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Abstract We derive the field-dependent masses in Fermi
gauges for arbitrary scalar extensions of the Standard Model.
These masses can be used to construct the effective poten-
tial for various models of new physics. We release a flexi-
bleMathematica notebook (VefFermi) which performs
these calculations and renders large-scale phenomenolog-
ical studies of various models possible. Motivated by the
debate on the importance of gauge dependence, we show that,
even in relatively simple models, there exist points where
the global minimum is discontinuous in the gauge parame-
ter. Such points require some care in discovering, indicating
that a gauge-dependent treatment might still give reasonable
results when examining the global features of a model.

1 Introduction

The observation of gravitational waves [1–3] from the very
early Universe will unlock a floodgate of information, provid-
ing us with an unprecedented richness of direct experimental
probes for fundamental physics. Precision cosmology rely-
ing on gravitational waves is currently under development,
and part of this effort involves the calculation of gravitational
wave spectra from cosmological phase transitions. The typ-
ical first step of these calculations is the computation of the
effective potential, the fundamental quantity that describes
the relevant scalar sector. Consequently, precision gravita-
tional wave cosmology for phase transitions begins with a
precision calculation of the effective action [4].

Scalar fields play a vital role in this connection between
cosmology and fundamental physics. The 2012 discovery of
a Standard Model-like Higgs boson at the Large Hadron Col-
lider (LHC) [5,6] spectacularly confirmed the mechanism of
electroweak symmetry breaking. The LHC, however, neither
fully mapped out the Higgs potential, nor confirmed or ruled
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out the possible existence of additional scalars that may play
a role in the electroweak phase transition. This is of impor-
tance, because the precise knowledge of the Higgs potential,
or possibly the potential of a more extended scalar sector, is
vital to understand the cosmological consequences of elec-
troweak symmetry breaking. Beyond the possibility of grav-
itational waves, among these consequences are the stability
of the electroweak vacuum [7–10] and electroweak baryoge-
nesis [11–13]. The precision cosmology of these phenomena
demands the precision knowledge of the Higgs potential.

Furthermore, to understand these cosmological phenom-
ena, it is imperative to not only be able to measure, but also to
calculate the Higgs potential. The Higgs potential, of course,
depends on the model Nature may have chosen beyond the
Standard Model of elementary particles. Since this model is
presently not known, the Higgs potential has been analysed at
a substantial depth in the context of various new physics mod-
els. A small selection of such models (accompanied by an
incomplete selection of references) are: the Standard Model
extended by a real scalar gauge singlet [14–28], a complex
singlet [29–36], two real singlet [37–40], a doublet [41–44], a
singlet and a triplet [45], a doublet and a real singlet [46,47],
two doublets [48–50], or a doublet and a triplet [51].

The classical Higgs potential receives substantial quantum
corrections and it is essential to include these corrections in
any reliable calculation. However, even with the advances in
loop techniques, fixed-order one-, or two-loop, or resummed
perturbative corrections, can be tedious to calculate depend-
ing on the model at hand. The situation worsens for the cal-
culation of the effective scalar potential in the cosmological
context. Here, perturbative calculations have to be performed
in a thermal bath, and in the context of finite-temperature field
theory, become even more demanding.

The calculation of the effective potential is a subject
of active research. Different authors have proposed vari-
ous methods in the literature, with improvements as well as
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trade-offs, that aim to make these calculations more precise
and/or more manageable. This has also prompted analyses of
the uncertainties of the different parts of these calculations
[52–54]. The community appears to be divided regarding
the choice of renormalisation scheme, resummation scheme,
renormalisation scale, or gauge. The relative importance of
including fixed-order or resummed perturbative corrections,
or implementing gauge independence is also subject of dis-
cussion.

Gauge dependence becomes a particularly thorny issue
in effective field theories. Here, unlike in perturbative cal-
culations without a background field, gauge dependence is
present from the outset, namely in the effective potential
itself. As we show in this work, this gauge dependence
can lead to qualitative differences in predictions, and thus
presents a fundamental limitation to the predictions which
can be made with this method. While gauge-independent
calculations of the effective potential are being developed,
they have not reached the maturity that would allow them
to be employed to assess broad features of models, a task
that would require a wide sampling of the model’s parame-
ter space. Thus, for the time being, it is important to assess
the effect of gauge dependence of the effective potential in
gauge-dependent methods. If one uses a gauge-dependent
effective potential (motivated perhaps by convenience, or
concerns about resummation), one should at the very least test
the numerical sensitivity of observables to the gauge parame-
ter. Doing so requires a consistent approach to evaluating the
artificial gauge dependence – that is, not including the zero-
temperature vacuum expectation value in the gauge-fixing
Lagrangian, but rather, using Fermi gauges.

The issue of gauge dependence of the effective potential
was championed in Ref. [55], where a technique we refer
to as the “PRM method” was developed for the analysis of
finite temperature potentials. It was embraced, improved and
examined in detail in later papers, such as Refs. [33,54,56–
58]. Alternatively, in discussing gauge dependence and the
method developed in Ref. [55] the author of Ref. [59]
expresses a philosophy, stating “Although morally satisfy-
ing, the gauge-invariant approach has the disadvantage of
sometimes neglecting numerically important contributions
to the effective potential.”. Similarly, Ref. [60] suggests
an improvement on resummation methods, but chooses to
neglect gauge dependence in favour of focusing on resum-
mation improvements while referencing (and discussing) the
PRM method. Reference [61] (which shares a co-author with
this paper) also gives similar reasons for comparing a gauge-
dependent method with dimensional reduction, rather than
PRM, while Refs. [25,26] find gauge dependence to be sub-
dominant. Finally, Ref. [62] has a philosophy similar to our
work in varying the gauge parameter over a range to probe the
numerical sensitivity. This is also done in Ref. [54], which
concludes that gauge dependence is moderate through most

of the parameter space of the Z2-symmetric scalar singlet
extension of the Standard Model.

To improve gauge-dependent calculations of the effective
potential, and to be able to better assess this gauge depen-
dence, in this work we present a generic calculation of the
field-dependent masses in the Fermi gauge. These masses
are key ingredients for building the effective potential of a
specific model. Although our calculations will be at zero
temperature, it is trivial to extend our analysis to the finite
temperature case, as the derivation of these masses is the
only non-trivial step. In an associated Mathematica note-
book, we code the calculation of field-dependent masses, in
the context of an arbitrary scalar extension of the Standard
Model. The notebook also features the generic expression of
the zero-temperature effective potential at tree level and at
one loop (for a selected set of models), and finite-temperature
correction terms.

We demonstrate the use of our generic calculation by
applying it to two example cases: the Standard Model
extended by a real scalar singlet, and by an additional scalar
doublet. Intriguingly, we find pathological points in these
two parameter spaces, where a small change (of 3) in the
gauge parameter changes the location of the global minimum
of the potential, rendering electroweak symmetry breaking
itself gauge dependent.

The remainder of this paper is structured as follows: in
Sect. 2 we describe our approach for calculating the effec-
tive potential. We demonstrate this for two simple extensions
of the Standard Model – the Standard Model augmented by
a real Scalar Singlet (SM+SS); and the Two-Higgs Doublet
Model (2HDM) – in Sect. 3. In Sect. 4 we provide a bench-
mark for each of these models, where the global minimum
changes discontinuously with the gauge parameter. We dis-
cuss the implications and outlook in Sect. 5. Basic infor-
mation about our Mathematica notebook is provided in
Appendix A.

2 Effective potential in Fermi gauges

Whilst it is certainly the case that any observable quantity
should be gauge independent, some useful quantities, such
as the effective potential away from its tree-level minima,
may be gauge dependent. In particular, the ratio of the gauge-
dependent critical vacuum expectation value (vev) to the crit-
ical temperature is a frequently-used heuristic for the strength
of the phase transition, correlating well with the sphaleron
energy and the latent heat, while being more convenient to
calculate. Furthermore, some observables calculated in a con-
venient manner from gauge-dependent quantities may them-
selves turn out to be gauge dependent.

Despite the theoretical distaste of a gauge-dependent
observable, or even a gauge-dependent heuristic quantity,
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such a result may not be completely inadmissible, as long
as the effect of gauge dependence is numerically small. This
is particularly the case if one is primarily interested in per-
forming rapid scans of a large region of parameter space.
Incorporating resummation into a gauge-independent calcu-
lation requires at least some two-loop calculations1 which
might be excessive for a parameter-space scan. However,
there remains the possibility of gauge dependence making
a qualitative difference to the phenomenology. To assist the
field in ascertaining the gauge dependence, both qualitative
and quantitative, of a given model, we release a code that
generates the effective potential in the Fermi gauge for an
arbitrary model. We employ this code in what follows to
establish the fact that there do indeed exist some parameter
points that are qualitatively gauge dependent – that is, there
are dramatic discrete changes in the phenomenological pre-
dictions with a modest change in the gauge parameter. We
then use this to track the effects of gauge dependence and
determine whether qualitative differences may arise, focus-
ing initially on finding which is the deepest of the different
minima.

The relevant gauge-fixing terms added to the Lagrangian
for each gauge boson Ai are of the form

Lgf = − 1

2ξi
(∂μA

a
iμ)2. (1)

We use the Fermi gauges rather than the generalised Rξ

gauges sometimes employed for this purpose, since the latter
method utilises different gauges for each value of the scalar
field, the validity of which has been questioned [63,64]. The
generalised Rξ gauges are typically chosen for their cancella-
tion of the off-diagonal Goldstone-longitudinal gauge boson
terms, particularly as this results in much simpler propaga-
tors. However, in the Fermi gauges the effective potential
may still be calculated with little difficulty, without requiring
this cancellation which, moreover, becomes less of a concern
once we are relying upon computational calculations.

We calculate the effective potential to 1-loop order using
the background field method of Ref. [65], as applied by
Refs. [25,66]. Specifically, given a theory consisting of a
set of commuting (bosonic) fields, φi , and action

S[φ] =
∫

d4x L(φa(x)), (2)

the one-loop corrections to the effective potential are given
by

V1(φ̂) = − i

2

∫
d4 p

(2π)4 ln det iD−1
i j [φ̂; p], (3)

1 Recent work has shown how to construct a gauge-independent cal-
culation that includes resummation in a more economical manner, see
Ref. [58].

where the determinant is over internal and spin degrees of
freedom, φ̂ is a constant background and the inverse propa-
gator may be evaluated using

iD−1
i j [φ̂; x, y] = δ2S[φ]

δφi (x)δφ j (y)

∣∣∣∣
φ=φ̂

, (4)

and then performing a Fourier transform. For a theory com-
posed of scalars and vector bosons, we will find that the deter-
minant factorises as a product of terms resembling massive
scalar modes of the form p2 −m2

i , where some of these terms
will have a multiplicity of d − 1, where d is the number of
space-time dimensions. Although we have made no assump-
tion about the mixing between scalar and vector bosons, and
indeed there is additional mixing in the Fermi gauges com-
pared to the Rξ gauges due to the lack of the appropriate
cancelling term in the gauge-fixing condition, we can never-
theless identify the “mass” terms mi as scalar or vector terms
by the presence of a multiplicity depending on the dimension.
The logarithm allows us to perform the integral by convert-
ing the product of these factor to the sum of their logarithms,
where the dimension dependence now enters as a prefactor
to the relevant terms.

The case of a theory containing fermions differs slightly in
that for the relevant terms the right hand side of (3) contains
an extra factor of −2, and that these terms in the determinant
will factorise into terms of the form /p+mi . Nevertheless, the
absence of any relevant mixing with the propagating boson
fields at the 1-loop level means that they factor out and so
may be treated separately. The results of all these integrals,
renormalised in the MS scheme may be summarised as

V1(φ) =
∑
i

ni
m4

i (φ)

64π2

(
ln

(
m2

i (φ)

μ2

)
− ki

)
, (5)

where the sum runs over all fields in the theory, ni is the
relevant multiplicity factor for each particle, which is taken to
be negative for fermions, mi are the field-dependent masses,
μ the renormalisation scale, and ki is given by

ki =
⎧⎨
⎩

5
6 , gauge bosons

3
2 , otherwise.

(6)

This approach is demonstrated with concrete examples in the
following section.

3 Examples of application to specific models

In this section we give an explicit calculation of two sim-
ple extensions of the Standard Model, with the more com-
plex models reserved for the accompanying Mathematica
code. Specifically, we work with the extension of the Stan-
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dard Model by a real scalar singlet, and by a doublet scalar
field (two-Higgs doublet model).

3.1 The standard model plus a real scalar singlet

The addition of a real scalar singlet is the simplest extension
to the scalar sector of the Standard Model (SM+SS). The
SM+SS is also the simplest model where it becomes possi-
ble for the deepest minimum to qualitatively vary with the
gauge. The derivation for the effective potential in this model
in Fermi gauges was previously performed in [25], and we
review the calculation for completeness.

The most general renormalisable scalar potential in this
model is

V (H, S) = m2(H†H) + λ

2
(H†H)2 + K1(H

†H)S

+K2

2
(H†H)S2 + 1

2
m2

s S
2 + κ

3
S3 + λs

2
S4. (7)

We decompose the Higgs doublet as

H = 1√
2

(
φ1 + iφ3

φ2 + v + iφ4

)
, (8)

where v is a background field, and similarly expand the sin-
glet around a background field x , S = s + x . Collecting all
the dynamical fields into a single vector as,

Φ = (
φ1 φ2 φ3 φ4 s W 1

μ W 2
μ W 3

μ Bμ

)T
, (9)

the terms quadratic in the dynamical fields may be written as

L ⊃ −1

2
Φ†ΣΦ + Lfermion, (10)

where Σ is the inverse propagator matrix. Here, we may
decompose Σ as

Σ =
[
Dab Ma

μ

Ma†
μ Δμν

]
, (11)

where the scalar terms are given by

Dab =

⎡
⎢⎢⎢⎢⎢⎣

−p2+dH 0 0 0 0
0 −p2+dH +λv2 0 0 k1v+k2vx

0 0 −p2+dH 0 0
0 0 0 −p2+dH 0
0 k1v+k2vx 0 0 −p2+dS

⎤
⎥⎥⎥⎥⎥⎦

,

(12)

the mixing scalar-gauge terms by

Ma
μ =

⎡
⎢⎢⎢⎢⎣

0 i
2g2vpμ 0 0

0 0 0 0
i
2g2vpμ 0 0 0

0 0 − i
2g2vpμ

i
2g1vpμ

0 0 0 0

⎤
⎥⎥⎥⎥⎦ , (13)

the gauge boson terms by

Δμν =

⎡
⎢⎢⎢⎢⎢⎢⎣

ΔW − 1
4 g

2
2v2gμν 0 0 0

0 ΔW − 1
4 g

2
2v2gμν 0 0

0 0 ΔW − 1
4 g

2
2v2gμν

1
4 g1g2v2gμν

0 0 1
4 g1g2v2gμν ΔB− 1

4 g
2
1v2gμν

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(14)

and we have defined

dH = m2 + k1x + k2

2
x2 + λ

2
v2, (15)

dS = m2
s + 2κx + 6λs x

2 + k2

2
v2, (16)

ΔW = p2gμν −
(

1 − 1

ξW

)
pμ pν, (17)

ΔB = p2gμν −
(

1 − 1

ξB

)
pμ pν . (18)

It is important to note that, due to the Lorentz indices, Σ

is in this case a 21 × 21 matrix, and so we should expect 21
modes. Taking the determinant, we find that the gauge bosons
and fermions2 maintain the same masses as in the SM. The
Goldstone-like and physical Higgs scalars have masses given
by

m2
1,± = 1

2

(
dH ±

√
dH (dH − g2

2ξW v2)

)
, (19)

m2
2,± = 1

2

(
dH ±

√
dH (dH − (g2

1ξB + g2
2ξW )v2)

)
, (20)

m2
h,± = 1

2

(
dH + dS ±

√
(dH − dS)2 + 4(k1v + k2vx)2

)
,

(21)

where the masses m2
1,± have a multiplicity of 2. In addition

to these 8 modes, there is another massless scalar-like mode,
and each vector boson contributes with a multiplicity of 3 so
we have a total of 21 as expected. Note also that in this model
the gauge dependence enters entirely through the masses of
the Goldstone-like particles.

3.2 The two Higgs-doublet model

As a further example, we consider the Two Higgs-Doublet
Model (2HDM). To maintain some simplicity, we consider
the case of only a softly-broken Z2 symmetry and no explic-
itly CP-violating terms. The relevant potential is

V (H1, H2) = m2
1(H

†
1 H1) + m2

2(H
†
2 H2)

−m2
12(H

†
1 H2 + h.c.)

2 We consider only the top quark since it constitutes the dominant
fermion contribution.

123



Eur. Phys. J. C (2024) 84 :66 Page 5 of 9 66

+λ1

2
(H†

1 H1)
2 + λ2

2
(H†

2 H2)
2

+λ3(H
†
1 H1)(H

†
2 H2) + λ4(H

†
1 H2)(H

†
2 H1)

+λ5

2

(
(H†

1 H2)
2 + h.c.

)
. (22)

In general, the 2HDM admits the possibility of CP-violating
and charge-breaking minima. However, since we are only
interested in what happens with the deepest minimum, we
restrict ourselves to vevs which are both CP-conserving and
not charge-breaking, since if a vev of this nature exists, it is
the global minimum. Proceeding as before, we expand the
doublets as a set of scalar fields about these constant vacuum
configurations as

H1 = 1√
2

(
φ11 + iφ13

φ12 + v1 + iφ14

)
, H2 = 1√

2

(
φ21 + iφ23

φ22 + v2 + iφ24

)
,

(23)

and create a vector of the fields

Φ = (
φ11 φ12 φ13 φ14 φ21 φ22 φ23 φ24 W 1

μ W 2
μ W 3

μ Bμ

)T
.

(24)

We may again write the quadratic terms of the Lagrangian
in the form of (10) and (11), where now the nonzero scalar
terms Dab of the inverse propagator become

D11 = D33 = −p2 + m2
11 + 1

2

(
λ1v

2
1 + λ3v

2
2

)
, (25)

D22 = −p2 + m2
11 + 1

2

(
3λ1v

2
1 + λ3v

2
2 + λ4v

2
2 + λ5v

2
2

)
,

(26)

D44 = −p2 + m2
11 + 1

2

(
λ1v

2
1 + λ3v

2
2 + λ4v

2
2 − λ5v

2
2

)
,

(27)

D55 = D77 = −p2 + m2
22 + 1

2

(
λ2v

2
2 + λ3v

2
1

)
, (28)

D66 = −p2 + m2
22 + 1

2

(
3λ2v

2
2 + λ3v

2
1 + λ4v

2
1 + λ5v

2
1

)
,

(29)

D88 = −p2 + m2
22 + 1

2

(
λ2v

2
2 + λ3v

2
1 + λ4v

2
1 − λ5v

2
1

)
,

(30)

D15 = D51 =D37 =D73 = −m2
12 + 1

2
(λ4v1v2 + λ5v1v2) ,

(31)

D26 = D62 = −m2
12 + λ3v1v2 + λ4v1v2 + λ5v1v2, (32)

D48 = D84 = −m2
12 + λ5v1v2, (33)

the mixed terms are given by

Ma
μ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 i
2g2v1 pμ 0 0

0 0 0 0
i
2g2v1 pμ 0 0 0

0 0 − i
2g2v1 pμ

i
2g1v1 pμ

0 i
2g2v2 pμ 0 0

0 0 0 0
i
2g2v2 pμ 0 0 0

0 0 − i
2g2v2 pμ

i
2g1v2 pμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (34)

and the gauge terms retain the same form as (14) but with the
substitution v2 → v2

1 + v2
2. The explicit form of the masses

are in this case the roots to polynomials of up to quartic
order which, since they cannot be expressed concisely, we
omit here and leave to the notebook. In general, polynomi-
als of arbitrarily-high order may be encountered, resulting
from matrices with large dimensions. Finding the determi-
nant analytically of these large matrices is nontrivial – in
this 2HDM case the matrix is naively 24 × 24 when expand-
ing the Lorentz indices. However, some simplification results
from the fact that the scalars do not mix with the transverse
components of the gauge bosons, which can be used to effec-
tively factor them out of the determinant. Finally, note that,
in this model we must also specify which of the doublets the
fermions couple to.

4 Numerical results and gauge dependence of the
deepest minimum

In this section we use the potentials derived in Sect. 3 to inves-
tigate qualitative changes that occur in the effective potential
as a result of varying the gauge parameter, so that the gauge
dependence can no longer be considered merely a numerical
nuisance. We find that it is possible for the global minimum
of a potential to switch between two local minima with the
gauge choice in these models, and present a benchmark where
this occurs for each model. Note that such an occurrence is
not forbidden by the Nielsen identities, which guarantee that
the effective potential at 1-loop is gauge independent at the
tree-level stationary points, but not necessarily at the 1-loop
stationary points themselves since the position of these in
field space may be gauge dependent [55]. Furthermore, since
the Nielsen identities are expressed in terms of the deriva-
tives of the effective action, they have no bearing over the
behaviour of any observable in the global minimum in the
case we consider here where it changes between distinct min-
ima (although they continue to hold in each minimum sepa-
rately even as each may become apparently unstable).

Since there are some issues with the convergence of pertur-
bation theory for an arbitrarily large gauge parameter [62,64],
we restrict our analysis for these models to consider only
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Table 1 Parameter values for a benchmark in the SM+SS model where
the deeper of two minima changes with changing the gauge parameters
by 3. The parameters reproduce the observed values for the mass of
the Standard Model Higgs boson and vev of 125 GeV and 246 GeV
respectively [67]

m2 −6600 GeV2

λ 0.0562

K1 −620 GeV

K2 6.6

m2
s 260000 GeV2

κ −470 GeV

λs 1

yt 1

g1 0.357

g2 0.652

values of the gauge parameter up to ξ ≤ 3. This leads to
a relatively small effect compared to the barrier height, see
Sects. 4.1 and 4.2. However, it is worth noting a much greater
effect may be produced if allowing a larger change in the
gauge parameter sometimes used in the literature, such as
the ranges considered in Refs. [54,55].

4.1 The standard model plus a real scalar singlet

With the specific parameter values show in Table 1, it can
be easily verified that, in Feynman gauge, this results in a
global minimum at one loop with v = 245.98 GeV and
x = 50.1 GeV and the lighter of the physical Higgs fields
having a mass mh = 124.98 GeV in this minimum. That
is, we match the first and second derivatives of the effective

potential at one loop. We also have the mass of the heav-
ier Higgs state of 738.8 GeV and a mixing angle of 0.189.
Note, however, that there is another local minimum with
v = 0 GeV. The situation is shown in Fig. 1. The values
of the potential at these two minima are nearly degenerate,
with values of 2.006×108 (GeV)4 and 2.013×108 (GeV)4,
respectively.

If we now change the values of the gauge parameters to
ξB = ξW = 3, we find that the minimum at 0 becomes
the global minimum of the theory. This is a consequence of
a gauge-dependent contribution at one loop to the effective
potential being generated by the Goldstone-like masses. This
means the electroweak minimum may be modified, while
the symmetric minimum remains gauge independent, and
since the minima are nearly degenerate, this can be enough
to change the global minimum of the potential. Of course, this
situation would imply that electroweak symmetry breaking
does not occur, leaving the phenomenological status of this
point ambiguous.

Note that this point did not require a large fine tuning, with
the parameters needing to be specified to only two significant
figures. The value of λ is only specified to three digits to
ensure that the Higgs mass constraint is met. This indicates
these points are at least common enough to be taken seriously,
though a gauge-dependent scan may still be of utility for
understanding macroscopic features of a potential.

4.2 The two Higgs-doublet model

We also find that a discrete change in the global minimum
may occur when varying the gauge parameter in the 2HDM
with significant qualitative differences, and present a bench-

Fig. 1 Left panel: Contour plot of the effective potential for the param-
eter values given in Table 1 and in Feynman gauge. The blue line con-
nects the minima and shows the path of the blue curve of the right panel
in field space. Right panel: the effect of the gauge in determining the
minimum demonstrating the value of the potential along the line con-

necting the minima. Note that since the position of the minima also
changes with the gauge parameter, the orange curve takes a slightly
different path in field space to that shown with the blue line in the left
panel. The horizontal axis shows the position along these paths in a
normalised parameterisation and thus cannot be meaningfully labeled
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Table 2 Parameter values for a benchmark in the 2HDM model where
the deeper of two minima changes with changing the gauge parameters
by 20. The values of the top Yukawa, the gauge couplings, and the
standard Higgs mass and vev constraints are the same as for Table 1

m2
1 −4940 GeV2

m2
2 −8680 GeV2

m2
12 0 GeV

λ1 0.1

λ2 0.3

λ3 0.86

λ4 −0.1

λ5 −0.05

mark where this occurs. For a concrete example, we further
simplify to the case ofZ2 symmetry. We also choose to couple
the fermions to just the H2 doublet to avoid the possibility of
tree-level flavour-changing neutral currents in order to retain
phenomenological relevance. We then consider the example
parameter values of Table 2.

In the Landau gauge we again have a global minimum
where only the second doublet obtains a vev, matching the
SM phenomenology for the Higgs vev and the lighter Higgs
mass. Another local minimum occurs only in the first doublet
(Fig. 2). However, when increasing the gauge parameters we
find that this second minimum becomes the global minimum.
In this case we would obtain massless fermions. Once again,
we find that for this particular case we are unable to draw
any conclusions as to whether this parameter point presents
a phenomenologically-plausible candidate.

However, in this case the difference in the depths relative
to the barrier height is smaller than in the SM+SS benchmark.
All the minima have depths of about −1.24 × 108 GeV4 and
when changing from Landau gauge to ξW = ξB = 3, we go

from one minimum being deeper by 2.0 × 105 GeV4 to the
other by 7.7 × 104 GeV4. Whether this means only a small
region of parameter space is affected or not requires a scan
to determine with certainty, which is left to future work.

5 Discussion

In this work we presented a calculation of the zero temper-
ature effective potential, up to one loop in Fermi gauges,
in the context of an arbitrary scalar extension of the Stan-
dard Model. We coded this calculation in a publicly avail-
able Mathematica notebook, which also includes finite
temperature corrections. Using this code we examined a few
points in the parameter space of two models: the Standard
Model extended with a gauge singlet and the two-Higgs dou-
blet model.

In both of these models, we have seen that points which
appear to have correct phenomenology in one gauge may
appear in another to be in fact unphysical, with very different
qualitative behaviour, resulting in an inability to distinguish
between phenomenologically relevant and irrelevant points.
That we have found benchmarks where this is the case due
to the global minimum changing with the gauge in two very
simple extensions of the standard model, suggests that this is
likely to be a general feature of many models. This provides
an additional reason for caution in using gauge-dependent
effective potentials, though the fact that these points require
some modest fine tuning suggest that a gauge-dependent scan
could still have some utility for seeing the broad features of
a whole model.

However, this being said, it remains unclear at this stage
how large a region of parameter space is affected by this issue.
Our search for such points suggests that these points may be
relatively rare, although not in need of excessive fine tuning.

Fig. 2 Left Panel: Potential for the benchmark values given in Table 2 and in Landau gauge, with the blue line denoting the field direction
connecting the two minima. Right panel: The potential along the lines connecting the minima for two different values of the gauge parameter as
per Fig. 1
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Furthermore, from our benchmarks, it would appear that the
amount of points so affected varies considerably with the
model. A statistically meaningful comment on how common
these points are would require a full scan, model by model
which we leave to future work.

While throughout the bulk of the parameter space gauge
dependence may be small compared to uncertainties arising
from renormalisation scheme and scale choice, or choice of
resummation method [54], our benchmarks demonstrate that
gauge dependence of the effective potential can be important
for selected parameter points. Due to this, a calculation of the
effective potential that completely ignores gauge dependence
cannot be considered reliable, and in general it is desirable
to check the severity of gauge dependence. Using the Fermi
gauges is particularly suited for this because it reliably cap-
tures the gauge dependence of the effective potential. Using
our Mathematica package, it is possible to calculate the
effective potential in the Fermi gauges, for a wide range of
models, which enables users to quickly and efficiently per-
form a parameter scan within a given model. Such a scan can
reliably reveal problematic regions of the parameter space
where gauge dependence is important.
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Appendix A: Mathematica notebook

VefFermi is a Mathematica notebook which allows for
the calculation of the effective potential in the Fermi gauges
for arbitrary scalar extensions of the Standard Model, with
any number of additional fields, from the scalar potential
and the background fields. Numerical evaluation is fast and
takes about 0.2 seconds for the Coleman–Weinberg and ther-

mal corrections, which are the most complicated functions.
It can be downloaded from https://github.com/JonathanZuk/
VefFermi.

Optimal functionality requiresMathematica 13.0 or
above, however, workarounds exist which are compatible
with at least version 12 and possibly earlier releases.

Current features include functions which calculate (in the
Fermi gauges):
– The inverse propagator: massMatrix, which takes the

scalar potential and background fields as inputs
– The (squared) field dependent masses: masses, which

takes the output of massMatrix and parameter values
as input

– The tree level effective potential: vTree, which has the
same inputs as massMatrix

– The Coleman–Weinberg (1-loop) corrections to the effec-
tive potential: vColemanWeinberg, which has the
same inputs asmassMatrix and vTree, with the addi-
tion of the (squared) fermion masses in terms of the back-
ground fields, and parameter values

– The thermal corrections to the effective potential of the
form

V β
1 =

∑
i∈bosons

ni
1

2π2β4 JB
(
m2

i β
2
)

−
∑

i∈fermions

ni
1

2π2β4 JF
(
m2

i β
2
)

, (A.1)

where JB and JF are the thermal bosonic and fermionic
functions respectively: vThermal, which has the same
inputs as vColemanWeinberg with the addition of
temperature.

Further instructions can be found within the notebook.
This includes how to use the above function to calculate these
quantities both numerically and analytically. It also includes
a number of models which are already implemented as exam-
ples. These are the extensions of the Standard Model by: a
real singlet; a doublet; a triplet; and two real singlets.
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