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Abstract It is believed that gravity can be considered as a
quantum coherent mediator. In this study, we propose a plan
to test the existence of extra dimensions using the quantum
gravity induced entanglement of masses (QGEM) experi-
ment. This experiment involves two freely falling test masses
passing through a Stern–Gerlach-like device. We investigate
the entanglement witness between these masses within the
framework of the Randall–Sundrum II model (RS-II). Our
findings indicate that the system reaches entanglement more
rapidly in the presence of extra dimensions, particularly when
the radius of the extra dimension is large.

1 Introduction

Extra dimensions present potential solutions to fundamental
problems in theoretical physics, including the hierarchy prob-
lem [1,2], the cosmological constant problem [3–5], and the
mass hierarchy of fermions [6,7], among others. As a promi-
nent type of theory beyond the standard model, extra dimen-
sion theories predict a wide range of phenomena in both
high-energy and low-energy regimes. These novel physics
phenomena are of great interest due to their potential to pro-
vide ways for detecting the existence of extra dimensions.

As a classical example, the Arkani-Hamed, Dimopoulos,
and Dvali (ADD) model [1,8,9] offers an ingenious solu-
tion to the gauge hierarchy problem. In this model, the extra
dimensions are flat and compactified in circles. The large
radius of these dimensions leads to a modification of New-
ton’s inverse square law at distances shorter than millime-
ters. The Kaluza–Klein modes of the graviton exhibit a mass
gap of approximately 10−2 eV (for two extra dimensions),
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while the five dimension fundamental scale is the same as the
electroweak scale. Consequently, the ADD model predicts
numerous novel phenomena in high-energy particle physics
and astrophysics processes. However, this model has brought
about a new hierarchy problem, that is, the problem between
the magnitude of large extra dimension and the Planck length
[10].

Another elegant scenario to address this problem is the
Randall–Sundrum type of theory [2] (RS-I), where the extra
dimension is curved and possesses an S1/Z2 symmetry. In
this framework, gravitons, except for the massless mode, can
be heavy and exhibit distinct phenomenologies in colliders
compared to the large extra dimension theory. The correc-
tions to Newton’s law in this case depend on the AdS5 radius.
The phenomenological difference between the RS model and
the ADD model mentioned above is due to the discrete spec-
trum produced by gravitons under the RS model [10]. Simi-
larly, S. Kumar Rai and S. Raychaudhuri also demonstrated
the differences between the ADD model and the RS model
in their work [11].

Experiments aimed at detecting extra dimensions primar-
ily rely on studying their phenomenologies. Current particle
physics experiments have placed significant constraints on
theories involving extra dimensions [12,13]. However, con-
straints resulting from tests of Newton’s inverse square law
are relatively weaker [14–19]. In this study, we explore the
possibility of detecting extra dimensions through entangle-
ment experiments.

The operation in quantum teleportation is called one-way
local operation and classical communication (LOCC), and
it is very important in the quantum communication theory
[20]. That means if gravity is a classical operation, it cannot
cause entanglement. This shows that if entanglement occurs
between particles only under the action of gravity, then grav-
ity should have certain quantum effects.
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Recently, Bose et al. [21] proposed a novel scheme to
investigate entanglement between two freely falling masses
in a gravitational field. The experiment utilizes test mass
with a very low internal crystal temperature and a device
similar to Stern–Gerlach (SG) interferometers, which oper-
ate at extremely low temperatures to isolate the effects of
factors other than gravity. The masses are initially released
in a non-entangled state from a fixed height, and the entan-
glement witness is measured after a freely falling duration,
denoted as τ . This measurement captures gravitational infor-
mation if the masses are in an entangled state, providing an
opportunity to test corrections to Newton’s inverse square
law. Shielding non-gravitational effects presents a signifi-
cant challenge in isolating the gravitational effect [22], but
such efforts are crucial for advancing our understanding of
mass behavior, with implications spanning various fields in
physics and beyond. Consequently, this area of research has
garnered considerable attention in recent years [23–27].

Since the ADD model does not fully resolve the hierarchi-
cal problem, our work focuses on investigating the quantum
gravity induced entanglement of masses (QGEM) in the RS-
II model [28]. Our objective is to explore new approaches for
studying extra dimensions. Our proposed strategy suggests
that the presence of an extra dimension would result in the
propagation of gravitons with m > 0 along it. These cor-
rection terms would impact both the gravitational potential
and particle entanglement. In this study, we propose incor-
porating the influence of extra dimensions into the QGEM
experiment, allowing us to attempt to verify the existence of
extra dimensions.

2 RS brane-worlds

There are two types of RS models: the RS-I model [2] and
the RS-II model [28]. The RS-I model assumes that there are
two 3-branes, one visible and the other invisible. Within this
framework, the generation of the weak scale arises from the
order Planck scale through an exponential hierarchy. Notably,
this exponential hierarchy is not a result of gauge interactions
but is instead driven by the background metric, which cor-
responds to a slice of AdS5 spacetime. The entire bulk is
described by an action.

S = Sgravi t y + Svis + Sinv,

Sgravi t y =
∫

d4x
∫

dy
√−g(2M3

5 R − �),

Svis =
∫

d4x
√−gvis(Lvis − Vvis),

Sinv =
∫

d4x
√−ginv(Linv − Vinv),

(1)

where

Vvis = −Vinv = −24M3
5 l

−1, (2)

and M5 is the fundamental scale in five dimensions. By using
the action above and solving the 5D Einstein equation, one
obtains

√−G

(
RAB − 1

2
GAB R

)
= − 1

4M3
5

[
�

√−GGAB

+Vvis
√−gvis g

vis
μν δ

μ
Aδν

Bδ(φ − π) + Vinv

√−ginvg
inv
μν δ

μ
A

δν
Bδ(φ = 0)

]
, (3)

where GAB is the five dimensional metric and the indices
A, B = (μ, φ) (μ = 0, 1, 2, 3). And gvis

μν ≡ Gμν(xμ, φ =
π), ghidμν ≡ Gμν(xμ, φ = 0). The metric for the equation
takes the form

ds2 = e−2|y|/ lημνdx
μdxν + dy2, (4)

where ημν has “− + ++” signature. y is the fifth compact
dimension, and dy = rcdφ, with rc being the compactifi-
cation radius of the extra dimension. e−2|y|/ l is called the
warp factor and l is the AdS5 curvature radius of the extra
dimension. This solution describes a curved extra dimension
with a negative cosmological constant

� = −24M3
5 l

−2, (5)

which helps to confine the zero-mode gravitons near the
invisible brane. The behavior of gravitons depends on their
mass [28–31].

The RS-II model, on the other hand, assumes a 4+1 non-
compactification dimensions and is to place one of the branes
at rc = ∞ [28]. So the model derive

MPl = M3
5 l

(
1 − e

−2rcπ
l

)
= M3

5 l. (6)

The spectrum of general linearized fluctuations have the form

GAB = e−2|y|/ lημν + hμν(x, y), (7)

and then do a variable decomposition h(x, y) = ψ(y)eip·x .
The gravitational fluctutations satisfy a wave equation
(−m2

2
e

2|y|
l − 1

2
∂2
y − 2

δ(y)

l
+ 1

l2

)
ψ(y) = 0. (8)

Using the gauge ∂μhμν = hμ
μ = 0 and do a change

of variables: z ≡ sgn(y) × (e
|y|
l −1)l, ψ̂(z) ≡ ψ(y)e

|y|
2 l ,

ĥ(x, y) ≡ h(x, y) × e
|y|
2 l . So the Eq. (8) becomes[

−1

2
∂2
z + V (z)

]
ψ̂(z) = m2ψ̂(z), (9)

where

V (z) = 15

8 (|z| + l)2 − 3

2l
δ(z), (10)
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Fig. 1 The QGEM experiment postulates that two masses, separated
by a distance d, undergo free fall for a duration of τ and become entan-
gled solely through the gravitational force. Initially, the two test masses
are in a superposition state characterized by localized states |L〉 and |R〉.
They are then separated into |L ,↑〉 and |R,↓〉 using an SG interferom-
eter, and they remain in a superposition state during the period of free
fall. Finally, their quantum states are measured after passing through a
reverse SG interferometer

and δ means the delta function. Under such conditions, the
massless graviton recovers the Newton’s inverse square law,
while the massive modes produce a correction to the gravi-
tational potential. The correction is [28,32]

V (r) ≈ Gm1m2

r

(
1 + 2l2

3r2

)
(l < r), (11)

where m1 and m2 represent the masses of the test masses
involved in the experiment

3 The effect of extra dimension

The QGEM experiment (see Fig. 1) involves placing a pair of
adjacent microobjects in a superposition state and allowing
them to interact gravitationally for a duration τ . It is expected
that the system will be entangled in the final state [21]. This
entanglement can be confirmed by measuring the entangle-
ment witness.

The QGEM experiment (see Fig. 1) involves placing a
pair of adjacent microobjects in a superposition state and
allowing them to interact gravitationally for a duration τ . It
is expected that the system will be entangled in the final state
[21]. This entanglement can be confirmed by measuring the
entanglement witness.

At starting time τ = 0, the state is given by

|ψ (τ = 0)〉12 = 1√
2

(|L〉1 + |R〉1)
1√
2

(|L〉2 + |R〉2) ,

(12)

where |L〉 and |R〉 represent spatially localized states of two
masses in superposition. After passing through the device,
spin-up states will appear on the left, while spin-down states
will appear on the right. So after time t , we get by [21]

|ψ (τ = t)〉12 = 1

2

[
|L ,↑〉1

(
|L ,↑〉2 + eiδ�LR |R,↓〉2

)

+|R,↓〉1

(
eiδ�RL |L ,↑〉2 + |R,↓〉2

) ]
|C〉1|C〉2,

(13)

Therefore, only spin will be used to represent the state of the
particle. The time evolution of the entanglement state of the
two masses at τ = τend is given by [21]

|ψ (τ = τend)〉12 = 1

2

[
|↑〉1

(
|↑〉2 + eiδ�LR |↓〉2

)

+|↓〉1

(
eiδ�RL |↑〉2 + |↓〉2

) ]
|C〉1|C〉2,

(14)

where |C〉 j represents the initial motional states of masses,
the phase of a quantum state is determined by e−i(E/h̄)t ,
which can be expressed as φ = (E/h̄)t . In the case of
gravitational interaction alone, the energy is given by E =
Gm1m2/d, resulting in a phase shift � = Gm1m2t

h̄d [33]. With-
out an extra dimension, the phase shifts can be computed as
follows:

δ�LR = �LR − �, δ�RL = �RL − �, (15)

where the phases are given by:

� ∼ Gm1m2τ

h̄d
, �RL ∼ Gm1m2τ

h̄ (d − δx)
,

�LR ∼ Gm1m2τ

h̄ (d + δx)
,

(16)

where d represents the distance between the two masses, and
δx represents the interval between |L〉 and |R〉.

To investigate the impact of extra dimension, we consider
the corrected gravitational potential originated from extra
dimension theory (11). In such a case, the freely falling pro-
cess is different from that in standard four-dimensional the-
ory, and the entanglement state would contain the informa-
tion of extra dimension. we were able to ascertain the result-
ing phase shift with extra dimension [34].
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Fig. 2 Comparison of the phase shifts with and without extra dimension, with d = 150 µm and δx = 100 µm for the upper two figures, and
t = 8 s and δx = 100 µm for the lower two

Specifically, they are contained in the phase shifts,

�̃ ∼ Gm1m2τ

h̄d

(
1 + 2l2

3d2

)
,

�̃RL ∼ Gm1m2τ

h̄ (d − δx)

(
1 + 2l2

3 (d − δx)2

)
,

�̃LR ∼ Gm1m2τ

h̄ (d + δx)

(
1 + 2l2

3 (d + δx)2

)
.

(17)

Furthermore, the phase shifts are given by:

δ�̃RL = �̃RL − �̃, (18)

δ�̃LR = �̃LR − �̃. (19)

In our analysis, we focus on microobjects with a mass
on the order of 10−14 kg. To ensure that the AdS radius,
denoted as l, is below the current lower limit for testing the
Newton’s inverse square law, we set l to be sufficiently small.
The corresponding phase shifts are illustrated in Fig. 2.

We observe that the phases change more rapidly in the
existence of an extra dimension, indicating an accelerated

evolution of the quantum states. As the radius of curva-
ture increases, the magnitude of the phase changes becomes
greater. This is due to the fact that the correction to the grav-
itational potential is proportional to the AdS radius l. Fur-
thermore, the phase shift δ�RL undergoes more significant
changes compared to δ�LR . This is because the distance
between the states |R〉 and |L〉 is relatively shorter, result-
ing in a weaker gravitational interaction and larger phase
changes. Overall, these observations suggest that the pres-
ence of an extra dimension has significant effects on the phase
shifts.

To determine whether the masses are in entangled states,
we need to calculate the witness generated by the two masses.
The witness is defined as [21]:

W =
∣∣∣〈σ (1)

x ⊗ σ (2)
z 〉 + 〈σ (1)

y ⊗ σ (2)
y 〉

∣∣∣ , (20)

where σ i
x,y,z represents the Pauli matrix and

〈σ (1)
x ⊗ σ (2)

z 〉 = 〈ψ |σ (1)
x ⊗ σ (2)

z |ψ〉. (21)
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Fig. 3 We compare the entanglement witness W in the presence and
absence of an extra dimension. In the top figure, the parameters used
are d = 150 µm and δx = 100 µm. For the middle figure, we set
d + δx = 700 µm and l = 50 µm. In the bottom figure, the values
chosen are d − δx = 50 µm and l = 50 µm. Instead of using just
d and δx , we employ d + δx and d − δx because they represent the
farthest and closest distances between the two masses, respectively, as
illustrated in Fig. 1

The phase shifts are incorporated through Eq. (14). IfW > 1,
it indicates that the masses are in entangled states. We illus-
trate the witness W for various parameter choices using the
obtained phase shifts in Fig. 3. Due to the current experi-
mental observations [19], we chose l ≤ 50µm.

In the upper part of Fig. 3, we can observe that the wit-
ness of the masses reaches 1 more rapidly in the presence
of an extra dimension. Notably, this behavior shows a posi-
tive correlation with the AdS radius. This correlation can be
understood by examining the gravitational potential (11) and
the phase shifts (17), which both include correction terms
proportional to l2.

The middle figure with a fixed d + δx and the bottom
figure with a fixed d − δx illustrate the effects of d − δx and
d + δx , respectively. From the middle figure, it is evident
that the witness approaches unity rapidly for small values of
d − δx . This behavior can be explained by examining the
expressions (17), (18), and (19), where d − δx appears in
the denominators. Consequently, the witness is sensitive to
variations in d − δx .

In contrast, the bottom figure shows that the witness
approaches unity more rapidly for larger values of d + δx ,
contrary to the behavior observed in the middle figure. This
behavior also stems from Eqs. (17), (18), and (19). Although
the distance d + δx appears in the denominator, it should be
noted that �̃LR − �̃ < 0 according to Eq. 19. Therefore, as
the distance d+δx increases, the entanglement phenomenon
between the particles becomes more pronounced. This may
be because the increase in d + δx reduces the impact on the
nearest pair, as depicted in Fig. 2c.

When comparing the middle and bottom figures, we
observe that the distance d−δx has a more significant impact
on the witness compared to d+δx . This is due to the fact that
the interaction between |R〉1 and |L〉2 occurs over a shorter
distance, d − δx . As a result, �̃RL dominates, as depicted in
Fig. 1.

4 Conclusion

In this paper, we focused on the QGEM experiment proposed
by Bose et al. [21]. Our main objective was to investigate the
impact of an extra dimension on the QGEM experiment. The
presence of the extra dimension leads to corrections in the
gravitational potential, which, in turn, affects the quantum
phase and entanglement phenomena of the test masses.

By analyzing the model parameters, we gained insights
into the effect of the extra dimension on particle entangle-
ment. Our results demonstrate that in the presence of an RS-II
type of extra dimension, compared to the four-dimensional
theory, the particle’s witness will reach 1 in a shorter time.
This acceleration can be attributed to the strengthening of the
gravitational potential on short scales due to the presence of
the extra dimension. It is important to note that these con-
clusions are specific to the RS-II braneworld model and may
not necessarily hold true for other models.

Lastly, we acknowledge that our theoretical analysis in
this paper neglected certain details of the experiment, such as
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the specific setup of distances and the Casimir–Polder force.
Nevertheless, this work also presents a potential approach
for detecting extra dimensions.
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