= 0
and ξ �= 0. For these spacetimes, the ratio of the rotation and
spatial twist Ω/ξ obeys the particular constraint [37]

Ω

ξ
= φ( 2

3Θ − Σ
) , (19)
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which is well defined and non-zero; either both numerator
and denominator are simultaneously zero or, both are non-
zero. We can disregard the former as this gives ϕ = 0 from
(14).

Now, for an arbitrary scalar ψ , taking the covariant twice
and contracting with εμν gives

Ωψ̇ = ξψ̂. (20)

This, taken along with (18), implies that the pair (α1, α2)

have the following possible solutions set

(α1, α2) = {(ξ,−Ω), (−ξ,Ω)}. (21)

Therefore, the possible candidates for GCKV in these LRS
solutions should have the form

xμ = ±ξ

(
uμ − Ω

ξ
eμ

)
. (22)

Using either of the pair in (21) and (17) gives

Ω̇ = Aξ, (23)

which we compare to (44) and get(
2

3
Θ − Σ

)
Ω = 0. (24)

By assumption, Ω �= 0, and therefore we must have
(2/3)Θ − Σ = 0, which we have already ruled as not pos-
sible.

In the case that exactly one of ξ or Ω is zero, we have
only two possible configurations satisfying Fμν = 0: α1 =
ξ = 0; Ω �= 0 and α2 = Ω = 0; ξ �= 0. In the case of the
former, the GCKV is spacelike and can be disregarded.

For the case α2 = Ω = 0; ξ �= 0, the vector field xμ is
clearly timelike. Indeed, (18) is obviously satisfied. As these
spacetimes are spatially homogeneous, they cannot acceler-
ate as can be seen from (44) so that (17) also holds. (It can also
be checked by comparing (12) and (14) that the spacetime
has to be shear free. By (48) the spacetime is also necessar-
ily non-dissipative). The component α1 can be obtained by
solving the ODE

α̇ = 1

3
Θα, (25)

with the associated conformal factor to the CKV given by

ϕ = 1

3
αΘ.

This concludes the proof. ��
One computes the vorticity of xa as

ω̄μ
x = ∗Fνμxν

= (α1Ω + α2ξ)
(
α2u

μ + α1e
μ
)
, (26)

with ∗Fνμ denoting the left dual of Fνμ. Clearly, the case
Ω = 0; ξ �= 0 leads to a vanishing vorticity. (The case of

LRS II also follows, and hence, a GCS LRS spacetime is
necessarily GCSt.) As a corollary to Theorem 1, it indeed
follows that

Corollary 1 An irrotational LRS spacetime with a non-
vanishing twist is a GCSt spacetime.

In the case α1 = ξ = 0; Ω �= 0, where the CKV is space-
like, it is seen that the CKV is in fact a KV, i.e. the spacetime is
static. This is seen from (20), where for all scalars ψ , ψ̇ = 0.
(That the spacetime is static may also be found by comparing
(44) and (51)).

Of course, for the case of LRS II spacetimes the additional
relation (20) cannot be utilized, and therefore no immediate
statements about existence of CKV of the type considered in
this work can be made, as was noticed in [13]. However, we
will obtain existence results for GCKV in the LRS II case,
and provided that the timelike criterion (α2

2/α2
1) < 1 holds,

this would characterize GCS LRS II spacetimes.
Suppose that a LRS II spacetime admits a gradient vector

field xa . We will assume that the potential function Ψ is at
least twice differentiable. Firstly, adding (11) and (12), and
then comparing to (14), we obtain the following

α̇1 + α̂2 = α1

(
1

3
Θ − 2Σ

)
− α2 (A − φ) . (27)

Additionally, from (13), imposing

α̂1 +
(

1

3
Θ + Σ

)
α2 = 0, (28)

would ensure that Fab = 0. Thus, a vector field xa of the
form (10). Then, xa is a gradient CKV for M provided its
components verify (27) and (28).

Now, the substitution of (15) into (27) therefore gives the
wave-like PDE

− Ψ̈ + ˆ̂
Ψ +

(
1

3
Θ − 2Σ

)
Ψ̇ + (A − φ) Ψ̂ = 0. (29)

Furthermore, (28) is just

ˆ̇Ψ −
(

1

3
Θ + Σ

)
Ψ̂ = 0, (30)

and so, a gradient vector field with potential function Ψ is
a CKV provided Ψ obeys both (29) and (30). As its easily
seen, (13) is just the commutation relation (1) for Ψ , which
always holds true. And so, for a gradient vector field with the
Ψ potential, the condition (29) on Ψ is both necessary and
sufficient for the gradient vector field to be a CKV, thereby
allowing us to state the following result:

Theorem 2 Let M be a LRS II spacetime, and let xa be a
gradient vector field of the form (10) inM, whose potential
function Ψ is at least C2-differentiable. Then, xa is a CKV if
and only if Ψ verifies (29).

123



69 Page 6 of 10 Eur. Phys. J. C (2024) 84 :69

By standard arguments from the theory of hyperbolic
PDEs, we know that (29) admits a unique solution, subject
to an initial data specified on a Cauchy hypersurface. Indeed,
Cauchy hypersurfaces exist in LRS spacetimes, induced by
the canonical splitting, i.e. surfaces of constant t , on which
one may specify an initial data to uniquely solve (29). Thus,
(29) admits a unique solution Ψ0, subject to an initial data.
And since (29) is both necessary and sufficient as per Theo-
rem 2, this allows us to state the following:

Theorem 3 Any solution Ψ0 to the PDE (29) in a LRS II
spacetime M, uniquely determines the gradient CKV xa =
∇aΨ0 onM.

While the above theorems allows for considerations for
more general LRS II spacetimes, we emphasize that the Eqs.
(29) and (28) equally works for static and spatially homoge-
neous solutions, in which case the above theorems do not nec-
essarily hold. In any case, let us consider a simple example,
the Robertson–Walker solution. Indeed, in either the static or
the spatially homogeneous case, (28) trivially holds. In the
spatially homogeneous case, the sheet expansion vanishes
and the spacetime is non-accelerating and shear-free. From
the metric (2), one computes for Robertson–Walker (A = 1
and B = C = a(t) is the scale factor)

Θ = 1

A

(
Bt

B
+ 2

Ct

C

)
= 3

at
a

, (31)

where the t-subscript denotes partial derivative with respect
to t . The Eq. (29) in coordinates is then simply

Ψt t + at
a

Ψt = 0,

so that Ψt = 1/a, thereby giving the gradient CKV

xa = 1

a
ua .

We note that our convention is ua = −∂at , which is dif-
ferent from the often used convention ua = ∂at , in which
case instead of 1/a one would simply have a as the vector
component. Similarly, the associated conformal factor will
be different depending on the convention used.

As is seen from the previous discussion, we have a one-to-
one (bijective) correspondence between the solutions to (29)
and gradient CKVs in LRS II spacetimes. That is, a solu-
tion to (29) on a constant t hypersurface in a LRS II space-
time specifies a gradient CKV for that spacetime. We draw
a parallel with the well studied Killing initial data equations
[38] and the relatively recently introduced extension, con-
formal Killing initial data equations [39] (a related notion
of conformal Killing–Yano initial data equations has very
recently been introduced in the reference [40]). These are
a set of PDEs on the background of an initial data hyper-
surface whose solutions are in one-to-one correspondence

with KVs (CKVs) of the spacetime evolved from the hyper-
surface. Rather than a set of PDEs, we have a single PDE,
interestingly, with this property. In keeping with the nomen-
clature, one may consider (29) a LRS gradient conformal
Killing initial data (GCKID) equation.

4.2 The timelike criterion: gradient conformal staticity

Now that we have established the criterion for a LRS II space-
time to admit a gradient CKV, we turn to the condition(s)
under which such spacetimes are GCSt. We will approach
this problem by appealing to the character of the factor ϕ.

It can be easily checked that the PDE (29) is just the expres-
sion

�Ψ = 4ϕ, (32)

where the operator � = ∇μ∇μ is the usual d’Alembertian
operator. The above form of the GCKID equation allows
us to draw some immediate conclusion about the solutions,
based on the character of the divergence ϕ. Indeed, if one is
concerned with the non-Killing case as it is in this work, one
can immediately rule out the class of harmonic functions as
solutions to GCKID equation. This is to say that, a harmonic
function is a solution to the Eq. (29) if and only if the GCKV
is a KV. In other words, the potential functionΨ of a gradient
KV in LRS II spacetimemust satisfy the scalar wave equation
�Ψ = 0.

Additional properties of the solution Ψ can be gleaned
from the behavior of conformal observers – whether they are
converging or diverging – using properties of subharmonic
(resp. superharmonic) functions (�Ψ ≥ 0 (resp. �Ψ ≤ 0)).
More particularly, if the conformal observers are diverging,
i.e. ϕ > 0, we rule out superharmonic functions as solutions
to the GCKID equation. And if conformal observers are con-
verging, i.e. ϕ < 0, we rule out subharmonic functions as
solutions to the GCKID equation.

Now, the timelike condition on a gradient CKV requires
the bound

Ψ̇ 2

Ψ̂ 2
> 1. (33)

For a converging conformal observer ϕ < 0, we have
(from (13))

Ψ̇ 2

Ψ̂ 2
>

(
φ

2
3Θ − Σ

)2

. (34)

It therefore follows that the condition(
φ

2
3Θ − Σ

)2

≥ 1, (35)

suffices in order for the timelike criterion on the GCKV to
hold. In terms of the metric functions (taking positive root),

123



Eur. Phys. J. C (2024) 84 :69 Page 7 of 10 69

this condition reduces to the following restriction on the met-
ric function (it can be computed that φ = 2Cr/(BC) and
Σ = 2(Bt/B − Ct/C)/3A, for a LRS II spacetime):

Cr ≥ Ct
B

A
. (36)

On the other hand, for a diverging conformal observer
ϕ > 0, we have that

Ψ̇ 2

Ψ̂ 2
<

(
φ

2
3Θ − Σ

)2

, (37)

and hence, to satisfy the timelike criterion, it is both necessary
and sufficient to have(

φ
2
3Θ − Σ

)2

> 1, (38)

which in terms of the metric functions is

C2
r > C2

t
B2

A2 . (39)

Thus, we have the following characterizations of GCSt LRS
II solutions:

Proposition 1 Any LRS II spacetime admitting a superhar-
monic solution to the GCKID equation, with metric functions
satisfying (36), is a GCSt spacetime.

Proposition 2 Any LRS II spacetime admitting a subhar-
monic solution to the GCKID equation, is a GCSt spacetime
if and only if its metric functions satisfy (39).

Let us give a simple example. We do not provide a solution
for the GCKID equation, but assuming a solution exists, we
inspect the timelike criterion. Consider for example, a LTB-
type metric

ds2 = −dt2 + (Rr f )
2dr2 + R2dΩ̄2, (40)

with dΩ̄2 denoting the 2-sphere metric, where f = f (r) >

0, and assume R = R(t, r) splits as R = r R1(t), with
−Ṙ1 = R1t < 0. (There are LTB solutions evolved from an
initial constant t-slice, having this property and admitting a
black hole, see for example [41].) Then, the conditions (35)
and (39) are the following respective bounds on the radial
coordinate:

r ≤ 1

R1t f
, (41a)

r < − 1

R1t f
. (41b)

Clearly, (41a) is not possible since r > 0, suggesting that
if the metric (40) admits a solution to the GCKID equation
determining a timelike gradient CKV, the solution is neces-
sarily superharmonic, with ϕ > 0. Furthermore, there are

trapped surfaces behind the horizon r = 2m(r), where m(r)
is the Misner-Sharp mass, thereby imposing the upper bound
m(r) < −1/(2R1t f ) on the mass in the timelike region.

5 Discussion

We have carried out a thorough analysis of the existence of
gradient CKV in LRS spacetimes, and the characterization of
LRS spacetimes as gradient conformally stationary (static).
We considered CKVs that lie in the subspace spanned by the
tangents to the timelike and spatial congruences in the space-
time, employing the 1+1+2 semitetrad covariant formalism,
particularly adapted to analyzing LRS spacetimes.

The existence of gradient CKV of the form considered
here was ruled out for the case where the LRS spacetime is
simultaneously rotating and twisting. Hence, while it was
demonstrated in [13] that these spacetimes always admit
CKV in the subspace under consideration, the gradient case
is ruled out. It was consequently shown that for LRS space-
times with at least one of the rotation or twist vanishing, only
those twisted solutions with vanishing rotation can admit a
timelike gradient CKV. The straightforward analysis of exis-
tence of GCKV for the case with at least one of the rotation
or twist vanishing was made possible due to the particular
relationship Ωψ̇ = ξψ̂ for scalars ψ in the spacetime. In the
LRS II case, such relationship fails and hence not applica-
ble. However, it is noticed that the constraint equation of the
conformal Killing equation is the commutation relation for
the potential function Ψ in the gradient case, and hence, the
remaining three PDEs of the conformal Killing equations are
sufficient. It turns out that the three PDEs can be combined
into a single wave-like PDE for Ψ , whose solutions (initial
data can be specified on the constant t Cauchy surfaces in
LRS II spacetimes to ensure a solution to the PDE) are in
bijection with the gradient CKV on the spacetime, allowing
us to draw an analogy to the well studied notions of Killing
and conformal Killing initial data equations, and naming the
equation a LRS gradient CKID (GCKID) equation. These
results in some sense extends the work of [13] by also con-
sidering existence in the LRS II case.

Given that the conformal Killing equations, using the
usual ‘box’ operator, takes the form �Ψ = 4ϕ, knowing
the character of the conformal observers also allows us to
immediately rule out certain functions on the spacetime as
solutions to the GCKID equation, and introduce a charac-
terization of the spacetimes as GCSt. Of course, harmonic
functions as solutions are ruled out. The sign of the confor-
mal factor, which tells us whether the conformal observers are
converging or diverging, determines whether a solution to the
PDE is a subharmonic or superharmonic function: the solu-
tion must be subharmonic for diverging conformal observers
and superharmonic for converging conformal observers. For
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each class of conformal observers, the timelike criterion for
the CKV is analyzed, and given by very specific conditions
on the metric functions of the spacetime: for diverging con-
formal observers, the timelike criterion holds if and only if
the metric functions of the spacetime obey the inequality
C2
r > C2

t (B
2/A2). And in the case of converging conformal

observers, a sufficient condition for the timelike criterion to
hold is that the metric functions of the spacetime obey the
inequality Cr ≥ Ct (B/A).

A simple demonstrable example shows that for an LTB-
type metric, any ‘timelike’ solution to the GCKID equation
must be a superharmonic function on the spacetime, with
an upper bound on the Misner-Sharp mass holding in the
timelike region.

The factor ϕ is an important ingredient in many physical
processes in spacetimes, when a CKV exists. For example,
the convergence of conformal observers, characterized by
ϕ < 0, is related to the trapping process which leads to the
formation of black holes. Another relevance of the factor
was highlighted in [42], where it plays a crucial role in a
massless scalar field collapse. In this particular scenerio, in
the vacinity of the singularity the spacetime is self-similar,
i.e. ϕ is constant (more precisely, its variation is negligible)
in that region.

As is seen, the factor ϕ measures the deviation from har-
monicity, of the potential function Ψ . It indeed holds true
for a CKV generating a symmetry, the factor ϕ obeys the
Klein-Gordon equation for a mass scalar field,1 i.e. �ϕ = 0.
This therefore suggest a generic relationship between the
conformal factor and massless scalar field collapse in the
presence of conformal symmetry, setting up the possibility
for more general considerations of similar collapse studies
in LRS spacetimes. (We note that the vanishing condition
�ϕ = 0 imposes �2Ψ = 0 on the potential function, where
we have used �2 as shorhand for twice applying the opera-
tor.)

Acknowledgements We are very grateful to the anonymous referee
for pointing out relevant references and providing many helpful sug-
gestions, which have consequently improved various aspects of the
manuscript. The authors acknowledge that this research was supported
by the Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of education
through the grant numbers (NRF-2022R1I1A1A01053784) and (NRF-
2021R1A2C1005748). We would like to thank Rituparno Goswami of
the University of KwaZulu-Natal for some helpful discussions.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors[Pleaseinsertintopreamble]
comment: Data sharing not applicable as no datasets were generated or
analyzed at any stage of this work.]

1 See Appendix B for the explicit derivation of the statement.

Declarations

Conflict of interest The authors have no relevant financial or non-
financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendix A

One can write down an equivalent form of the Einstein field
equations for a LRS spacetime as a set of evolution and
propagation equations of the covariant variables specifying
the spacetime, along the observers’ and spatial congruences,
along with a constraint equation specifying the magnetic
Weyl scalar. These equations are obtained using appropri-
ate contractions of the Ricci identities for the preferred unit
directions. Extensive details can be found in the references
[26,27], covering the general decomposition procedure.

– Evolution

2

3
Θ̇ − Σ̇ = Aφ − 1

2

(
2

3
Θ − Σ

)2

+ 2Ω2

−1

3
(ρ + 3p − 2Λ) + E − 1

2
Π,

(42)

φ̇ =
(

2

3
Θ − Σ

) (
A − 1

2
φ

)

+2ξΩ + Q, (43)

Ω̇ = Aξ −
(

2

3
Θ − Σ

)
Ω, (44)

ξ̇ = −1

2

(
2

3
Θ − Σ

)
ξ + 1

2
H

+
(
A − 1

2
φ

)
Ω, (45)

Ė − 1

3
ρ̇ + 1

2
Π̇ = −

(
2

3
Θ − Σ

) (
3

2
E + 1

4
Π

)

+1

2
φQ + 1

2
(ρ + p)

×
(

2

3
Θ − Σ

)
+ 3ξH, (46)
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Ḣ = −3ξE − 3

2

(
2

3
Θ − Σ

)
H

+ΩQ + 3

2
ξΠ. (47)

– Propagation

2

3
Θ̂ − Σ̂ = 3

2
φΣ + 2ξΩ + Q, (48)

φ̂ =
(

1

3
Θ + Σ

) (
2

3
Θ − Σ

)

−1

2
φ2 + 2ξ2 − 2

3
(ρ + Λ)

−E − 1

2
Π, (49)

Ω̂ = (A − φ)Ω, (50)

ξ̂ = −φξ −
(

1

3
Θ + Σ

)
Ω, (51)

Ê − 1

3
ρ̂ + 1

2
Π̂ = −3

2
φ

(
E + 1

2
Π

)
+ 3ΩH

−1

2

(
2

3
Θ − Σ

)
Q, (52)

Ĥ = −
(

3E + ρ + p − 1

2
Π

)
Ω

−3

2
φH − Qξ. (53)

– Propagation/Evolution

Â − Θ̇ = − (A + φ)A + 1

3
Θ2 + 3

2
Σ2

+1

2
(ρ + 3p − 2Λ) , (54)

Q̂ + ρ̇ = −Θ (ρ + p) − (φ + 2A) Q − 3

2
ΣΠ,

(55)

p̂ + Π̂ + Q̇ = −
(

3

2
φ + A

)
Π −

(
4

3
Θ + Σ

)
Q

− (ρ + p)A, (56)

with Λ being the cosmological constant.

We also have the following constraint:

H = 3Σξ − (2A − φ)Ω. (57)

Appendix B

We establish that the conformal factor ϕ associated to a CKV,
where the CKV generates a diffeomorphism, obeys the wave
equation �ϕ = 0.

For any generator Vμ of diffeomorphism,

Jμ = ∇ν∇μVν − ∇ν∇νVμ, (58)

defines a conserved quantity: ∇μ Jμ = 0, as can be easily
verified. This is the Komar current [43].

Now, Jμ is just the right hand side of the contracted Ricci
identities:

Jμ = RμνV
ν, (59)

Thus, if the field Vμ is a CKV, then, making use of the con-
tracted Bianchi identities, as well as noting the symmetricity
of the Ricci tensor, we have that

Vμ∇μR + 2ϕR = 0. (60)

Now, from the Ricci identities for Vμ and using the defi-
nition of ϕ, it can be established that

�ϕ = −1

6
Vμ∇μR − 1

3
ϕR. (61)

Then, it follows that simply comparing the above to (60)
gives the desired �ϕ=0.
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