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Abstract In addition to the strong and electromagnetic
decay modes, the ψ(1S, 2S) and ηc(1S, 2S) can also decay
via the weak interaction. Such weak decays can be detected
by the high-luminosity heavy-flavor experiments. At present,
some of the semileptonic and nonleptonic J/� weak decays
have been measured at BESIII. Researching for these char-
monium weak decays to D(s) meson can provide a platform
to check of the standard model (SM) and probe new physics
(NP). So we investigate the semileptonic and nonleptonic
weak decays of ψ(1S, 2S) and ηc(1S, 2S) to D(s) within the
covariant light-front quark model (CLFQM). With form fac-
tors of the transitions ψ(1S, 2S) → D(s) and ηc(1S, 2S) →
D(s) calculated under the CLFQM, we predict and discuss
some physical observables, such as the branching ratios,
the longitudinal polarizations fL and the forward–backward
asymmetries AFB . One can find that the Cabibbo-favored
semi-leptonic decay channels ψ(1 S, 2 S) → D−

s �+ν� with
� = e, μ and the nonleptonic decay modes ψ(1S, 2S) →
D−
s ρ+ have relatively large branching ratios of the order

O(10−9), which are most likely to be accessible at the future
high-luminosity experiments.

1 Introduction

The ψ(1S, 2S) and ηc(1S, 2S) are S-wave charmonium
states below the open-charm kinematic threshold. They pre-
dominantly decay through the strong and electromagnetic
interactions. By contrast, their weak decays are rare processes
due to the smallness of the weak interaction strength. While
such decays have evoked a lot of interest from theoretical
research [1–6], because they build a bridge between pertur-
bative and nonperturbative physics and provide a valuable
platform to comprehend the intricate behaviors and dynam-
ics of strong interactions. The hadronic decays of these char-
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monia via the annihilation of cc̄ to gluons are of a high order
in strong coupling αs and are severely suppressed by the
phenomenological Okubo–Zweig–Iizuka (OZI) rule [7–9].
Numerically the total branching ratio of the charmoium weak
decays was estimated to be at the order of 10−8 [10]. New
physics may have a chance to show up in such rare decays.
Furthermore, for the weak decays of charmonia ψ(1S, 2S),
the polarization effect may play an important role to probe
the underlying dynamics and hadron structures [10].

The BESIII Collaboration has reported on the results of
searches for the hadronic and semileptonic weak decays
J/ψ → D−

s π+, J/ψ → D−π+, J/ψ → D̄0 K̄ 0 [11],

J/ψ → D−
s ρ+ [12], J/ψ → D(∗)−

s e+νe [13], J/ψ →
D−e+νe [14], respectively. Very recently, the semileptonic
weak decay J/ψ → D−μ+νμ was firstly researched at
BESIII [15]. The branching ratios at 90% confidence level
were found to be Br(J/ψ → D−

s π+) < 1.4 × 10−4,
Br(J/ψ → D−π+) < 7.5 × 10−5,Br(J/ψ → D̄0 K̄ 0) <

1.7×10−4, Br(J/ψ → D−
s ρ+) < 1.3×10−5, Br(J/ψ →

D(∗)−
s e+νe) < 1.3 × 10−6, Br(J/ψ → D−e+νe) <

7.1 × 10−8 and Br(J/ψ → D−μ+νμ) < 5.6 × 10−7. Cer-
tainly, these upper limits greatly exceed the predicted values
within the Standard Model (SM), which are in the order of
10−9 ∼ 10−12 [1,2,5,6,16–23]. Even so, with the significant
annual accumulation of 1010 J/ψ events, BESIII will soon be
capable of detecting some of these decays in the near future.

For the semileptonic decays, the hadronic transition
matrix element between the initial and final mesons is most
crucial for the theoretical calculations, which can be charac-
terized by several form factors. As to the form factors, they
can be extracted from data or relied on some non-perturbative
methods. The covariant light-front quark model (CLFQM)
as one of popular non-perturbative methods has been suc-
cessfully used to calculate the form factors [24–29]. Com-
pared with the semileptonic decays, the nonleptonic decays
are more complex in dynamics due to both of the two final
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states being hadrons, where more long distance effects are
involved. The factorization assumption based on the vacuum
saturation approximation is often used to simplify the cal-
culations. Specificly, the matrix elements are factorized into
a product of two single matrix elements of currents, where
one is parameterized by the decay constant of the emitted
meson and the other is represented by the transition form
factors. In a word, the form factors are important to both
semileptonic and nonleptonic decays. A variety of models
have been applied to study the transition form factors, such as
the Bauer–Stech–Wirbel (BSW) model [16], the QCD sum
rules (QCDSR) [3,4,18], the Bethe-Salpeter (BS) method
[19]. Based on the form factors and helicity formalisms, we
also calculate another two physical observables: the forward–
backward asymmetry AFB and the longitudinal polarization
fraction fL , respectively.

This paper is organized as follows. The formalism of
the CLFQM, the hadronic matrix elements and the helicity
amplitudes combined via form factors are listed in Sect. 2. In
addition to the numerical results for the ψ(1S, 2S) → D(s)

and ηc(1S, 2S) → D(s) transition form factors, the branch-
ing ratios, the forward–backward asymmetries AFB and the
longitudinal polarization fractions fL for the correspond-
ing decays are presented in Sect. 3. Detailed comparisons
with other theoretical values and relevant discussions are also
included. The summary is presented in Sect. 4. Some specific
rules when performing the p− integration and the expression
for each form factor are collected in the Appendix A and B,
respectively.

2 Formalism

2.1 The form factors

The Bauer–Stech–Wirble (BSW) form factors for the ηc →
D(s) and J/ψ → D(s) transitions are defined as follows1,

〈
D(s)

(
P ′′) ∣∣Vμ

∣∣ ηc
(
P ′)〉 =

(

Pμ −
m2

ηc
− m2

D(s)

q2 qμ

)

×F
ηcD(s)
1

(
q2
)

+
m2

ηc
− m2

D(s)

q2 qμF
ηcD(s)
0

(
q2
)

, (1)
〈
D(s)

(
P ′′) ∣∣Vμ − Aμ

∣∣ J/ψ
(
P ′, ε

)〉

= −εμναβεν
J/ψq

αPβ
V
(
q2
)

mJ/ψ + mD(s)

−i
2mJ/ψεJ/ψ · q

q2 qμA0

(
q2
)

−iεJ/ψ,μ

(
mJ/ψ + mD(s)

)
A1

(
q2
)

1 It is similar for the ηc(2 S) → D(s) and ψ(2 S) → D(s) transitions.

−i
εJ/ψ · q

mJ/ψ + mD(s)

PμA2

(
q2
)

+i
2mJ/ψεJ/ψ · q

q2 qμA3

(
q2
)

, (2)

where P = P ′ + P ′′, q = P ′ − P ′′ and the convention
ε0123 = 1 is adopted. In order to calculate the amplitudes
of the transition form factors, we need the following Feyn-
man rules for the meson–quark–antiquark vertex i�

′
M , where

the subscript M represents a pseudoscalar (P) or vector (V)
meson

i�
′
P = H

′
Pγ5, (3)

i�
′
V = i H ′

V

[
γμ − 1

W ′
V

(
p′

1 − p2
)
μ

]
. (4)

The results of the lowest order form factors could be
obtained by calculating the Feynman diagram shown in
Fig. 1, where the Feynman diagram for the charmonium
decay is also included. In the covariant quark model, the treat-
ment of transition form factor is relatively covariant through-
out the calculation process, where the light-front coordi-
nates of a momentum p are used p = (p−, p+, p⊥) with
p± = p0 ± pz, p2 = p+ p− − p2⊥.

The incoming (outgoing) meson has the mass M ′ (M ′′)
with the momentum P ′ = p′

1 + p2 (P ′′ = p′′
1 + p2), where

p′(′′)
1 and p2 are the momenta of the quark and anti-quark

inside the incoming (outgoing) meson with the massm′(′′)
1 and

m2, respectively. Here we use the same notations as those in
Refs. [24,30] and M ′ refers to the charmonium mass. These
momenta can be expressed in terms of the internal variables
(xi , p′⊥) as

p′+
1,2 = x1,2P

′+, p′
1,2⊥ = x1,2P

′⊥ ± p′⊥, (5)

with x1 + x2 = 1. Using these internal variables, we can
define some quantities for the incoming meson which will
be used in the following calculations

M ′2
0 = (

e′
1 + e2

)2 = p′2⊥ + m′2
1

x1
+ p2⊥ + m2

2

x2
,

M̃ ′
0 =

√
M ′2

0 − (
m′

1 − m2
)2

,

e(′)
i =

√
m(′)2

i + p′2⊥ + p′2
z ,

p′
z = x2M ′

0

2
− m2

2 + p′2⊥
2x2M ′

0
, (6)

where M ′
0 is the kinetic invariant mass of the incoming meson

and can be expressed as the energies of the quark and the anti-
quark e(′)

i . It is similar to the case of the outgoing meson. For
the general ηc(1S, 2S) → D(s) transition, the corresponding
the matrix element is
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Fig. 1 Feynman diagrams for charmonium decay (left) and tran-
sition (right) amplitudes, where P ′(′′) is the incoming (outgoing)
meson momentum, p′(′′)

1 is the quark momentum, p2 is the anti-quark

momentum and X denotes the vector or axial-vector transition vertex.
One can fix the shape parameter through the left Feynman diagram

BηcD(s)
μ = 〈

D(s)
(
P ′′) ∣∣Vμ − Aμ

∣∣ ηc
(
P ′)〉

= −i3 Nc

(2π)4

∫
d4 p′

1

H ′
ηc
H ′′
D(s)

N ′
1N

′′
1 N2

S
ηcD(s)
μ , (7)

where N ′(′′)
1 = p′(′′)2

1 −m′(′′)2
1 and N2 = p2

2 −m2
2 arise from

the quark propagators, and the trace S
ηcD(s)
μ can be directly

obtained by using the Lorentz contraction,

S
ηcD(s)
μ = Tr

[
γ5
(� p′′

1 + m′′
1

)
γμ

(� p′
1 + m′

1

)

× γ5 (− � p2 + m2)
]
. (8)

It is similar for the ψ(1S, 2S) → D(s) transition amplitude,

BψD(s)
μ = −i3 Nc

(2π)4

∫
d4 p′

1

H ′
ψ

(
i H ′′

D(s)

)

N ′
1N

′′
1 N2

S
ψD(s)
μν ε∗ν, (9)

where

S
ψD(s)
μν =

(
S

ψD(s)
V − S

ψD(s)
A

)

μν

= Tr

[(
γν − 1

W ′′
V

(
p′′

1 − p2
)
ν

)

× (
p′′

1 + m′′
1

) (
γμ − γμγ5

) (� p′
1 + m′

1

)

× γ5 (− � p2 + m2)
]
. (10)

The specific expressions for S
ηcD(s)
μ and S

ψD(s)
μν are listed in

the Appendix B. In practice, we use the light-front decompo-
sition of the Feynman loop momentum and integrate out the
minus component through the contour integral method. If the
covariant vertex functions are not singular when performing
integration, the transition amplitudes will pick up the singu-
larities in the anti-quark propagators. The integration then
leads to

N ′(′′)
1 → N̂ ′(′′)

1 = x1

(
M ′(′′)2 − M ′(′′)2

0

)
,

H ′(′′)
M → h′(′′)

M ,

W ′′
M → w′′

M ,

∫
d4 p′

1

N ′
1N

′′
1 N2

H ′
P H

′′
MSPM

→ −iπ
∫

dx2d2 p′⊥
x2 N̂ ′

1 N̂
′′
1

h′
Ph

′′
M ŜPM , (11)

where

M ′′2
0 = p′′2⊥ + m′′2

1

x1
+ p′′2⊥ + m2

2

x2
, (12)

with p′′⊥ = p′⊥ − x2q⊥. The explicit forms of h′
M and w′

M
are given by [24]

h′
P = h′

V =
(
M ′2 − M ′2

0

)√ x1x2

Nc

1√
2M̃ ′

0

ϕ′, (13)

w′
V = M

′
0 + m

′
1 + m2, (14)

with ϕ′ being the light-front momentum distribution ampli-
tude for the S-wave mesons,

ϕ′ = ϕ′ (x2, p
′⊥
) = 4

(
π

β ′2

) 3
4

√
dp′

z

dx2
exp

(

− p′2
z + p′2⊥
2β ′2

)

,

(15)

where β ′ is a phenomenological parameter and can be fixed
by fitting the corresponding decay constant. As to the radi-
ally excited charmonia ψ(2 S) and ηc(2 S), the distribution
functions are given as

ϕ′(2S) = 4

(
π

β ′2

) 3
4

√
dp′

z

dx2
exp

(

− p′2
z + p′2⊥
2β ′2

)

× 1√
6

(

−3 + 2
p′2
z + p′2⊥
β ′2

)

. (16)

Using Eqs. (7)–(12) and taking the integration rules given
in Refs. [24,30], we can obtain the ηc(1S, 2S) → D(s) and
ψ(1S, 2S) → D(s) transition form factors, which are shown
in the Appendix B.

2.2 Helicity amplitudes and observables

Since the form factors involving the fitted parameters for
the ηc(1S, 2S) → D(s) and ψ(1S, 2S) → D(s) transitions
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have been investigated in above subsection, it is convenient
to obtain the differential decay widths of these semilepton-
tic ηc(1S, 2S) and ψ(1S, 2S) decays by the combination of
the helicity amplitudes via form factors, which are listed as
follows

d�(ηc → D(s)�ν�)

dq2

=
(
q2 − m2

�

q2

)2
√

λ(m2
ηc

,m2
D(s)

, q2)G2
F |VCKM |2

384m3
ηc

π3 × 1

q2

×
{
(m2

� + 2q2)λ(m2
ηc

,m2
D(s)

, q2)F2
1 (q2)

+3m2
�(m

2
ηc

− m2
D(s)

)2F2
0 (q2)

}
, (17)

d�L(ψ → D(s)�ν�)

dq2

=
(
q2 − m2

�

q2

)2
√

λ(m2
ψ,m2

D(s)
, q2)G2

F |VCKM |2
384m3

ψπ3

× 1

q2

⎧
⎪⎨

⎪⎩
3m2

�λ(m2
ψ,m2

D(s)
, q2)A2

0(q
2)

+m2
� + 2q2

4m2
D(s)

∣∣∣(m2
ψ − m2

D(s)
− q2)(mψ + mD(s) )A1(q

2)

−
λ(m2

ψ,m2
D(s)

, q2)

mψ + mD(s)

A2(q
2)

∣∣∣∣∣

2
⎫
⎪⎬

⎪⎭
, (18)

d�±(ψ → D(s)�ν�)

dq2

=
(
q2 − m2

�

q2

)2
√

λ(m2
ψ,m2

D(s)
, q2)G2

F |VCKM |2
384m3

ψπ3

×

⎧
⎪⎨

⎪⎩
(m2

� + 2q2)λ(m2
ψ,m2

D(s)
, q2)

×
∣∣∣∣∣∣

V (q2)

mψ + mD(s)

∓ (mψ + mD(s) )A1(q2)
√

λ(m2
ψ,m2

D(s)
, q2)

∣∣∣∣∣∣

2
⎫
⎪⎬

⎪⎭
, (19)

where λ(q2) = λ(m2
ηc(ψ),m

2
D(s)

, q2) = (m2
ηc(ψ) + m2

D(s)
−

q2)2 −4m2
ηc(ψ)m

2
D(s)

and m� is the mass of the lepton � with

� = e, μ. 2 It is noted that although the electron and nuon are
very light compared with the charm quark, we do not ignore
their masses in our calculations in order to check the mass
effects. The combined transverse and total differential decay

2 From now on, we use � to represent e, μ for simplicity.

widths are defined as

d�T

dq2 = d�+
dq2 + d�−

dq2 ,
d�

dq2 = d�L

dq2 + d�T

dq2 . (20)

For the ψ(1S, 2S) decays, it is meaningful to define the
polarization fraction due to the existence of different polar-
izations

fL = �L

�L + �+ + �−
. (21)

As to the forward–backward asymmetry, the analytical
expression is defined as [31]

AFB =
∫ 1

0
d�

dcosθ dcosθ − ∫ 0
−1

d�
dcosθ dcosθ∫ 1

−1
d�

dcosθ dcosθ

=
∫
bθ (q2)dq2

�ηc(ψ)

, (22)

where θ is the angle between the 3-momenta of the lepton �

and the initial meson in the �ν rest frame. The function bθ (q2)

represents the angular coefficient, which can be written as
[31]

bθ (q
2) = G2

F |VCKM |2
128π3m3

ηc

q2
√

λ(q2)

(

1 − m2
�

q2

)2

×m2
�

q2 (Hs
V,0H

s
V,t ), (23)

bθ (q
2) = G2

F |VCKM |2
128π3m3

ψ

q2
√

λ(q2)

(

1 − m2
�

q2

)2

×
[

1

2
(H2

V,+ − H2
V,−) + m2

�

q2 (HV,0HV,t )

]

, (24)

where the helicity amplitudes

Hs
V,0

(
q2
)

=
√

λ
(
q2
)

q2 F1

(
q2
)

,

Hs
V,t

(
q2
)

=
m2

ηc
− m2

D(S)√
q2

F0

(
q2
)

, (25)

for the ηc(1S, 2S) → D(s) transitions, and the helicity ampli-
tudes

HV,±
(
q2
)

= (
mψ+mD(s)

)
A1

(
q2
)

∓
√

λ
(
q2
)

mψ+mD(s)

V
(
q2
)

,

HV,0

(
q2
)

= mψ + mD(s)

2mψ

√
q2

[

−
(
m2

ψ − m2
D(s)

− q2
)

×A1

(
q2
)

+ λ
(
q2
)
A2
(
q2
)

(
mψ + mD(s)

)2

]

,

HV,t

(
q2
)

= −
√

λ
(
q2
)

q2 A0

(
q2
)

, (26)
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for the ψ(1S, 2S) → D(s) transitions. Here the subscript V
in each helicity amplitude refers to the γμ(1 − γ5) current.

2.3 Hadronic matrix elements

In phenomenology, the effective Hamiltonian of charmomium
weak decays ψ(1 S, 2 S) → D(s)M and ηc(1 S, 2 S) →
D(s)M with M = π, K , ρ, K ∗ can be written as [32]

Heff = GF√
2

∑

q1,q2

V ∗
cq1

Vuq2 {C1(μ)Q1(μ)

+C2(μ)Q2(μ)} + H.c. (27)

where GF is the Fermi coupling constant, V ∗
cq1

Vuq2 is the
product of the CKM matrix elements with q1(2) = s, d, and
C1,2(μ) are the Wilson coefficients. The local tree four-quark
operators Q1,2 are defined by

Q1 = [
q̄1,αγμ (1 − γ5) cα

] [
ūβγ μ (1 − γ5) q2,β

]
, (28)

Q2 = [
q̄1,αγμ (1 − γ5) cβ

] [
ūβγ μ (1 − γ5) q2,α

]
, (29)

where α and β are color indices. Based on the effective
Hamiltonian and the naive factorization approach, the matrix
elements for the decays ηc(1S, 2S) → D(s)M can be
expressed as

A (
ηc → D(s)M

) = 〈
D(s)M |Heff | ηc

〉

= GF√
2
V ∗
cq1

Vuq2a1
〈
M
∣∣Jμ

∣∣ 0
〉 〈
D(s)

∣∣Jμ
∣∣ ηc

〉
, (30)

where the combination of the Wilson coefficients a1 =
C1 + C2/3 and 〈M |Jμ| 0〉 is defined as 〈P(q) |Aμ| 0〉 =
−i fPqμ for pseudoscalar (P) mesons and 〈V (q, ε) |Vμ| 0〉 =
fV mV ε∗

μ for vector (V) mesons. Specifically, the total ampli-
tude for each decay channel can be further written as follows

A (
ηc → D−

s π+)

= i
GF√

2
VudV

∗
csa1

(
m2

ηc
− m2

Ds

)
fπ F

ηcDs
0

(
m2

π

)
, (31)

A (
ηc → D−

s K+)

= i
GF√

2
VusV

∗
csa1

(
m2

ηc
− m2

Ds

)
fK FηcDs

0

(
m2

K

)
, (32)

A (
ηc → D−π+)

= i
GF√

2
VudV

∗
cda1

(
m2

ηc
− m2

D

)
fπ F

ηcD
0

(
m2

π

)
, (33)

A (
ηc → D−K+)

= i
GF√

2
VusV

∗
cda1

(
m2

ηc
− m2

D

)
fK FηcD

0

(
m2

K

)
, (34)

A (
ηc → D−

s ρ+)

= √
2GFVudV

∗
csa1mρ

(
ε∗
ρ · pηc

)
fρF

ηcDs
1

(
m2

ρ

)
, (35)

A (
ηc → D−

s K ∗+)

= √
2GFVusV

∗
csa1mK ∗

(
ε∗
K ∗ · pηc

)
fK ∗FηcDs

1

(
m2

K ∗
)

,

(36)

A (
ηc → D−ρ+)

= √
2GFVudV

∗
cda1mρ

(
ε∗
ρ · pηc

)
fρF

ηcD
1

(
m2

ρ

)
, (37)

A (
ηc → D−K ∗+)

= √
2GFVusV

∗
cda1mK ∗

(
ε∗
K ∗ · pηc

)
fK ∗FηcD

1

(
m2

K ∗
)

.

(38)

In addition, the amplitudes for the decays ψ(1 S, 2 S) →
D(s)P with P = π, K can be expressed as

A(ψ → D(s)P) = 〈
D(s)P

∣∣He f f
∣∣ψ

〉

= GF√
2
V ∗
cq1

Vuq2a12mψ

(
εψ · pP

)
fP A

ψD(s)
0

(
m2

P

)
.

(39)

As to the specific decay channels, the amplitudes are given
as

A (
ψ → D−

s π+)

= √
2GFVudV

∗
csa1mψ

(
εψ · pπ

)
fπ A

ψDs
0

(
m2

π

)
, (40)

A (
ψ → D−

s K+)

= √
2GFVusV

∗
csa1mψ

(
εψ · pK

)
fK AψDs

0

(
m2

K

)
, (41)

A (
ψ → D−π+)

= √
2GFVudV

∗
cda1mψ

(
εψ · pπ

)
fπ A

ψD
0

(
m2

π

)
, (42)

A (
ψ → D−K+)

= √
2GFVusV

∗
cda1mψ

(
εψ · pK

)
fK AψD

0

(
m2

K

)
. (43)

For the decays ψ(1S, 2S) → D(s)V , the hadronic matrix
elements can be expressed as

A (
ψ → D(s)V

) = 〈
D(s)V |Heff | ψ

〉

= GF√
2
V ∗
cq1

Vuq2a1Hλ, (44)

where λ denotes the helicity of vector meson, and Hλ =
〈V |Jμ| 0〉 〈D(s)

∣∣Jμ
∣∣ψ

〉
is given as follows

H0 ≡ 〈
V
(
ε′

0, pV
) ∣∣q̄γ μq

∣∣ 0
〉

〈
D(s)

(
pD(s)

) ∣∣c̄γμ (1 − γ5) b
∣∣ψ

(
ε0, pψ

)〉

= i fV
2mψ

[ (
m2

ψ − m2
D(s)

+ m2
V

) (
mψ + mD(s)

)
A

ψD(s)
1

(
m2

V

)

+ 4m2
ψ p2

c

mψ + mD(s)

A
ψD(s)
2

(
m2

V

) ]
, (45)

H± ≡ 〈
V
(
ε′±, pV

) ∣∣q̄γ μq
∣∣ 0
〉

〈
D(s)

(
pD(s)

) ∣∣c̄γμ (1 − γ5) b
∣∣ψ

(
ε±, pψ

)〉

123



65 Page 6 of 17 Eur. Phys. J. C (2024) 84 :65

Table 1 The values of the input parameters [29,33–37]

Mass (GeV) mb = 4.8 mc = 1.4 ms = 0.37 mu,d = 0.25 me = 0.000511

mπ = 0.140 mK = 0.494 mρ = 0.775 mK ∗ = 0.892 mμ = 0.106

mηc = 2.9839 mJ/ψ = 3.0969 mηc(2S) = 3.6377 mψ(2S) = 3.68610 mD = 1.86966

mDs = 1.96835

CKM Vcd = 0.221 ± 0.004 Vus = 0.2243 ± 0.0008

Vud = 0.97373 ± 0.00031 Vcs = 0.975 ± 0.006

Decay constants (GeV) fπ = 0.132 fK = 0.16 fρ = 0.209 fK ∗ = 0.217

f J/� = 0.431 fηc = 0.387 fD = 0.235 fDs = 0.290

Shape parameters (GeV) β
′
ηc

= 0.754+0.014
−0.014 β

′
ηc(2S) = 0.388+0.092

−0.096 β
′
D = 0.541+0.043

−0.042

β
′
J/ψ = 0.646+0.041

−0.041 β
′
ψ(2S) = 0.385+0.049

−0.068 β
′
Ds

= 0.645+0.136
−0.117

Full width �ηc = (32.0 ± 0.7)MeV �J/ψ = (92.6 ± 1.7)keV

�ηc (2S) = (11.3+3.2
−2.9)MeV �ψ(2S) = (294 ± 8)keV

= i fV mV

[
− (

mψ + mD(s)

)
A

ψD(s)
1

(
m2

V

)

× ± 2mψ pc
mψ + mD

VψD(s)
(
m2

V

)]
. (46)

3 Numerical results and discussions

3.1 Transition form factors

The input parameters, including the masses of the initial and
the final mesons, the CKM matrix elements, the shape param-
eters fitted by the decay constants, the full widths of the initial
mesons, and so on are listed in Table 1. It is noted that the
decay constant of charmonium ηc(2S) is calculated as fol-
lowing formula [37]

fηc(2S) =
√

81mηc(2S)�ηc(2S)→γ γ

64πα2
em

, (47)

where �ηc(2S) → γ γ = (1.3 ± 0.6) keV is taken from the
CLEO measurement [38]. Then one can obtain fηc(2S) =
(189+40

−50) MeV with smaller uncertainty compared with

fηc(2S) = (243+79
−111) MeV [29]. As to the decay constant

of ψ(2S), it is estimated from the relation
fψ(2S)

f J/�
= fηc(2S)

fηc

[39] and given as fψ(2S) = (210+43
−52) MeV. Based on the

input parameters from Table 1, one can obtain the numeri-
cal results of the transition form factors at q2 = 0 shown in
Table 2.

All the computations are carried out within the q+ = 0
reference frame, where the form factors can only be obtained
at spacelike momentum transfersq2 = −q2⊥ ≤ 0. It is needed
to know the form factors in the timelike region for the physi-
cal decay processes. Here we use the following double-pole
approximation to parametrize the form factors in the space-

like region and then extend to the timelike region,

F
(
q2
)

= F(0)

1 − aq2/m2 + bq4/m4 , (48)

wherem represents the initial meson mass and F(q2) denotes
the different form factors F1, F0, V, A0, A1 and A2. The
values of a and b can be obtained by performing a 3-
parameter fit to the form factors in the range −10GeV2 ≤
q2 ≤ 0, which are collected in Table 2. The uncertain-
ties arise from the decay constants of the initial charmo-
nia (ηc(1S, 2S), ψ(1S, 2S)) and the final charmed mesons
(D, Ds).

In Table 3, we compare the values of form factors at
maximum recoil (q2 = 0) with those obtained within the
nonrelativistic quantum chromodynamics (NRQCD) [5], the
BSW model [16] and the QCDSR [18]. It is found that our
predictions for the form factors of the transitions ηc →
D(s), J/ψ → D(s) are comparable with those given in the
NRQCD and the BSW model with the parameter ω = 0.5
GeV. Certainly, our results are also consistent with the pre-
vious CLFQM calculations [17] within errors. While those
form factors predicted in the QCDSR [18] are much smaller
than other theoretical predictions. As to the form factors of
the ηc(2S) → D(s), ψ(2S) → D(s) transitions, only the
theoretical results from the NRQCD approach are available,
there exist obvious differences for some of values between
these two approaches.

We plot the q2-dependences of the ηc(1S, 2S) → D(s)

and ψ(1S, 2S) → D(s) transition form factors shown in
Fig. 2. It is very different for the q2-dependences of the form
factors F0(q2) between the transitions ηc(1 S) → D(s) and
ηc(2 S) → D(s). Among the form factors of the transition
J/�(ψ(2 S)) → D(s), V J/�D(s) (Vψ(2 S)D(s) ) is the most
sensitive to the q2 variation compared with other three form
factors.

123



Eur. Phys. J. C (2024) 84 :65 Page 7 of 17 65

Table 2 Form factors of the transitions ηc(1 S, 2 S) → D(s), ψ(1 S, 2 S) → D(s) in the CLFQM. The uncertainties are from the decay constants
of initial and final state mesons

ηc → D J/ψ → D

F1 F0 V A0 A1 A2

F(0) 0.73+0.00+0.03
−0.00−0.04 0.73+0.00+0.03

−0.00−0.04 1.73+0.01+0.03
−0.02−0.05 0.45+0.02+0.02

−0.02−0.01 0.53+0.01+0.00
−0.01−0.00 0.13+0.06+0.07

−0.06−0.07

F(q2
max ) 0.75+0.00+0.03

−0.00−0.04 0.59+0.00+0.03
−0.00−0.04 1.38+0.01+0.01

−0.02−0.04 0.45+0.02+0.01
−0.02−0.00 0.54+0.01+0.01

−0.01−0.00 0.11+0.06+0.07
−0.05−0.06

a 0.41+0.01+0.05
−0.01−0.07 −1.07+0.10+0.38

−0.10−0.32 −0.23+0.13+0.20
−0.14−0.25 0.30+0.05+0.04

−0.06−0.00 0.41+0.04+0.00
−0.05−0.03 −1.08+0.50+0.60

−0.79−0.93

b 1.40+0.05+0.30
−0.05−0.24 4.85+0.37+1.77

−0.35−1.37 8.74+0.87+1.78
−0.80−1.45 2.07+0.22+0.74

−0.20−0.51 2.16+0.30+0.72
−0.26−0.52 1.98+0.23+0.57

−0.09−0.04

ηc → Ds J/ψ → Ds

F1 F0 V A0 A1 A2

F(0) 0.82+0.00+0.02
−0.00−0.07 0.82+0.00+0.02

−0.00−0.07 1.81+0.00+0.04
−0.01−0.06 0.49+0.02+0.07

−0.03−0.05 0.59+0.02+0.02
−0.02−0.05 0.08+0.01+0.06

−0.02−0.06

F(q2
max ) 0.86+0.00+0.03

−0.00−0.07 0.75+0.00+0.06
−0.00−0.07 1.69+0.00+0.00

−0.01−0.02 0.50+0.02+0.06
−0.03−0.06 0.61+0.02+0.02

−0.02−0.05 0.06+0.01+0.06
−0.02−0.05

a 0.49+0.01+0.10
−0.01−0.02 −0.49+0.07+0.44

−0.08−0.32 0.20+0.08+0.26
−0.08−0.48 0.34+0.03+0.05

−0.04−0.20 0.45+0.02+0.13
−0.03−0.00 −1.59+0.65+0.44

−0.87−1.51

b 0.88+0.03+0.06
−0.03−0.03 2.49+0.22+2.01

−0.24−1.63 5.60+0.48+3.43
−0.44−2.13 1.23+0.12+1.38

−0.11−0.60 1.29+0.15+1.34
−0.14−0.63 1.58+0.32+1.00

−0.24−0.01

ηc(2S) → D ψ(2S) → D

F1 F0 V A0 A1 A2

F(0) 0.36+0.02+0.03
−0.09−0.03 0.36+0.02+0.03

−0.09−0.03 0.83+0.16+0.07
−0.17−0.08 0.31+0.04+0.02

−0.08−0.02 0.31+0.00+0.00
−0.03−0.00 0.32+0.16+0.09

−0.24−0.09

F(q2
max ) 0.37+0.00+0.03

−0.07−0.04 0.39+0.02+0.02
−0.14−0.03 0.61+0.05+0.06

−0.12−0.07 0.28+0.04+0.01
−0.09−0.01 0.30+0.03+0.02

−0.03−0.01 0.19+0.08+0.01
−0.14−0.04

a 0.72+0.57+0.07
−0.12−0.11 0.77+0.21+0.03

−0.72−0.10 0.68+0.10+0.14
−0.95−0.23 0.62+0.31+0.01

−0.54−0.09 0.65+0.09+0.01
−0.28−0.06 −0.09+0.24+0.15

−0.11−0.33

b 2.52+3.22+0.26
−1.59−0.25 1.72+0.98+0.55

−0.55−0.41 8.78+7.33+0.46
−4.23−0.47 4.31+1.27+1.76

−0.92−1.19 3.31+2.18+1.07
−1.13−0.77 10.52+2.47+6.01

−3.73−4.02

ηc(2S) → Ds ψ(2S) → Ds

F1 F0 V A0 A1 A2

F(0) 0.44+0.03+0.02
−0.05−0.07 0.44+0.03+0.02

−0.05−0.07 0.99+0.08+0.05
−0.12−0.16 0.30+0.05+0.06

−0.06−0.07 0.33+0.01+0.01
−0.04−0.03 0.19+0.16+0.24

−0.19−0.20

F(q2
max ) 0.48+0.00+0.01

−0.07−0.08 0.50+0.06+0.03
−0.06−0.10 0.86+0.05+0.01

−0.06−0.13 0.30+0.06+0.05
−0.07−0.08 0.35+0.00+0.02

−0.04−0.03 0.15+0.15+0.16
−0.15−0.15

a 0.83+0.05+0.00
−0.34−0.15 0.79+0.20+0.25

−0.05−0.33 0.91+0.28+0.08
−0.64−0.32 0.54+0.24+0.16

−0.39−0.48 0.71+0.07+0.00
−0.17−0.23 −0.39+0.79+0.48

−1.71−1.96

b 1.87+1.57+0.61
−1.06−0.57 1.00+1.95+1.09

−0.07−0.53 7.45+4.87+1.33
−3.00−1.71 2.32+0.70+1.63

−0.47−1.09 1.99+1.14+1.93
−0.65−0.91 4.21+1.04+3.71

−0.27−1.26

3.2 Semileptonic decays

The semileptonic decay of heavy flavor mesons offers a
excellent platform for extraction of the Cabibbo–Kobayashi–
Maskawa (CKM) matrix elements, which describe the CP-
violating and flavor changing processes in the Standard
Model. The form factors involving the dynamical informa-
tion play an essential role in these semileptonic decays. Based
on the form factors and the helicity amplitudes provided in
the previous section, the branching ratios of the semileptonic
ηc(1S, 2S) and ψ(1S, 2S) decays are presented in Table 4,
where the uncertainties arise from the decay widths of ini-
tial charmonia, the decay constants of initial and final state
mesons, respectively. Several remarks are in order

1. For these semileptonicηc(1 S, 2 S) andψ(1 S, 2 S)decays,
their branching ratios are in the range 10−14 ∼ 10−12

and 10−11 ∼ 10−10, respectively. Some of these decays

might be detected by the future high-luminosity exper-
iments, such as the Super Tau-Charm Factory (STCF),
BESIII and LHC.

2. Our predictions for the branching ratios of the decays
J/� → D−

(s)�
+ν� are consistent with those given in the

BSW model [16]. Certainly, they are also agreement with
the previous CLFQM estimates and the differences are
mainly from the input parameters. While these results
are some three or more times as large as those given by
the BS approach [19], the CCQM [23] and the QCDSR
[20]. Except the variations from the input parameters, the
main reason is the distinct treatment of nonperturbative
dynamics, which can to be clarified by the future accurate
measurements. At present BESIII only gives some upper
limits, which are still much larger than all the theoretical
values.

3. The branching ratios of the decays ηc(2 S) → D−
(s)�

+ν�

are larger than those of the decays ηc → D−
(s)�

+ν�. It
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Table 3 Numerical values of the transition form factors at q2 = 0, together with other theoretical results

Transition Reference F0(0) V (0) A0(0) A1(0) A2(0)

ηc, J/ψ → D This work 0.73 1.73 0.45 0.53 0.13

[5] 0.85 1.76 0.85 0.72 –

[16]a – 2.14 0.55 0.77 0.31

[16]b – 2.21 0.54 0.80 0.47

[2]c – 1.82 0.61 0.68 0.33

[17] – 1.6 0.68 0.68 0.18

[18] – 0.81 0.27 0.27 –

ηc, J/ψ → Ds This work 0.82 1.81 0.49 0.59 0.08

[5] 0.90 1.55 0.90 0.81 –

[16]a – 2.30 0.71 0.94 0.33

[16]b – 2.36 0.69 0.96 0.51

[2]c – 1.80 0.66 0.78 0.12

[17] – 1.8 0.68 0.68 0.13

[18] – 1.07 0.37 0.38 –

ηc(2S), ψ(2S) → D This work 0.36 0.83 0.31 0.31 0.32

[5] 0.62 1.00 0.61 0.54 –

ηc(2S), ψ(2S) → Ds This work 0.44 0.99 0.30 0.33 0.19

[5] 0.65 0.83 0.64 0.59 –

aThe form factors are computed with flavor dependent parameter ω using the WSB model
bThe form factors are computed with the QCD inspired parameter ω = mαs using in the WSB model
cThe form factors are computed with the parameter ω = 0.5 GeV using the WSB model

is contrary for the cases of the decays ψ(1S, 2S) →
D−

(s)�
+ν�, where Br(ψ(2 S) → D−

(s)�
+ν�) < Br(J/� →

D−
(s)�

+ν�). These are related with their total widths,
�ηc (�ψ(2S)) is about 3 times as large as �ηc(2S)(�J/�).

4. In order to cancel out a large part of the theoretical
and experimental uncertainties, to check the lepton fla-
vor universality (LFU) and to detect the effect of SU(3)
symmetry breaking, it is helpful to consider the ratio
R ≡ Br(ηc(ψ) → D−

s �+ν�)/Br(ηc(ψ) → D−�+ν�),
which should be equal to |Vcs/Vcd |2 ≈ 19.46 under the
SU (3) flavor symmetry limit. Their values in this work
are listed as

Re
ηc

= ηc → D−
s e

+νe

ηc → D−e+νe
= 16.52 ± 2.73,

Re
ηc(2S) = ηc(2S) → D−

s e
+νe

ηc(2S) → D−e+νe
= 23.59 ± 13.06,

Rμ
ηc

= ηc → D−
s μ+νμ

ηc → D−μ+νμ

= 16.43 ± 3.27,

Rμ

ηc(2S) = ηc(2S) → D−
s μ+νμ

ηc(2S) → D−μ+νμ

= 23.54 ± 13.07,

Re
J/ψ = J/ψ → D−

s e
+νe

J/ψ → D−e+νe
= 16.74 ± 2.37,

Re
ψ(2S) = ψ(2S) → D−

s e
+νe

ψ(2S) → D−e+νe
= 20.87 ± 4.09,

Rμ
J/ψ = J/ψ → D−

s μ+νμ

J/ψ → D−μ+νμ

= 16.59 ± 2.36,

Rμ

ψ(2S) = ψ(2S) → D−
s μ+νμ

ψ(2S) → D−μ+νμ

= 20.71 ± 3.62. (49)

It is obviously there exist some effects of SU (3) symmetry
breaking in these semi-leptonic decays. The ratios Re,μ

J/ψ

are consistent with that given in Ref. [19], where R�
J/ψ =

18.1. Certainly, the values of these ratios are in agreement
with the predictions under the SU (3) flavor symmetry
limit within errors. The large uncertainties from the ratios
R�

ηc(2S) are mainly induced by the decay width of ηc(2S),

�ηc(2S) = (11.3+3.2
−2.9) MeV.

3.3 Physical observables

In order to study the impact of lepton mass and provide a
more detailed physical picture for the semileptonic decays,
we also define other two physical observables on the basis
of form factors and helicity formalism, that is the forward–
backward asymmetry AFB and the longitudinal polariza-
tion fraction fL . The results of these two physical observ-
ables are listed in Tables 5 and 6, respectively. We find that
the ratios of the forward–backward asymmetries Aμ

FB/Ae
FB

between the semileptonic decays ηc → D−
(s)μ

+νμ and

ηc → D−
(s)e

+νe are about 1.9(1.8) × 104 for ηc(1 S) and
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Fig. 2 Form factors F1(q2) and F0(q2) for the transitions ηc(1S, 2S) → D(s) and form factors V (q2), A0(q2), A1(q2) and A2(q2) for the
transitions ψ(1S, 2S) → D(s), respectively

Table 4 The branching ratios of the semileptonic ηc(1S, 2S) and ψ(1S, 2S) decays

10−14 × Br(ηc → D−e+νe) 10−14 × Br(ηc → D−μ+νμ) 10−13 × Br(ηc → D−
s e+νe) 10−13 × Br(ηc → D−

s μ+νμ)

This work 5.43+0.12+0.00+0.47
−0.12−0.00−0.60 5.15+0.12+0.00+0.45

−0.11−0.00−0.57 8.97+0.20+0.01+0.51
−0.19−0.01−1.48 8.46+0.19+0.01+0.50

−0.18−0.01−1.40

10−11 × Br(J/ψ → D−e+νe) 10−11 × Br(J/ψ → D−μ+νμ) 10−10 × Br(J/ψ → D−
s e+νe) 10−10 × Br(J/ψ → D−

s μ+νμ)

This work 6.10+0.11+0.10+0.14
−0.11−0.12−0.19 5.78+0.11+0.11+0.16

−0.10−0.13−0.11 10.21+0.19+0.66+0.56
−0.18−0.61−1.41 9.59+0.18+0.62+0.63

−0.17−0.58−1.34

QCDSR [20] 0.73 0.71 1.8 1.7

LFQM [17] 5.1 ∼ 5.7 4.7 ∼ 5.5 5.3 ∼ 5.8 5.5 ∼ 5.7

BSW [16] 6.0 5.8 10.4 9.93

CCQM [23] 1.71 1.66 3.3 3.2

BS [19] 2.03 1.98 3.67 3.54

Exp. [13–15] < 7.1 × 103 < 5.6 × 104 < 1.3 × 104 –

10−13 × Br(ηc(2S) → D−e+νe) 10−13 × Br(ηc(2S) → D−μ+νμ) 10−12 × Br(ηc(2S) → D−
s e+νe) 10−12 × Br(ηc(2S) → D−

s μ+νμ)

This work 3.12+1.08+0.47+0.56
−0.69−1.35−0.53 3.08+1.06+0.47+0.56

−0.68−1.34−0.52 7.36+2.54+0.93+0.62
−1.62−1.75−2.22 7.25+2.50+0.91+0.60

−1.60−1.73−2.19

10−11 × Br(ψ(2S) → D−e+νe) 10−11 × Br(ψ(2S) → D−μ+νμ) 10−10 × Br(ψ(2S) → D−
s e+νe) 10−10 × Br(ψ(2S) → D−

s μ+νμ)

This work 3.45+0.10+0.49+0.23
−0.09−0.20−0.25 3.39+0.09+0.11+0.21

−0.09−0.35−0.23 7.20+0.20+0.97+0.60
−0.19−0.44−0.92 7.02+0.20+0.99+0.65

−0.19−0.38−0.83

Table 5 The forward–backward asymmetry AFB

Channel ηc → D−e+νe ηc → D−μ+νμ ηc → D−
s e

+νe ηc → D−
s μ+νμ

AFB (4.21+0.09+0.00+0.37
−0.09−0.00−0.46) × 10−6 0.080+0.002+0.000+0.007

−0.002−0.000−0.009 (5.08+0.11+0.00+0.28
−0.11−0.00−0.84) × 10−6 0.091+0.002+0.000+0.006

−0.002−0.000−0.015

Channel J/ψ → D−e+νe J/ψ → D−μ+νμ J/ψ → D−
s e

+νe J/ψ → D−
s μ+νμ

AFB −0.23+0.00+0.01+0.01
−0.00−0.00−0.00 −0.23+0.00+0.01+0.01

−0.00−0.01−0.00 −0.21+0.00+0.01+0.03
−0.00−0.01−0.01 −0.22+0.00+0.01+0.03

−0.00−0.01−0.01

Channel ηc(2S) → D−e+νe ηc(2S) → D−μ+νμ ηc(2S) → D−
s e

+νe ηc(2S) → D−
s μ+νμ

AFB (1.69+0.58+0.21+0.30
−0.37−0.76−0.28) × 10−6 0.045+0.016+0.006+0.008

−0.010−0.021−0.007 (1.86+0.64+0.27+0.19
−0.41−0.41−0.56) × 10−6 0.048+0.017+0.007+0.005

−0.011−0.011−0.015

Channel ψ(2S) → D−e+νe ψ(2S) → D−μ+νμ ψ(2S) → D−
s e

+νe ψ(2S) → D−
s μ+νμ

AFB −0.28+0.01+0.09+0.03
−0.01−0.02−0.02 −0.28+0.01+0.09+0.03

−0.01−0.02−0.02 −0.27+0.01+0.07+0.07
−0.01−0.02−0.01 −0.27+0.01+0.07+0.07

−0.01−0.02−0.01
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2.7(2.6) × 104 for ηc(2S), respectively. The reason is that
the forward–backward asymmetries AFB for the decays
ηc(1 S, 2 S) → D−

(s)�
+ν� are proportional to the square

of the lepton mass. Undoubtedly, the effect of lepton mass
can be well checked in such decay mode with a pseu-
doscalar meson involved in the final states. It is similar to
the decays Bc → ηc(1 S, 2 S, 3 S)�+ν� [40]. While for the
decays ψ(1 S, 2 S) → D−

(s)�
+ν�, the values of the forward–

backward asymmetries Aμ
FB and Ae

FB are almost equal to
each other. It is noted that the dominant contributions to the
AFB for the transitions ψ(1S, 2S) → D(s) arise from the
terms proportional to (H2

V,+ − H2
V,−) in Eq. (24).

In Table 6, we can clearly find that the longitudinal polar-
ization fractions fL between the decays ψ(1 S, 2 S) →
D−

(s)e
+νe and ψ(1 S, 2 S) → D−

(s)μ
+νμ are very close to

each other

fL (ψ(1S, 2S) → D−
(s)e

+νe) ∼ fL (ψ(1S, 2S) → D−
(s)μ

+νμ),

(50)

which reflects the lepton flavor universality (LFU). In order
to investigate the dependences of the polarizations on the
different q2, we calculate the longitudinal polarization frac-
tions by dividing the full energy region into two regions
for each decay. Region 1 is defined as m2

� < q2 <
(mψ(nS)−mD(s) )

2+m2
�

2 and Region 2 is
(mψ(nS)−mD(s) )

2+m2
�

2 <

q2 < (mψ(nS) − mD(s) )
2 with n = 1, 2. Interestingly, for

the decays ψ(1S, 2S) → D−
(s)�

+ν� the longitudinal (trans-
verse) polarization is dominant in Region 1 (Region 2). While
these two kinds of polarizations are comparable in the entire
physical region. These results can be tested by the future
high-luminosity experiments.

In Figs. 3 and 4, we also display the q2-dependences of
differential decay rates d�(L)/dq2 and forward–backward
asymmetries AFB , respectively. It can be observed that the
values of d�(L)/dq2 and AFB coincide with 0 at the zero
recoil point (q2 = q2

max ) since the coefficient
√

λ(q2) =√
λ(m2

ηc,J/ψ
,m2

Ds
, q2) shown in Eqs. (17–24) at the same

zero recoil point being equal to 0. The lepton mass effects
can be obviously observed from Fig. 4a–d.

3.4 Nonleptonic decays

The decays rates of the charmonium weak decaysηc(1 S, 2 S) →
D(s)M and ψ(1 S, 2 S) → D(s)M with M standing for a
pseudoscalar meson (P) or a vector meson (V ) can be writ-
ten as

Br (ηc(1S, 2S) → D(s)M
) = pcm

4πm2
ηc(1S,2S)�ηc(1S,2S)

∣∣A (
ηc(1S, 2S) → D(s)M

)∣∣2 ,

(51)
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Fig. 3 The theoretical predictions for the q2 dependences of the differential decay rates d�/dq2 and d�L/dq2

Fig. 4 The theoretical predictions for the q2 dependences of the forward–backward asymmetries AFB

Br (ψ(1S, 2S) → D(s)M
) = pcm

12πm2
ψ(1S,2S)�ψ(1S,2S)

|A(ψ(1S, 2S) → D(s)M)|2. (52)

where pcm represents the three-momentum of the final meson
D(s) in the rest frame of ηc(1S, 2S) and ψ(1S, 2S).

In Tables 7 and 8, we list the branching ratios of the non-
leptonic decays ηc(1 S, 2 S) → D(s)M and ψ(1 S, 2 S) →

D(s)M , including the values obtained from Refs. [1,5,6,16–
18,20,21,21,22] and BESIII collaboration [11,12] for com-
parison, where the uncertainties of our results arise from
the full widths of the charmonia ηc(1S, 2S), ψ(1S, 2S), the
decay constants of the initial and final state mesons, respec-
tively. The decay modes considered here are dominated by
the color-favored factorizable contributions and insensitive
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Table 7 Branching ratios of the nonleptonic ground charmonium state (J/ψ, ηc) decays

10−12 × Br(ηc → D−
s π+) 10−13 × Br(ηc → D−

s K+) 10−13 × Br(ηc → D−π+) 10−14 × Br(ηc → D−K+)

This work 6.65+0.15+0.01+0.32
−0.14−0.01−0.10 4.22+0.09+0.00+0.35

−0.09−0.00−0.79 3.34+0.07+0.01+0.28
−0.07−0.02−0.33 2.33+0.05+0.01+0.21

−0.05−0.01−0.24

[5] 7.35 4.97 4.39 3.04

10−12 × Br(ηc → D−
s ρ+) 10−13 × Br(ηc → D−

s K ∗+) 10−13 × Br(ηc → D−ρ+) 10−14 × Br(ηc → D−K ∗+)

This work 6.62+0.15+0.03+0.69
−0.14−0.03−1.34 3.31+0.07+0.02+0.40

−0.07−0.02−0.72 3.01+0.07+0.00+0.33
−0.06−0.00−0.37 1.68+0.04+0.00+0.20

−0.04−0.00−0.22

[5] 5.28 1.18 4.32 1.38

10−10 × Br(J/ψ → D−
s π+) 10−11 × Br(J/ψ → D−

s K+) 10−11 × Br(J/ψ → D−π+) 10−12 × Br(J/ψ → D−K+)

This work 3.64+0.06+0.34+0.78
−0.06−0.38−0.96 2.02+0.04+0.18+0.36

−0.04−0.20−0.48 1.90+0.04+0.17+0.11
−0.03−0.19−0.14 1.16+0.02+0.03+0.13

−0.02−0.02−0.18

[5] 10.9 6.18 6.37 3.79

[6] 4.30 2.69 2.09 1.34

[16]a 3.32 2.4 1.5 1.2

[17] 2.5 – – 50

[18] 2.0 1.6 0.80 36

[1]b 8.74 5.5 5.5 –

[21] 4.10 2.32 2.21 1.31

BES [11] < 1.4 × 106 – < 7.5 × 106 –

10−9 × Br(J/ψ → D−
s ρ+) 10−10 × Br(J/ψ → D−

s K ∗+) 10−10 × Br(J/ψ → D−ρ+) 10−12 × Br(J/ψ → D−K ∗+)

This work 2.95+0.06+0.11+0.15
−0.05−0.14−0.19 1.42+0.03+0.06+0.07

−0.03−0.07−0.10 1.70+0.03+0.03+0.07
−0.03−0.05−0.10 8.59+0.16+0.20+0.42

−0.15−0.29−0.60

[5] 3.82 2.00 2.12 11.4

[16]a 1.77 0.97 0.72 4.2

[17] 2.8 – – 550

[18] 1.26 0.82 0.42 154

[1]b 3.63 2.12 2.20 –

[21] 2.21 1.22 1.09 6.14

[22] 3.33 1.86 1.32 8.0

BES [12] < 1.3 × 104 – – –

aThe branching ratios are computed with the average transverse quark momentum ω = 0.4 GeV under the WSB model
bThe branching ratios are computed with the average transverse quark momentum ω = 0.5 GeV under the WSB model

Table 8 Branching ratios of the nonleptonic radially excited charmonium (ηc(2S), ψ(2S)) decays

10−11 × Br(ηc(2S) → D−
s π+) 10−12 × Br(ηc(2S) → D−

s K+) 10−13 × Br(ηc(2S) → D−π+) 10−14 × Br(ηc(2S) → D−K+)

This work 1.92+0.66+0.24+0.18
−0.42−0.44−0.54 1.29+0.45+0.13+0.17

−0.29−0.33−0.40 7.67+2.65+0.78+1.24
−1.69−3.29−1.40 5.08+1.75+0.63+0.90

−1.12−2.24−0.97

[5] 3.90 2.87 21.3 15.8

10−11 × Br(ηc(2S) → D−
s ρ+) 10−13 × Br(ηc(2S) → D−

s K∗+) 10−13 × Br(ηc(2S) → D−ρ+) 10−14 × Br(ηc(2S) → D−K∗+)

This work 1.92+0.66+0.10+0.67
−0.42−0.11−1.16 7.05+2.43+1.12+1.21

−1.56−1.15−2.13 3.93+1.36+0.08+0.68
−0.87−0.33−0.71 2.54+0.88+0.38+0.44

−0.56−0.78−0.45

[5] 7.24 34.7 41.3 20.2

10−10 × Br(ψ(2S) → D−
s π+) 10−12 × Br(ψ(2S) → D−

s K+) 10−12 × Br(ψ(2S) → D−π+) 10−13 × Br(ψ(2S) → D−K+)

This work 1.23+0.03+0.08+0.59
−0.03−0.18−0.51 8.20+0.22+2.62+3.34

−0.22−3.50−3.20 7.58+0.22+2.32+1.06
−0.20−3.40−1.12 4.96+0.14+1.42+0.56

−0.14−2.14−0.64

[5] 5.07 34.3 27.6 19

10−9 × Br(ψ(2S) → D−
s ρ+) 10−11 × Br(ψ(2S) → D−

s K∗+) 10−11 × Br(ψ(2S) → D−ρ+) 10−12 × Br(ψ(2S) → D−K∗+)

This work 1.22+0.03+0.01+0.41
−0.03−0.10−0.19 7.31+0.20+0.06+0.42

−0.19−0.21−0.13 5.55+0.16+0.59+0.52
−0.15−0.82−0.58 3.31+0.09+0.33+0.34

−0.09−0.49−0.37

[5] 1.67 9.6 8.99 5.2

to the nonfactorizable contributions. Therefore, even with
different phenomenological models, the branching ratios
for a given decay process of ηc(1 S, 2 S) → D(s)M and
ψ(1 S, 2 S) → D(s)M have the same order of magnitude in

many cases. Numerically, we adopt the Wilson coefficient
a1 = 1.26. The following are some comments:

1. The branching ratios for the weak decays ηc(2S) →
D(s)M are approximately 1.5 ∼ 3 times larger than those
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Table 9 The units of the branching ratios of the Cabbibo-favored and Cabibbo-suppressed decay channels

Cabbibo-favored decays Order of magnitude Cabibbo-suppressed decays Order of magnitude

ηc(1S, 2S) → D−
s π+ (10−12 − 10−11) ηc(1S, 2S) → D−K+ 10−14

ψ(1S, 2S) → D−
s π+ (10−11 − 10−10) ψ(1S, 2S) → D−K+ 10−13

ηc(1S, 2S) → D−
s ρ+ (10−12 − 10−11) ηc(1S, 2S) → D−K ∗+ 10−14

ψ(1S, 2S) → D−
s ρ+ 10−9 ψ(1S, 2S) → D−K ∗+ 10−12

for the corresponding decays ηc → D(s)M due to the
smaller decay width of ηc(2 S), �ηc(2 S) = (11.3+3.2

−2.9)

MeV compared to �ηc = (32.0±0.7)MeV for ηc meson,
and the larger phase space for ηc(2S). It is contrary for
the cases of weak decays between ψ(2S) → D(s)M and
J/� → D(s)M , where the branching ratios of the latter
are about 2 ∼ 3 times larger than those of the former,
because the decay width of J/ψ , �J/ψ = (92.6 ± 1.7)

keV is only about one-third of that for ψ(2S), �ψ(2S) =
(294±8) keV. These numerical relations are similar with
those given by the NRQCD [5] for the J/� and ψ(2S)

decays, while are different for the ηc and ηc(2 S) decays,
where the differences are five times even more large.

2. It is worth mentioning that the branching ratios of the
decays ηc → D(s)M are in agreement with the results
obtained the NRQCD approach [5], while there exists
about 2 ∼ 3 times even more large difference for those of
the decays ηc(2S) → D(s)M . For the J/� weak decays,
the branching ratios of the channels J/ψ → D(s)V are
consistent with most of other theoretical results, such
as the NRQCD [5], the BSW model with the parame-
ter ω = 0.5 GeV [1], the QCDF approach [21] and the
PQCD approach [22], but are larger than those given in the
QCDSR [18] except that of the decay J/ψ → D(s)K ∗+.
While the branching ratios of the decays J/ψ → D(s)P
are in agreement with than the calculations given in the
BSW model with the parameter ω = 0.4 GeV [16],
the PQCD approach [6] and the QCDF approach [21],
while are smaller than those given in the NRQCD [5]. As
to the ψ(2S) decays, it is similar with the cases of the
J/� decays, that is the branching ratios of the decays
ψ(2S) → D(s)V are comparable with the current only
available theoretical results in NRQCD [5], but those
of the decays ψ(2S) → D(s)P are much smaller. Cer-
tainly, the decays J/ψ → D−

s π+, J/ψ → D−π+,
J/ψ → D−

s ρ+ have been detected by the BESIII Collab-
oration but only with upper bounds [11,12] being avail-
able, which are much above all the theoretical predictions.

3. Whether the ground or radially excited charmonium state
decays, there exists a clear hierarchical pattern among
their branching ratios

Br (ηc(nS) → D−
s π+) � Br (ηc(nS) → D−

s K+)

∼ Br (ηc(nS) → D−π+) � Br (ηc(nS) → D−K+) ,

Br (ψ(nS) → D−
s π+) � Br (ψ(nS) → D−

s K+)

∼ Br (ψ(nS) → D−π+) � Br (ψ(nS) → D−K+) ,
Br (ηc(nS) → D−

s ρ+) � Br (ηc(nS) → D−
s K ∗+)

∼ Br (ηc(nS) → D−ρ+) � Br (ηc(nS) → D−K ∗+) ,
Br (ψ(nS) → D−

s ρ+) � Br (ψ(nS) → D−
s K ∗+)

∼ Br (ψ(nS) → D−ρ+) � Br (ψ(nS) → D−K ∗+) ,
(53)

which are primarily due to the hierarchical structures
of CKM factors VcsVud(0.949) � VcsVus(0.219) ∼
VcdVud(0.215) � VcdVus(0.049).

4. Our primary focus lies on the nonleptonic decay chan-
nels that are most likely to be observed in future collider
experiments. In Table 9, we list the ranges of the branch-
ing ratios for the Cabibbo-favored decays ηc(1S, 2S) →
D−
s π+, ψ(1 S, 2 S) → D−

s π+, ηc(1 S, 2 S) → D−
s ρ+,

ψ(1 S, 2 S) → D−
s ρ+ and the Cabibbo-suppressed

decays ηc(1 S, 2 S) → D−K+, ψ(1 S, 2 S) → D−K+,
ηc(1 S, 2 S) → D−K ∗+, ψ(1S, 2S) → D−K ∗+. It is
obvious that the decays ψ(1S, 2S) → D−

s ρ+ have the
largest branching ratios and are most likely to be observed.

5. From our calculations, one can obtain the following rela-
tive ratios of the branching fractions where the uncertain-
ties from the transition form factors are cancelled

RDs
ηc

≡ Br(ηc → D−
s K+)

Br(ηc → D−
s π+)

= 0.063 ± 0.012,

RDs
ηc(2S) ≡ Br(ηc(2S) → D−

s K+)

Br(ηc(2S) → D−
s π+)

= 0.067 ± 0.033,

RDs
J/ψ ≡ Br(J/ψ → D−

s K+)

Br(J/ψ → D−
s π+)

= 0.055 ± 0.020,

RDs
ψ(2S) ≡ Br(ψ(2S) → D−

s K+)

Br(ψ(2S) → D−
s π+)

= 0.066 ± 0.043.

(54)

RD
ηc

≡ Br(ηc → D−K+)

Br(ηc → D−π+)
= 0.070 ± 0.010,

RD
ηc(2S) ≡ Br(ηc(2S) → D−K+)

Br(ηc(2S) → D−π+)
= 0.066 ± 0.041,

RD
J/ψ ≡ Br(J/ψ → D−K+)

Br(J/ψ → D−π+)
= 0.061 ± 0.011,
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RD
ψ(2S) ≡ Br(ψ(2S) → D−K+)

Br(ψ(2S) → D−π+)
= 0.065 ± 0.041,

(55)

which are consistent with the estimation R = |Vus |2 f 2
K
f 2
π

≈
0.074 obtained from the factorization assumption. Fur-
thermore, the ratios RDs

J/ψ and RD
J/ψ agree well with the

results 0.057 and 0.060 given in the QCDF [21]. Simi-
larly, we can also define the ratios Rπ

ηc(1S,2S), R
π
ψ(1S,2S)

as follows

Rπ
ηc

≡ Br(ηc → D−π+)

Br(ηc → D−
s π+)

= 0.050 ± 0.006 ≈
∣∣∣∣∣
Vcd F

ηcD
0 (m2

π )

Vcs F
ηcDs
0 (m2

π )

∣∣∣∣∣

2

= 0.041,

Rπ
ηc(2S) ≡ Br(ηc(2S) → D−π+)

Br(ηc(2S) → D−
s π+)

= 0.040 ± 0.019 ≈
∣∣∣∣∣
Vcd F

ηc(2S)D
0 (m2

π )

Vcs F
ηc(2S)Ds
0 (m2

π )

∣∣∣∣∣

2

= 0.035,

Rπ
J/ψ ≡ Br(J/ψ → D−π+)

Br(J/ψ → D−
s π+)

= 0.052 ± 0.015 ≈
∣∣∣∣∣
Vcd A

J/ψD
0 (m2

π )

Vcs A
J/ψDs
0 (m2

π )

∣∣∣∣∣

2

= 0.043,

Rπ
ψ(2S) ≡ Br(ψ(2S) → D−π+)

Br(ψ(2S) → D−
s π+)

= 0.061 ± 0.040 ≈
∣∣∣∣∣
Vcd A

ψ(2S)D
0 (m2

π )

Vcs A
ψ(2S)Ds
0 (m2

π )

∣∣∣∣∣

2

= 0.055. (56)

4 Summary

The charmonium weak decays provide a unique perspec-
tive on the underlying structures and dynamical mechanisms
of hadrons and currents. With the anticipation of abundant
data samples on charmonium at high-luminosity heavy-flavor
experiments, we calculated some semileptonic and nonlep-
tonic weak decays of charmonia ηc(1S, 2S) and ψ(1S, 2S)

using the covariant light-front quark model. Here the nonper-
turbative weak transition form factors play a crucial role in
evaluating the weak meson decay amplitudes. We extended
analytically the expressions of the form factors of the tran-
sitions ηc(1S, 2S) → D(s) and ψ(1S, 2S) → D(s) in the
space-like region to the time-like region using the double-
pole model. The following are some points

1. In our considered decays, the channels J/ψ → D−
s �+ν�

and J/ψ → D−
s ρ+ have the largest branching ratios,

which are very close to or even upto 10−9. These val-
ues are still much below the present experimental upper
bounds.

2. The branching ratios for the semileptonic decays J/� →
D−

(s)�
+ν� are well consistent the results obtained from the

BSW model, but some three or more times as large as those
given by the BS approach, the CCQM and the QCDSR.
The semileptonic decays of the radially excited charmonia
ψ(2 S) and ηc(2 S) have not been studied by any other the-
ory. We find that Br(J/� → D−

(s)�
+ν�) are about three

orders of magnitude larger than Br(ηc → D−
(s)�

+ν�), and

Br(ψ(2S) → D−
(s)�

+ν�) are about two orders of magni-

tude larger than Br(ηc(2 S) → D−
(s)�

+ν�).
3. Whether the semileptonic or the nonleptonic charmonium

weak decays, the branching ratios for the ground state
ηc decays are smaller than those of the radially excited
state ηc(2S) ones. It is contrary to the cases of ψ(1S, 2S)

decays, where the branching ratios of the ground sate J/�

decays are larger than those of the radially excited state
ψ(2S) ones. It is because of the larger (smaller) decay
width of ηc (J/�) compared with that of its radially
excited state.

4. The ratios of the forward–backward asymmetries Aμ
FB/Ae

FB
between the semileptonic decaysηc(1 S, 2 S) → D−

(s)μ
+νμ

and ηc(1 S, 2 S) → D−
(s)e

+νe are in the order of 104,
and the forward–backward asymmetries for the decays
ψ(1 S, 2 S) → D−

(s)μ
+νμ and ψ(1 S, 2 S) → D−

(s)e
+νe

become minus in sign and lies in the range of (−0.3 ∼
−0.2).

5. The longitudinal polarization fractions fL are close to
each other between the decays ψ(1 S, 2 S) → D−

(s)e
+νe

and ψ(1S, 2S) → D−
(s)μ

+νμ. Furthermore, the longitu-
dinal and transverse polarization fractions for each decay
are comparable.

6. Whether the ground or radially excited charmonium
decays, the final states D−

s π+(D−
s ρ+) always own the

largest yield and D−K+(D−K ∗+) always have the small-
est production, which are connected with the hierar-
chical structures of CKM factors, VcsVud(0.949) �
VcdVus(0.049).
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AppendixA:Somespecific rulesunder the p−intergration

When preforming the integration, we need to include the
zero-mode contribution. It amounts to performing the inte-
gration in a proper way in the CLFQM. Specificlly we use
the following rules given in Refs. [24,30]

p̂′
1μ

.= PμA
(1)
1 + qμA

(1)
2 , (A1)

p̂′
1μ p̂

′
1ν

.= gμν A
(2)
1 + PμPν A

(2)
2

+ (
Pμqν + qμPν

)
A(2)

3 + qμqν A
(2)
4 , (A2)

Z2 = N̂ ′
1 + m′2

1 − m2
2 + (1 − 2x1) M

′2

+
(
q2 + q · P

) p′⊥ · q⊥
q2 , (A3)

p̂′
1μ N̂2 → qμ

[
A(1)

2 Z2 + q · P
q2 A(2)

1

]
, (A4)

p̂′
1μ p̂

′
1ν N̂2 → gμν A

(2)
1 Z2

+qμqν

[
A(2)

4 Z2 + 2
q · P
q2 A(1)

2 A(2)
1

]
, (A5)

A(1)
1 = x1

2
, A(1)

2 = A(1)
1 − p′⊥ · q⊥

q2 ,

A(2)
3 = A(1)

1 A(1)
2 , (A6)

A(2)
4 =

(
A(1)

2

)2 − 1

q2 A
(2)
1 ,

A(2)
1 = −p′2⊥ −

(
p′⊥ · q⊥

)2

q2 ,

A(2)
2 =

(
A(1)

1

)2
. (A7)

Appendix B: Expressions of ηc(ψ) → D(s) form factors

S
ηc D(s)
μ = Tr

[
γ5
(� p′′

1 + m′′
1

)
γμ

(� p′
1 + m′

1

)
γ5 (− � p2 + m2)

]

= 2p′
1μ

[
M ′2 + M ′′2 − q2 − 2N2 − (

m′
1 − m2

)2

− (
m′′

1 − m2
)2 + (

m′
1 − m′′

1

)2
]

+qμ

[
q2 − 2M ′2 + N ′

1 − N ′′
1

+2N2 + 2
(
m′

1 − m2
)2 − (

m′
1 − m′′

1

)2
]

+Pμ

[
q2 − N ′

1 − N ′′
1 − (

m′
1 − m′′

1

)2
]
, (B1)

S
ψD(s)
μν =

(
S

ψD(s)
V − S

ψD(s)
A

)

μν

= Tr

[(
γν − 1

W ′′
V

(
p′′

1 − p2
)
ν

) (
p′′

1 + m′′
1

)

(
γμ − γμγ5

) (� p′
1 + m′

1

)
γ5 (− � p2 + m2)

]

= −2iεμναβ

{
p′α

1 Pβ
(
m′′

1 − m′
1

)

+p′α
1 qβ

(
m′′

1 + m′
1 − 2m2

)+ qαPβm′
1

}

+ 1

W ′′
V

(
4p′

1ν − 3qν − Pν

)
iεμαβρ p

′α
1 qβ Pρ

+2gμν

{
m2

(
q2 − N ′

1 − N ′′
1 − m′2

1 − m′′2
1

)

−m′
1

(
M ′′2 − N ′′

1 − N2 − m′′2
1 − m2

2

)

−m′′
1

(
M ′2 − N ′

1 − N2 − m′2
1 − m2

2

)
− 2m′

1m
′′
1m2

}

+8p′
1μ p′

1ν

(
m2 − m′

1

)− 2
(
Pμqν + qμPν + 2qμqν

)
m′

1

+2p′
1μPν

(
m′

1 − m′′
1

)

+2p′
1μqν

(
3m′

1 − m′′
1 − 2m2

)+ 2Pμ p′
1ν

(
m′

1 + m′′
1

)

+2qμ p′
1ν

(
3m′

1 + m′′
1 − 2m2

)

+ 1

2W ′′
V

(
4p′

1ν − 3qν − Pν

) {
2p′

1μ

[
M ′2 + M ′′2 − q2

−2N2 + 2
(
m′

1 − m2
) (
m′′

1 + m2
)]

+qμ

[
q2 − 2M ′2 + N ′

1 − N ′′
1 + 2N2 − (

m′
1 + m′′

1

)2

+2
(
m′

1 − m2
)2
]

+Pμ

[
q2 − N ′

1 − N ′′
1 − (

m′
1 + m′′

1

)2
]}

. (B2)

The following are the analytical expressions of the form
factors of transitions ηc(1 S, 2 S) → D(s), ψ(1 S, 2 S) →
(1 S, 2 S) → D(s) in the covariant light-front quark model

F
ηc D(s)
1

(
q2
)

= Nc

16π3

∫
dx2d

2

p′⊥
h′

ηc
h′′
D(s)

x2 N̂ ′
1 N̂

′′
1

[
x1

(
M ′2

0 + M ′′2
0

)
+ x2q

2 − x2
(
m′

1 − m′′
1

)2

−x1
(
m′

1 − m2
)2 − x1

(
m′′

1 − m2
)2] (B3)

F
ηc D(s)
0

(
q2
)

= F
ηc D(s)
1 (q2) + q2

(q · P)

Nc

16π3

×
∫

dx2d
2 p′⊥

2h′
ηc
h′′
D(s)

x2 N̂ ′
1 N̂

′′
1

{
−x1x2M

′2 − p′2⊥ − m′
1m2

+ (
m′′

1 − m2
) (
x2m

′
1 + x1m2

)

+2
q · P
q2

(

p′2⊥ + 2

(
p′⊥ · q⊥

)2

q2

)

+ 2

(
p′⊥ · q⊥

)2

q2

− p′⊥ · q⊥
q2

[
M ′′2 − x2

(
q2 + q · P

)

− (x2 − x1) M
′2 + 2x1M

′2
0

−2
(
m′

1 − m2
) (
m′

1 + m′′
1

)]}
, (B4)
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VψD(s) (q2) = Nc(M
′ + M

′′
)

16π3

∫
dx2d

2

p′⊥
2h′

ψh
′′
D(s)

x2 N̂ ′
1 N̂

′′
1

{
x2m

′
1 + x1m2 + (

m′
1 − m′′

1

) p′⊥ · q⊥
q2

+ 2

w′′
V

[

p′2⊥ +
(
p′⊥ · q⊥

)2

q2

]}

, (B5)

A
ψD(s)
0 (q2) = M

′ + M
′′

2M ′′ A
ψD(s)
1 (q2) − M

′ − M
′′

2M ′′ A
ψD(s)
2 (q2)

− q2

2M ′′
Nc

16π3

×
∫

dx2d
2 p′⊥

h′
ψh

′′
D(s)

x2 N̂ ′
1 N̂

′′
1

{2 (2x1 − 3)

(
x2m

′
1 + x1m2

)− 8
(
m′

1 − m2
)

×
[
p′2⊥
q2 + 2

(
p′⊥ · q⊥

)2

q4

]

− [
(14 − 12x1)m

′
1

−2m′′
1 − (8 − 12x1)m2

] p′⊥ · q⊥
q2 + 4

w′′
V

×
([

M ′2 + M ′′2 − q2 + 2
(
m′

1 − m2
) (
m′′

1 + m2
)]

×
(
A(2)

3 + A(2)
4 − A(1)

2

)
+ Z2

(
3A(1)

2 − 2A(2)
4 − 1

)

+1

2

[
x1

(
q2 + q · P

)
− 2M ′2 − 2p′⊥ · q⊥

−2m′
1

(
m′′

1 + m2
)− 2m2

(
m′

1 − m2
)]

(
A(1)

1 + A(1)
2 − 1

)
q · P

[
p′2⊥
q2 +

(
p′⊥ · q⊥

)2

q4

]

×
(

4A(1)
2 − 3

))}
, (B6)

A
ψD(s)
1 (q2) = − 1

M ′ + M ′′
Nc

16π3

∫
dx2d

2

p′⊥
h′

ψh
′′
D(s)

x2 N̂ ′
1 N̂

′′
1

{
2x1

(
m2 − m′

1

) (
M ′2

0 + M ′′2
0

)
− 4x1m

′′
1M

′2
0

+2x2m
′
1q · P + 2m2q

2 − 2x1m2

(
M ′2 + M ′′2)

+2
(
m′

1 − m2
) (
m′

1 + m′′
1

)2 + 8
(
m′

1 − m2
)

×
[

p′2⊥ +
(
p′⊥ · q⊥

)2

q2

]

+ 2
(
m′

1 + m′′
1

) (
q2 + q · P

) p′⊥ · q⊥
q2

−4
q2 p′2⊥ + (

p′⊥ · q⊥
)2

q2w′′
V

×
[

2x1

(
M ′2 + M ′2

0

)
− q2 − q · P − 2

(
q2 + q · P

) p′⊥ · q⊥
q2

−2
(
m′

1 − m′′
1

) (
m′

1 − m2
)]}

, (B7)

A
ψD(s)
2 (q2) = Nc(M

′ + M
′′
)

16π3

∫
dx2d

2 p′⊥
2h′

ψh
′′
D(s)

x2 N̂ ′
1 N̂

′′
1

×
{
(x1 − x2)

(
x2m

′
1 + x1m2

)− p′⊥ · q⊥
q2

[
2x1m2 + m′′

1

+ (x2 − x1)m
′
1

]− 2
x2q2 + p′⊥ · q⊥

x2q2w′′
V

× [
p′⊥ · p′′⊥ + (

x1m2 + x2m
′
1

) (
x1m2 − x2m

′′
1

)]}
. (B8)
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Phys. B 883, 306 (2014)

38. D.M. Asner et al. [CLEO Collaboration], Phys. Rev. Lett. 92,
142001 (2004). arXiv:hep-ex/0312058

39. Z.Z. Song, C. Meng, K.T. Chao, Eur. Phys. J. C 36, 365 (2004).
arXiv:hep-ph/0209257

40. Z.J. Sun, S.Y. Wang, Z.Q. Zhang, Y.Y. Yang, Z.Y. Zhang, Eur. Phys.
J. C 83, 945 (2023). arXiv:2308.03114 [hep-ph]

123

http://arxiv.org/abs/hep-ph/0311130
http://arxiv.org/abs/hep-ex/0312058
http://arxiv.org/abs/hep-ph/0209257
http://arxiv.org/abs/2308.03114

	Semileptonic and nonleptonic weak decays of ψ(1S,2S) and ηc(1S,2S) to D(s) in the covariant light-front approach
	Abstract 
	1 Introduction
	2 Formalism
	2.1 The form factors
	2.2 Helicity amplitudes and observables
	2.3 Hadronic matrix elements

	3 Numerical results and discussions
	3.1 Transition form factors
	3.2 Semileptonic decays
	3.3 Physical observables
	3.4 Nonleptonic decays

	4 Summary
	Acknowledgements
	Appendix A: Some specific rules under the p-intergration
	Appendix B: Expressions of ηc(ψ) rightarrowD(s) form factors
	References




