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Abstract In this work, we present a detailed derivation of
novel exact massless scalar quasibound state a static magne-
tized Ernst black hole background. We successfully solve the
governing covariant Klein–Gordon equation and discover the
exact radial solutions in terms of the Confluent Heun func-
tions. With the exact radial wave solution in hand, applying its
polynomial condition leads to the discovery of the quantized
energy levels expression that depends on the black hole’s
mass M , magnetic field strength B0 and also the magnetic
and main quantum number (m�, n). A massive scalar field
around the black hole has complex valued energy levels while
massless particle has purely imaginary energy levels. Further
investigation in small black hole limit and zero magnetic
field, the massless scalar’s purely imaginary energy expres-
sion is recovered. We also discover the equivalence between
massless scalar field around an Ernst black hole with mas-
sive scalar field around a Schwarzschild black hole. In the
last section, the Hawking radiation in investigated and apply-
ing the Damour–Ruffini method, the Hawking temperature
is obtained out of the radiation distribution function.

1 Introduction

In 1976, Ernst was considering and calculating black hole
solution in a magnetized background [1] and 13 years later,
the full exact black hole solution was published by Aliev
and Galtsov [2]. The so called Ernst space-time describes a
static chargeless axially symmetric massive black hole solu-
tion immersed in an external homogeneous magnetic field
which is characterized by two parameters, i.e. mass M and
magnetic field B0. By nulling the magnetic field, Ernst black
hole becomes a static spherically symmetric Schwarzschild
black hole.
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After the gravitational wave signal of a binary black hole
merger was directly detected for the first time [3], black hole
spectroscopy has been becoming a hot research subject. The
quasibound states, quasinormal modes, and shadows of black
holes are among the most interesting characteristic of such an
astrophysical objects in the observational measurable spec-
tra that is generated as particles crossing into the black hole
[4]. For astrophysical black holes, the black hole quasista-
tionary spectrum is characterized entirely by the black hole
mass and angular momentum and is unique to black holes.
Quasibound states have complex frequencies where the real
part is associated as the scalar’s energy while the imaginary
part determines the stability of the system. It is possible, in
principle, to extract some information about the physics of
black holes as well as to validate some alternative/modified
theories of gravity from these quasibound states [4]. Anal-
ogously to atomic transitions emitting photons, level transi-
tions of axions around black holes emit gravitons [5]. Thus, it
is very important to be able to calculate the exact quasibound
states frequency analytically.

Several non-exact analytical methods have recently devel-
oped to calculate the quasibound states of various types black
holes [6–8] where all of the obtained analytical formulas
contain the main minding energy expression similar to the
Hydrogenic’s 1

n2 energy level followed by higher order terms.
The decay, represented by the imaginary part of the com-
plex energy levels, is minimized in the so called small black

hole limit [9], i.e. Mblackhole � m2
Plankc

2

Erest
,-which is equiv-

alent to rsμ � h̄
c ,-where mPlank =

√
h̄c
G is Plank mass,

Erest = μc2 is the scalar particle’s rest energy where μ is
its mass, rs = 2GMblackhole

c2 is the Schwarzschild radius of the
black hole with mass Mblackhole and c is the speed of light.

In recent years, thanks to the development of the Confluent
Heun functions, several authors have [10–13] successfully
found exact scalar quasibound states’ solutions around an
analog systems to the Schwarzschild black hole, chargeless
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Lense–Thirring black hole and Reissner Nordstrom black
hole respectively. The importance of this particular special
function in black hole physics was mentioned in [14]. In this
work, the work is generalized by including electromagnetic
field, i.e. a charged Lense–Thirring space-time [15]. In this
work, we are going to investigate the behavior of massless
scalar field bound to a static magnetized Ernst black hole.
We will show that the radial wave equation of the govern-
ing Klein–Gordon equation can be exactly solved and the
solutions are given in terms of the Confluent Heun func-
tions. The obtained exact solutions in terms of special func-
tions allow us not only to discover the energy quantization
out of their polynomial condition, but also to investigate
the Hawking radiation to finally obtain the Hawking tem-
perature of the black hole’s apparent horizon by applying
the Damour–Ruffini method [16] and obtain the Hawking
temperature of the black hole’s apparent horizon. All of the
solutions are parametrized by the black hole’s mass M , the
magnetic field B0, magnetic quantum number m and the
main quantum number n. However, further investigation to
the energy expression and comparison to [12], we find an
equivalence between the case of a massive scalar field in a
static spherically symmetric Schwarzschild space-time with
a massless scalar in static spherically symmetric magnetized
Ernst space-time.

2 The Ernst metric and the Klein–Gordon equation

2.1 The metric

In this section, we are going to investigate the behavior of
a scalar particle in the space-time around an Ernst black
hole black hole. We start with writing the Ernst metric in
Schwarzschild coordinate as follows,

ds2 = �2
(
− f c2dt2 + f −1dr2 + r2dθ2

)
+ r2sin2θ

�2 dφ2,

(1)

where,

f = 1 − rs
r

,� = 1 + 1

4
B2

0r
2sin2θ, rs = 2GM

c2 , (2)

�N ≈ 1 + N

4
B2

0r
2sin2θ, (3)

and B0 is a weak magnetic field [2]. The metric is singular
when f = 0, i.e. at r = 0 and r = rs .

2.2 The Klein–Gordon equation

The Klein–Gordon equation is a covariant wave equation that
describes the behavior of a scalar field in a general curved

space-time given by [17],
{

1

2
p̂μg

μν p̂ν

}
ψ = 0, (4)

p̂μg
μν p̂ν = −h̄2∇2 = −h̄2

[
1√−g

∂μ

√−ggμν∂ν

]
. (5)

In general, there are 16 components to be worked out, but,
most of them are zeros due to the nature of the diagonal metric
of the Ernst space-time. First, let us consider the square root
of the metric determinant

√−g as follows,

√−g = �2r2sin θ (6)

and next, we calculate the explicit expression of each term
in the Laplace–Beltrami operator ∇2 as follows,

1√−g
∂0

(√−gg00∂0

)
= −1

�2 f
∂2
ct , (7)

1√−g
∂1

(√−gg11∂1

)
= 1

�2r2 ∂r

(
r2 f ∂r

)
, (8)

1√−g
∂2

(√−gg22∂2

)
= 1

�2r2sin θ
∂θ (sin θ ∂θ ) , (9)

1√−g
∂3

(√−gg33∂3

)
= �2

r2sin2θ
∂2
φ. (10)

Combining them into Eq. (5), we get the full Klein–
Gordon equation,
[

1

�2

(
−∂2

ct

f
+ ∂r

(
r2 f ∂r

)

r2

+∂θ (sin θ ∂θ )

r2sin θ

)
+ �2

r2sin2θ
∂2
φ

]
ψ = 0. (11)

Due to the time independence and angular symmetry of
the space-time, we apply the separation of variables ansatz
[18] and write the wave function in this following form,

ψ (ct, r, θ, φ) = e−i E
h̄c ct R (r) T (θ) eimφ,

where E is the particle’s relativistic energy and m is the
azimuthal harmonic number.

Substituting �N ≈ 1+ N
4 B2

0r
2sin2θ and ψ to the Klein–

Gordon equation (11) and multiplying the whole equation by
r2�2ψ−1, separate the polar from the radial part as follows,

E2

h̄2c2

r2

f
+ ∂r

(
r2 f ∂r

)
R

R
− B2

0r
2m2

+∂θ (sin θ ∂θ ) T

sin θ T
− m2

sin2θ
= 0. (12)

Now, the polar part can be separated as follows,

∂θ (sin θ ∂θ )

sin θ T
− m2

sin2θ
= −l (l + 1) . (13)
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The solution is a linear combination of the Associated
Legendre functions of the first and second types [18], respec-
tively Pm

l (cos θ ) and Qm
l (cosθ ). However, Qm

l is singular
at θ = 0 and θ = p that it must be is omitted. Thus, we get
the polar solution as follows,

T (θ) = Pm
l (cos θ ) . (14)

2.3 The radial equation

Now, he radial equation is successfully isolated,

∂r

(
r2 f ∂r

)
R +

[
E2

h̄2c2

r2

f
− B2

0r
2m2 − l (l + 1)

]
R = 0.

(15)

The radial equation can be written explicitly by rewriting
f (r) explicitly from (3), expanding the first term by operating
the differential operator to r2 f , followed by multiplying the
whole equation by 1

r(r−rs )
. We get,

∂2
r R +

(
1

r
+ 1

r − rs

)
∂r R

+
[

E2

h̄2c2

r2

(r − rs)2 − B2
0rm

2

r − rs
− l (l + 1)

r (r − rs)

]
R = 0.

(16)

The observable quasibound states lie outside the apparent
black hole horizon, i.e. r ≥ rs . So, we prefer a new radial
coordinate that has zero at r = rs . Thus, we define xrs =
r − rs → ∂r = r−1

s ∂x . The radial equation in terms of x
looks like as follows,

∂2
x R +

(
1

x + 1
+ 1

x

)
∂x R

+
[
E2r2

s

h̄2c2

(x + 1)2

x2 − B2
0m

2r2
s (x + 1)

x
− l (l + 1)

x (x + 1)

]
R = 0.

(17)

Here, we are going to use some dimensionless energy
parameters 	 = Ers

h̄c and dimensionless magnetic param-

eter M = B2
0m

2r2
s for the sake of notation simplicity. And

with the help of fractional decomposition, we also get,

l (l + 1)

x (x + 1)
= l (l + 1)

x
− l (l + 1)

x + 1
. (18)

Now, the radial wave equation can be written in terms of
1
x and 1

x+1 as follows,

∂2
x R +

(
1

x + 1
+ 1

x

)
∂x R

+
[
	2

x2 + 2	2 − M − l (l + 1)

x
+ l (l + 1)

x + 1

+	2 − M
]
R = 0. (19)

Following the exact method by [12], to get the exact solu-
tion, the normal form of the radial equation must be obtained
first. This is done by recognizing the p and q functions as
follows,

p = 1

x + 1
+ 1

x
, (20)

q = 	2

x2 + 2	2 − M − l (l + 1)

x
+ l (l + 1)

x + 1
+ 	2 − M,

(21)

following the method in Appendix A, we get the normal form
of the Eq. (19),

∂2
x y +

[(
	2 − M

)
+ 1

x

(
1

2
+ 2	2 − M − l (l + 1)

)

+ 1

x2

(
1

4
+ 	2

)
+ 1

x + 1

(
3

2
+ l (l + 1)

)

+ 1

(x + 1)2

(
1

4

)]
y = 0, (22)

R = yx− 1
2 (x + 1)−

1
2 . (23)

Now we make a final substitution x = −z, to get,

∂2
z y +

[(
	2 − M

)
− 1

z

(
1

2
+ 2	2 − M − l (l + 1)

)

+ 1

z2

(
1

4
+ 	2

)
− 1

z − 1

(
3

2
+ l (l + 1)

)

+ 1

(z − 1)2

(
1

4

)]
y = 0, (24)

and comparing (24) with the normal form of the Confluent
Heun differential equation (see Appendix B), we find the
Heun function’s parameters as follows,

α = 2
√
M − 	2, (25)

β = i2	, (26)

γ = 0, (27)

η = 1 + 2	2 − M − l (l + 1) , (28)

δ = M − 2	2. (29)

2.4 The energy quantization

The polynomial condition of the Heun functions leads to the
particle’s energy quantization as follows,

δ

α
+ β + γ

2
= −n, n = 1, 2, 3, . . . , (30)

M − 2	2

2
√M − 	2

+ i	 = −n. (31)

Now, let us compare the energy expression of a massive
scalar field around a non magnetic static spherically symmet-
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ric Schwarzschild black hole [12,19] as follows,
(
	2

0 − 2	2
)

2
√

	2
0 − 	2

+ i	 = −n, (32)

where in the limit 	 ∝ Ers → 0, we obtain this following
real valued energy levels expression,

E = E0

√
1 −

[
E0r2

s

2nh̄c

]2

, (33)

E − E0 ≈ E0

2

[
E0r2

s

2nh̄c

]2

. (34)

2.5 Wave functions near horizon and far away from the
horizon

After conditioning the Heun function to be a polynomial
function, the behaviour of the quasibound states solution
near the apparent horizon, i.e. r → rs will be investi-
gated. In this particular limit, the Confluent Heun func-
tions’ argument x = r−rs

rs
is approaching x = 0, thus,

HeunC(0) = HeunC′(0) ≈ 1. Also e
− 1

2 α
(
r−rs
rs

)
≈ 1. Thus,

we get,

ψ→rs = ei
E
h̄c ctYm�

� (θ, φ)

×
[
A

(
r − rs

δr

) 1
2 β

+ B

(
r − rs

δr

)− 1
2 β

]
. (35)

Now, let us define a new radial variable r−rs
δr

= ζr−ζ0 and
expressing β explicitly as (26) or equivalently, β = i |β| to
get this following wave function expression near the horizon,

ψ→rs = ei
E
h̄c ctYm�

� (θ, φ)[
A(ζr − ζ0)

i |β|
2 + B(ζr − ζ0)

− i |β|
2

]
, (36)

and using the complex relation zi = e1 ln(z) together with
cos z = 1

2

(
eiz + e−i z

)
, we get,

ψ→rs = ei
E
h̄c ctYm�

� (θ, φ) [Ccos (ζr − ζ0)] , (37)

which represent a purely ingoing wave. So, the wave function
solution describes ingoing wave near the event horizon and
tend to zero at asymptotic infinity.

2.6 “Mass” from black hole’s the magnetic field

Comparing (31) and (32), we can conclude that the case of
a massless scalar particle around an Ernst black hole with
magnetic parameter M is equivalent to the case of a mas-
sive particle around a Schwarzschild black hole, where the
particle’s rest energy is determined by,

E0 = √
M = B0mrs . (38)

And in the small Ernst black hole limit, 	 ∝ Ers → 0,
we discover real valued energy levels expression,

E = √
M

√√√√1 −
[√Mr2

s

2nh̄c

]2

, (39)

E − √
M ≈

√M
2

[√Mr2
s

2nh̄c

]2

. (40)

Different from a massive scalar around the Schwarzschild
case (34), where the quantized energy levels depends on the
black hole’s mass rs , particle’s mass E0 and the main quan-
tum number n, the quantized energy levels of a massless
scalar around Ernst black hole depends on the black hole’s
mass rs , magnetic field strength B0, the magnetic quantum
number m and the main quantum number n.

2.7 Schwarzschild limit

However, further investigation in the limit M → 0, we
obtain this following the energy levels expression,

En = i
nh̄c

2r2
s

, (41)

this recovers the relativistic energy expression in Schwarzschild
space-time, is purely immaginary which is in agreement with
[12,19]. So, any massless particle can only be absorbed by
the rotating black hole. However, this is expected as there
is one unstable circular orbit of massless particle around the
static spherically symmetric Schwarzschild black hole [20].

While the complete exact wave function is obtained as
follows,

ψ = e−i E
h̄c ctYm

l (θ, φ) e
1
2 αx

×
[
AHeunC (α, β, γ, δ, η, x) x

β
2

+B HeunC (α,−β, γ, δ, η, x) x
−β
2

]
, (42)

z = −
(
r

rs
− 1

)
. (43)

3 Hawking radiation

In this section we will follow the Damour–Ruffini [16]
method to calculate Hawking temperature of the black hole’s
apparent horizon by making use the obtained the exact solu-
tions of the radial wave equation. We start with writing the
radial solutions as follows,

R(r) = e
− 1

2 α
(

r
rs

−1
) [

A

(
r

rs
− 1

) 1
2 β

HeunC

(
r

rs
− 1

)
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+B

(
r

rs
− 1

)− 1
2 β

HeunC′
(
r

rs
− 1

)]
. (44)

Approaching the apparent horizon, r → rs , the radial
wave functions can be approximated as follows, HeunC(0) =
HeunC′(0) = 1 also e

− 1
2 α

(
r−rs
rs

)
= 1, that we obtain,

R(r) = A

(
r

rs
− 1

) 1
2 β

+ B

(
r

rs
− 1

)− 1
2 β

, (45)

β = 2i	. (46)

The radial solution is understood that it comprises of two
parts, i.e. the ingoing and outgoing waves as follows,

R(r) =

⎧
⎪⎨
⎪⎩

R+in = A
(

r
rs

− 1
) 1

2 β

ingoing

R+out = B
(

r
rs

− 1
)− 1

2 β

outgoing
. (47)

When there is an ingoing wave hitting the horizon rs , a
particle-antiparticle pair are induced. The particle is reflected
and will enhance outgoing wave while the antiparticle coun-
terpart becomes the transmitted wave crossing the horizon.

Analytical continuation of the wave function R
(
r−rs
rs

)
can

be calculated by using this following trick,

(
r − rs
rs

)λ

→
[(

r

rs
− 1

)
+ iε

]λ

=

⎧
⎪⎨
⎪⎩

(
r−rs
rs

)λ

, r > rs∣∣∣ r−rs
rs

∣∣∣
λ

eiλπ , r < rs
.

(48)

This allows us to obtain the expression for R−out as fol-
lows,

R−out = R+out

((
r − rs
rs

)
→

(
r − rs
rs

)
eiπ

)
, (49)

(
r − rs
rs

)
→ −

(
r − rs
rs

)
=

(
r − rs
rs

)
eiπ , (50)

which lead to,

R−out = B

((
r

rs
− 1

)
eiπ

)− 1
2 β

,

= R+out e
− 1

2 iπβ (51)∣∣∣∣
R−out

R+in

∣∣∣∣
2

=
∣∣∣∣
R+out

R+in

∣∣∣∣
2

e−i2πβ =
∣∣∣∣
R+out

R+in

∣∣∣∣
2

e
4π

[
E
�c rs

]
. (52)

The total probability must be normalized to be one,
∣∣∣∣
R−out

R+in

∣∣∣∣
2

+
∣∣∣∣
R+out

R+in

∣∣∣∣
2

= 1, (53)

i.e. the total probability of the particle wave going out to
infinity and the antiparticle wave going inside the black hole
must be equal to 1. Near the rs , thus, we have,

Rout =
{
R+out , r > rs
R−out , r < rs

, (54)

or can be rewritten as follows,

Rout = B

(
r

rs
−1

)− 1
2 β [

θ (r−rs) + θ (rs−r) e
2π
rs

[
E
�c r

2
s

]]
.

(55)

The Hawking temperature TH of the corresponding hori-
zon is to be extracted from the thermal spectrum known
as radiation distribution function by calculating the modu-
lus square of the ratio between the normalization constant
between the outgoing and incoming waves as follows,

〈
Rout

Rin

∣∣∣∣
Rout

Rin

〉
= 1 =

∣∣∣∣
B

A

∣∣∣∣
2 ∣∣∣∣1 − e

4π
[

E
�c rs

]∣∣∣∣ , (56)

∣∣∣∣
B

A

∣∣∣∣
2

= 1

e
4π

[
E
�c rs

]
− 1

, (57)

and then doing this following modification,

4π

[
E

�c
rs

]
= �ω[

�c
4πrs

] . (58)

Finally, after comparing with the boson distribution func-

tion e
h̄ω
kB T we obtain the apparent horizon temperature as fol-

lows,

TH = rsc�

4πkBr2
s
. (59)

4 Conclusions

In this work, the exact analytical quasibound state’s quantized
energy levels (31) and their wave functions (43) of a massless
scalar particle around an Ernst black hole are obtained. We
also discover that there is an equivalence between a massive
scalar in static spherically symmetric Schwarzschild space-
time and a massless scalar in static spherically symmetric
magnetized Ernst space-time. After further investigation, we
find that the exact solution describes ingoing wave near the
event horizon and tend to zero at asymptotic infinity. It is
important to mention that the exact radial solution is valid for
all region of interest, i.e. rs ≤ r < ∞, a significant improve-
ment of the asymptotical method that solves for either region
very close to the horizon of very far away from the horizon.

In small black hole limit, we obtain real valued energy lev-
els expression of the massless scalar around the static spher-
ically symmetric magnetized Ernst black hole (40) which
depends on the black hole’s mass rs , magnetic field strength
B0, the magnetic quantum number m and the main quantum
number n. By taking B0 → 0 we recover the purely imagi-
nary relativistic energy expression which is exactly the same
with the case of massless scalar in Schwarzschild space-time
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[12,19],

En ≈ E0

[
1 − κ2

2n2

]
, κ =

(
E0rs
h̄c

)2

, (60)

that is also consistent with previously published results [6–
8,21].

With exact relativistic wave functions solution in hand,
the [16] method is applied to calculate the Hawking temper-
ature of the black hole’s apparent horizon (59) which is in
agreement with [14], – after nulling the charge parameter of
the Reissner–Nordstrom black hole surrounded by a mag-
netic field. It uses the Klein pair production scenario where
the pair production occurring at the horizon is induced by
an incoming particle. The induced particle goes to infinity
while the induced anti-particle goes towards the black hole.
The modulus square of the ratio between particle and antipar-
ticle wave functions represents the probability function of
Hawking radiation.

Funding This study was funded by Faculty of Science, Mahidol Uni-
versity (6437484SCPY/D).

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: The research is
theoretical, so there is no experimental data.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendix A: Normal form

There is a trick to simplify a second order linear differential
equation so called normal form method [18]. The normal
form method is designed to remove the first order derivative
terms in a linear second order ordinary differential equation.
Suppose we have the aforementioned equation as follows.

d2y

dx2 + p(x)
dy

dx
+ q(x)y = 0. (61)

Now, substitute this following expression,

y = Y (x)e− 1
2

∫
p(x)dx , (62)

dy

dx
= dY

dx
e− 1

2

∫
p(x)dx − 1

2
Y pe− ∫

p(x)dx , (63)

d2y

dx2 = d2Y

dx2 e
− 1

2

∫
p(x)dx − 1

2

dY

dx
pe− 1

2

∫
p(x)dx

−1

2
Y
dp

dx
e− 1

2

∫
p(x)dx + 1

4
Y p2e− 1

2

∫
p(x)dx . (64)

A lot of things cancel each other and we get this following
equation without the first order derivative term,

d2Y

dx2 +
(

−1

2

dp

dx
− 1

4
p2 + q

)
Y = 0, (65)

Y = ye
1
2

∫
p(x)dx . (66)

Appendix B: Normal form of confluent Heun equation

The Confluent Heun differential equation is a linear second
order ordinary differential equation as follows, [22].

d2y

dx2 +
(

α+ β + 1

x
+ γ +1

x−1

)
dy

dx
+

(
μ

x
+ ν

x − 1

)
y = 0,

(67)

μ = 1

2
(α − β − γ + αβ − βδ) − η,

(68)

ν = 1

2
(α + β + γ + αβ + βγ ) + δ + η, (69)

the solution is written as linear combination of Confluent
Heun functions,

y = AHeunC (α, β, γ, δ, η, x) (70)

+ Bx−β HeunC (α,−β, γ, δ, η, x) (71)

= HeunC(x). (72)

The Confluent Heun function HeunC (α, β, γ, δ, η, x) can
become a polynomial function with degree nr if this follow-
ing condition is fulfilled,

δ

α
+ β + γ

2
+ 1 = −nr , nr = 0, 1, 2, . . . . (73)

The normal form of the Confluent Heun differential equa-
tion can be found using the method in Appendix A, where p
and q are as follows,

p = α + β + 1

x
+ γ + 1

x − 1
, (74)

q = μ

x
+ ν

x − 1
, (75)

y = HeunC = Y (x)e− 1
2 αx x− 1

2 (β+1)(x − 1)−
1
2 (γ+1). (76)

−1

2

dp

dx
= 1

x2

(
β + 1

2

)
+ 1

(x − 1)2

(
γ + 1

2

)
, (77)

−1

4
p2 = −α2

4
− 1

x2

(
β2 + 1 + 2β

4

)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2024) 84 :57 Page 7 of 7 57

− 1

(x − 1)2

(
γ 2 + 1 + 2γ

4

)
− 2

x

(
αβ + α

4

)

− 2

x − 1

(
αγ + α

4

)
− 2

x (x − 1)

(
βγ + 1 + β + γ

4

)
,

(78)

−1

2

dp

dx
− 1

4
p2 + q = −α2

4
+

1
2 − η

x

+
1
4 − β2

4

x2 + − 1
2 + δ + η

x − 1
+

1
4 − γ 2

4

(x − 1)2 . (79)

Finally, combining everything, we get the Confluent Heun
equation in its normal form,

d2Y

dx2 +
(

−α2

4
+

1
2 − η

x
+

1
4 − β2

4

x2

+− 1
2 + δ + η

x − 1
+

1
4 − γ 2

4

(x − 1)2

)
Y = 0, (80)

Y = e
1
2 αx x

1
2 (β+1)(x − 1)

1
2 (γ+1) HeunC(x). (81)
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