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Abstract Here, we study the generalized second law (GSL)
of thermodynamics in the framework of massive gravity. To
do this, we consider a FRW universe filled only with mat-
ter and enclosed by the apparent horizon. In addition, we
consider two models including generalized massive gravity
(GMG) as well as dRGT massive gravity on de Sitter. For
both models, we first study the dynamics of background cos-
mology and then explore the validity of GSL. We conclude
that for the selected values of model parameters the GSL is
respected.

1 Introduction

Recent observational data from the type Ia supernovae
(SNeIa) [1,2], cosmic microwave background radiation [3,4]
and large-scale structure [5,6] provide ample evidence that
the current universe is expanding rapidly, and the reason
for this acceleration is still unknown. A group of cosmolo-
gists has tried to include the justification for this acceleration
through a strange substance called dark energy into the stan-
dard cosmology. Another group of cosmologists believes in
generalized gravity theories. These generalized theories are
thought to be gravitational substitutes for dark energy as well
as dark matter.

One of the generalized theories of general relativity in the
scope of field theory, describing the nonlinear interactions
of a spin-2 massive field, is the theory of massive gravity
[7–29]. Firstly, Fierz and Pauli in 1939 described an action
of a free-massive graviton with a second degree mass term
[10]. In addition, in 1970, Van Dam, Veltman and Zakharov
discovered that the predictions of linear theory differ from
the results of linear general relativity in the limit of zero
mass of the graviton. This difference is known as the vDVZ
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discontinuity [11,12]. The vDVZ discontinuity in 1972 was
rectified by Vainstein, who showed that supplementing the
non-interacting Fizir–Pauli theory with a non-linear interac-
tion theory could give rise to smooth this limit [13,14].

In 1972, Boulware and Deser studied some completely
non-linear massive gravity theories and showed that there is
a ghost instability in them. Although the linear theory has 5
degrees of freedom, it was found that their investigated non-
linear theories have 6 degrees of freedom. The extra degree
of freedom around non-flat background manifests itself as a
scalar field with a kinetic energy that has the wrong sign. This
scalar is known as the Boulware–Deser (BD) ghost [15].

Thereafter, in 2011, de Rham, Gabadadze and Tolley
(dRGT) founded the dRGT theory, which is free from the
sixth extra mode and the BD ghost [16,17]. This theory has
no closed and flat FRW cosmological solutions. The graviton
mass in the open solution, produces an effective cosmologi-
cal constant. If one consider the graviton mass of the order of
the current Hubble constant, the effective cosmological con-
stant of massive gravity can justify the current accelerated
expansion.

Besides, there are different generalizations of massive
gravity such as GMG theory [18–20], and dRGT massive
gravity on de Sitter spacetime [21–23]. The GMG model
is a generalized version of the constant mass dRGT theory
in which a slowly varying time dependent mass function is
considered for the graviton. This yields the background to
remain stable for the allowed region of the parameter space,
unlike the standard dRGT model [18]. Even with a small
change in the model parameters, the strong coupling issue in
the dRGT theory becomes more manageable [19]. In dRGT
massive gravity on de Sitter, the secondary Minkowski met-
ric is replaced by the de Sitter one. This results the model
to have a flat cosmological solution in addition to the open
solution in ordinary dRGT [21–23]. Gumrukcuoglu, Lin, and
Mukohyama [24] have derived a de Sitter solution with an
effective cosmological constant proportional to the mass of
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the graviton in the dRGT model of massive gravity. The same
solution was then obtained for a spatially flat universe in [25].
In [26], it was shown that for the specific values of dRGT
model parameters, the solution also exists for a universe with
arbitrary spatial curvature. Furthermore, in [27], inflation has
been studied in the dRGT massive gravity framework. In [28],
the background dynamics and the growth of matter perturba-
tions in the extended quasidilaton setup of massive gravity
have been investigated. Additionally, in [29], based on an
objective model of massive gravity, the linear growth of mat-
ter fluctuations has been studied.

One of another subjects of interest in the cosmology is
study of validity of the generalized second law (GSL) of
thermodynamics in the accelerating universe. The GSL like
the first law of thermodynamics is an accepted law in physics.
According to the GSL, the total entropy of the universe
including matter and the entropy of horizon should not be
reduced over time. The GSL of thermodynamics has been
studied in different theories of gravity [30–36]. The GSL
was first formulated by Bekenstein in 1973 for black holes.
With the studies done, it was found that the ordinary second
law of thermodynamics is violated for black holes. To pre-
vent this violation, the entropy of horizon should be added to
the entropy of matter and this is called the generalized second
law of thermodynamics. According to that the total entropy
of black hole and entropy of the black hole horizon cannot
be decreased by increasing the time.

All mentioned in above motivate us to study the GSL
of thermodynamics in massive gravity. To this aim, within
the framework of massive gravity we consider two models
including GMG as well as dRGT on de Sitter and explore
the validity of GSL for both of them. The rest of paper is
organized as follows: Sect. 2 is devoted to universal thermo-
dynamics in modified gravity. In Sects. 3 and 4, the dynamics
of background cosmology and validity of GSL are investi-
gated for the GMG and dRGT on de Sitter models, respec-
tively. At last, the results of our study are summarized in
Sect. 5.

2 Universal thermodynamics

For a universe filled with matter and enclosed by the horizon,
the GSL is as follows [37,38]

Ṡtot = ṠA + Ṡm ≥ 0, (1)

wherein SA and Sm denote the horizon and matter entropy,
respectively. Also the dot indicates derivative with respect to
the cosmic time. To determine ṠA one can use the Clausius
relation as

δQA = TAdSA = −dEA, (2)

where EA is the energy flow across the horizon, and TA
implies the apparent horizon temperature defined as

TA = 1

2πRA

(
1 − ṘA

2HRA

)
. (3)

Here H ≡ ȧ/a is the Hubble parameter, a is the scale factor
for expanding universe, and the radius of the apparent horizon
RA is as follows

RA = 1√
H2 + k

a2

, (4)

in which k is the spatial curvature. Additionally, the entropy
of matter is obtained by the Gibbs equation as follows [39]

TmdSm = dEm + pmdV, (5)

in which Em = ρmV is the total energy of the matter inside
the horizon, pm is the matter pressure, V = 4

3πR3
A is the

volume of the universe and Tm is the matter temperature.
In most generalized gravity theories, the Friedmann equa-

tions governing the FRW universe can be written as

H2 + k

a2 = 8πG

3
ρt , (6)

Ḣ − k

a2 = −4πG(ρt + pt ), (7)

whereinρt = ρm+ρDE and pt = pm+pDE indicate the total
energy density and pressure. Here (ρm, pm) are related to the
distribution of matter and (ρDE ,pDE ) can be considered as
effective density and pressure of dark energy.

Applying the Clausius relation δQA = TAdSA, the appar-
ent horizon entropy is computed as follows [40]

SA = A

4G
− 8π2

∫
HR4

A(ρDE + pDE )dt, (8)

in which A = 4πR2
A denotes the horizon area. Equation

(8) shows that the apparent horizon entropy is the standard
Bekenstein entropy with a modified term (in integral form).

From Eqs. (3), (5) and using ρ̇m + 3H(ρm + pm) = 0,
the entropy of matter inside the universe can be computed as
follows

TA Ṡm = 4πR2
A(ρm + pm)

[
ṘA − HRA

]
, (9)

where we have assumed the horizon and fluid temperature
are equivalent to each other Tm = TA.

From Eq. (8) one can calculate the entropy of the apparent
horizon as

TA ṠA = 1

2πRA

(
1 − ṘA

2HRA

)

×
[

2πRA ṘA

G
− 8π2HR4

A(ρDE + pDE )

]
. (10)
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Using Eqs. (4) and (7), the time derivative of the apparent
horizon radius is obtained as follows

ṘA = −HR3
A

(
Ḣ − k

a2

)
,

= 4πGHR3
A

[
ρm + pm + (ρDE + pDE )

]
. (11)

Replacing Eq. (11) into (9) and (10) one can get

TA Ṡm = 16π2GHR5
A(ρm + pm)

×[
ρm + pm + (ρDE + pDE )

]
−4πHR3

A (ρm + pm) , (12)

TA ṠA = 4πHR3
A(ρm + pm)

−8π2GHR5
A(ρm + pm)

×[
ρm + pm + (ρDE + pDE )

]
. (13)

Adding Eqs. (12) and (13), the GSL of thermodynamics in
modified gravity can be obtained as

TA Ṡtot = TA ṠA + TA Ṡm = 8π2GHR5
A(ρm + pm)

×[
ρm + pm + (ρDE + pDE )

]
. (14)

Note that in the Einstein gravity, where SA = A
4πG from Eq.

(8) we have ρDE + pDE = 0 and consequently, Eq. (14)
reduces to

TA Ṡtot = 8π2GHR5
A(ρm + pm)2 ≥ 0, (15)

which shows that the GSL is always respected in the Einstein
gravity [41].

In the next sections, within the framework of massive
gravity, we consider the two models including the GMG and
dRGT on de Sitter and examine the validity of the GSL for
both models.

3 Generalized massive gravity

The action of GMG model including the Einstein–Hilbert
action and the generalized dRGT takes the form [42]

S = M2
P

∫
d4x

√−g

×
[
R

2
+ m2

4∑
n=0

αn(φ
aφa)Un[K]

]
+ Sm, (16)

in which MP = 1/
√

8πG is the reduced Planck mass, g is
determinant of the metric tensor, R is the Ricci scalar, m is
the graviton mass and Sm is the action of matter. Also the free
parameters αn(φ

aφa) are functions of the Lorentz invariant
term ηabφ

aφb in which φa is the Stückelberg field.
Also the functions Un in the action (16) denote the dRGT

potential terms which are defined as

U0(K) = 1,

U1(K) = [K],
U2(K) = 1

2! ([K]2 − [K2]),

U3(K) = 1

3! ([K]3 − 3[K][K2] + 2[K3]),

U4(K) = 1

4! ([K]4 − 6[K]2[K2]
+ 8[K][K3] + 3[K2]2 − 6[K4]), (17)

where the square brackets denote the trace operation on the
tensor K defined as

Kμ
ν = δμ

ν − (√
g−1 f

)μ

ν
. (18)

Also fμν is the fiducial metric which is defined in terms of
four Stückelberg fields φa as fμν ≡ ηab∂μφa∂νφ

b.
Here, we consider an open FRW background as

gμνdx
μdxν = −dt2 + a(t)2
i j dx

i dx j , (19)

which 
i j is the spatial metric given by


i j dx
i dx j = dx2 + dy2 + dz2

−k(xdx + ydy + zdz)2

1 + k(x2 + y2 + z2)
, (20)

and k = |K | = −K is the negative absolute value of the
constant spatial curvature.

For the above background, the configuration of the Stück-
elberg field corresponding to the conditions of homogeneity
and isotropy takes the form [19,43]

φ0 = f (t)
√

1 + k(x2 + y2 + z2),

φ1 = f (t)
√
k x,

φ2 = f (t)
√
k y,

φ3 = f (t)
√
k z, (21)

where the field configuration (21) satisfy the relation φaφa =
− f (t)2.

Using Eq. (21), the fiducial metric fμν = ηab∂μφa∂νφ
b

corresponding to the Minkowski spacetime ηab in an open
universe reads

fμνdx
μdxν = − ḟ (t)2dt2 + k f (t)2
i j dx

i dx j , (22)

where f (t) is the Stückelberg field function.
For the matter part, we consider the energy-momentum

tensor of the perfect fluid as

Tμν = ρmuμuν + pm(gμν + uμuν), (23)

where uμ is the four velocity field. In what follows, we con-
sider the pressureless matter (pm = 0) throughout the paper.
Therefore, the continuity relation ρ̇m+3Hρm = 0 governing
the pressureless matter yields ρm = ρm0a

−3.
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Varying the action (16) with respect to the physical metric
gμν , Eq. (19), one can get the modified Friedmann equations

3

(
H2 − k

a2

)
= m2L + ρm

M2
P

, (24)

2

(
Ḣ + k

a2

)
= m2 J (r − 1)ξ − ρm

M2
P

, (25)

where

L ≡ −α0 + (3ξ − 4)α1 − 3(ξ − 1)(ξ − 2)α2

+ (ξ − 1)2(ξ − 4)α3 + (ξ − 1)3α4,

J ≡ α1 + (3 − 2ξ)α2

+ (ξ − 1)(ξ − 3)α3 + (ξ − 1)2α4, (26)

and

ξ ≡
√
k f

a
, r ≡ a ḟ√

k f
. (27)

Taking variation of the action (16) in terms of the fiducial
metric fμν , Eq. (22), one can obtain the background Stück-
elberg equation

3H J (r − 1) ξ − L̇ = 0. (28)

Following [18,19] for the minimal model of GMG, the func-
tions α take the forms

α0(φ
aφa) = α1(φ

aφa) = 0,

α2(φ
aφa) = 1 + m2α′

2φ
aφa,

α3(φ
aφa) = α3,

α4(φ
aφa) = α4, (29)

where α′
2, α3 and α4 are the free model parameters.

Using the following dimensionless parameters

m ≡ H0μ,

H ≡ H0h,

k ≡ a2
0 H

2
0 
k0 ,

α′
2 ≡ 10−4Q

μ2 ,

ρm ≡ 3a3
0H

2
0 M

2
P
m0

a3 , (30)

and with the help of Eq. (27), the first Friedmann equation
(24) and the Stückelberg equation (28) can be recasted in the
following form

3

(
h2 − a2

0
k0

a2

)
− μ2

[
3(ξ − 2)(ξ − 1)(10−4Qa2ξ2 − a2

0
k0 )

a2
0
k0

+ α3(ξ − 1)2(ξ − 4) + α4(ξ − 1)3
]

= 3a3
0
m0

a3 , (31)

3

(
h −

√

k0a0

a

) [
(3 − 2ξ)

(
1 − 10−4Qa2ξ2

a2
0
k0

)

+α3(ξ − 3)(ξ − 1) + α4(ξ − 1)2

]

= 6(10−4Q)a(ξ − 2)(ξ − 1)ξ

a0
√


k0

. (32)

The evolution of h and ξ can be determined by solving the
above equations. Using the Stückelberg equation (32), we
obtain a solution for h. Replacing this into the first Friedmann
equation (31) yields a tenth order polynomial equation for ξ

and to select the physical solution with positive real values,
we compare the roots of the equation to the value of ξdRGT =
2.80902 at early times. The results are shown in Fig. 1.

Figure 1 shows that: (i) with decreasing Q, δH/H goes to
zero and the GMG model behaves like �CDM one. (ii) For a
given z when 
k0 increases, both |δH/H | and ξ(z) increase.
(iii) For a given z, when Q decreases, ξ(z) increases and
goes to ξdRGT = 2.80902. This shows that the GMG model
for Q → 0 recovers the result of standard dRGT massive
gravity.

In the next, comparing the Friedmann Eqs. (24) and (25),
respectively, with Eqs. (6) and (7) one can obtain

ρDE = M2
Pm

2L , (33)

pDE + ρDE = −M2
Pm

2 J (r − 1)ξ. (34)

Using Eqs. (33) and (34), the effective equation of state
parameter of dark energy can be written as follows

ωDE ≡ pDE

ρDE
= −1 − J (r − 1)ξ

L
. (35)

From Eq. (27), the quantity r can be expressed in terms of
H and ξ as

r = a√
k

(
H + ξ̇

ξ

)
. (36)

With the help of Eqs. (29) and (30) and using φaφa =
− f (t)2, the dimensionless parameter α2 takes the form

α2(t) = 1 − Q

104 H
2
0 f (t)2. (37)

Note that the parameter α2 shows the departure of GMG
model from the dRGT one and for the case of Q → 0 we
have α2 = 1 and consequently the GMG model reduces to
the standard dRGT massive gravity as shown in Fig. 1.

From Eq. (33) and using Eqs. (26), (27), (30), (37), the
effective density parameter of dark energy arising from the
mass term in the GMG model can be obtained as follows


DE ≡ ρDE

3M2
P H

2
= μ2

3h2 L ,
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Fig. 1 Evolutions of the fractional deviation of the Hubble parameter
δH
H = H−H�CDM

H�CDM
in GMG model from �CDM as well as the quantity

ξ(z) for different values of Q (with fixed 
k0 = 3×10−3) and 
k0 (with

fixed Q = 1). Auxiliary parameters are 
m0 = 0.3, α3 = 0 and α4 =
0.8 [19]. Here H�CDM = H0

√

m0 (1 + z)3 + 
k0 (1 + z)2 + 
�0

= μ2

3h2 (ξ − 1)

×
[
α3(ξ − 1)(ξ − 4) + α4(ξ − 1)2

+3(ξ − 2)

(
Qξ2a2

104
k0a
2
0

− 1

)]
, (38)

where we have used α0 = α1 = 0 from Eq. (29). Here,
the value of μ parameter can be determined by applying the
constraint 
k0 + 
m0 + 
DE0 = 1 at the present time.

With the help of results of h and ξ obtained from numeri-
cal solving of Eqs. (31) and (32), one can get the evolutions of
ωDE , 
DE , 
m = 
m0a

−3/h2 and the deceleration param-
eter q(z) = −1 − Ḣ/H2 versus the redshift z = a0

a − 1 for
different set of model parameters. The results are illustrated
in Fig. 2 which shows that (i) the equation of state param-
eter of GMG model behaves like phantom dark energy, i.e.
ωDE < −1, for different Q and 
k0 . (ii) For the case of

Q → 0 we have ωDE → −1 and the model behaves like the
�CDM one. (iii) The density parameter of matter 
m and
dark energy 
DE start, respectively, from 1 and zero and
then tend to their values at the present time. (iv) The deceler-
ation parameter q(z) begins from matter dominated universe,
i.e. q = 0.5, and then shows a transition from decelerating
(q > 0) to accelerating (q < 0) universe in the recent past.
(v) Both 
(z) and q(z) for Q → 0 behave like the �CDM
model.

3.1 Generalized second law of thermodynamic in GMG
model

Here, we are interested in examining the validity of GSL of
thermodynamics for the GMG model. To do this, we first
replace Eq. (34) into (12) and (13) to obtain evolutions of
the pressureless matter entropy TA Ṡm (with pm = 0) and
entropy of the apparent horizon TA ṠA as

123
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Fig. 2 Variations of the equation of state parameter of dark energy
ωDE , the density parameters (
m , 
DE ) and the deceleration parame-
ter q(z) versus the redshift z for GMG model with different values of

Q (with fixed 
k0 = 3 × 10−3) and 
k0 (with fixed Q = 1). Auxiliary
parameters are 
m0 = 0.3, α3 = 0 and α4 = 0.8 [19]

123
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TA Ṡm = 16π2GHR5
Aρm

×[
ρm − M2

Pm
2 J (r − 1)ξ

] − 4πHR3
Aρm, (39)

TA ṠA = 4πHR3
Aρm − 8π2GHR5

Aρm

×[
ρm − M2

Pm
2 J (r − 1)ξ

]
, (40)

where ρm = ρm0a
−3. Finally, the GSL (14) in GMG theory

takes the form

TA Ṡtot = 8π2GHR5
Aρm

[
ρm − M2

Pm
2 J (r − 1)ξ

]
. (41)

In Fig. 3, using Eqs. (39), (40) and (41) we plot evolutions
of TA Ṡm , TA ṠA and TA Ṡtot for different values of the GMG
model parameters. Figure 3 shows that although the entropy
of matter does not satisfy the second law of thermodynamics
(i.e. TA Ṡm < 0) in the near past, but when we add the entropy
of horizon to the matter entropy, the GSL in GMG model is
respected for different values of Q and 
k0 during history of
the universe.

According to [18], it was pointed out that in the general-
ized massive gravity model due to having a positive cosmo-
logical constant and stable perturbations, the region of the
parameter space α4 − α3 (for the case α′

2 > 0 in our model)
should satisfy the following constraints

α3 > −1,

1

4

(
3 + 2α3 + 3α2

3

)
< α4 < 1 + α3 + α2

3,

α3 − α4 + 1 > 0. (42)

The region where all conditions are satisfied has been plotted
in Fig. 2 (left panel) of [18]. Following [35,36], we probed
the validity of the GSL, TA Ṡtot ≥ 0, for the allowed region
(42) and found that the GSL is respected. In Fig. 3, we plot
only the result for the case α3 = 0 and α4 = 0.8.

Regrading the Q parameter, it should be noted that we
only consider the values Q � 1. This selection yields the
cosmological solutions to be stable against linear perturba-
tions [19].

4 dRGT massive gravity on de Sitter

In this section, the second model of generalized massive
gravity namely dRGT massive gravity on de Sitter has been
inspected. In this model, the secondary (fiducial) Minkowski
metric in the standard dRGT is replaced by the de Sitter met-
ric. The action of dRGT massive gravity on de Sitter is given
by [44]

S = M2
P

∫
d4x

√−g

(
R

2
+ m2U

)
+ Sm, (43)

whereinm denotes the graviton mass and the dRGT potential
terms have the following form

U = U2 + α3U3 + α4U4, (44)

in which U2, U3 and U4 are given by Eq. (17). Also α3 and
α4 are the free model parameters.

Following Langlois and Naruko [21], we take the de Sitter
metric fab for the reference metric as follows

fabdφadφb = −dT 2 + b2
k (T )γi j d X

idX j , (45)

where γi j is the spatial metric and the de Sitter functions
bk(T ) (with k = 0,±1) have the following form

b0(T ) = eHcT , b−1(T ) = H−1
c sinh(HcT ),

b1(T ) = H−1
c cosh(HcT ). (46)

Note that for the case of Hc → 0, the Minkowski metric
is recovered for the flat b0(T ) = 1 and open b−1(T ) = T
universe and the latter case reduces to the Milne metric in the
flat geometry.

The Stückelberg fields φa are determined from the homo-
geneity and isotropy conditions as follows [21]

φ0 = T = f (t), φi = Xi = xi . (47)

Therefore, the fiducial metric fμν corresponding to the de
Sitter spacetime fab yields

fμν ≡ fab∂μφa∂νφ
b = Diag

[ − ḟ 2, b2
k

(
f (t)

)
γi j

]
. (48)

Taking the variation of action (43) with respect to the phys-
ical FRW metric gμν , the modified Friedmann equations in
the dRGT massive gravity on de Sitter can be obtained as

H2 + k

a2 = 1

3M2
P

(ρm + ρDE ), (49)

2Ḣ + 3H2 + k

a2 = − 1

M2
P

(pm + pDE ), (50)

where ρDE and pDE are the effective energy density and
pressure of dark energy associated with the massive graviton
term defined as

ρDE = m2M2
P

a3 (bk( f ) − a)
{
(6 + 4α3 + α4)a

2

− (3 + 5α3 + 2α4)abk( f )

+ (α3 + α4)b
2
k ( f )

}
, (51)

pDE = m2M2
P

a2

{[
6 + 4α3 + α4 − (3 + 3α3 + α4) ḟ

]
a2

− 2
[
3 + 3α3 + α4 − (1 + 2α3 + α4) ḟ

]
abk( f )

+
[
1 + 2α3 + α4 − (α3 + α4) ḟ

]
b2
k ( f )

}
. (52)

Varying the action (43) with respect to the fiducial metric
fμν , Eq. (48), one can get the equation of motion governing
the Stückelberg field f (t) as follows

123
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Fig. 3 Evolutions of the matter entropy TA Ṡm , entropy of the apparent horizon TA ṠA and the GSL of thermodynamics TA Ṡtot for GMG model
with different values of Q (with fixed 
k0 = 3 × 10−3) and 
k0 (with fixed Q = 1). Auxiliary parameters are 
m0 = 0.3, α3 = 0 and α4 = 0.8
[19]

[
(3 + 3α3 + α4)a

2 − 2(1 + 2α3 + α4)abk( f )

+(α3 + α4)b
2
k ( f )

](
ȧ − ε f

dbk( f )

d f

)
= 0, (53)

where ε f denotes the sign of f . The Stückelberg field Eq.
(53) has the three solutions, the first two ones bk

(
f (t)

) =
X±a(t) represent the effective cosmological constant and are
independent of the specific form of bk( f ). Here,
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X± =
1 + 2α3 + α4 ±

√
1 + α3 + α2

3 − α4

α3 + α4
. (54)

The third solution of the Stückelberg equation (53) satisfy
the following relation

ε f
dbk( f )

d f
= ȧ. (55)

For the case of flat FRW universe (k = 0) which we focus
on it in what follows, substituting the de Sitter function
b0

(
f (t)

) = eHc f (t) into Eq. (55) and assuming ḟ > 0 (i.e.
ε f = 1), the result yields the following Stückelberg function

f (t) = H−1
c ln

(
aH

Hc

)
. (56)

Replacing the solution (56) into Eqs. (51) and (52) one can
get

ρDE = −m2
(

1 − H

Hc

) [
6 + 4α3 + α4

−(3 + 5α3 + 2α4)
H

Hc
+ (α3 + α4)

H2

H2
c

]
, (57)

pDE = m2
[

6 + 4α3 + α4

−(3 + 3α3 + α4)
H

Hc

(
3 + Ḣ

H2

)

+(1 + 2α3 + α4)
H2

H2
c

(
3 + 2

Ḣ

H2

)

−(α3 + α4)
H3

H3
c

(
1 + Ḣ

H2

) ]
. (58)

Adding Eqs. (57) and (58) one can get

ρDE + pDE = m2 Ḣ

H2

H

Hc

[
− (3 + 3α3 + α4)

+ (2 + 4α3 + 2α4)
H

Hc
− (α3 + α4)

H2

H2
c

]
.

(59)

Substituting Eqs. (57) and (58) into the Friedmann Eqs. (49)
and (50) and using ρm = ρm0a

−3 for the pressureless matter
(pm = 0), in the case of flat universe (k = 0) one can obtain

m2

H2
0

H

Hc

[
−1

3
(α3 + α4)

H2

H2
c

+ (1 + 2α3 + α4)
H

Hc

−(3 + 3α3 + α4)]

= −H2

H2
0

+ 
m0(1 + z)3 − 2
m2

H2
0

(
1 + 2

3
α3 + 1

6
α4

)
,

(60)

Ḣ

H2

{
− 2

H2

H2
0

+ m2

H2
c

H

H0

[
(3 + 3α3 + α4)

Hc

H0

− 2(1 + 2α3 + α4)
H

H0

+ (α3 + α4)
H2

H0Hc

]}
= 3
m0(1 + z)3, (61)

where 
m0 ≡ ρm0/(3M
2
P H

2
0 ).

From Eqs. (57), (58), (60) and (61), the effective equation
of state parameter ωDE for the dRGT massive gravity on de
Sitter reads

ωDE ≡ pDE

ρDE
= −1 −

2
(

H
H0

)2
Ḣ
H2 + 3
m0(1 + z)3

3
[(

H
H0

)2 − 
m0(1 + z)3
] . (62)

Here, to obtain the dynamics of the Hubble parameter H(z)
we need to solve Eq. (60). To do this, we concentrate on the
special case including α3 = −α4.

For the case α3 = −α4, from Eq. (60) one can get

H(z)

H0
=

−3
(

1 + 2α3
3

)
β1
β2

+ √
�

2
[
1 − (1 + α3)

β1

β2
2

] , (63)

where

� = 9

(
1 + 2α3

3

)2 β2
1

β2
2

+ 4

[
β1(2 + α3) + 
m0(1 + z)3

]

×
[

1 − β1

β2
2

(1 + α3)

]
, (64)

and β1 and β2 are the free model parameters defined as

β1 ≡ −m2

H2
0

, β2 ≡ Hc

H0
. (65)

Here, setting H(z = 0) = H0 into Eq. (63) yields

β1 = β2(1 − 
m0)

(1 + α3)
1
β2

− (3 + 2α3) + 2β2(1 + 1
2α3)

. (66)

Here, we have only three free parameters including 
m0 , α3

and β2. From Eq. (61), the deceleration parameter q(z) =
−1 − Ḣ/H2 for the case of α3 = −α4 can be obtained as
follows

q(z) = −1+ 3
m0(1 + z)3

2 H2

H2
0

+ β1

β2
2

H
H0

[
3(1+ 2α3

3 )β2−2 H
H0

(α3 + 1)
] .

(67)

Using Eqs. (62), (63) and (67) we plot the evolutionary
behaviors of H(z), ωDE (z), 
m(z) = 
m0(1 + z)3H2

0 /H2,

DE (z) = 1 − 
m(z) and q(z) in Fig. 4.

Figure 4 shows that: (i) fractional deviation of the Hubble
parameter of dRGT model on de Sitter from �CDM is in
order of O(10−3). (ii) The equation of state parameter of
dark energy behaves like phantom dark energy (i.e. ωDE <

−1) and tends to �CDM (i.e. ωDE → −1) in the future.
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Fig. 4 Variations of the fractional deviation of the Hubble parameter
from �CDM, where δH

H = H−H�CDM
H�CDM

, the equation of state parameter
of dark energy ωDE , the density parameters (
m ,
DE ) and the decel-

eration parameter q(z) versus the redshift z for the dRGT theory on de
Sitter. Auxiliary parameters are 
m0 = 0.3, β2 = 20.1 and α3 = 0.95
[22]

(iii) The density parameters 
m and 
DE , respectively, start
from 1 and 0 at early times and go toward their values at the
present time. (iv) The deceleration parameter q(z) begins
from matter dominated era (q = 0.5) and shows a transition
from decelerating (q > 0) to accelerating (q < 0) phase in
the near past.

4.1 Generalized second law of thermodynamic in dRGT
massive gravity on de Sitter

Here, similar to what we did for the GMG model we try to
check validity of the GSL of thermodynamics in the dRGT
massive gravity on de Sitter. To this aim, substituting Eq. (59)
into (12) and (13) one can get

TA Ṡm = 16π2GHR5
Aρm

{
ρm + m2 Ḣ

H2

H

Hc

×
[

− (3 + 3α3 + α4) + (2 + 4α3 + 2α4)
H

Hc

− (α3 + α4)
H2

H2
c

]}
− 4πHR3

Aρm, (68)

TA ṠA = 4πHR3
Aρm − 8π2GHR5

Aρm

{
ρm + m2 Ḣ

H2

H

Hc

×
[

− (3 + 3α3 + α4) + (2 + 4α3 + 2α4)
H

Hc

− (α3 + α4)
H2

H2
c

]}
, (69)

where ρm = ρm0a
−3. Finally, the GSL (14) in dRGT theory

on de Sitter takes the form

TA Ṡtot = 8π2GHR5
Aρm

{
ρm + m2 Ḣ

H2

H

Hc

×
[

− (3 + 3α3 + α4) + (2 + 4α3 + 2α4)
H

Hc

− (α3 + α4)
H2

H2
c

]}
. (70)
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Fig. 5 Variations of the matter entropy TA Ṡm , entropy of the apparent horizon TA ṠA and the GSL of thermodynamics TA Ṡtot versus the redshift
z for the dRGT massive gravity on de Sitter. Auxiliary parameters are 
m0 = 0.3, β2 = 20.1 and α3 = 0.95 [22]

Using Eqs. (68), (69) and (70) we plot the evolution of
matter, horizon and total entropy in dRGT model on de Sitter
for the case of α3 = −α4 in Fig. 5. This figure shows that the
entropy of matter violates the second law of thermodynamics
(i.e. TA Ṡm < 0) for the region of z < 1. But when we add
the horizon entropy to the matter entropy, the total entropy
of the universe in dRGT massive gravity on de Sitter satisfies
the GSL of thermodynamics.

5 Conclusions

Here, we investigated the GSL of thermodynamics within
the framework of massive gravity. According to the GSL,
the time evolution of matter entropy and horizon entropy
must be increasing function of time. To this aim, we consid-
ered a FRW universe filled with the pressureless matter and
enclosed by the apparent horizon. In addition, we obtained
a generalized formula for the GSL which is applicable for
modified gravity theories. In the next, we considered two
massive gravity models including the generalized massive
gravity and dRGT theory on de Sitter. The GMG model is a
generalized version of the standard dRGT in which the mass
graviton is slow varying time dependent. In dRGT on de Sit-

ter, the secondary (fiducial) Minkowski metric in standard
dRGT is replaced by the de Sitter reference metric. In the
next, we first studied the cosmological background for the
GMG and dRGT on de Sitter models and then we examined
the GSL for both of them with different model parameters.
Our results show that:

• For the GMG model, δH/H shows deviation from the
�CDM for different model parameters Q and 
k0 . Also
for the case of Q → 0, the result of standard dRGT model
is recovered (i.e. ξ → ξdRGT = 2.80902).

• For the GMG and dRGT on de Sitter models, the
fractional deviation of the Hubble parameter δH/H
from �CDM, respectively are in order of O(10−2) and
O(10−3).

• For the both GMG and dRGT on de Sitter: (i) the equation
of state parameter behaves like phantom dark energy (i.e.
ωDE < −1). (ii) The density parameters 
m and 
DE

start from 1 and 0 at early time and reach to their values
at the present. (iii) The deceleration parameter begins
from matter dominated epoch (q = 0.5) and shows a
transition from decelerating (q > 0) to accelerating (q <

0) phase near the past. (iv) The entropy of matter violates
the second law of thermodynamics (i.e. TA Ṡm < 0) but
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when we add the horizon entropy to the matter entropy,
the total entropy satisfies the GSL for both models.
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