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Abstract During the last 3 years the pulsar timing arrays
reported a series of repeated evidences of gravitational radi-
ation (with stochastically distributed Fourier amplitudes) at
a benchmark frequency of the order of 30 nHz and charac-
terized by spectral energy densities (in critical units) ranging
between 10−8 and 10−9. While it is still unclear whether or
not these effects are just a consequence of the pristine varia-
tion of the space-time curvature, the nature of the underlying
physical processes would suggest that the spectral energy
density of the relic gravitons in the nHz domain may only
depend on the evolution of the comoving horizon at late,
intermediate and early times. Along this systematic perspec-
tive we first consider the most conventional option, namely
a post-inflationary modification of the expansion rate. Given
the present constraints on the relic graviton backgrounds,
we then show that such a late-time effect is unable to pro-
duce the desired hump in the nHz region. We then analyze
a modified exit of the relevant wavelengths as it may hap-
pen when the gravitons inherit an effective refractive index
from the interactions with the geometry. A relatively short
inflationary phase leads, in this case, to an excess in the nHz
region even if the observational data coming from compet-
ing experiments do not pin down exactly the same regions
in the parameter space. We finally examine an early stage of
increasing curvature and argue that it is not compatible with
the observed spectral energy density unless the wavelengths
crossing the comoving horizon at early times reenter in a
decelerated stage not dominated by radiation.
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1 Introduction

The low-frequency gravitons notoriously affect the the prop-
agation of electromagnetic signals so that the temperature
and the polarization anisotropies of the cosmic microwave
background (CMB) are in fact detectors of relic gravitational
waves in the aHz range1 (see, for instance, [1]). Even though
the physical nature of the effects remains practically the
same, the nHz range exceeds the Cosmic Microwave Back-
ground (CMB) frequencies by roughly 10 orders of mag-

1 The scale factor is normalized at the present conformal time as
a(τ0) = a0 = 1 so that comoving and physical frequencies coin-
cide for τ → τ0. Moreover the standard prefixes of the International
System of Units are consistently employed, e.g. 1 aHz = 10−18, Hz,
1 nHz = 10−9 Hz and similarly for all the other frequency domains of
the spectrum.
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nitude and, as suggested long ago [2–4], the millisecond
pulsars can be employed as effective detectors of random
gravitational waves for a typical domain that corresponds to
the inverse of the observation time during which the pul-
sar timing has been monitored. More specifically, Sazhin [2]
suggested that the arrival times of pulsar’s pulses could be
used for direct searches of gravitational radiation and shortly
after Detweiler [3] made a similar point by deriving one
of the first upper limits on the relic gravitational waves in
the nHz range. This aspect has been more accurately rein-
stated in Ref. [4] where the authors also derived an impor-
tant property of the isotropic backgrounds of gravitational
radiation stipulating that the signal coming, in our context,
from relic gravitons should be correlated across the baselines
while that from others noises will not. This effect depends
on the angle between a pair of Earth-pulsars baselines and
it is often dubbed by saying that the correlation signature
of an isotropic and random gravitational wave background
follows the so-called Hellings–Downs curve [4]. If the grav-
itational waves are not characterized by stochastically dis-
tributed Fourier amplitudes the corresponding signal does
not necessarily follow the Hellings–Downs correlation.

By using this logic, since the mid 1990s a series upper
limits on the spectral energy density of the relic gravitons
in the nHz range has been obtained [5–8] and during the
last 3 years the pulsar timing arrays (PTA) reported an evi-
dence that could be attributed to isotropic backgrounds of
gravitational radiation [9–12]. The PTA collaborations2 cus-
tomarily assign the chirp amplitude at a reference frequency
νre f = 31.68 nHz that corresponds to yr−1:

hc(ν, τ0) = Q

(
ν

νre f

)β

, νre f = 1

yr
= 31.68 nHz.

(1.1)

The pivotal models analyzed in Refs. [9–12] assumed β =
−2/3 or, which is the same,3 γ = 13/3. In Eq. (1.1) the
value of Q inferred from the observational data should be
O(10−15) so that we find it natural to parametrize the ampli-
tude at νre f as Q = q0 ×10−15. In the previous data releases
the q0 ranged between 1.92 and 5.13 depending on the values
of β [9–12]. Even more recently the new data of the PTA col-

2 A generic pulsar timing array is in fact a series of millisecond pulsars
that are monitored with a rhythm that depends on the specific experi-
ment. We refer here, in particular, to the NANOgrav collaboration [9],
to the Parkes Pulsar Timing array (PPTA) [10], to the European Pulsar
Timing array (EPTA) [11]; the PTA data have been also combined in
the consortium named International Pulsar Timing array (IPTA) [12].
3 Even if the various collaborations use indifferently γ and β we shall
refrain from this practice since γ could be confused with a different
physical quantity (denoted simply by γ ) that shall be introduced later
on in the discussion. For the record we recall that the relation between
γ and β is simply given by since β = (3 − γ )/2.

laborations have been released [13–15] together with the first
determinations of the Chinese Pulsar Timing array (CPTA)
[16]. The Parkes PTA collaboration considered 30 millisec-
ond pulsars spanning 18 years of observations; they estimated
q0 = 3.11.3−0.9 with a spectral index β = −0.45 ± 0.20 [13];
for a spectral index β = −2/3 the collaboration obtains
instead q0 = 2.040.25−0.22 which is compatible with the deter-
minations of the previous data releases [10]. The Parkes PTA
collaboration did not claim the detection of the Hellings–
Downs correlation [13] and carefully considered the issues
related to time-dependence of the common noise. The con-
clusions of the Parkes PTA seem significantly more conserva-
tive than the one of the NANOgrav collaboration examining
67 millisecond pulsars in the last 15 years. The NANOgrav
experiment claimed the detection of the Hellings–Downs cor-
relation [14] but the inferred values of the spectral param-
eters are slightly different from the ones of PPTA since
q0 = 6.4+4.2

−2.7 and β = −0.10 ± 0.30 [14]. The chirp ampli-
tude of Eq. (1.1) can be related to the spectral energy density
evaluated for typical frequencies larger than the Hubble rate
at the present time [17]

h2
0 �gw(νre f , τ0) = 6.287 × 10−10 q2

0 , (1.2)

implying h2
0 �gw(νre f , τ0) = O(2.57) × 10−8 in the case of

Ref. [14] (for q0 = 6.4) and h2
0 �gw(νre f , τ0) = O(6.04) ×

10−9 for Ref. [13] (for q0 = 3.1). The connection between
h2

0 �gw(νre f , τ0) and hc(ν, τ0) has been explicitly discussed
in Eqs. (A.18)–(A.19) and (A.20) of Appendix A.

Even if the interpretation of various collaborations prefer-
entially focuses on a background produced by diffuse astro-
physical sources at the present time,4 in this paper we are
going to examine the qualitatively different hypothesis that
the excesses summarized by Eqs. (1.1)–(1.2) are caused by
the parametric amplification of the quantum fluctuations of
the tensor modes of the geometry. Since the relic gravitons
are only coupled to the evolution of the space-time curvature
Grishchuk [18,19], Ford and Parker [20] and some others
first outlined that the formation of a diffuse backgrounds of
gravitational radiation are a generic consequence of quantum
mechanics in cosmological space-times. Depending on the
early variation the space-time curvature, relic gravitons are
then expected in different dynamical situations and, in partic-
ular, during a stage of de Sitter and quasi-de Sitter expansion
[21].

Considering that, at early times, the conventional expand-
ing stages of the concordance paradigm are complemented
by an inflationary epoch, h2

0 �gw(ν, τ0) is a monotonically
decreasing function of the comoving frequency from the aHz

4 This situation would actually correspond to the benchmark case β →
−2/3 in Eq. (1.1) as it happens in the case of binary systems formed by
black-holes.
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range to the MHz domain. More precisely between few aHz
and 100 aHz the spectral energy density in critical units
scales approximately as ν−2 [25–27]; for higher frequen-
cies h2

0�gw(ν, τ0) exhibits a quasi-flat plateau whose pre-
cise slope depends in fact upon the parameter rT measuring
the ratio between the tensor power spectrum and its scalar
counterpart. In the case of single-field inflationary scenar-
ios (often taken as the benchmark class of models by some
observers [22–24]) the consistency relations stipulate that the
tensor spectral index mT and the slow-roll parameter εk are
both determined by the value of rT according to the following
(approximate) chain of equalities mT � −rT /8 � −2εk that
are customarily referred to as the consistency conditions. The
simplest version of the concordance scenario includes only
one further free parameter, namely the ratio rT (kp) describ-
ing the tensor component of the large-scale inhomogeneity
at a conventional pivot scale that coincides, in what follows,
with kp = 0.002 Mpc−1. The addition of a single tensor
component (only described by rT ) allows for an accurate
set of limits implying that rT ≤ 0.06 or even rT ≤ 0.03
[22–24]. Moreover, the pivot wavenumber kp corresponds
to νp = kp/(2π) = 3.09 aHz and this is why the limits
on rT (kp) may be translated into constraints on the spectral
energy density of the relic gravitons in the aHz range.

For typical comoving frequencies of the order of the nHz
the current bounds on rT suggest that in the concordance
paradigm h2

0�gw(ν, τ0) must be O(10−17) (or smaller); in
this case all the relevant wavelengths exit in the inflationary
stage and reenter during the radiation phase. Furthermore,
the accurate estimate of h2

0�gw(ν, τ0) in the nHz region
involves a number of late-time effects that may reduce even
further the overall amplitude of the spectral energy density:
the corrections due to neutrino free-streaming [28] (see also,
for instance, [29–31]) suppress h2

0�gw(ν, τ0) for ν < νbbn
where νbbn = O(10−2) nHz is the typical frequency associ-
ated with big-bang nucleosynthesis. Thus in the nHz range
the relic gravitons produced within the conventional lore are
nine or ten orders of magnitude smaller than the figures
reported in Eq. (1.2). This means that if the nHz excess is
caused by relic gravitons amplified by the evolution of the
space-time curvature the relevant time-scale of the problem
is primarily given by τk defining the moment at which the
wavelength associated with νre f crossed the comoving Hub-
ble radius after the end of inflation. A simple estimate sug-
gests that τk is just a fraction of the time-scale of big-bang
nucleosynthesis5

5 We are here considering a standard thermal history where gs, eq =
3.94 while gρ, bbn = gs, bbn = 10.75; as usual gρ and gs are, respec-
tively, the relativistic degrees of freedom associated with the energy den-
sity and with the entropy density of the plasma; �R0 and Tbbn denote,
respectively, the energy density of the relativistic species in the concor-
dance paradigm and the big-bang nucleosynthesis temperature.

τk

τbbn
= 3.40 × 10−2

(
νPT A

31.68 nHz

)−1 (
Tbbn
MeV

)

×
(

h2
0�R0

4.15 × 10−5

)1/4

. (1.3)

In what follows νPT A denote the frequency of the PTA and
it can be either slightly larger or smaller than νre f ; when
νPT A > νre f the corresponding wavelength crossed the
comoving horizon even earlier. The second relevant scale
of the problem is given by the ratio between νPT A and the
expansion rate at the end of inflation:

νPT A

a1 H1
= 2.05 × 10−17

(
νPT A

31.68 nHz

) (
h2

0�R0

4.15 × 10−5

)−1/4

×
(

rT
0.03

)−1/4 ( AR
2.41 × 10−9

)−1/4

, (1.4)

where AR denotes the amplitude of the curvature inhomo-
geneities at the pivot scale kp. From Eqs. (1.3)–(1.4) it fol-
lows that any modification of the post-inflationary evolu-
tion is unlikely to produce a hump for frequencies O(νre f );
interesting enhancements may arise for ν > mHz � νre f
implying that the post-inflationary evolution is indeed able to
increase the spectral energy density between the mHz and the
MHz [32–34] but not in the nHz range. As we shall see Eqs.
(1.3)–(1.4) ultimately imply that an excess comparable with
Eq. (1.2) cannot be related to a post-inflationary modification
of the comoving horizon.

Before plunging into the analysis it is probably useful to
stress that already after the first data releases of the PTA a
large number of different (and sometimes opposite) expla-
nations for the nHz excess have been proposed. A common
characteristic distinguishing the hypothesis pursued in this
paper and the ones propounded in the current literature is
that the nHz excess is typically due the presence of late-time
sources of anisotropic stress. An example along this direction
is represented by cosmic strings whose oscillating loops may
emit gravitational waves at different epochs ultimately pro-
ducing a stochastic background [35] with quasi-flat spectral
energy density which is typically larger than the inflationary
signal. For the largest values of the string tension in Planck
units there is the possibility of an excess in the nHz region (see
e.g. [36,37]). Various subsequent analyses based on these
observations have been proposed more recently with various
degrees of success. Another late-time source of gravitational
radiation is represented by strongly first-order phase transi-
tions that are known to produce spikes at low and intermediate
frequencies because of the partial breaking of homogeneity
due to the nucleation of bubbles of the new phase. The amount
of gravitational radiation produced by the phase transition
depends chiefly on the difference between the energy density
in the broken and in the symmetric phase. This energy density
may be comparable with the energy density of the ambient
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plasma (and in this case the phase transition experiences a
strong supercooling) or smaller than the energy density of the
surrounding radiation (and in this case the phase transition
is mildly supercooled). When the gravitational radiation is
produced from the collisions of the bubbles of the new phase
[38–40] the spectral energy density scales like ν3, reaches a
maximum and then decreases with a power that may be faster
than ν−1. The spectral energy density inherits also contribu-
tion from the sound waves of the plasma [41] and this second
component may be even larger than the one due to bubble col-
lisions. There are two points that make this explanation diffi-
cult. The first one is that the powers of the hump are typically
steeper than the ones suggested by the PTA observations. The
second observation concerns the physics of the phase tran-
sition. The bursts of gravitational radiation coming from the
TeV are absent at frequencies much lower than the μHz also
because the electroweak phase transition is not strongly first-
order given the values of the Higgs mass. This implies the
necessity of more contrived explanations (see e.g. [42] and
references therein). There exist also more exotic possibilities
where the nHz excess is caused by modifications of gravity in
alternative cosmological scenarios; see, in this respect, [43]
and references therein.

The layout of this investigation is the following. In Sect. 2
the post-inflationary modifications of the expansion rate
(related to the reentry of λPT A � 1/νPT A) are analyzed and
confronted with the nHz excesses. In Sect. 3 we instead exam-
ine the exit of the PTA scale during inflation and focus on
the possibility of a refractive index coming from the interac-
tions of the relic gravitons with the background geometry. In
Sect. 4 the general features of the bouncing scenarios (mod-
ifying both the exit and the reentry of λPT A) are specifically
examined in the light of a potential nHz signal. Section 5 con-
tains our concluding remarks. Appendix A covers the main
notations employed in the paper and Appendix B is instead
focussed on the general form of the effective action of the
relic gravitons and on its different parametrizations.

2 The comoving horizon after inflation

2.1 General considerations

When all the wavelengths of the relic gravitons are shorter
than the comoving Hubble radius at the present time, the
spectral energy density in critical units can be expressed as:

�gw(k, τ ) = 2 k4

3 π M2
P H2 a4

(
are
aex

)2∣∣Qk(τex , τre)
∣∣2

×
[

1 +
(Hre

k

)2

+ O(H/k) + O(H2/k2)

]
, (2.1)

where H = a H and H = a′/a; the notations employed here
are summarized in Appendix A and, in particular, in Eqs.
(A.2) and (A.10)–(A.11). Equation (2.1) has been deduced
in the limit are � aex which is valid for all conventional and
unconventional inflationary scenarios even if, in some cases,
�gw(k, τ ) may also depend on the intermediate evolution
between τex and τre since Qk(τex , τre) (whose square mod-
ulus enters Eq. (2.1)) contains an integral over the conformal
time coordinate τ :

Qk(τex , τre) = 1 − (Hex + ik)
∫ τre

τex

a2
ex

a2(τ )
dτ. (2.2)

From the evolution of the mode functions of Eq. (A.15), τex
and τre are the roots of the equation

k2 = a2 H2[2 − ε(a)], ε = −Ḣ/H2, (2.3)

that ultimately defines the different regimes of the evolution
of the mode functions. In a stricter mathematical perspective,
τre and τex define the turning points where the solutions of
Eq. (A.15) change their asymptotic behaviour. Defining, for
the sake of simplicity, εre = ε(τre) and εex = ε(τex ), the
turning points are regular whenever εre �= 2 and εex �= 2.
For instance, if the exit occurs during a conventional stage
of inflationary expansion (i.e. εex � 1) we have that, by
definition, k � aex Hex and τex � 1/k. Conversely, if the
reentry takes place close to the radiation-dominated stage
of expansion we should have εre → 2 in Eq. (2.3) so that
k � are Hre.

The corrections appearing inside the squared bracket of
Eq. (2.1) (of the orderH/k andH2/k2) are both negligible in
the limit kτ � 1 when all the relevant wavelengths are inside
the comoving horizon. Therefore, if all the wavelengths exit
during inflation and reenter in a stage dominated by radiation
(as it happens in the concordance paradigm and in Fig. 1) Eq.
(2.2) implies that Qk(τex , τre) → 1. There can be however
physical contingencies where the contribution of the integral
in Eq. (2.2) gets larger than 1 and, as long as the exit is a
regular turning point that the integrals appearing in Eq. (2.2)
can be estimated as:

Qk(τex , τre) = 1 −
∫ −τ1

τex

a2
ex

a2
in f (x)

d x −
∫ τre

τ−1

a2
ex

a2
post (x)

d x,

(2.4)

where x = τ/τex and Hex = aex Hex � k. In Eq. (2.4) we
also included two subscripts in the integrand with the purpose
of stressing that the corresponding contributions may arise
during the inflationary and in the post-inflationary stage; we
also conventionally assumed, for the sake of concreteness,
that the accelerated stage lasts up to −τ1 and it is replaced
for τ > −τ1 by a decelerated evolution.
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Fig. 1 The ratio between the comoving horizon and the wavelength
λPT A = O(0.30) pc is illustrated; as already mentioned λPT A corre-
sponds to the comoving frequency νPT A = 31.68 nHz. Common log-
arithms are employed on both axes and the two blobs indicate the exit
and to the reentry of the corresponding wavelength. The full line is asso-
ciated with νPT A while the dot-dashed and the dashed lines illustrate,
respectively, the situations where the frequency is slightly larger (i.e.
10 νPT A) or slightly smaller (i.e. 0.1 νPT A) than the benchmark value
provided by νre f . The timeline reported in this cartoon is characteris-
tic of the concordance paradigm where all the wavelengths (including
λPT A) do their first crossing during inflation (i.e. for a < a1) and reenter
in the radiation-dominated stage

2.2 The post-inflationary evolution of the comoving
horizon

The ratio between the comoving horizon and λPT A is illus-
trated in Fig. 1 when the relevant bunch of wavelengths exits
the comoving horizon during inflation (i.e. εex � 1) and
reenters in a radiation-dominated stage of expansion (i.e.
εre → 2); in this case the spectral slope of�gw(ν, τ0) follows
from Eqs. (2.1)–(2.4) and by just focussing, for simplicity,
on the k-dependence we can deduce the spectral slope

k4

a4
1 H4

1

(
are
aex

)2( k

are Hre

)−2∣∣Qk(τex , τre)
∣∣2

= a4
re H

2
re

a4 H2

(
k

a1 H1

)mT

. (2.5)

In Eq. (2.5) we used that aex Hex = −1/[(1 − εex )τex ]
and kτre � 1; moreover, by enforcing the validity of the
consistency relations (i.e. rT = 16εk), the spectral index mT

is given by6

mT = − 2εk

1 − εk
= −2εk + O(ε2

k ) � −rT
8

+ O(r2
T ) � 1.

(2.6)

6 When the bunch of wavelengths O(k−1
p ) exit the comoving horizon

during inflation the slow-roll parameter acquire a specific numerical
value that shall be conventionally denoted by εk .

Equation (2.6) is a consequence of Fig. 1 where the first cross-
ing of λPT A occurs during inflation and the reentry takes
place for εre → 2; this is however not the most general situ-
ation even assuming that the left portion of Fig. 1 (i.e.a < a1)
is not modified. Indeed for a > a1, the post-inflationary
expansion rate can be modified as (a H)−1 ∝ a1/δ with δ �= 1
and this case is illustrated in Fig. 2 when the usual radiation
epoch (with δ → 1) is either preceded by a stage expanding
faster than radiation (i.e. δ > 1) or by one expanding at a rate
slower than radiation (i.e. δ < 1). While more complicated
possibilities are swiftly examined at the end of the present
section, already these two opposite situations lead to a modi-
fied �gw(k, τ ) above νbbn [32–34] and may potentially lead
to an excess in the nHz range.

The dashed curve of Fig. 2 corresponds to the comoving
horizon in the limit δ → 1 while for the two remaining
profiles the radiation phase is preceded by a stage where
δ �= 1. In the three cases the minima depend both on the
length of the post-inflationary stage and on its expansion
rate:

(a1 H1)
−1

λPT A
= 2.05 × 10−17 ξ (1−δ)/[2(δ+1)], ξ = Hr/H1,

(2.7)

where Hr and H1 denote, respectively, the Hubble rates at the
onset of the radiation stage and at the end of inflation (see
e.g. Eq. (A.2)). Since, by definition, ξ < 1 the comoving
horizon at its minimum is comparatively larger for δ > 1
than for δ → 1. For the same reason the opposite is true
when δ < 1 and (a1 H1)

−1/λPT A gets smaller than in the
limit δ → 1. In Fig. 2 the λPT A crosses the comoving Hubble
radius when the expansion rate is different from radiation and
this is why, according to Eq. (2.1) the spectral energy density
gets modified.

If the λPT A reenters the Hubble radius when δ �= 1 (as it
may happen in Fig. 2) εre = O(1) while, as before, εex � 1.
For this reason, unlike the standard case illustrated in Fig. 1,
|kτre|−2 = O(1) in Eq. (2.1) and the spectral slope is not
given by mT (as in Eq. (2.6)) but rather by the intermediate
spectral index nT :

nT = 1 − 3εk

1 − εk
− 2

∣∣∣∣δ − 1

2

∣∣∣∣ � 16 − 3rT
16 − rT

− 2

∣∣∣∣δ − 1

2

∣∣∣∣. (2.8)

The consistency relations remain valid since, for a < a1,
Figs. 1 and 2 share the same inflationary evolution. We note
however that for δ > 1/2 the integral appearing in Eq. (2.4)
gives a subleading contribution and Qk(τex , τre) → 1. Con-
versely, when δ < 1/2, we have instead Qk(τex , τre) �
1 + |k τ1|1−2δ so that the second contribution dominates for
all the frequencies of the spectrum (i.e. for kτ1 < 1). Finally,
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Fig. 2 As in the case of Fig. 1 the ratio between the comoving horizon
and λPT A is illustrated with the difference that, in the present cartoon,
the post-inflationary evolution is not immediately dominated by radi-
ation; the curve δ → 1 (dashed line) is also reported for comparison.
The post-inflationary stage with δ �= 1 lasts until the crossing time of
λPT A. On the one hand this choice maximizes the deviations from the
standard form of the spectral energy density, on the other hand the mod-
ified post-inflationary evolution cannot last much longer; this is because
the crossing time of λPT A is just a fraction of τbbn (see Eq. (1.3) and
discussion therein)

when δ → 1/2 the integral of Eq. (2.4) inherits a logarithmic
correction which is relevant in specific models [32–34].

2.3 Enhanced spectrum at intermediate frequencies

It is useful to remark that, for conventional sources driving the
background geometry (e.g. perfect irrotational fluids or scalar
fields), the condition δ ≥ 1/2 is generally verified and when
the wavelengths λ = O(λPT A) cross the comoving Hubble
radius the spectral slope of h2

0�gw(ν, τ0) can be deduced
from Eq. (2.8):

nT = 32 − 4 rT
16 − rT

− 2δ, rT ≤ 0.03. (2.9)

It then follows from Eq. (2.9) that nT = 2(1 − δ) + O(rT ).
Thus h2

0�gw(ν, τ0) increases for δ < 1 while it decreases
for δ > 1; when δ → 1, Eq. (2.9) reduces to Eq. (2.6). To
compare the slopes of Eq. (2.9) with the potential signals
suggested by the PTA we recall that the relation between
the chirp amplitude hc(ν, τ0) of Eq. (1.1) follows from Eqs.
(A.18)–(A.19) of Appendix A and the final result is

h2
0�gw(ν, τ0) = 6.287 × 10−10 q2

0

(
ν

νre f

)2+2β

,

νre f = 31.68 nHz. (2.10)

For ν = νre f Eq. (2.10) coincides with Eq. (1.2) and since
the values of q0 and β are determined observationally [13,14]
(see also Refs. [9,10] for the preceding data releases) we can
preliminarily identify the slopes of Eqs. (2.9) and (2.10).

Therefore, when δ > 1/2, the relation between δ, β and rT
is simply given by:

δ = −β − rT
rT + 1

>
1

2
, β < 0. (2.11)

Both in the previous [9,10] and in the most recent [13,14]
data releases the value of 2(1+β) is always positive definite
(i.e. 1 + β > 0) while β itself is generally smaller than 1. In
the special case β → −2/3, Eq. (2.11) implies δ = 2/3 +
O(rT ). If we would now assume that the post-inflationary
evolution is driven by a relativistic and irrotational fluid we
would have δ = 2/(3w + 1) implying that β → −2/3 for
w → 2/3. Another possibility would be that the effective
expansion rate is dictated by an oscillating scalar field (like
the inflaton) with potential V (ϕ) = V0(ϕ/MP )2q ; in this
case the expansion rate during the oscillating phase would
be given by δ = (q + 1)/(2q − 1) [44–50] suggesting that
q = O(5) for β = O(−2/3).

Unless the relic gravitons would lead exactly to the same
slope of the astrophysical foregrounds associated with black-
hole binary systems, the value β = −2/3 is not particularly
compelling in a cosmological setting. In the general case
(i.e. when the special value β = −2/3 is not preliminarily
selected) the Parkes PTA collaboration [13] suggests that
β = −0.45 ± 0.20. This determination is only marginally
compatible with the value of Eq. (2.11) in the limit δ ≥ 1/2.
The discrepancy between the observational determination of
β and the values predicted by Eq. (2.11) becomes even more
significant if we look at that NANOgrav data suggesting [14]
β = −0.10 ± 0.30. Thus if we stick to the general situation
suggested by the observational collaborations the limit δ <

1/2 should also be adequately considered in Eq. (2.8) so that
Eq. (2.11) is ultimately replaced by:

δ = β + 16

16 − rT
<

1

2
, β < 0. (2.12)

From Eq. (2.11) we have δ = −β +O(rT ) while in the case
δ < 1/2 Eq. (2.12) implies δ = 1 + β + O(rT ). From the
profile of Fig. 2 with the help of Eqs. (2.1)–(2.2) and (2.8)
the spectral energy density at high-frequencies becomes:

h2
0 �gw(ν, τ0) = N (rT )

(
ν

νr

)nT
, ν > νr , (2.13)

where N (rT ) includes the effect of the suppressions asso-
ciated with the low-frequency transfer function, with the
neutrino free-streaming [28–30] and with the other late-time
sources of damping (like the one associated with the dark-
energy dominance [17]). For rT = 0.03 we can numerically
estimate that N (rT ) = 10−16.8 [51]; we then safely con-
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sider7 for the present ends N = O(10−17) with a theoretical
amplitude at νre f that ultimately depends upon νr (see Eq.
(2.13))

νr = νmax
√

ξ = 271.88

(
gs, eq
gs r

)1/3( gρ, r

gρ eq

)1/4 √
ξ MHz,

(2.14)

where the ratio ξ = Hr/H1 has been already introduced in
Eq. (2.7) while νmax given by:

νmax = 271.88

(
gs, eq
gs r

)1/3( gρ, r

gρ eq

)1/4( h2
0�R0

4.15 × 10−5

)1/4

×
(

rT
0.03

)1/4 ( AR
2.41 × 10−9

)1/4

MHz. (2.15)

In spite of the specific value given in Eq. (2.14), νr cannot be
smaller than νbbn and this remark turns out to be quite relevant
for the comparison between the observed excesses and the
theoretical expectations. Note that AR is the amplitude of
curvature inhomogeneities at the pivot scale kp (see also Eq.
(1.4) and discussion thereafter).

2.4 Theoretical expectations and observed excesses

Even if the theoretical and the observed slopes can be com-
patible for specific values of δ, the corresponding amplitudes
involve rather different orders of magnitude and to analyze
this essential aspect we may impose that Eqs. (2.10) and
(2.13) coincide at νre f

N (rT )
(
νre f /νr

)nT = 6.287 × 10−10 q2
0 . (2.16)

In spite of the equality sign, the left-hand side of Eq. (2.16)
turns out to be systematically smaller than the right-hand side
and the two sides of the equation are in agreement only if νr is
much smaller than νre f while, at the same time, nT = 2+2β

is sufficiently large and positive. A large enough value of nT
guarantees a sharp increase of the spectral energy density
while the condition νr � νre f makes wider the frequency
range of the potential growth. Since the minimal value of νr
is provided by νbbn

νbbn = 0.35

(
Tbbn

10 MeV

)(
h2

0 �R 0

4.15 × 10−5

)−1/4

nHz,

(2.17)

7 Above νbbn the value of N (rT ) has a mild frequency dependence
controlled by the value of mT (see Eq. (2.6)) and by the low-frequency
transfer function; overall we have that for ν ≥ νbbn the low-frequency
transfer function goes to 1 and ∂ ln N/∂ ln ν � mT = −rT /8 � 1
[51].

Fig. 3 The two straight lines illustrate Eq. (2.18) for N (rT ) = 10−17

(full line) and for N (rT ) = 10−16 (dashed line). The two filled rectan-
gles represent the regions probed by the Parkes PTA and by NANOgrav
in the plane (log q0, β). Since the two diagonal lines do not overlap
with the shaded areas appearing in the lower portion of the plot, the
amplitudes and the slopes of the theoretical signal cannot be simulta-
neously matched with the corresponding observational determinations.
Common logarithms have been employed on the horizontal axis since
the range of the observational determinations of q0 spans nearly one
order of magnitude

we can select the most favourable situation and posit νr =
O(νbbn). For different values of N (rT ) (see Eq. (2.13) and
discussion thereafter) Eq. (2.16) leads therefore to a specific
relation between β and log q0:

β = −1 + 2 log q0 − logN (rT ) − 9.201

2 log (νre f /νbbn)
. (2.18)

To close the circle, the result of Eq. (2.18) must then be
compared in the plane (log q0, β) with the ranges of β and
q0 determined by the PTA collaborations [13,14]. The two
filled rectangles in Fig. 3 correspond, in this respect, to the
observational ranges of q0 and β; in the same plot the relation
between β and log q0 has been illustrated as it follows from
Eq. (2.18) for two neighbouring values of N (rT ). The two
diagonal lines in Fig. 3 imply that the values of β required to
obtain h2

0�gw(νre f , τ0) of the order of 10−8 or 10−9 should
be much larger than the ones determined observationally and
represented by the two shaded regions. Since the full and
dashed lines of Fig. 3 do not overlap with the two rectangles in
the lower part of the cartoon, we can conclude that the excess
observed by the PTA collaborations cannot be explained by
the modified post-inflationary evolution suggested of Fig. 2.
For the sake of accuracy we may separately analyze the case
β = −2/3 and, in this situation, Eq. (2.16) becomes

N (rT )
(
νre f /νr

)2/3 = 6.287 × 10−10 q2
0 . (2.19)

Again to maximize the potential growth of the spectral energy
density we set νr = O(νbbn) and obtain that the left-hand side
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of Eq. (2.19) is 2.015 × 10−15 whereas the right-hand side is
always larger than O(10−9). As in the previous case, larger
values of νr only reduce the left-hand side of Eq. (2.19) and
ultimately increase the mismatch between Eqs. (2.10) and
(2.13).

The argument leading to Eqs. (2.18) and (2.19) follows
from the profile of Fig. 2 when the post-inflationary expan-
sion rate is slower than radiation since only in this case the
slope of h2

0 �gw(ν, τ0) increases, as required by Eq. (2.10).
There is however a complementary possibility stipulating
that the comoving horizon prior to radiation dominance con-
sists of two successive stages expanding at different rates and
this situation is illustrated in Fig. 4 where the two consecutive
post-inflationary stages (characterized by the rates δ1 and δ2)
precede the ordinary radiation-dominated epoch. Even the
standard sources considered before (satisfying δi ≥ 1/2 for
i = 1, 2) imply that when δ1 < 1 and δ2 > 1 (see the left plot
of Fig. 4) the spectral energy density h2

0�gw(ν, τ0) develops
a trough at the intermediate frequency ν2 � νr ≥ νbbn . In
other words for ν < ν2 the spectral energy density decreases
while it increases above ν2. The presence of a trough in
h2

0 �gw(ν, τ0) corresponds to an expansion rate that is first
slower (i.e. δ1 < 1) and then faster (i.e. δ2 > 1) than radia-
tion. In this case, however, λPT A crosses the comoving hori-
zon when δ2 > 1 and the spectral index for the corresponding
bunch of wavelengths is negative whereas Eq. (2.10) sug-
gests it should be positive. Instead of a single spectral index
nT there will now be two different spectral indices n1 and n2.
For the profile appearing in the left plot of Fig. 4 the spectral
index n1 is positive

n1 = 32 − 4 rT
16 − rT

− 2δ1 = 2(1 − δ1) + O(rT ) > 0, (2.20)

since δ1 < 1. However for ν < ν2 the spectral index will be
instead given by:

n2 = 32 − 4 rT
16 − rT

− 2δ2 = 2(1 − δ2) + O(rT ) < 0, (2.21)

since δ2 > 1. This means that the spectral index is positive
for ν > ν2 and negative when ν < ν2 with a trough in ν =
O(ν2). Consequently the spectral energy density is evenmore
suppressed than in the case of the concordance paradigm and
the corresponding timeline of the comoving horizon is not
relevant for the present discussion where would instead aim
at a large signal in the nHz range.

For the present ends the relevant timeline is illustrated
in the right plot in Fig. 4 where δ1 > 1 and δ2 < 1: the
expansion rate is initially faster than radiation and then it
gets slower so that h2

0 �gw(ν, τ0) decreases above ν2 while
it increases for ν < ν2. This means that the spectral energy
density in critical units develops a hump for ν = O(ν2);
the signs of the spectral indices appearing in Eqs. (2.20) and

(2.21) are exchanged: since δ1 > 1 we have that n1 < 0
while n2 > 0 because δ2 < 1 (see always the right plot
of Fig. 4). In this case the wavelengths smaller than λPT A

cross the comoving horizon when the the expansion rate is
controlled by δ2 < 1 and, for frequencies ν = O(νre f ), the
spectral energy density increases as:

h2
0 �gw(ν, τ0) = N (rT )(ν/νr )

n2 , νr < ν < ν2

(2.22)

where, as already stressed, n2 > 0. The frequency ν2 follows
from profile of the comoving horizon and it is given by

ν2 = √
ξ1 ξ

(δ2−1)

2(δ2+1)

2 νmax , ξ1 = H2/H1, ξ2 = Hr/H2,

(2.23)

where, by definition, ξ1 < 1 and ξ2 < 1 denote the ratios of
the curvature scales at the end and at the beginning of each
expanding stage that precedes the ordinary radiation phase.
The expressions of νr and νmax coincide, respectively, with
Eqs. (2.14) and (2.15) since, by definition, ξ = ξ1 ξ2 =
H1/Hr < 1. As before the analytic expression of ν2 is not
essential for the present purposes. Indeed, in spite of the
expression of ν2 the largest signal will be obtained when ν2 =
νre f since for ν > ν2 the spectral energy density decreases
as:

h2
0 �gw(ν, τ0) = N (rT , ν)(ν2/νr )

n2

(ν/ν2)
−|n1|, ν2 < ν < νmax , (2.24)

where we introduced the absolute value of the spectral index
n1 to stress that h2

0 �gw(ν, τ0) is suppressed for ν > ν2

with a negative spectral index n1 = 2(1 − δ1) < 0 (i.e.
δ1 > 1). We can now try to match the amplitude and the
slope of Eq. (2.22) with Eq. (2.10). If we set ν2 = νre f and
n2 = 2(1 − δ2) + O(rT ) = 2 + 2β the condition on the
amplitude becomes:

N (rT )(νre f /νr )
n2 = 6.287 × 10−10 q2

0 . (2.25)

Again the widest frequency range corresponds to the case
when νr → νbbn and after some algebra we get back exactly
to the same condition of Eq. (2.18). Due to the smallness of
the potential signal, the direct bounds coming from wide-
band interferometers [52,53] and the indirect constraints
from big-bang nucleosynthesis [55–57] do not play a relevant
rôle in the argument of this section.8 The results obtained so
far can then be summarized in the following manner:

8 There are however situations, as we shall see in the forthcoming sec-
tions, where the spectral energy density gets larger already in the nHz
range and while these situations can be used to address the PTA excesses,
they are comparatively more constrained also at higher frequencies by
the current bounds in the audio band.
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Fig. 4 The evolution of the comoving horizon is again illustrated in
units of λPT A but the post-inflationary evolution is now characterized
by two different expansion rates prior to the radiation-dominated phase.
In the plot at the left we have that the expansion rate is initially slower
than radiation (i.e. δ1 < 1) and then faster than radiation (i.e. δ2 > 1).
In the right plot the timeline is inverted and δ1 > 1 while δ2 < 1. In the

left plot λPT A crosses the comoving horizon when the plasma expands
faster than radiation and this is why, for ν = O(νre f ) the spectral energy
density decreases in frequency. Conversely, in the right plot, the expan-
sion rate is slower than radiation when λPT A crosses the comoving
horizon and, in this case, h2

0�gw(ν, τ0) inherits a growing frequency
spectrum

• if the post-inflationary evolution is modified prior to radi-
ation dominance h2

0�gw(ν, τ0) may increase in compar-
ison with the concordance paradigm for typical frequen-
cies ν = O(νre f ); this happens only if the wavelengths
O(0.3) pc (roughly corresponding to comoving frequen-
cies O(30) nHz) cross the comoving horizon when the
expansion rate is slower than radiation;

• the PTA signals imply a growing spectral energy density
(i.e. 2 + 2β > 0) and this is consistent with an expan-
sion rate that is slower than radiation at least when the
wavelengths O(λPT A) reenter the comoving horizon;

• however the amplitudes and the slopes of the theoreti-
cal signal do not match simultaneously the observational
determinations of the PTA in the (log q0, β) plane.

A hump in h2
0�gw(ν, τ0) for ν = O(νre f ) indeed follows

when the post-inflationary expansion rate is slower than radi-
ation but the theoretical signal is not consistent with the slope
and with the amplitude of the observational spectrum. In spe-
cific cases the theoretical and the observed slopes are com-
patible but the corresponding amplitudes differ by 9 or even
10 orders of magnitude. As usual the agreement between the-
oretical and observed slopes is just a mere indication that is,
per se, irrelevant for the final conclusion.

3 The comoving horizon during inflation

3.1 Modified evolution of the comoving horizon

If the refractive index n(a) of the relic gravitons is dynam-
ical the condition of Eq. (2.3) defining the exit of a given

wavelength is now replaced by:

k2 = n3 b2 F2
[

2 − ε + 3 ṅ

2 n F

]
, F = ḃ

b
, ε = − Ḟ

F2 ,

(3.1)

where the overdot denotes, as usual, a derivation with respect
to the cosmic time coordinate; in Eq. (3.1) a(τ ) is actually
rescaled as b = a/

√
n and ε is, in practice, the general-

ization of the slow-roll parameter ε already introduced in
the previous section and in the appendices. The details on
the connection between F and H are also discussed in Eqs.
(B.5)–(B.6) of Appendix B and the analog of (a H)−1 is now
represented by (b F)−1 whose evolution in units of λPT A is
illustrated in Fig. 5. By looking at the profiles of Fig. 5 there
are in fact two complementary possibilities:

• if λPT A crosses the comoving horizon when the refractive
index is dynamical h2

0 �gw(ν, τ0) may inherit a growing
spectrum comparable with the PTA excess and in Fig. 5
the two curves (labeled, respectively, by 1 and 2) illus-
trate this possibility; while in the case 2 the first crossing
occurs during the refractive phase, for the curve labeled
by 1 the crossing occurs nearly at the end of it;

• if the first crossing takes place after the end of the refrac-
tive phase (see the curve labeled by 3 in Fig. 5) the spectral
energy density does not show any appreciable excess and
the resulting spectral energy density is quasi-flat.

Even if the curve 3 in Fig. 5 does not lead to a growing spec-
trum for λPT A it is anyway relevant for shorter wavelengths
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Fig. 5 The comoving horizon is illustrated in units of λPT A when
its early evolution is modified during the inflationary stage; as usual
common logarithms are employed on both axes. The dynamics of the
refractive index of the relic gravitons is responsible for the modified
evolution illustrated in this cartoon. If the crossing of λPT A occurs
during the refractive phase (or at the end of it) the spectral energy
density inherits a blue or violet spectrum that may eventually explain,
under very specific conditions, the PTA excess

λ � λPT A; for the corresponding frequencies h2
0�gw(ν, τ0)

may have a flatter slope but also further spikes caused by the
post-inflationary evolution. Both structures are significantly
constrained in the audio and in the MHz bands.

3.2 Refractive index and effective action

When the refractive index of the relic gravitons increases dur-
ing a conventional stage of inflationary expansion the spec-
tral energy density is blue at intermediate frequencies (typ-
ically above the fHz) and then flattens out after a knee that
is generally smaller than the mHz [58]. The general shapes
of h2

0 �gw(ν, τ0) suggest that this possibility is particularly
interesting in the light of the PTA excesses. When the refrac-
tive index is dynamical the action of the relic gravitons (see
e.g. Eq. (A.3) and discussion therein) is modified as described
in Appendix B and it can be written as:

S = M
2
P

8

∫
d3x

∫
dτ a2(τ )

×
[
∂τhi j∂τh

i j − 1

n2(τ )
∂khi j∂

khi j
]
. (3.2)

The analysis of Eq. (3.2) is greatly simplified if the conformal
time coordinate is redefined from τ to η where the relation
between the new and the old time parametrizations implicitly
follows from n(η) dη = dτ . Equation (3.2) becomes then

canonical in terms of a redefined scale factor conventionally
denoted by b(η) [58]:

S = M
2
P

8

∫
d3x

∫
dη b2(η)

[
∂ηhi j∂ηh

i j − ∂khi j∂
khi j

]
,

b(η) = a(η)/
√
n(η). (3.3)

The result of Eq. (3.3) generalizes the standard Ford-Parker
action discussed in Appendix A to the case of a dynamical
refractive index and it explains how and why the evolution of
the tensor modes is modified even during a conventional stage
of inflationary expansion. A number of different physical rea-
sons may lead to an effective index of refraction of gravita-
tional waves in curved space-times [58–60]. For instance the
effective action of single-field inflationary models involves
all the terms that include four derivatives9 and are suppressed
by the negative powers of a large mass scale [61]. Another
possible origin of a refractive index are non-generic mod-
els of inflation where the higher-order corrections assume a
specific form since the inflaton has some particular symme-
try (like a shift symmetry ϕ → ϕ + c) or because the rate
of inflaton roll remains constant (and possibly larger than
1), as it happens in certain fast-roll scenarios [65–67]. There
are also the cases where the higher-order curvature correc-
tions are given in terms of the Gauss-Bonnet combination
weighted by some inflaton dependent-coupling [68–70]. In
[58] (see also [71–73]) it has been argued that in all these
situations the effective action of the relic gravitons can be
modified and ultimately assumes the general form discussed
in Appendix B.

For the present purposes what matters is not so much the
origin of the refractive index but rather the possibility that
its dynamical evolution could lead to a nHz excess. We then
assign n(a) and even if the phase velocity of the relic gravi-
tons is not required to be sub-luminal we impose, for con-
sistency, that n(a) ≥ 1. Moreover, since the contributions
to n(a) arise from diverse physical considerations we prefer
to reverse the problem by focussing the attention on those
profiles that eventually lead to potential excesses in the nHz
range. Along this perspective we are led to consider an appre-
ciable change of the refractive index during inflation with the
concurrent requirement that n(a) reaches 1 in the standard
decelerated stage of expansion10:

n(a) = n∗
(a/a∗)α e−d (a/a1)

(a/a∗)α + 1
+ 1,

9 When parity breaking terms are included in the effective action [62,
63], the relic graviton background may be polarized but this possibility
has been already discussed elsewhere [64].
10 Some other possibilities have been considered in [58] and these cases
can be easily added but they will not be examined here for the sake of
conciseness. In this sense we shall regard the profile of Eq. (3.4) as the
minimal example that potentially leads to a nHz excess.
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n∗ = ni (a∗/ai )α = ni e
α N∗ , (3.4)

where ai and a1 denote, respectively, the beginning and the
end of the inflationary epoch; a∗ indicates the boundary of
the refractive stage. The three successive physical regimes
described by Eq. (3.4) are, in some sense, more relevant than
the specific analytic form that is however quite useful for
numerical estimates. When a � a1 we have that n(a) →
1 and the sharpness of the transition is controlled by the
parameter d ≥ 1. In the range a∗ < a < a1 n(a) is constant
but still larger than 1 (i.e. n(a) � n∗ > 1) and, finally,
when a < a∗ the refractive index is truly dynamical since
n(a) � n∗(a/a∗)α .

3.3 The spectral energy density in critical units

We start by examining the spectral energy density for typ-
ical wavenumbers k < a∗ H∗ where �gw(k, τ ) is actually
increasing. Using Eqs. (3.3)–(3.4) the spectral energy den-
sity in critical units can be obtained from Eqs. (2.1)–(2.2)
with few relevant modifications:

�gw(k, τ ) = k4

12 π2 H2 M
2
P a4

× ∣∣Qk(ηex , ηre)
∣∣2

(
bre
bex

)2(
1 + 1

k2τ 2
re

)
.

(3.5)

Equation (3.5) is valid under the assumption that ηre = τre
so that the reentry of the relevant wavelengths occurs when
the refractive index is not dynamical; furthermore if τre
falls within the radiation phase (i.e. a′′ → 0) we also have
kτre � 1 in Eq. (3.5). Since any wavelength exiting for
η < −η∗ does its first crossing during the inflationary phase,
the corresponding refractive index is n = n∗(a/a∗)α; more-
over the explicit expression of Qk(ηex , ηre) is also slightly
more general than in the case of Eq. (2.2)

Qk(ηex , ηre) = 1−(Fex+ik)
∫ ηre

ηex

b2
ex

b2(τ )
dη, F = ∂ηb/b.

(3.6)

Finally, from Eq. (3.3) b(η) can be expressed in the following
manner:

b(η) = b∗(−η/η∗)−ζ , b∗ = a∗/
√
n∗, ζ = 2 − α

2(1 − ε + α)
.

(3.7)

The result of Eq. (3.7) is valid if all the wavelengthsO(λPT A)

exit while the refractive index is still dynamical (as illustrated
in the curves 1 and 2 of Fig. 5). Inserting now Eq. (3.7) into

Eq. (3.5) a more explicit form of the spectral energy density
can be deduced:

h2
0 �gw(ν, τ0)

=
(

H1

MP

)2

D∗(α, nT )

(
ν

ν∗

)nT
, νeq < ν < ν∗, (3.8)

D∗(α, nT ) = 4n3∗ h2
0�R0

3π

(
1 + α

1 − εk

)2 (
gρ, r

gρ, eq

)

×
(
gs, eq
gs, r

)4/3 (
�M0

��

)2

, (3.9)

where gρ and gs are, respectively, the effective number of
relativistic species associated with the energy and with the
entropy density. As usual �M0 and �� denote the present
critical fractions of matter and dark energy. It is well known
that the dominance of dark energy suppresses the spectrum
by a factor (�M0/��)2 = O(0.1) (see, for instance, [17]). In
Eq. (3.8) ν∗ denotes the frequency of the spectrum associated
with η∗ and since k∗ = 1/η∗ the corresponding comoving
frequency is:

ν < ν∗ =
(

1+ α

1 − εk

)
eαN∗−�N νmax , �N = Nt−N∗.

(3.10)

In Eq. (3.10) N∗ = ln (a∗/ai ) is the number of e-folds dur-
ing the refractive stage while Nt = ln (a1/ai ) denotes the
total number of e-folds; finally νmax indicates the maximal
frequency of the spectrum and it coincides with Eq. (2.15)
since, so far, the radiation dominance starts right after the
end of inflation. The spectral index nT appearing in Eq. (3.8)
depends on α and on εk and it is:

nT = 2 − 2ζ = 3α − 2εk

(1 + α − εk)

= 3α

1 + α
+ εk (α − 2)

(1 + α)2 + O(ε2
k ). (3.11)

The tensor spectral index of Eq. (3.11) applies in the interme-
diate frequency range when the corresponding wavelengths
exit during inflation and reenter in the radiation phase; in
Eq. (3.11) α is always much larger than εk � rT /16 ≤
0.03/16 � 1 so that the exact result can be accurately eval-
uated in the limit εk � 1. While Eqs. (3.8) and (3.11) hold
for ν < ν∗, the spectral energy density can also be evalu-
ated in the range ν∗ < ν < νmax (i.e. a∗ H∗ < k < a1 H1)
corresponding to wavelengths that exited the comoving hori-
zon when the refractive index was already constant (see the
curve 3 in Fig. 5). Since the corresponding wavelengths do
their first crossing when the refractive index is already con-
stant (i.e. n → n∗) we have that ηex = τ∗/n∗ and the spectral
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energy density becomes:

h2
0�gw(ν, τ0) =

(
H1

MP

)2

Dmax (α,mT )

×
(

ν

νmax

)mT

, ν∗ < ν < νmax , (3.12)

where the spectral index is given by mT = −2εk = −rT /8
and

Dmax (α,mT ) = 4 h2
0�R0

3π
e(3−mT )α N∗emT �N

×
(

1 + α

1 − εk

)2−mT

×
(

gρ, r

gρ, eq

)(
gs, eq
gs, r

)4/3 (
�M0

��

)2

. (3.13)

Equation (3.12) evaluated for ν = ν∗ corresponds exactly to
Eq. (3.8) computed at the same reference frequency and the
equivalence of the two expressions ultimately follows from
Eq. (3.10). Furthermore, in Eqs. (3.8) and (3.11) (H1/MP )2

can be traded for π εk AR where AR is the amplitude of cur-
vature inhomogeneities at the pivot scale kp (see also Eqs.
(1.4) and (2.15)). It is finally worth recalling that, for a stan-
dard thermal history, gs, eq = 3.94 while gρ, r = gs, r =
106.75 in Eqs. (3.9) and (3.13).

Before proceeding further it is useful to comment on the
possible range of variation of Nt and N∗ appearing in Eq.
(3.10). The value of N∗ measures the range of variation of
the refractive index during inflation and, for this reason, N∗ <

Nt . The total number of e-folds is, in principle, arbitrary but a
useful benchmark value is notoriously given by Nt = O(60).
This figure coincides, approximately, with the number of e-
folds elapsed from the moment where the CMB wavelengths
crossed the Hubble radius during inflation. If we estimate
these wavelengths with k−1

p (where kp = 0.002 Mpc−1) then
we have that Nk (i.e. the number of e-folds elapsed since the
crossing of k−1

p ) is, approximately, O(60) for rT = 0.06;
more precisely it can be shown that

Nk = 59.4 + 1

4
ln

(
εk

0.001

)
− ln

(
k

0.002 Mpc−1

)
(3.14)

where, as before, ln denotes the natural logarithm and εk is
the value of the slow-roll parameter at the crossing of the
given set of wavelengths. Equation (3.14) assumes that after
inflation the evolution is always dominated by radiation even
if in Fig. 12 this assumption will be relaxed. The value of
Nk is also of the order of Nmax (i.e. the maximal number of
e-folds presently accessible to large-scale observations); see
in this respect the appendices of Ref. [54]. This value follows
by requiring that the redshifted inflationary event horizon fits
within the present Hubble patch; in practice this means that
H−1
i (a0/ai ) � H−1

0 where Hi denotes the expansion rated

during the initial stages of inflation. Neglecting for simplicity
the evolution of the relativistic species of the plasma we get
that Nmax = 61.55 for the same fiducial set of parameters
employed in Eq. (3.14). Typical values of Nt of the order of
Nk and Nmax define, in practice, the minimal duration of the
inflationary stage. Conversely values of Nt smaller than Nk

(or Nmax ) characterize the durations of inflationary stages
that are comparatively shorter than the benchmark value of
Eq. (3.14). As we shall see in a moment, the relatively short
inflationary stages (where Nt ≤ O(61)) seem to be preferred
for a potential explanations of the PTA excesses.

3.4 Accounting for the PTA excesses?

Equations (3.5), (3.8) and (3.12) are now compared with the
parametrizations of the PTA signal given in Eqs. (1.2) and
(2.10). Since, by definition, the intermediate spectral index
is given as 2 + 2β = nT Eq. (3.11) implies a relation that
determines α as a function of εk (or rT ) and β:

α = 2[β(εk − 1) − 1]
2β − 1

. (3.15)

Moreover, given that q0 depends on all the other parameters
determining the amplitude of �gw(ν, τ0) (see Eqs. (3.8) and
(3.12)), we can demand that β and q0 fall within the phe-
nomenologically allowed ranges and check if the results of
Eqs. (3.8) and (3.12) are compatible with the empirical deter-
minations of the PTA. According to the Parkes PTA the values
of β and q0 fall, respectively, in the following intervals:

−0.65 ≤ β ≤ −0.25, 2.2 < q0 < 4.4. (3.16)

Equation (3.16) constrains the spectral energy density and the
corresponding region of the theoretical parameters is illus-
trated in the left plot of Fig. 6 where we report q0(β, N∗)
for different values of Nt ; the shape of each shaded region
directly follows by requiring 2.2 < q0(β, N∗) < 4.4 for
the various Nt mentioned in the plot. On a technical side we
note that Eq. (3.15) has been used with the purpose of trading
directly α for β at a fixed value of εk . In the right plot of Fig. 6
β is however fixed (i.e. β → −2/3) and, for such a choice,
also the range of q0 must be adapted following the obser-
vational determinations (i.e. q0 = 2.04+0.25

−0.22 [13]). For this
reason in the right plot of Fig. 6 the constraints can be directly
examined in the plane (Nt , N∗). For the sake of accuracy, in
Fig. 7 we illustrated the region pinned down in the plane (α,
log rT ) by the different values of β. The same analysis illus-
trated in the case of the Parkes PTA can be repeated for the
NANOgrav determinations with slightly different results; the
analog of Eq. (3.16) is now given by [14]

−0.40 ≤ β ≤ −0.20, 3.7 < q0 < 10.6. (3.17)
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Fig. 6 The regions pinned down by the Parkes PTA are illustrated in
the left plot in terms of the parameters appearing in Eqs. (3.8) and
(3.12). The shaded areas follow by imposing the range of Eq. (3.16)
for different values of Nt (denoting, as repeatedly mentioned, the total
number of e-folds). We also remind that N∗ controls the length of the
phase where the refractive index is effectively dynamical. In both plots
we traded α for β at a fixed value of εk = 0.0018 (see Eq. (3.15) and

discussion therein); the value of εk is related to rT = 0.03 by the con-
sistency relations. While in the left plot we illustrated q0(β, N∗) for
different values of Nt , in the right plot β has been fixed to −2/3; in this
case the allowed range of q0(Nt , N∗) is slightly different from the one
of Eq. (3.16) and it is given by 1.82 < q0(Nt , N∗) < 2.29. Finally, the
shaded regions in both plots are consistent with the higher-frequency
bounds coming from the audio band

While the range of β given in Eq. (3.17) is narrower than
in Eq. (3.16), in the case of q0 we observe the opposite: the
allowed values of q0 of Eq. (3.17) are comparatively larger
than the ones of Eq. (3.16). These differences slightly modify
the shaded regions of Figs. 6 and 8 and the related parameters:
both the ranges of Nt and N∗ get narrower and Nt is at most
O(55) while N∗ ≤ O(10).

A second class of constraints determining the shaded
regions of Figs. 6 and 8 is related to the direct bounds from the
operating wide-band detectors. In particular we remind that
the LIGO, Virgo and Kagra collaborations (LVK) reported a
constraint [52] implying:

�gw(ν, τ0) < 5.8 × 10−9, 20 Hz < νL < 76.6 Hz,

(3.18)

in the case of a flat spectral energy density; in the present
notations νL indicates the LIGO-Virgo-Kagra frequency. The
limit of Eq. (3.18) improves on a series of bounds previously
deduced by the wide-band interferometers (see Ref. [17] for
a review of the older results); in particular in Ref. [53] the
analog of Eq. (3.18) implied �gw(ν, τ0) < 6 × 10−8 for
a comparable frequency interval and always in the case of

a flat spectral energy density. The bound of Eq. (3.18) can
be used also in Eq. (3.8) since at high-frequency the spec-
tral energy density is nearly scale-invariant. The results of
Ref. [52] report however a threefold bound for a handful of
spectral slopes; in particular, if the spectral energy density is
parametrized as

�gw(ν, τ0) = �(σ)

(
ν

νL

)σ

, νL = 25 Hz, (3.19)

the limits of Ref. [52] read �(0) < 5.8 × 10−9 (valid in
the case σ = 0), �(2/3) < 3.4 × 10−9 (when σ = 2/3)
and �(3) < 3.9 × 10−10 (when σ = 3). As the value of
σ increases the bound becomes more restrictive for a fixed
reference frequency and the three previous results are sum-
marized by the following interpolating formula:

log �(σ) < − 8.236 − 0.335 σ − 0.018 σ 2. (3.20)

Since in the present case the bound (3.20) should be applied at
high-frequencies we will have σ = −2εk/(1− εk) with ε �
0.1; to leading order in εk , Eq. (3.20) implies that log �(εk) <

− 8.236 − 0.335 εk − 0.393ε2
k .
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Fig. 7 The shaded region follows by requiring −0.65 < β < −0.25
(as implied by Eq. (3.16)) and by imposing the relation of Eq. (3.15).
The thick line outside the shaded region corresponds to β = −2/3.
If the consistency relations are imposed β is determined in the (α, rT )

plane. However, as the plot shows, the smallness of rT implies that εk
can be neglected for the determination of the spectral index in the region
ν < ν∗

Fig. 8 In the left plot we illustrate the region pinned down by the
NANOgrav PTA in the plane (β, N∗) for different values of Nt . Both
plots can be compared with the ones of Fig. 6 where we discussed the
case of the Parkes PTA. The shaded regions in the left plot follow by
imposing Eq. (3.17) for different values of Nt . The right plot is obtained

by fixing β → −2/3 and the shaded region corresponds to the range
1.8 < q0(Nt , N∗) < 3.1; this is because for β → −2/3 the NANOgrav
collaboration suggests q0 = 2.40.7−0.6. As in Fig. 6 the high-frequency
bounds from the audio band have been also imposed
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3.5 Shapes of the spectra and further possibilities

Instead of using the approximations employed above it is
instructive to compute numerically the spectral energy den-
sity from the exact form of the mode functions11.

As an example in the two plots of Fig. 9 we considered
two different values of β (i.e. β = −0.65 and β = −0.55).
Given a specific value of β within the observational range,
the previous results (see, in particular, Figs. 6 and 8) lead
directly to the allowed values of N∗ and Nt . If N∗ and Nt are
of the same order the refractive index stops evolving when
inflation approximately ends and, in this case, it is impossible
to get a large signal in the nHz range without jeopardizing
the big-bang nucleosynthesis constraint [58,73].

Conversely, when N∗ < Nt the refractive index stops
evolving well before the onset of the post-inflationary stage,
i.e. when the background is still inflating deep inside the
quasi-de Sitter stage of expansion. In both plots of Fig. 9,
to ease the comparison, we selected Nt = 61 while different
values of N∗ are illustrated. In both plots, for the same choice
of the parameters, we also illustrated (with an arrow) the PTA
excess and the Ligo–Virgo–Kagra bound [52,53]. The PTA
signal occurs for typical frequencies O(νre f ) while the LVK
bound applies approximately between 25 and 100 Hz.

The discussion of Sect. 2 does not exclude the possibil-
ity of two concurrent modifications of the comoving horizon
operating before and after the end of inflation [71,72]. This
viewpoint is explored in Fig. 10 where we consider the possi-
bility that the refractive index stops its evolution well before
the end of inflation (i.e. N∗ � Nt ); however, unlike the
case of Fig. 9, the post-inflationary evolution includes a long
phase expanding at a rate slower than radiation. The spec-
tral energy density in critical units will therefore have three
different slopes for ν > νeq . In both plots of Fig. 10, at inter-
mediate frequencies h2

0�gw(ν, τ0) has the same intermediate
slopes appearing in Fig. 9 (see also Eqs. (3.11) and (3.15)).
However, after the quasi-flat plateau, the spectral energy den-
sity exhibits a further increasing branch before the maximal
frequency. The corresponding wavelengths left the comov-
ing Hubble radius during inflation and reentered in the post-
inflationary stage before radiation dominance. In Fig. 10 the
high-frequency spectral slope is O(1) since during the post-
inflationary stage the evolution is described by a stiff fluid
with δ � 1/2 implying that (a H)−1 ∝ a2. The main dif-
ference between the plots of Figs. 9 and 10 ultimately comes
from the high-frequency shape. While in the case of Fig. 9
the most relevant constraint comes from the operating inter-
ferometers [52,53], in the case of Fig. 10 the bounds coming

11 As we saw the pivotal parameters that determine the spectrum are
α, N∗ and Nt . Recalling Eq. (3.15) we trade α for β at a fixed value
of εk (or rT ) and express the spectral index directly with the notations
preferred by the experimental collaborations.

from big-bang nucleosynthesis [55–57] must be taken into
account since they imply:

h2
0

∫ νmax

νbbn

�gw(ν, τ0)d ln ν

= 5.61 × 10−6�Nν

(
h2

0�γ 0

2.47 × 10−5

)
, (3.21)

where �γ 0 is the (present) critical fraction of CMB pho-
tons. As it is well known, the limit of Eq. (3.21) also sets an
indirect constraint on all the extra-relativistic species (and,
among others, on the relic gravitons). If applied to massless
fermionic species, the limit is often expressed for practical
reasons in terms of �Nν representing the contribution of
supplementary neutrino species. The actual bounds on �Nν

range from �Nν ≤ 0.2 to �Nν ≤ 1; the integrated spectral
density in Eq. (3.21) is thus between 10−6 and 10−5. It is
interesting to point out that the spectra of Fig. 10 are sen-
sitive both to the interferometric bounds [52,53] and to the
the limits of Eq. (3.21): the wide-band detectors constrain
the height of the intermediate plateau while Eq. (3.21) sets
a bound on the integrated h2

0 �gw(ν, τ0) and, ultimately, on
the (global) maximum of the spectral energy density.

4 Bounces of the scale factor and curvature bounces

4.1 Basic considerations

In bouncing scenarios the spectral index can be positive
between the fHz and the Hz [17] as it happens in the pres-
ence of a dynamical refractive index. However, while in the
previous section both the amplitudes and the slopes could be
predicted with reasonable accuracy thanks to the underlying
inflationary dynamics, for the bouncing case it is compar-
atively easier to estimate h2

0 �gw(ν, τ0) in the intermediate
frequency region rather than in the high-frequency domain
which is often associated with a regime of strong curvatures.
Even in the absence of a detailed theoretical derivation of
the corresponding slopes, the high-frequency normalization
can be disambiguated by employing the constraints of the
audio band [52,53] and the big-bang nucleosynthesis limits
[55–57].

The bouncing dynamics is sometimes associated with a
contracting stage (i.e. ȧ < 0 and H < 0), as historically
suggested, along slightly different perspectives, by Tolman
and Lemaître [74,75] (see also [76,77]). For the present pur-
poses it is useful to distinguish (at a purely kinematical level)
the bounces of the scale factor from the ones involving the
extrinsic (Hubble) curvature. While H and Ḣ change sign (at
least) once in the bounces of the scale factor, for the curvature
bounces H is always positive but Ḣ changes sign (at least)
once. Broadly speaking the spectral slope at intermediate fre-
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Fig. 9 We illustrate the common logarithm of the spectral energy den-
sity in critical units as a function of the common logarithm of the comov-
ing frequency. In both plots Nt = 61 but the values of β and rT do not
coincide and they are indicated above each of the two cartoons. The
arrows indicate the PTA signal for the spectral indices corresponding

to the ones selected in each of the plots. The high-frequency region
labeled by LVK refers to the Ligo–Virgo–Kagra bound that applies in
the audio band. The increasing branch and the flat plateau corresponds,
respectively, to the analytic estimate of Eqs. (3.5) and (3.8)

Fig. 10 As in Fig. 9 we illustrate the common logarithm of the spectral
energy density as a function of the common logarithm of the comoving
frequency. In the two plots the value of rT is the same but the values of
Nt are slightly dissimilar. In the plot at the left N∗ = 14 while the three

spectra correspond slightly different values of β. In the plot at the right
β = −0.63 and the three curves illustrate the variation of N∗. Since the
effect of neutrino free-streaming has been included, in both plots Rν

denotes the neutrino fraction

quencies (which is the relevant one for the discussion of the
PTA excesses) is related to the wavelengths that crossed the
comoving Hubble radius before either H or Ḣ changed their
sign the first time.12 In both situations we can express the
spectral energy density in terms of a common template

12 The distinction between the bounces of the scale factor and the cur-
vature bounces rests on the Einstein frame where the gravity part of the
action appears in its canonical form. It is however possible rephrase the
same distinction, mutatis mutandis, in any conformally related frame
since the effective action of the relic gravitons (and the spectral energy
density) ultimately coincide after the gauge-invariant fluctuations of the
metric and the corresponding backgrounds are correctly expressed in
the new frame (see, for instance, Ref. [17] and discussion therein).

h2
0 �gw(ν, τ0) = �∗ (ν/ν∗)mT , ν∗ < ν < νmax ,

(4.1)

where mT is the high-frequency spectral index and �∗
accounts for the corresponding normalization. The notations
employed in Eq. (4.1) are purposely similar to the ones of the
previous section since, in both cases, �∗ controls the high-
frequency normalization. The physical meaning of the two
quantities is however slightly different since �∗ now depends
on the maximal curvature scale at the bounce (of the order of
H1) and on a number of other late-times parameters; in the
simplest situation (where all the wavelengths reenter during
a radiation dominated stage) the value of �∗ is given by
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�∗ = 4 h2
0�R0

3π

(
H1

MP

)2 (
gρ, r

gρ, eq

)(
gs, eq
gs, r

)4/3 (
�M0

��

)2

.

(4.2)

In inflationary scenarios the analog of (H1/MP ) is fixed by
the amplitude of the (adiabatic and Guassian) curvature inho-
mogeneities whereas in the case of Eq. (4.2) it is more produc-
tive to determine �∗ directly from the available phenomeno-
logical constraints and to confront the obtained templates
with the PTA observations. In this respect the most relevant
limits are the ones coming from the audio band (see Eqs.
(3.19)–(3.20)) and the big-bang nucleosynthesis constraint
(see Eq. (3.21) and discussion thereafter).

4.2 Growing spectral slopes at intermediate frequencies

While Eq. (4.2) applies in the high-frequency regime where
the amplitude of h2

0 �gw(ν, τ0) is constrained by the current
phenomenological bounds, in the intermediate frequency
range (i.e. for ν < ν∗) the slope of the spectral energy density
is instead denoted by nT = nT (γ, δ):

h2
0 �gw(ν, τ0) = �∗ (ν/ν∗)nT (γ,δ), νeq < ν < ν∗. (4.3)

In Eq. (4.3) γ and δ control, respectively, the expansion (or
contraction) rates at early and late times; the general form of
the spectral index can be expressed as:

nT (γ, δ) = 4 − 2

∣∣∣∣δ − 1

2

∣∣∣∣ − 2

∣∣∣∣ γ

1 − γ
− 1

2

∣∣∣∣. (4.4)

where the value of γ is related to the expansion (or contrac-
tion) rate in the cosmic time coordinate as a(t) = a1(−t/t1)γ

and this parametrization is valid before the first zero of H
or Ḣ . As in the previous sections also in Eq. (4.4) δ denotes
the expansion rate in the conformal time coordinate during
the decelerated stage after the bounce. For 0 < γ < 1 Eq.
(4.4) gives the spectral slope when, prior to the bouncing
regime (taking place for |t | < t1), the background expe-
riences a stage of accelerated contraction (i.e. ȧ < 0 and
ä < 0). Conversely when γ < 0 the background expands
and accelerates (i.e. ȧ > 0 and ä > 0) with growing
Hubble rate (i.e. Ḣ > 0). If δ > 1/2 the contribution
to nT (γ, δ) only comes from the term k4 |are/aex |2 in Eq.
(2.1) while Qk(τex , τre) → 1. Conversely, when δ < 1/2,
Qk(τex , τre) ∝ 1 + |k τ1|−1+2δ which is much larger than 1
for all the amplified modes of the spectrum (i.e. for kτ1 � 1).
Since the second term in Qk(τex , τre) dominates for δ < 1/2
and for kτ1 < 1 we have that the spectral energy density
�gw(k, τ ) ∝ k4 |are/aex |2

∣∣Qk(τex , τre)
∣∣2 has overall a spec-

tral slope (valid for a generic value of δ) proportional to
|δ − 1/2|. After matter-radiation equality the same analysis
implies:

h2
0 �gw(ν, τ0) = �∗ (ν/ν∗)nT (γ,δ) (ν/νeq)

−2, ν < νeq .

(4.5)

Below O(100) aHz h2
0 �gw(ν, τ0) is much smaller than in

the case of the concordance paradigm. In particular for typical
frequencies ν = O(νp) (where νp = kp/(2π) = 3.092 aHz)
the spectral energy density of Eq. (4.5) is further suppressed
by the term (νp/ν∗)nT (γ,δ) in comparison with the case of the
concordance paradigm where this contribution is O(1).

4.3 The slopes and amplitudes of the PTA excesses

If all the wavelengths of the order of λPT A do the second
crossing in a radiation-dominated stage (i.e. when δ → 1)
the spectral index of Eq. (4.4) becomes:

lim
δ→1

nT (γ, δ) = 3 − 2

∣∣∣∣ γ

1 − γ
− 1

2

∣∣∣∣. (4.6)

When γ → 1/3 in Eq. (4.6) the spectral index nT (1/3, 1) →
3; in this case the stage of accelerated contraction may be
driven, in the simplest situation, by the kinetic energy of a
scalar field as it happens, for instance, in the dilaton-driven
phase of pre-big bang scenarios [78–81]. Similarly when
γ → 0 we would have, from Eq. (4.6), that nT (γ, 1) → 2;
this is the situation preferred in the context of ekpyrotic mod-
els [82,83]. Whenever the expansion rate at the second cross-
ing is eventually different from radiation (i.e. δ �= 1) also the
form of Eq. (4.6) is different. For this reason it is relevant
to illustrate the general situation and this has been done in
Fig. 11 for the two complementary ranges 0 < γ < 1 and
γ < 0. Grossly speaking the results of Fig. 11 imply that
the spectral slopes suggested by the PTA collaborations can
be reproduced either when δ > 1 (if 0 ≤ γ < 1) or when
0 < δ < 1 (provided γ < 0). To scrutinize this point in
further detail it is easier to express β directly as a function
of γ and δ:

β(γ, δ) = 1 −
∣∣∣∣δ − 1

2

∣∣∣∣ −
∣∣∣∣ γ

1 − γ
− 1

2

∣∣∣∣. (4.7)

Using Eq. (4.7) we can therefore limit the range of variation
of β(γ, δ) and deduce the allowed domain of the parameters.
Along this perspective, the shaded areas of Fig. 12 are deter-
mined by requiring −0.65 < β(γ, δ) < −0.25 as suggested
by the Parkes PTA [13]. In Fig. 12 the line δ = 1 intersects the
allowed region only if γ > O(0.6). A similar conclusion fol-
lows from Fig. 13 where we examine the NANOgrav obser-
vations [14]; in this case, as already stressed in the previous
sections, the allowed range of β is narrower (even if the corre-
sponding range of q0 is larger). The shaded area in both plots
of Fig. 13 correspond to the interval−0.40 < β < −0.20 and
the correct values of β seem to be reproduced for 0 < γ < 1
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Fig. 11 We illustrate the intermediate spectral index nT (γ, δ) appear-
ing in Eqs. (4.3)–(4.4). In both plots γ indicates the expansion (or con-
traction) rates before the bounce; δ denotes instead the expansion rate
at late times (after the bounce) when the intermediate wavelengths of
the spectrum reenter the Hubble radius. In the left plot 0 ≤ γ < 1

and the evolution before the bouncing regime is characterized by an
accelerated contraction. In the right plot γ < 0 implying a phase of
accelerated expansion (with growing Hubble rate) before the bouncing
regime

Fig. 12 The values of β(γ, δ) are illustrated together with the observa-
tional constraints derived from the Parkes PTA data. The shaded region
denotes, in both plots, the range −0.65 < β(γ, δ) < −0.25 which is
pinned down by the Parkes PTA [13]. In the left plot 0 ≤ γ < 1 and this

values describe a stage of accelerated contraction, as it happens for the
bounces of the scale factor. In the right plot we discuss the case γ < 0
(i.e. accelerated expansion with growing expansion rate) that occurs for
the bounces of the scale factor
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Fig. 13 The contours are determined exactly as in the case of Fig. 12
but in the present situation we consider the NANOgrav intervals [14]
for β rather than the ones of the Parkes PTA. Since the interval of β is

narrower in the case of Ref. [14], the shaded regions of both plots are
narrower than the ones illustrated in Fig. 12. As usual, in both figures
the values of β(γ, δ) remains the same on each contour

but only when δ > 1. The opposite is true in the case γ < 0
where the region δ < 1 seems comparatively wider.

So far we discussed the spectral slopes and we must
now consider the corresponding amplitudes. For this pur-
pose we then examine Eq. (4.1) and express it in terms of the
parametrization of Eq. (1.1):

6.287 × 10−10q2
0 (ν/νre f )

2+2β = �∗ (ν/ν∗)nT . (4.8)

Since the slope nT (γ, δ) coincides with 2 + 2β(γ, δ) the
amplitude q0 (which is determined experimentally) not only
depends on β but also on (ν∗/νre f ) and �∗. The high-
frequency amplitude of the spectral energy density appear-
ing in Eqs. (4.1)–(4.3) can then be fixed to the largest value
compatible with the limits of wide-band interferometers in
the audio band [52,53]. From the theoretical viewpoint q0

becomes a function of β and of (ν∗/νre f ):

q0(β, ν∗) = 1.97(νre f /ν∗)1+β. (4.9)

Since we know from Figs. 11 and 12 that there exist regions
in the (γ, δ) plane where β falls within the observed range,
from Eq. (4.9) we can determine the range of variation of
ν∗. A careful analysis reported in Fig. 14 shows that ν∗ must
be slightly smaller than νre f . More specifically in Fig. 14 we
illustrate the different contours of q0(β, ν∗) and the shaded
areas correspond, respectively, to the regions pinned down,
respectively, by the Parkes PTA (i.e. 3.7 ≤ q0 ≤ 10.6 in the

left plot of Fig. 14) and by the NANOgrav PTA (i.e. 2.2 ≤
q0 ≤ 4.4 in the right plot of Fig. 14).

4.4 Excluding a single blue slope

The allowed region of the parameter space pins down a range
ν∗ = O(νre f ) but there are theoretical models where the
transition to the decelerated regime is very short (i.e. ν∗ �
νre f ) so that ν∗ can eventually be of the order of νmax . To
investigate this situation we can therefore write the spectral
energy density in the following form:

h2
0�gw(ν, τ0) = �max

(
ν

νmax

)nT (γ,δ)

,

νeq < ν ≤ νmax , (4.10)

and demand that nT (γ, δ) falls in the interval of slopes asso-
ciated with the PTA; if this is the case, then nT (γ, δ) =
2(1 + β) > 0. If we combine Eq. (4.10) with the require-
ments of Eq. (3.21) we also have that �max is constrained
as:

�max

[
1 −

(
νbbn

νmax

)2(1+β)]
≤ 2(1 + β)�bbn,

�bbn = O(10−7). (4.11)
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Thanks to Eq. (4.11) we can first trade�max for�bbn and then
we can also express q0 in terms of β and y = (νre f /νmax ):

q0(y, β) = 17.83

(
�bbn

10−7

)1/2 yβ+1√
1 − wbbn y2β+2

,

wbbn = (νbbn/νre f ) = 0.011. (4.12)

Equation (4.12) is illustrated in Fig. 15 where q0 is viewed
as a function of β and νmax ; on the vertical axis of both plots
we report the range of β compatible with each of the corre-
sponding experiment (i.e. the Parkes [13] and the NANOgrav
[14] PTA). The shaded regions define the allowed range of
q0 for each of the two experiments. The results of Fig. 15
are incompatible with Eq. (4.10) since, grossly speaking, we
can expect νmax between few MHz and the THz [17]. In
the parametrization of Eq. (4.10) the common logarithm of
(νre f /νmax ) (reported on the horizontal axes of the plots of
Fig. 15) should be between −20 and −15. On the contrary
the allowed region in Fig. 15 is located for y = O(10−2).

If the PTA excesses are the result of a bouncing stage it
is necessary that the wavelengths of the order of λPT A do
their second crossing during a decelerated stage not domi-
nated by radiation. Moreover a bouncing model leading to
a spectral energy density with a single blue slope (possibly
ranging between the equality frequency and νmax ) is unable
to account for the PTA excesses if all the phenomenological
bounds are concurrently satisfied. Various bouncing scenar-
ios have been constructed with the aim of either comple-
menting or even challenging the conventional inflationary
ideas. Bouncing scenarios appear by physical premises that
are quite different and various reviews are currently avail-
able (see, for instance, [84–88]). It is not uncommon that the
solutions obtained in a given framework are recycled in an
entirely different situation. Recently it has been argued that
conventional inflationary models are generically in tension
with the swampland criteria [89] and this is often seen as a
further motivation for bouncing dynamics. The indications of
the PTA can be very precious in this context and they might
even contribute to the long standing problem of bouncing
scenarios, i.e. the origin of a Gaussian and adiabatic mode of
large-scale curvature inhomogeneities [17].

5 Concluding remarks

During the last two decades a series of significant limits from
the millisecond pulsars at intermediate frequencies (roughly
corresponding to the inverse of the time-scale along which the
various pulsars have been monitored) severely constrained
the isotropic and random backgrounds of gravitational radi-
ation. More recently different ensembles of millisecond pul-
sars have been scrutinized with regular cadence by the pul-

sar timing arrays (PTA in the bulk of the paper). Despite
the different conclusions on the expected correlations in the
pulse arrival times between pairs of pulsars (and despite the
slightly dissimilar determinations of the spectral parame-
ters), the competing experiments seem to suggest concurrent
evidences of gravitational radiation with stochastically dis-
tributed Fourier amplitudes at a benchmark frequency O(30)

nHz and with h2
0�gw(ν, τ0) ranging between 10−8 and 10−9.

While the origins of the PTA excesses are still perplexing, in
this paper we speculate that the relic gravitons are responsi-
ble of the observed signal. Even if a collection of late-time
sources may eventually lead to a diffuse background of grav-
itational radiation, the relic gravitons are instead produced,
by definition, at much earlier times and solely because the
rapid variation of the space-time curvature.

The theoretical perspective explored in this investigation
strongly suggests that the problem is not yet to fit (more or
less reliably) the existing data in terms of a series of pre-
ferred scenarios but to understand preliminarily whether or
not the observed excesses in the nHz range are compatible
with a modified evolution of the comoving horizon since this
is the only way the spectrum of relic gravitons at intermediate
frequencies can be affected. The goal of this study is there-
fore not to endorse a specific model (or to pin down the likely
values of a hypothetical spectral index) but to see, more mod-
estly, if and how the relic gravitons could be associated with
the nHz excesses. All in all the systematic approach devel-
oped in this paper propounds three complementary physical
possibilities that have been carefully perused and that should
be further analyzed in the near future.

• The most conventional option stipulates that the timeline
of the comoving horizon is not modified during inflation
so that the nHz excess is caused by the drastic change
of the post-inflationary expansion rate prior to big-bang
nucleosynthesis.

• A second alternative implies a modified evolution of the
tensor modes during a conventional inflationary stage as
it happens, for instance, when the gravitons inherit an
effective refractive index from the interactions with the
geometry.

• We finally consider the possibility of an epoch of increas-
ing curvature prior to the conventional decelerated stage
of expansion and argue that this option is only recon-
cilable with the observed excesses provided the wave-
lengths crossing the comoving horizon at early times do
not reenter in an epoch dominated by radiation.

In connection with these three complementary options the
results obtained in this analysis are, in short, the following.

• A late-time modification of the comoving horizon may
indeed alter the spectral energy density of the relic gravi-
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Fig. 14 We illustrate the contours of constant q0(ν∗, β) for a fixed
value of �∗. The labels appearing on the various contours correspond
to the common logarithms of q0(ν∗, β). The intervals of β match the

ones of the corresponding observations. The shaded regions correspond,
as indicated in each of the plots, to the ranges of q0 determined by the
Parkes [13] and by the NANOgrav [14] PTA

Fig. 15 After imposing the big-bang nucleosynthesis constraints (see
Eq. (4.11)) we illustrate the contours of constant q0(β, νre f /νmax ). The
intervals of β match the ones of the corresponding observations and

the shaded regions correspond, as indicated in each of the plots, to the
ranges of q0 determined by the Parkes [13] and by the NANOgrav [14]
PTA
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tons in the nHz range but the observed amplitudes and
slopes are unfortunately neither compatible nor compa-
rable with this minimal explanation.

• Conversely, if a dynamical refractive index evolves dur-
ing a conventional inflationary phase of nearly minimal
duration the corresponding h2

0 �gw(ν, τ0) compares well
with the nHz hump even if the observational data coming
from competing experiments pin down slightly different
regions of the parameter space.

• In the context of the bouncing scenarios, it is finally possi-
ble to exclude a nHz excess associated with a single slope
of the spectral energy density between 100 aHz and the
GHz range. However, if the spectral energy density has a
break in the nHz region the direct limits of the wide-band
detectors constrain the high-frequency amplitude and, in
this case, we could account for the hump provided the
bunch of PTA wavelengths reenter the comoving horizon
during a decelerated stage not yet dominated by radiation.

The three possibilities discussed here are therefore not mutu-
ally exclusive: in the bouncing case, the simplest way to
match the amplitudes and the slopes of the spectra is to mod-
ify the comoving horizon also at late times. The potential
nHz excesses make even more relevant the high-frequency
determinations of the spectral energy density. In particular
the direct bounds in the audio band are essential even if the
largest signal of the relic gravitons is expected in the MHz
and GHz domains where smaller detectors may play a crucial
rôle, as repeatedly suggested in the past. While the observa-
tional aspects of the problem cannot be addressed with the
theoretical approach reported here, it is nonetheless true that
the physical interpretation of the results probably demands a
conceptual framework (such as the one pursued in this analy-
sis) that could clarify (and even exclude) the primeval origin
of the nHz excesses.
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A Basic conventions and notations

With the purpose of making the presentation self-contained,
in this and in the following appendix we illustrate the main
notations employed in the bulk of the paper. We start by
reminding that the tensor modes of the geometry are related
to the first-order traceless and solenoidal fluctuations of the
four-dimensional metric

gμν(x, τ ) = a2(τ )ημν + δ
(1)
t gμν(x, τ ),

δ
(1)
t gi j (x, τ ) = −a2(τ )hi j (x, τ ), (A.1)

where a(τ ) denotes the scale factor of a conformally flat
background geometry, τ is the conformal time coordinate and
ημν is the Minkowski metric with signature (+, −, −, −);
Greek indices are four-dimensional while the Latin (low-
ercase) indices are three-dimensional; in Eq. (A.1) the
first-order (tensor) fluctuations hi j (x, τ ) are, by definition,
solenoidal and traceless. As a general rule throughout the
text the prime denotes a derivation with respect to τ while
the overdot denotes a derivation with respect to the cosmic
time coordinate t . Since the relation between the two is given
by a(τ )dτ = d t it also follows, as usual, that

a H = H = a′/a, H = ȧ/a. (A.2)

Different parametrizations of the time coordinate are also
discussed in Appendix B and are relevant in the discussion
of Sect. 3. Within these notations the effective action of the
tensor modes of the geometry, originally due to Ford and
Parker [20] can be written as:

S = M
2
P

8

∫
d4x

√−g gαβ∂αhi j ∂βh
i j ,

MP = MP/
√

8 π. (A.3)

In the framework of a specific scenario Eq. (A.3) may be com-
plemented by other terms. For instance, in the case single-
field inflationary models the effective action contains all the
terms that contain four space-time derivatives and that are
suppressed by the inverse power of a large mass scale M [61];
among all these terms there are combinations that break par-
ity and that are neglected here even if their inclusion does not
substantially alter the conclusions of the discussion given the
smallness of the corresponding effects [64]. From Eq. (A.3)
the effective energy-momentum pseudo-tensor is given by:

T ν
μ = M

2
P

4

(
∂μhi j∂

νhi j − δ ν
μ gαβ∂αhi j∂βh

i j
)

, (A.4)
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where the indices are raised and lowered by means of the
background metric gμν(τ ). While there exist different strate-
gies to assign the energy-momentum pseudo-tensor, the one
obtained from the functional variation (with respect to the
background metric) of the effective action (A.3) leads to a
positive semi-definite energy density both inside and outside
the Hubble radius [90]; from the temporal components of Eq.
(A.4) we obtain the explicit expression of the energy density:

ρgw = M
2
P

8 a2

(
∂τhi j∂τ h

i j + ∂khi j∂k h
i j

)
. (A.5)

In the present investigation the tensor amplitude in Fourier
space is defined as:

hi j (x, τ ) = 1

(2π)3/2

∫
d3k e−i k·x hi j (k, τ ),

h∗
i j (

k, τ ) = hi j (−k, τ ), (A.6)

where ki hi j = k j hi j = 0 and hii = 0. For a stochastic
random field the Fourier amplitudes of Eq. (A.6) and their
time derivatives are associated, respectively, with the two
tensor power spectra PT (k, τ ) and QT (k, τ )

〈hi j (k, τ ) hm n( p, τ )〉
= 2π2

k3 PT (k, τ ) δ(3)(k + p) Si j m n(k̂), (A.7)

〈∂τhi j (k, τ ) ∂τhm n( p, τ )〉
= 2π2

k3 QT (k, τ ) δ(3)(k + p) Si j m n(k̂), (A.8)

where Si j m n(k̂) = [pi m(k̂) p j n(k̂) + p j m(k̂) pi n(k̂) −
pi j (k̂)pm n(k̂)]/4 is given in terms of the transverse pro-
jectors pi j (k̂) = (δi j − k̂i k̂ j ). After inserting Eq. (A.6) into
Eq. (A.5) we can average the obtained result term by term
and deduce:

〈ρgw〉 = M
2
P

8 a2

∫
dk

k

[
k2PT (k, τ ) + QT (k, τ )

]
. (A.9)

If the result of Eq. (A.9) is divided by the critical energy den-

sity ρcri t = 3 H2 M
2
P we obtain the spectral energy density

in critical units conventionally denoted by �gw(k, τ ):

�gw(k, τ ) = 1

ρcri t

d 〈ρgw〉
d ln k

= 1

24 H2 a2

[
k2 PT (k, τ ) + QT (k, τ )

]
. (A.10)

When the wavelengths are shorter than the comoving horizon
the corresponding wavenumbers exceed the expansion rate
and, in this regime, QT (k, τ ) and k2 PT (k, τ ) are roughly

comparable so that Eq. (A.10) can also be written as:

�gw(k, τ ) = k2

12 H2 a2 PT (k, τ ),
k

H = k

a H
> 1.

(A.11)

The tensor power spectra PT (k, τ ) and QT (k, τ ) depend on
the evolution of the mode functions Fk(τ ) and Gk(τ ) =
F ′
k(τ ) where, as already mentioned above, the prime denotes

throughout a derivation with respect to the cosmic time coor-
dinate τ :

PT (k, τ ) = 4k3

M
2
P π2

∣∣Fk(τ )
∣∣2 = 4k3

π2 M
2
P a2

∣∣ fk(τ )
∣∣2

,

(A.12)

QT (k, τ ) = 4k3

M
2
P π2

∣∣Gk(τ )
∣∣2 = 4k3

π2 M
2
Pa

2

∣∣gk(τ )
∣∣2

,

(A.13)

In Eqs. (A.12)–(A.13) the rescaled mode functions fk(τ ) and
gk(τ ) obey:

f ′
k = gk + H fk, g′

k = −k2 fk − H fk . (A.14)

The evolution of the mode functions can be solved in vari-
ous regimes and a detailed discussion on these issues can be
found elsewhere. If we eliminate gk(τ ) from Eq. (A.14) the
evolution of fk(τ ) can be expressed as

f ′′
k + {

k2 − a2 H2[2 − ε(a)]} fk = 0, ε = −Ḣ/H2.

(A.15)

As stressed in the bulk of the paper, the condition k2 =
a2 H2[2 − ε(a)] defines two complementary turning points
where the analytical evolution of the mode functions gets
modified; moreover, since (a H)−1 gives approximately the
comoving horizon, they are associated, respectively, to the
exit and to the reentry of a given wavelength. The use of the
term horizon to identify the inverse of the Hubble rate (and its
comoving counterpart) is rather common even if potentially
inaccurate; we shall not try to correct here this terminology.
When the wavelengths are shorter than the comoving horizon
the expressions of Fk(τ ) and Gk(τ ) are:

Fk(τ ) = e−ikτex
√

2k a

(
are
aex

)
Qk(τex , τre)

×
[Hre

k
sin k�τ + cos k�τ

]
, (A.16)

Gk(τ ) = e−ikτex

a

√
k

2

(
are
aex

)
Qk(τex , τre)

×
{[Hre

k
cos k�τ − sin k�τ

]
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−H
k

[Hre

k
sin k�τ + cos k�τ

]}
, (A.17)

where Qk(τex , τre) has been already introduced in Eq. (2.2)
and �τ = (τ − τre). If Eqs. (A.16)–(A.17) are inserted first
into Eqs. (A.12)–(A.13) and then into Eq. (A.10) we can
obtain the expression of Eq. (2.1). To match the notations
of the present paper with the ones of the PTA collabora-
tions we recall that the relation between the chirp ampli-
tude hc(ν, τ ) and the tensor power spectrum PT (k, τ ) is
2 h2

c(ν, τ ) = PT (ν, τ ). Similarly the connection between
the spectral amplitude Sh(ν, τ ) and the chirp amplitude is
given by ν Sh(ν, τ ) = h2

c(ν, τ ). Putting everything together
we then have

�gw(k, τ0) = 2π2ν2

3 H2
0

h2
c(ν, τ0), (A.18)

where we used a0 = 1; this means, within our conventions,
that the comoving and the physical frequencies coincide at
the present time. If we now parametrize the signal as in Eq.
(1.1) a more explicit relations can be obtained from Eq. (A.1)
and it is given by:

�gw(ν, τ0) = 2π2

3
Q2

(
νre f

H0

)2 (
ν

νre f

)2+2β

. (A.19)

If we now multiply Eq. (A.19) by h2
0 (where h0 denotes the

indetermination in the present value of the Hubble rate), take
into account the explicit value of νre f and parametrize Q as
Q = q0 ×10−15 we obtain the relations already discussed in
Eq. (1.2) (for ν → νre f ) and, more generally, in Eq. (2.10).
With the same logic we can also deduce the explicit relation
between the spectral amplitude and the chirp amplitude:

Sh(ν, τ0) = 3.15 × 10−23 q2
0

(
ν/νre f

)2β−1 Hz−1. (A.20)

It is often customary to employ the square root of Eq.
(A.20) so that

√
Sh(ν, τ0) is measured in units 1/

√
Hz, i.e.√

Sh(ν, τ0) = 5.61 × 10−12 q0(ν/νre f )
β−1/2 1/

√
Hz.

B The general form of the effective action

A more general form of the effective action of the tensor
modes of the geometry suggests to weight the various terms
of Eq. (A.3) with time-dependent coefficients:

Sg = M
2
P

8

∫
d3x

∫
dτ

[
c1(τ ) ∂τ hi j ∂τ h

i j

−c2(τ ) ∂khi j ∂khi j − c3(τ )m2
c hi j ∂hi j

]
. (B.1)

As before, in Eq. (B.1) the parity-breaking terms associated
with quadratic combinations involving either the dual Rie-

mann or the dual Weyl tensors have been neglected; both
terms would appear in the effective action and can polar-
ize the backgrounds of relic gravitons [64] (see also [91]).
Among the three function ci (τ ) (with i = 1, 2, 3) we have
that c1(τ ) and c2(τ ) are related to the expanding dimen-
sions while c3(τ ) may appear in the case of compact extra-
dimensions [92]. If we factor c1(τ ) in Eq. (B.1) the resulting
expression will be given by:

Sg = M
2
P

8

∫
d3x

∫
dτ c1(τ )

×
[
∂τhi j∂τh

i j − 1

n2(τ )
∂khi j∂

khi j − 1

n2(τ )
m2

chi j h
i j

]
,

(B.2)

where n(τ ) and n(τ ) denote, respectively, the refractive
indices associated with the expanding and with the com-
pact dimensions [92], i.e. n(τ ) = √

c1(τ )/c2(τ ) and n(τ ) =√
c1(τ )/c3(τ ). Equation (B.2) simplifies after a rescaling of

the background dependence and its final form becomes13:

Sg = M
2
P

8

∫
d3x

∫
dη b2(η)

×
[
∂ηhi j∂ηh

i j − ∂khi j∂
khi j − r2

c (η)m2
c hi j h

i j
]
.

(B.3)

Equation (B.3) follows from Eq. (B.2) by first changing the
time parametrization from τ (the conformal time coordinate)
to η; the relation between the two time parametrizations is
simply given byn(η)dη = dτ . Let us therefore consider the
simplest situation where the refractive index increases during
inflation as suggested in Eq. (3.4); in this case for a < a∗
we would have n(a) = n∗(a/a∗)α (with α > 0) so that the
relation between the conformal time coordinate τ and the η-
time can be swiftly worked since dη = dτ/n(a). From the
definition of η we therefore have:

η =
∫

da

a2 H n
= − 1

a H n
+ (ε − α)

∫
da

a2 H n
, (B.4)

where, as in Eq. (A.2), H = ȧ/a and the overdot denotes
a derivation with respect to the cosmic time coordinate. The
second equality in Eq. (B.4) follows after integration by parts
since ε̇ � 1 and α̇ = 0. Equation (B.4) also implies that
a H n = −1/[(1 − ε + α)η]; note once more that when
n → 1 we also have α → 0 and the standard relation
a H = −1/[(1−ε)τ ] is immediately recovered. In the η-time

13 Once the new parametrization has been introduced we can also
rescale the background dependence so that b(η) = √

c1(η)/n(η) and
rc(η) = n(η)/n(η). In the absence of a contribution from the internal
dimensions (i.e. mc → 0) Eq. (B.3) reproduces exactly Eq. (A.3) for
when n → 1 and c1(τ ) = a2(τ ).

123



Eur. Phys. J. C (2024) 84 :67 Page 25 of 26 67

parametrization the evolution of the mode functions simpli-
fies and it is given by

∂2
η fk +

[
k2 − ∂2

ηb

b

]
fk = 0, gk = ∂η fk − ∂ηb

b
fk . (B.5)

From Eq. (B.5) it follows that the crossing of a given wave-
length occurs when k2 = (∂2

ηb)/b. This expression general-
izes therefore the notion of the comoving horizon during the
refractive phase. More specifically we may recall the connec-
tion between the derivations in the various time parametriza-
tions introduced so far, namely

∂η = n ∂τ = n a ∂t , ∂X = ∂

∂X
, (B.6)

where η, τ and t denote, once more, the η-time, the conformal
time and the cosmic time coordinates. By using Eq. (B.6) in
the condition k2 = (∂2

ηb)/b we obtain, after simple algebra,
a condition similar to Eq. (3.1):

k2 = n3 b2 F2
[

2 − ε + 3ṅ

2nF

]
, F = ḃ

b
, ε = − Ḟ

F2 .

(B.7)

In the limit n → 1 we get b → a, F → H and ε → ε. This is
why it is appropriate to consider (b F)−1 as the generalization
of the comoving horizon during inflation. Different choices
in Eq. (B.1) are in fact artificial since they are ultimately
equivalent to the one of Eq. (B.2). For instance instead of
factoring c1(τ ) we may factor c2(τ ). If we rescale c2(τ ) we
simply get the analog of Eq. (B.2):

Sg = M
2
P

8

∫
d3x

∫
dτ c2(τ )

×
[
n2(τ ) ∂τhi j∂τh

i j − ∂khi j∂
khi j

−m2
c
c3(τ )

c2(τ )
hi j h

i j
]
. (B.8)

We may now introduce the η-time defined as n(η) dη = dτ ;
Eq. (B.8) then takes the same form of Eq. (B.2) with the dif-

ference that b2(η) is now replaced by b
2
(η) where b(η) =√

c2(η) n(η). It turns out, however, that b(η) and b(η) coin-
cide since, ultimately, b(η) = b(η) = [c1(η) c2(η)]1/4. In
the η-time parametrization the evolution of the mode func-
tions of Eq. (B.5) is exactly solvable in various situations of
practical interest. For instance if b(η) is given by Eq. (3.7)
the solution of Eq. (B.5) is simply given by

fk(η) = M√
2k

√−kη H (1)
μ (−k η),

gk(η) = −M
√
k

2

√−k η H (1)
μ−1(−kη), (B.9)

where μ = ζ +1/2 and H (1)
μ (−kη) is the Hankel function of

first kind [93] and |M| = √
π/2. From Eq. (B.9) the tensor

power spectrum becomes:

PT (k, η) = 4 k3

π2 M
2
P b2(η)

∣∣ fk(η)
∣∣2

=
(

H1

MP

)2

B(nT , N∗, Nt , ε)

(
k

a1H1

)nT
, (B.10)

where we remind that MP = MP/
√

8 π ; in Eq. (B.10) we
also introduced, for practical reasons, the following rescaled
amplitude

B(nT , N∗, Nt , ε) = 26−nT

π2

∣∣∣∣1 + α

1 − ε

∣∣∣∣
2−nT

×�2
(

3 − nT
2

)
eα N∗(3−nT )−nT (N∗−Nt ).

(B.11)

The result of Eq. (B.10) corresponds to the limit |kη| � 1
where PT (k, η) becomes constant in the η-time with rT (ν)

given by

rT (ν) = ε

π
B(nT , N∗, Nt , ε)

(
ν

νmax

)nT
,

lim
α→0

C(nT , N∗, Nt , ε) = 16π. (B.12)

For α → 0 we have that rT → 16ε and the standard con-
sistency relation is recovered; note that nT is given exactly
by the expression already mentioned in Eq. (3.11); therefore
in the limit α → 0 we have that nT → −2ε. The notations
employed here imply that the definition of the power spec-
trum PT (k, η) (and equally for PT (k, τ )) directly follow from
the quantum mechanical normalization of the corresponding
field operators. In particular we have that

ĥi j (x, η) =
√

2

MP (2 π)3/2 b2(η)

∑
α=⊕,⊗

e(α)
i j (k̂)

∫
d3k

×
[
âk, α fk,α(η)e−i k·x + â†

k, α f ∗
k,α(η)ei

k·x
]
,

(B.13)

where [̂ak, α, â†
p, β ] = δ(3)(k − p); the two tensor polariza-

tions are e⊕(k̂) = (m̂i m̂ j − n̂i n̂ j ) and e⊗(k̂) = (m̂i n̂ j +
n̂i m̂ j ) where m̂, n̂ and k̂ form a triplet of mutually orthogonal
unit vectors. From Eq. (B.13) we can compute

〈̂hi j (x, η) ĥi j (x + r , η)〉
=

∫
d ln k PT (k, η) j0(k r), j0(k r) = sin k r/(k r).

(B.14)

As anticipated, the tensor power spectrum of Eq. (B.14) is
defined as in Eq. (B.10). For a full quantum mechanical dis-
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cussion of this class of problems problem see, for instance,
Ref. [90].
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