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Abstract The electromagnetic and gravitational form fac-
tors of decuplet baryons are systematically studied with a
covariant quark–diquark approach. The model parameters
are firstly discussed and determined through comparison with
the lattice calculation results integrally. Then, the electro-
magnetic properties of the systems including electromagnetic
radii, magnetic moments, and electric-quadrupole moments
are calculated. The obtained results are in agreement with
experimental measurements and the results of other mod-
els. Finally, the gravitational form factors and the mechan-
ical properties of the decuplet baryons, such as mass radii,
energy densities, and spin distributions, are also calculated
and discussed.

1 Introduction

Form factors (FFs) provide a wealth of information for
understanding the inner structures of particles. Electromag-
netic form factors (EMFFs) can provide the electromagnetic
properties of a system, such as its charge radius, magnetic
moment, and even higher-order moments. Meanwhile, grav-
itational form factors (GFFs), which are derived from the
matrix element of the symmetric energy–momentum tensor
[1], can give the mechanical properties, such as the mass and
angular momentum distributions.

The spin-3/2 particle is the main research object of this
work. The most fundamental spin-3/2 particles, including
�(1232), �(1385), �(1530), and �−, are known as the
decuplet baryons with SU(3) symmetry, and it is important
to investigate them systematically. The composition of the
decuplets is illustrated in Fig. 1. The � resonance, as the
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lowest excited state of the nucleon, has been considered as a
typical target in the research of spin-3/2 particles. Unfortu-
nately, due to the short lifetime [2] of the � isobar, directly
measuring its EMFFs experimentally remains a challenge.
In the decuplets, �∗ and �∗ have a similar short lifetime,
while �− has a longer lifetime, with cτ = 2.461 cm [2].
Fortunately, the transition processes can be expected to yield
information on accessing the electromagnetic properties of
� and other decuplet baryons [3–5]. Additionally, the mag-
netic moments of �++ and �+ have been measured through
π+ p → π+ pγ [6] and γ p → π0 pγ ′ [7] processes. Since
�− has a longer lifetime, there are more opportunities to
directly probe its structure, and its time-like form factors and
effective form factors have been measured by CLEO [8] and
BESIII [9] through the process of e+e− → �−�

+
. Further-

more, we expect that new experimental facilities may pro-
vide us more useful data to understand the electromagnetic
structures of the decuplets. For example, BESIII and possible
future super J/ψ factory SCTF are expected to implement
the secondary beam of �− through a ψ(2S) → �−�

+
pro-

cess [10], and JLab (Jefferson Lab) is planning to measure
the electromagnetic properties of �∗ and �∗ in future exper-
iments [11,12].

Although some experimental facilities are working on the
EMFFs of the decuplet baryons, it is still hard to measure their
GFFs directly due to their negligible gravitational interaction.
However, GFFs can be extracted from generalized parton dis-
tributions [13–16] and generalized distribution amplitudes
[17]. With respect to the nucleon, generalized parton dis-
tributions are expected to be measured from deeply virtual
Compton scattering [18] at some facilities including JLab
[19], the future EIC (Electron Ion Collider) [20], and the
EicC (Electron-Ion Collider in China) [21].

There have been numerous theoretical works about the FFs
of hadrons over the past decades, including those with targets

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-024-12406-4&domain=pdf
mailto:jqwang@ihep.ac.cn
mailto:fudongyan@ihep.ac.cn
mailto:dongyb@ihep.ac.cn


79 Page 2 of 14 Eur. Phys. J. C (2024) 84 :79

Fig. 1 Members of the decuplet baryons

of spin-0 [17,22–24], spin-1/2 [25–31], and spin-1 [15,32–
35]. The electromagnetic properties of decuplets with spin-
3/2 have also been studied with various approaches, such as
lattice QCD (LQCD) [36–41], the Skyrme model [42], chi-
ral perturbation theories (χPT) [43,44], quark models [45–
47], QCD sum rules [48–50], the chiral constituent quark
model (χCQM) [51], 1/Nc expansion [52,53], the general
QCD parameterization method (GPM) [54,55], and the chi-
ral quark soliton model (χQSM) [56]. In terms of the GFFs
of spin-3/2 particles, studies on � [57–60] and �− [61] have
been carried out. However, systematic studies on the GFFs
of the whole decuplets are still lacking.

To study the EMFFs and GFFs of the decuplet baryons
simultaneously, we adopt a relativistic and covariant quark–
diquark approach. In this model, we treat the three-body
system of a decuplet as a two-body system composed of
a quark and a spin-1 (axial-vector) diquark. Therefore, this
approach significantly simplifies the numerical calculations.
Moreover, we explicitly take account of the diquark inter-
nal structure to obtain more accurate results. In our previous
works, this model has been employed for two typical baryons,
� resonance [59] and �− [61], and we believe that it will be
more efficient and simpler when studying the N − � transi-
tion process in our future work. Recall that the determination
of model parameters employed in Refs. [59,61] is based on
fitting to the LQCD results of � (the u and d quark system)
and �− (the s quark system), respectively. In order to pro-
vide a systematic description of all the decuplet baryons built
from u, d, and s quarks, a new set of model parameters is
determined. Then, the EMFFs and GFFs of the systems are
calculated.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly presents the definitions of the EMFFs and GFFs
of a spin-3/2 particle and introduces our covariant quark–
diquark approach. In Sect. 3, the model parameters used
in this calculation for the decuplet baryons are discussed

and determined. With these parameters, the electromagnetic
properties obtained for the systems, including electromag-
netic multipole moments and radii, are explicitly listed, and
our results are compared with other model calculations. Sim-
ilarly, the GFFs are calculated and the mechanical proper-
ties including the mass radii, energy distributions, and angu-
lar momentum distributions in the coordinate space are dis-
cussed. Finally, Sect. 4 is devoted to a brief summary and
some discussion.

2 Form factors and quark–diquark approach

2.1 Electromagnetic form factors

For a spin-3/2 particle, the matrix element of the electromag-
netic current can be parameterized as [62]

〈
p′, λ′

∣∣∣ Ĵμ
a (0)

∣∣∣ p, λ
〉

= −ūα′
(
p′, λ′)

[
Pμ

M

(
gα′αFV,a

1,0 (t) − qα′
qα

2M2 FV,a
1,1 (t)

)

+ iσμq

2M

(
gα′αFV,a

2,0 (t) − qα′
qα

2M2 FV,a
2,1 (t)

)]
uα (p, λ) ,

(1)

where iσμq = iσμρqρ , M stands for the baryon mass and
uα (p, λ) is the Rarita–Schwinger spinor with normaliza-
tion as ūσ ′(p)uσ (p) = −2Mδσ ′σ . The kinematic variables
introduced in Eq. (1) are defined as Pμ = (

pμ + p′μ)
/2,

qμ = p′μ − pμ, and t = −q2, where p (p′) is the initial
(final) momentum. The index a in FV,a

i, j runs from the quark
to the gluon, and the total form factor is their sum. In this
work, we consider only the constituent quark contribution.

In the Breit frame, the average of the baryon momenta
and the momentum transfer are defined as P = (E, 0) and
q = (0, q), where E is the energy carried by the baryon.
Then, the EMFFs of a spin-3/2 particle can be expressed in
terms of FV

i, j [63]

GE0 (t) =
(

1 + 2

3
τ

)
[FV

2,0(t) + (1 + τ)(FV
1,0(t) − FV

2,0(t))]

+ 2

3
τ(1 + τ)[FV

2,1(t) + (1 + τ)(FV
1,1(t) − FV

2,1(t))],
(2a)

GE2 (t) = [FV
2,0(t) + (1 + τ)(FV

1,0(t) − FV
2,0(t))]

+ (1 + τ)[FV
2,1(t) + (1 + τ)(FV

1,1(t) − FV
2,1(t))],

(2b)

GM1 (t) =
(

1 + 4

5
τ

)
FV

2,0 (t) + 4

5
τ(τ + 1)FV

2,1 (t) , (2c)

GM3 (t) = FV
2,0 (t) + (τ + 1)FV

2,1 (t) , (2d)
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where τ = −t/(4M2), with t < 0. In Eq. (2), GE0, GE2,
GM1, and GM3 respectively represent the electric-monopole,
electric-quadrupole, magnetic-dipole, and magnetic-octupole
form factors. When the squared momentum transfer t goes
to 0, the electric charge Qe, magnetic moment μ, electric-
quadrupole moment Q, and magnetic-octupole moment O
can be obtained through [64]

Qe = GE0(0), μ = e

2M
GM1(0),

Q = e

M2 GE2(0), O = e

2M3 GM3(0). (3)

The electric charge and magnetic radii are defined from their
corresponding form factors as [40]1

〈r2〉E0 = 6

GE0(0)

d

dt
GE0(t)

∣∣∣∣
t=0

,

〈r2〉M1 = 6

GM1(0)

d

dt
GM1(t)

∣∣∣∣
t=0

. (4)

2.2 Gravitational form factors

The GFFs can be calculated from the matrix element of the
energy–momentum tensor T̂μν as [62]
〈
p′, λ′

∣∣∣T̂μν
a (0)

∣∣∣ p, λ
〉

= −ūα′
(
p′, λ′)

[
PμPν

M

(
gα′αFT,a

1,0 (t) − qα′
qα

2M2 FT,a
1,1 (t)

)

+
(
qμqν − gμνq2

)

4M

(
gα′αFT,a

2,0 (t) − qα′
qα

2M2 FT,a
2,1 (t)

)

+Mgμν

(
gα′αFT,a

3,0 (t) − qα′
qα

2M2 FT,a
3,1 (t)

)

+ i P{μσν}ρqρ

2M

(
gα′αFT,a

4,0 (t) − qα′
qα

2M2 FT,a
4,1 (t)

)

− 1

M

(
q{μgν}{α′

qα} − 2qα′
qαgμν

−gα′{μgν}αq2
)
FT,a

5,0 (t)

+Mgα′{μgν}αFT,a
6,0 (t)

]
uα (p, λ) , (5)

where the convention a{μbν} = aμbν + aνbμ is used. Note
that FT

3,0, FT
3,1 and FT

6,0 are the non-conserving terms which
will vanish when considering the contribution from the gluon,
so we simply ignore them here.

Analogously to the EMFFs, the gravitational multi-
pole form factors (GMFFs), including the energy-monopole

1 For the neutral baryon, the radii are defined as [44]

〈r2〉E0 = 6
d

dt
GE0(t)

∣∣∣∣
t=0

, 〈r2〉M1 = 6
d

dt
GM1(t)

∣∣∣∣
t=0

.

(-quadrupole) form factors ε0(2)(t), the angular momentum-
dipole (-octupole) form factors J1(3)(t), and the form fac-
tors D0,2,3(t), can be expressed as the linear combination
of the GFFs, FT

i, j (t). The detailed definitions of the GMFFs
have been explicitly given in Ref. [57], and thus we do not
repeat them to avoid verbosity. Moreover, the mass radius
of a baryon is obtained through the energy-monopole form
factor as

〈r2〉M = 6

ε0(0)

d

dt
ε0(t)

∣∣∣∣
t=0

. (6)

The energy, angular momentum, and mechanical force
densities of the baryons in the coordinate space (r -space)
can be derived through Fourier transformation into the cor-
responding form factors. The energy-monopole and energy-
quadrupole densities are defined as [57]

E0(r) = M ε̃0(r), E2(r) = − 1

M
r

d

dr

1

r

d

dr
ε̃2(r), (7)

with

ε̃0,2(r) =
∫

d3q

(2π)3 e
−iq·rε0,2(t), (8)

being the densities in r -space. The angular momentum den-
sity can be expressed as

ρJ (r) = −1

3
r

d

dr

∫
d3q

(2π)3 e
−iq·rJ1(t). (9)

According to Ref. [1], it is argued that the densities of the
corresponding pressure and shear force in classical medium
physics are derived from the form factors correlated with the
“D-term” as

p0(r) = 1

6M

1

r2

d

dr
r2 d

dr
D̃0(r),

s0(r) = − 1

4M
r

d

dr

1

r

d

dr
D̃0(r), (10)

where

D̃0(r) =
∫

d3q

(2π)3 e
−iq·rD0(t). (11)

The higher-order pressures and shear forces are omitted here
and explicitly listed in Ref. [57].

2.3 Quark–diquark approach

We know that the decuplet baryons are composed of three
quarks and have a spin of 3/2. In our quark–diquark
approach, we treat the baryon as a bound state of a spin-
1/2 quark and a spin-1 (axial-vector) diquark. The SU(6)
spin-flavor wave functions of the decuplets are listed in
Appendix A [65]. According to the wave functions, the total
matrix element can be expressed as the sum of the quark and
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diquark contributions,

〈
p′, λ′

∣∣∣ Ĵμ(0)

∣∣∣ p, λ
〉
=

〈
p′, λ′

∣∣∣ Ĵμ
q (0)

∣∣∣ p, λ
〉

+
〈
p′, λ′

∣∣∣ Ĵμ
D(0)

∣∣∣ p, λ
〉
. (12)

Figure 2 gives the Feynman diagrams for the electromag-
netic interaction. One can write the contribution of the quark
according to Fig. 2a as

〈
p′, λ′

∣∣∣ Ĵμ
q (0)

∣∣∣ p, λ
〉
= −Qq

e eūα′(p′, λ′)
(
−iC2

)

×
∫

d4l

(2π)4

1

D
�α′β ′

(
/l + /q

2
+ mq

)
gβ ′βγ μ

×
(

/l − /q

2
+ mq

)
�αβuα(p, λ), (13)

where Qq
e is the electric charge carried by the quark, C

is a normalization constant to ensure the calculated result
Gq

E0(0) = Qq
e , and �αβ is the vertex of the baryon with its

quark and diquark constituents. Note in particular that we
neglect the kμkν/m2

D term in the propagator of the diquark
(1+) to avoid divergence of the integral [66]. According to
Ref. [67], the Lorentz structure of the vertex is

�αβ = gαβ + c2γ
β�α + c3�

β�α, (14)

where � is the relative momentum between the quark and
the diquark. The parameters of couplings c2, c3 in Eq. (14)
can be determined by fitting to the lattice data [36,37], and
we assume that they are independent of the baryon mass. D
in Eq. (13) contains the denominators of the propagators and
a special scalar function ζ attached to the vertex to ensure
that the quark and the diquark can form a bound state. Here
we simply choose the function [68]

ζ(p1, p2) = C[
p2

1 − m2
R + iε

] [
p2

2 − m2
R + iε

] , (15)

with mR as a cutoff parameter which is positively correlated
with the baryon mass. The total D is thus written as

D =
[
(l − P)2 − m2

R + iε
]2

[(
l − q

2

)2 − m2
R + iε

]

×
[(

l + q

2

)2 − m2
R + iε

]

×
[(

l + q

2

)2 − m2
q + iε

][(
l − q

2

)2 − m2
q + iε

]

×
[
(l − P)2 − m2

D + iε
]
. (16)

Similarly, the diquark contribution Fig. 2b can be expressed
as
〈
p′, λ′

∣∣∣ Ĵμ
D(0)

∣∣∣ p, λ
〉
= −QD

e eūα′(p′, λ′)iC2

×
∫

d4l

(2π)4

1

D′ �
α′
β ′

(
/P − /l + mq

)
jμ,β ′β
D � α

β uα(p, λ),

(17)

where

D′ =
[
(l − P)2 − m2

R + iε
]2

[(
l − q

2

)2 − m2
R + iε

]

×
[(

l + q

2

)2 − m2
R + iε

]

×
[(

l + q

2

)2 − m2
D + iε

][(
l − q

2

)2 − m2
D + iε

]

×
[
(l − P)2 − m2

q + iε
]
. (18)

jμ,β ′β
D in the above equation stands for the effective elec-

tromagnetic current of the diquark. Considering a diquark
composed of quarks qa and qb, the electromagnetic current
can be derived from

∑
i=a,b

〈
p′
D, λ′

D

∣∣∣ Ĵμ
qi (0)

∣∣∣ pD, λD

〉

= −ε∗
β ′

(
p′
D, λ′

D

)
jμ,β ′β
D εβ (pD, λD) , (19)

where εβ(pD, λD) represents the spin-1 diquark field, and

the kinematic variables are defined as Pμ
D =

(
pμ
D + p′μ

D

)
/2,

qμ
D = p′μ

D − pμ
D = qμ, and q2

D = −tD = −t .
Assuming that the diquark is almost on shell, we can write

the matrix element
〈
p′, λ′

∣∣∣ Ĵμ
qi (0)

∣∣∣ p, λ
〉
= −Qqi

e eε
∗
β ′(p′

D, λ′
D)

(
−iC2

D

)

×
∫

d4lD
(2π)4

1

DD
γ β ′

(
/l D + /qD

2
+ mq

)
γ μγ β

×
(

/l D − /qD

2
+ mq

)
εβ(pD, λD), (20)

where the quark–diquark vertex γ β is borrowed from
Ref. [69], CD is the normalization constant similar to C, and
DD is defined as

DD = [
(lD − PD)2 − m2

R + iε
]2

[(
lD − qD

2

)2 − m2
R + iε

]

×
[(

lD + qD
2

)2 − m2
R + iε

]

×
[(

lD + qD
2

)2 − m2
q + iε

][(
lD − qD

2

)2 − m2
q + iε

]

×
[
(lD − PD)2 − m2

q + iε
]
. (21)
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Fig. 2 Feynman diagrams for the electromagnetic matrix elements contributed by the quark (a) and the diquark (b). Diagram c gives the internal
structure of the diquark in this process

Finally, the effective electromagnetic current jμ,β ′β
D can be

written as

jμ,β ′β
D =

[
gβ ′βFV

D,1(t) − qβ ′
qβ

2m2
D

FV
D,2(t)

]
(
p′
D + pD

)μ

−(qβ ′
gμβ − qβgμβ ′

)FV
D,3(t), (22)

where FV
D,1 (2,3)(t) are the three form factors of the spin-1

diquark.
In terms of the GFFs and according to the quark Lagrangian

L = i

2
ψqγ

μ
↔
∂ μψq + mqψqψq , (23)

with
↔
∂ μ = →

∂ μ − ←
∂ μ, we have the symmetric energy–

momentum tensor of the quark as

Tμν = i

4
ψqγ

μ
↔
∂νψq + i

4
ψqγ

ν
↔
∂μψq . (24)

Therefore, the GFFs contributed by the quark and the diquark
can be calculated by replacing γ μ with γ μlν + γ νlμ in
Eqs. (13) and (20). Our work on �(1232) [59] describes
the calculation process in detail.

3 Numerical results

3.1 Parameter determination

Using the on-shell identities in Ref. [62], we can extract the
form factors from Eqs. (1) and (5). Before doing the calcula-
tion of the loop integrals numerically, it is necessary to input
the model parameters including the baryon mass M , quark
mass mq , diquark mass mD , and the cutoff parameter mR

introduced in Eq. (15). Moreover, the couplings c2, c3 in the
quark–diquark vertex (14) must also be determined. It should
be mentioned that in our previous studies on � isobar (the u
and d quark system) [59] and �− [61] (the s quark system),
we chose two sets of parameters separately. Here, since we
aim to provide a systematic description of all the decuplet

baryons, the parameters are re-determined. We simply keep
the parameters c2, c3, and mR in Ref. [61] for � hyperon (the
s quark system) and re-determine the parameters associated
to the light-flavor, such as mu , mud , and mus , since the mass
of � is defined as the average between � and nucleon instead
of its physical mass in Ref. [59].

In this work, all the decuplet baryon masses M are chosen
from Ref. [2]. To ensure that the quark and the diquark are in
bound states, the input masses of the quark and diquark need
to satisfy the relation M < mq +mD and mD < mqa +mqb .
Since mR is positively correlated with the baryon mass and
has little effect on the results [59,61], we simply borrow
mR = 2.2 GeV from our previous work about the heaviest
baryon �− [61].

As shown in Fig. 3a, c2, c3 have little impact on the
electric-monopole and magnetic-dipole form factors. When
c2 and c3 (in units of GeV−1 and GeV−2, respectively) run
from 0 to 1, the value of G�+

M1(0) changes by only about
3%. However, the higher-order multipoles, especially the
magnetic-octupole form factor GM3(t), are sensitive to the
values of c2 and c3. According to Fig. 3c, G�+

M3(0) even
changes its sign as the two parameters increase. Here we
keep the same parameters from our previous work about �−
[61], c2 = 0.306 GeV−1 and c3 = 0.056 GeV−2, which
were obtained by fitting to the LQCD data on the electric-
monopole, electric-quadrupole, and magnetic-dipole form
factors. Since the experimental and empirical LQCD results
of GM3(t) are still lacking, our c2 and c3 are only roughly
determined.

Finally, we have one set of parameters to describe the
EMFFs and the GFFs of all the decuplet baryons simul-
taneously in Table 1, where mq1q2 stands for the mass of
the diquark composed of q1 and q2, and we assume that
md = mu , mus = mds , and muu = mud = mdd .

123
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Fig. 3 G�+
M1(0), G�+

E2 (0), and G�+
M3(0) as the parameters c2 and c3 (in units of GeV−1 and GeV−2, respectively) change

Table 1 Parameters used in this
work

M�/GeV M�∗ /GeV M�∗ /GeV M�/GeV mu /GeV ms /GeV

1.232 1.385 1.530 1.672 0.43 0.6

mud /GeV mus /GeV mss /GeV mR /GeV c2/GeV−1 c3/GeV−2

0.82 0.99 1.15 2.2 0.306 0.056

3.2 EMFFs numerical results

Here we show our calculated results of the EMFFs of the
decuplet baryons. In Fig. 4, our EMFFs of �+ are quali-
tatively consistent with the LQCD results of Ref. [36] and
also with our previous calculation in Ref. [59].2 The fig-
ures also show the quark and the diquark contributions sep-
arately. Since �+ is composed of both u(ud) and d(uu),
the value is their average according to the wave function in
Appendix A. Figures 5 and 6 plot the EMFFs of other dif-
ferent isospin states of �∗ and �∗. For isovectors of �∗+,
�∗0 and �∗−, we employ the same normalization constant
C to ensure G�∗+

E0 (0) = 1. As seen in the first panel in Fig. 5,
GE0(0) of �∗0 and �∗− are very close to 0 and −1, respec-
tively, indicating that the normalization condition is nearly
satisfied. Similar results occur for �∗. It should be specifi-
cally mentioned that our EMFF results of �0 are strictly zero;
however, those of �∗0 and �∗0 are close to but not exactly
zero because of to s and u(d) having different masses, which
breaks the SU(3) symmetry slightly. Since the form factors
of �− were calculated with the same set of parameters and
shown in our previous work [61], we do not address them
here for simplicity.

Tables 2 and 3 list the electric charge and magnetic radii
obtained from our work and other studies including LQCD
[36–38], the chiral quark model [51], and 1/Nc expansion
[52,53]. Compared with other works, our results are gener-
ally larger but qualitatively consistent with theirs. In our pre-
vious study on the � resonance [14], we chose the baryon

2 Our GE0(t) are smaller than the lattice results. It should be mentioned
that Ref. [36] gives the � isobar mass as about 1.5 GeV, which is about
30% overestimated.

mass as M = 1.085 GeV, which is the average of �(1232)

and nucleon. Since we choose a different set of parameters for
u andd quarks in this work, the charge radius of�(1232)here
is slightly larger than that in Ref. [14]. It is seen that, for �−,
�∗−, �∗−, and �− hyperons, the electric charge and mag-
netic radii decrease in turn. This feature may be attributable
to the different binding strengths of the baryons. �− has the
longest lifetime in the decuplets, suggesting that its bind-
ing strengths are the strongest. Consequently, the location of
quarks inside �− may be very close to the origin and lead to
the smallest radius. Similarly, for the �, �∗, and �∗ isobars,
the larger decay width indicates a less stable structure, which
leads to the larger radius.

The magnetic moments of all the decuplets, compared
with those from other theoretical and experimental works,
are presented in Table 4. It can be seen that ours are qual-
itatively consistent with the experiments and other studies.
Table 5 shows the electric quadrupole moments, whose sign
characterizes the deformation of the charge distribution. A
positive value suggests that the particle has a prolate charge
distribution and, contrarily, a negative value stands for an
oblate shape. To sum up, we find that all the baryons with a
positive charge have negative electric quadrupole moments,
and negatively charged baryons are the opposite. Note that the
obtained moments are the so-called spectroscopic moments,
which are measured in the laboratory. Therefore, the shape
discussed in this paper is the spectroscopic shape instead of
the geometric shape derived from the intrinsic quadrupole
moments [70,71].
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Fig. 4 EMFFs of �+, compared with the LQCD results [36]. The solid, dashed, and dot-dashed curves represent the total EMFFs and those
contributed by quark and diquark

Fig. 5 EMFFs of �∗. The solid, dashed and dot-dashed curves represent the EMFFs of �∗+, �∗0, and �∗−
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Fig. 6 EMFFs of �∗. The solid and dashed curves represent the EMFFs of �∗− and �∗0

Table 2 Electric charge radii of the decuplet baryons, compared with those from LQCD [36–38], chiral perturbation theory [43,44], the chiral
constituent quark model [46], chiral quark model [51], 1/Nc expansion [52,53], and chiral quark-soliton model [56]

〈r2〉E0/fm2 �++ �+ �0 �− �∗+ �∗0 �∗− �∗0 �∗− �−

This work 0.894 0.894 0 0.894 0.784 0.087 0.614 0.166 0.451 0.361

LQCD [36,37] · · · 0.641(22) · · · · · · · · · · · · · · · · · · · · · 0.355(14)

LQCD [38] · · · 0.410(57) 0 · · · 0.399(45) 0.020(7) 0.360(32) 0.043(10) 0.330(20) 0.307(15)

χPT [43] 0.325(22) 0.328(21) 0.006(1) 0.316(23) 0.315(21) 0 0.315(21) −0.006(1) 0.312(18) 0.307(15)

χPT [44] 0.30(11) 0.29(10) −0.02(1) 0.33(11) 0.31(11) 0 0.31(11) 0.02(1) 0.29(10) 0.27(10)

χCQM [46] 0.43 0.43 0 0.43 0.42 0.37 0.03 0.06 0.33 0.29

χQM [51] 0.77 0.77 0 0.77 0.93 0.10 0.74 0.20 0.68 0.78

1/Nc [52] 1.048 1.101 0.105 0.891 0.939 −0.031 0.895 −0.098 0.981 1.042

1/Nc [53] 0.783 0.783 0 0.783 0.869 0.108 0.669 0.206 0.561 0.457

χQSM [56] 0.826 0.792 −0.069 0.930 0.843 −0.024 0.891 0.021 0.852 0.813

Table 3 Magnetic radii of the decuplet baryons, compared with those from LQCD [37], chiral perturbation theory [44], the chiral quark model
[51], and chiral quark-soliton model [56]

〈r2〉M1/fm2 �++ �+ �0 �− �∗+ �∗0 �∗− �∗0 �∗− �−

This work 0.827 0.827 0 0.827 0.703 0.421 0.573 0.820 0.443 0.340

LQCD [37] · · · · · · · · · · · · · · · · · · · · · · · · · · · 0.286(31)

χPT [44] 0.61(15) 0.64(14) 0.07(12) 0.55(19) 0.59(16) 0 0.59(16) −0.07(12) 0.64(14) 0.70(12)

χQM [51] 0.62 0.62 0 0.62 0.67 0.82 0.61 0.82 0.58 0.53

χQSM [56] 0.587 0.513 1.786 0.764 0.599 3.356 0.713 0.784 0.653 0.582
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Table 4 Magnetic moments of the decuplet baryons, compared with those from PDG [2], LQCD [36–41], chiral perturbation theory [43,44], the
relativistic quark model [47], QCD sum rules [49], chiral quark model [51], chiral quark-soliton model [56], and 1/Nc expansion [73]

μ/μN �++ �+ �0 �− �∗+ �∗0 �∗− �∗0 �∗− �−

This work 4.80 2.40 0 −2.40 2.58 0.20 −2.18 0.37 −1.95 −1.79

PDG [2] 6.14(51) 2.7+1.0
−1.3 ± 1.5 ± 3 · · · · · · · · · · · · · · · · · · · · · −2.02(5)

LQCD [36,37] · · · 1.91(16) · · · · · · · · · · · · · · · · · · · · · −1.835(94)

LQCD [38] 3.20(56) 1.60(28) 0 −1.60(28) 1.76(18) 0.00(4) −1.75(13) 0.08(5) −1.76(8) −1.70(7)

LQCD [39] 3.70(12) 2.40(6) · · · −1.85(6) · · · · · · · · · · · · · · · −1.93(8)

LQCD [40] 4.91(61) 2.46(31) 0.00 −2.46(31) 2.55(26) 0.27(5) −2.02(18) 0.46(7) −1.68(12) −1.40(10)

LQCD [41] 5.24(18) 0.97(8) −0.035(2) −2.98(19) 1.27(6) 0.33(5) −1.88(4) 0.16(4) −0.62(1) · · ·
χPT [43] 6.04(13) 2.84(2) −0.36(9) −3.56(20) 3.07(12) 0 −3.07(12) 0.36(9) −2.56(6) −2.02

χPT [44] 4.97(89) 2.60(50) 0.02(12) −2.48(32) 1.76(38) −0.02(3) −1.85(38) −0.42(13) −1.90(47) −2.02(5)

RQM [47] 4.76 2.38 0 −2.38 1.82 −0.27 −2.36 −0.60 −2.41 −2.35

QCDSR [49] 4.13(1.30) 2.07(65) 0 −2.07(65) 2.13(82) −0.32(15) −1.66(73) −0.69(29) −1.51(52) −1.49(45)

χQM [51] 6.93 3.47 0 −3.47 4.12 0.53 −3.06 1.10 −2.61 −2.13

χQSM [56] 3.65 1.72 −0.21 −2.14 1.91 −0.04 −1.99 0.13 −1.84 −1.69

HBχPT [72] 4.0(4) 2.1(2) −0.17(4) −2.25(25) 2.0(2) −0.07(2) −2.2(2) 0.10(4) −2.0(2) −1.94(22)

1/Nc [73] 5.9(4) 2.9(2) · · · −2.9(2) 3.3(2) 0.3(1) −2.8(3) 0.65(20) −2.30(15) −1.94

Table 5 Electric-quadrupole moments of the decuplet baryons com-
pared with those from LQCD [36,37], the Skyrme model [42], nonrel-
ativistic quark model [45], QCD sum rules [48,50], chiral quark model

[51], 1/Nc expansion [53], general QCD parameterization method [54],
chiral quark-soliton model [56], and chiral perturbation theory [72]

Q/fm2 �++ �+ �0 �− �∗+ �∗0 �∗− �∗0 �∗− �−

This work −0.075 −0.037 0 0.037 −0.045 −0.006 0.033 −0.009 0.027 0.024

LQCD [36,37] · · · −0.019(17) · · · · · · · · · · · · · · · · · · · · · 0.019(3)

Skyrme [42] −0.088 −0.029 0.029 0.088 −0.071 0 0.071 −0.046 0.046 0

NQM [45] −0.093 −0.046 0 0.046 −0.054 −0.007 0.040 −0.013 0.034 0.028

QCDSR [48,50] −0.028(8) −0.014(4) 0 0.014(4) −0.028(9) 0.0012(4) 0.03(1) 0.0025(8) 0.045(15) 0.12(4)

χQM [51] −0.252 −0.126 0 0.126 −0.123 −0.021 0.082 −0.030 0.048 0.026

1/Nc [53] −0.120 −0.060 0 0.060 −0.069 0.014 0.077 −0.023 0.047 0.027

GPM [54] −0.226 −0.113 0 0.113 −0.107 −0.017 0.074 −0.023 0.044 0.024

χQSM [56] −0.102 −0.039 0.023 0.085 −0.070 0.003 0.077 −0.016 0.069 0.061

HBχPT [72] −0.08(5) −0.03(2) 0.012(5) 0.06(3) −0.07(3) −0.013(7) 0.04(2) −0.035(2) 0.02(1) 0.009(5)

3.3 GMFF numerical results

Figure 7 shows the obtained GMFFs including energy-
monopole ε0(t), energy-quadrupole ε2(t), angular momentum-
dipole J1(t), and the D-term correlated D0(t). We employ
the same normalization constant C and CD as with those in
EMFFs determined in Sect. 3.2. It is seen that for all the decu-
plet baryons, ε0(0) and J (0) run from 0.97 to 0.99 and from
1.46 to 1.48 separately, which are almost consistent with the
normalization condition ε0(0) = 1 and J (0) = 3/2. As
discussed in Refs. [24,74], the momentum-dependent scalar
function introduced in Eq. (15) may break the gauge invari-
ance and the electromagnetic Ward–Takahashi identity, and
consequently the EMFFs and GFFs cannot be normalized
at the same time. Similar to the discussion of the electric-

quadrupole moment, the positive energy-quadrupole moment
ε2(0) suggests that all the decuplet baryons have a prolate
mass distribution.

Figure 8 shows the energy-monopole and angular momentum-
dipole form factors of �∗+ with the quark and the diquark
contributions plotted, respectively. According to Fig. 8, the
angular-momentum contribution of the diquark is about twice
that of the quark, especially when t goes to 0. This phe-
nomenon is consistent with our understanding of baryon spin,
since the decuplet baryons are composed of a spin-1/2 quark
and a spin-1 diquark.

According to the definition in Eq. (6), we can further derive
the mass radii of the baryons as shown in Table 6. Compared
with the electric charge and magnetic radii in Tables 2 and 3,
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Fig. 7 GMFFs of the decuplet baryons. The solid, dashed, dot-dashed, and dotted curves represent the GMFFs of �, �∗, �∗, and �−

Fig. 8 The energy-monopole and angular momentum form factors of �∗. The solid, dashed, and dot-dashed curves represent the total GMFFs and
those contributed by quark and diquark

the mass radii are slightly smaller. Similarly, the mass radius
becomes smaller as the mass increases.

The energy density, angular momentum density, and
strong force density in the r -space inside the baryon can
also be derived through the Fourier transformation. Refer-
ences [75–77] suggest that the local density distribution must
depend on the size of the wave packet of the system. An
additional wave packet is necessary, physically and mathe-
matically, to guarantee the convergence of the Fourier trans-
formation. Of course, the wave package introduces a new
parameter λ and may have an influence on the definition of
the radius [75,78]. However, this issue is not a priority in this
work.

Here we simply follow the idea of Refs. [75–77] and
employ a Gaussian-like wave packet et/λ

2
[79]. The param-

eter λ has the mass dimension, and 1/λ correlates with the
size of the hadron. As seen in Table 6, the mass radii of
the baryons become smaller as their masses increase. Refer-
ence [76] has a detailed discussion on the determination of λ.
For convenience and simplicity, we assume that 1/λ roughly
relates to the Compton length of the system. and there is a
linear relation between the mass radius and 1/λ of the baryon

√
〈r2〉M = α

1

λ
, (25)

123



Eur. Phys. J. C (2024) 84 :79 Page 11 of 14 79

Table 6 Mass radii of the decuplet baryons

〈r2〉M/fm2 � �∗ �∗ �−

This work 0.801 0.516 0.368 0.298

where the parameter α ∼ 4 is employed in our numerical
calculation.

Figure 9 shows the energy-monopole densities and angu-
lar momentum densities of the decuplet baryons. The inte-
grated result of E0(r) and ρJ (r) over the whole coordinate
space gives the mass and spin of the corresponding baryon.
The right panel gives the angular momentum densities of the
baryons, where it is seen that the large λ concentrates the
densities close to the origin.

Finally, D0,2,3(t) are supposed to connect with the pres-
sure and shear force in the classical physical concept dis-
cussed in Ref. [1]. As shown in Fig. 7, the D-term, D =
D0(0), of all the baryons is positive. However, it is argued
in Ref. [58] that the D-term should be negative in order to
guarantee the stability of the system. The sign of the present
D-term is consistent with our previous results [59,61] in the
same quark–diquark approach, and with the result of the
hydrogen atom [80]. Although the phenomenon of D > 0 is
not consistent with the arguments in Ref. [58], it still satisfies
the von Laue condition

∫ ∞
0 drr2 p0(r) = 0. Here, we argue

that the classical definitions of the pressure and shear force
may not exist in the few-body system we are dealing with,
because they are derived from statistical means in classical
multi-body systems. The hydrogen atom is also a few-body
system, so its non-positive D-term is not necessary. A more
detailed discussion is given in our work on �− in Ref. [61].

4 Summary and discussion

In this work, the EMFFs and GFFs of all the decuplet baryons
have been calculated systematically and simultaneously with
a relativistic covariant quark–diquark approach. The baryon
structure is simplified from a three-body system into a two-
body system, which effectively simplifies our calculations.
To ensure the bound state between the quark and the diquark,
an additional scalar function is used. Although this scalar
function may have an impact on the gauge invariance, the
deviation of the normalization in our numerical results is
small.

We then fit our results of the EMFFs to the LQCD calcu-
lations for �+ and �− and try to find a set of parameters that
give a systematic and reasonable description of all the decu-
plet baryons. Here, we simply keep the parameters for the
s quark system of �− and recalculate the others containing
u and d quarks. The model parameters cannot be rigorously
determined due to the lack of experimental and LQCD data
on the strongly parameter-dependent higher-order multipole
form factors.

In the numerical calculations, we obtain the electro-
magnetic properties including electric charge radii, mag-
netic moments, electric-quadrupole moments, and magnetic
octupole moments, which are in reasonable agreement with
those from some experiments, LQCD calculations, and other
models. We also calculate the GMFFs of the decuplet
baryons, and derive the mechanical properties of the sys-
tems, including their mass radii, energy, and angular momen-
tum distributions. This shows that the mass radius is smaller
than the electromagnetic radius for all the baryons, and the
mass radii decrease as the baryon masses increase. More-

Fig. 9 The energy-monopole and angular momentum densities of the decuplet baryons. The solid, dashed, dot-dashed, and dotted curves represent
the densities of �, �∗, �∗, and �−
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over, the distributions in the coordinate space for the energy
and angular momentum distributions are also shown with the
introduction of an effective wave package. The sign of the
D-terms in our approach remains positive, though how to
understand this is still controversial.

It is expected that the present systematic description of the
EMFFs and GFFs for all the decuplet baryons might provide
more useful information to comprehend the inner structure
of those baryons with spin-3/2, and also provide reference
for future possible experiments at EIC, EicC, and JPARC.
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Appendix A: SU(6) wave functions of the decuplets

In the quark–diquark approach, the spin-isospin SU(6) wave
functions of the decuplets are expressed as [65]

|�++〉 = |u(uu)〉φ, (A1)

|�+〉 =
(√

2

3
|u(ud)〉 +

√
1

3
|d(uu)〉

)
φ, (A2)

|�0〉 =
(√

2

3
|d(ud)〉 +

√
1

3
|u(dd)〉

)
φ, (A3)

|�−〉 = |d(dd)〉 φ, (A4)

|�∗+〉 =
(√

2

3
|u(us)〉 +

√
1

3
|s(uu)〉

)
φ, (A5)

|�∗0〉 =
(√

1

3
|d(us)〉 +

√
1

3
|u(ds)〉 +

√
1

3
|s(ud)〉

)
φ,

(A6)

|�∗−〉 =
(√

2

3
|d(ds)〉 +

√
1

3
|s(dd)〉

)
φ, (A7)

|�∗0〉 =
(√

2

3
|s(us)〉 +

√
1

3
|u(ss)〉

)
φ, (A8)

|�∗−〉 =
(√

2

3
|s(ds)〉 +

√
1

3
|d(ss)〉

)
φ, (A9)

|�−〉 = |s(ss)〉φ, (A10)

where φ is the spin wave function and (qaqb) stands for the
axial-vector diquark which is composed of quarks qa and qb.
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