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Abstract The merging of quantum information science
with the relativity theory presents novel opportunities for
understanding the enigmas surrounding the transmission of
information in relation to black holes. For this purpose, we
study the quantumness near a Schwarzschild black hole in
a practical model under decoherence. The scenario we con-
sider in this paper is that a stationary particle in the flat region
interacts with its surroundings while another particle experi-
ences free fall in the vicinity of a Schwarzschild black hole’s
event horizon. We explore the impacts of Hawking radiation
and decoherence on the system under investigation and find
that these effects can limit the survival of quantum character-
istics, but cannot destroy them completely. Hence, the results
of this study possess the potential to yield valuable insights
into the comprehension of the quantum properties of a real
system operating within a curved space-time framework.

1 Introduction

In 2000, Zurek introduced the concept of information-
theoretic quantum discord between two classically identical
definitions of mutual information [1]. Quantum discord can
be regarded as a measure of a violation of the classicality of
a joint state of two quantum subsystems. In the next year, he,
alongside Ollivier, incorporated the optimization procedure
into his original definition of quantum discord [2]. There-
fore, for the first time in their paper, we encountered the term
“quantumness” of correlations. Quantum correlations [3], a
fundamental aspect of quantum mechanics, are crucial in
numerous quantum information processing tasks, including
quantum cryptography, quantum communication, and quan-
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tum computation [4]. Nonetheless, these correlations are sus-
ceptible to fragility owing to the effect of a variety of decoher-
ence [5]. Literally, decoherence is the phenomenon wherein
a quantum system interacts with its environment, resulting in
the loss of quantum coherence and quantum correlations [6].
Generally, we know that quantum systems interact with their
environment in the real world [7]. As a result, quantum cor-
relations present in the initial state may experience a decay
over time. In the field of quantum computing, the computa-
tion process is susceptible to accumulating errors caused by
various decoherence mechanisms. These errors can disrupt
the accuracy of quantum gates and ultimately influence the
precision of the final results. Unfortunately, such errors have
the potential to affect the correlations necessary for quantum
algorithms to function properly.

On the one hand, environmental noise, which includes var-
ious external factors such as electromagnetic radiation and
temperature fluctuations, has the potential to cause stochas-
tic fluctuations in the parameters of a considered quantum
system [8]. These fluctuations possess the potential to induce
uncontrolled phase shifts and energy exchanges, thereby dis-
turbing the quantum correlations. On the other hand, dephas-
ing occurs when different parts of a quantum system’s wave
function acquire different phases owing to interactions with
surrounding [9]. The phenomenon of dephasing can lead
to the dissipation of quantum correlation and coherence
between quantum states [10,11]. The correlations that are
most vulnerable to dephasing are those that pertain to super-
positions and phase differences, such as those that exist in
Bell states utilized for quantum entanglement. Moreover, the
spontaneous emission may lead to a loss of coherence in
quantum states and result in reduced correlations, particu-
larly in cases where photon emission affects the entangled
states [12].
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In general, quantum measurements inherently perturb the
measured quantum state [13–15]. This disturbance can result
in the collapse of the state into an eigenstate of the measured
observable, which can affect the correlations [16]. Repeated
measurements can also perturb the correlations over time,
especially where entanglement is involved. However, in order
to reduce the destructive effects of decoherence on quan-
tum correlations, various techniques such as error correction
codes, quantum error correction protocols, and decoherence-
free subspaces [17] are employed. These approaches help
protect and extend the lifetime of quantum correlations in
the presence of environmental influences [18,19].

The dynamics of quantum correlations under decoher-
ence effects and Hawking radiation can be quite complex but
intriguing, involving an intricate interplay between gravity,
quantum information, and environmental interactions [20–
26]. Hawking radiation appears near the event horizon of
a black hole due to quantum effects in the vicinity of the
event horizon boundary [27]. Particles are created in pairs
near the event horizon, where one particle falls into the black
hole and the other escapes as radiation. This process causes
black holes to gradually lose their mass over time. Besides,
Hawking radiation can be witnessed as a form of decoherence
because of the interaction of quantum fields near the black
hole. This process can introduce disturbances and thermal
noise that can affect quantum correlations, just like environ-
mental decoherence.

Interestingly, the process of Hawking radiation may gen-
erate entangled pairs of particles near the black hole’s event
horizon [28–30]. These produced entangled pairs can carry
away some of the black hole’s energy, contributing to the
mass loss of the black holes. Potentially, Hawking radiation
can also carry away entanglement, affecting the correlations
between the infalling and escaping particles. Notably, the
interplay between quantum correlations and Hawking radia-
tion is linked to the black hole information paradox. Although
the information is conserved according to quantum mechan-
ics, the Hawking process seems to present that information
can be lost when particles fall into a black hole. This has led
to debates regarding whether and how quantum correlations
can be reconstructed or preserved in the presence of Hawking
radiation.

Studying the combined effects of Hawking radiation and
decoherence requires a deep understanding of both quantum
field theory and quantum information theory, as well as a
grasp of the underlying principles of black holes and gravity.
While some theoretical progress has been made in exploring
these interactions [31–49] and the quantumness of various
systems [50–53], many aspects are still the subject of ongoing
research and debate. With this in mind, we are motivated
to explore the quantumness (quantum correlations, quantum
coherence, and non-locality) of a physical system consisting
of two qubits in the background of the Schwarzschild black

hole under the influence of both the decoherence effect and
Hawking radiation.

2 Measures of quantum information correlation

2.1 Local quantum uncertainty

The local quantum uncertainty (LQU) is used when dealing
with measurements and interactions at a specific location or
in a limited region of space. It is a foundational characteristic
of quantum mechanics that challenges our classical intuition
and also underlies many of the unique behaviors and phenom-
ena observed in the quantum world. Indeed, it is a measure
of quantum correlations based on the Wigner-Yanase skew
information I [54,55]. The LQU pertaining to subspace of
party A with the measurement operator HA, upon optimiza-
tion over all local observables on A, is explicitly given as
[56]

U(�) := min
HA

I (�, HA) . (1)

Therefore, the concept of LQU is precisely characterized
as the minimum level of quantum uncertainty that is inher-
ently linked to a singular measurement pertaining to one of
the subsystems of the bipartite system, AB. It is notewor-
thy to mention that LQU is a genuine measure of quantum
correlations, and it has been demonstrated that LQU satisfies
all of the requisite physical conditions that are necessary to
qualify as a criterion of quantum correlations. Gilorami et al.
[56] were able to execute optimization for qubit-qudit sys-
tems successfully and subsequently introduced the measure
(1) in a specific form as

U = 1 − λWmax, (2)

where λWmax represents the highest eigenvalue of the three-
by-three symmetric matrix W , which comprises entries

Wνμ = tr{√�(σν ⊗ I )
√

�(σμ ⊗ I )}, (3)

where σν and σμ represent the set of Pauli matrices with
ν, μ = x, y, z.

2.2 Local quantum Fisher information

Quantum Fisher information (QFI) is a concept from quan-
tum metrology, which deals with the precision of measure-
ments in the quantum realm [57–60]. In quantum mechan-
ics, the Fisher information quantifies how much information
about a parameter of interest is contained in the outcomes of
measurements. It provides a measure of how well a quantum
state can be distinguished from nearby states in terms of the
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parameter being measured [61]. The local quantum Fisher
information (LQFI) measure F is based on the QFI (indi-
cated by F) and it is equivalent to the optimal LQFI when
the measurement operator HA is applied to the subsystem A
within the bipartite system AB. Thus, the LQFI is as follows
[61]

F(�) := min
HA

F (�, HA) . (4)

Specifically, one can write the following formula for LQFI
if the subsystem A is a qubit

F = 1 − λMmax, (5)

where λMmax denotes the highest eigenvalue of the 3-by-3 sym-
metric matrix M, which its elements are

Mνμ =
∑

i, j;qi+q j �=0

2qiq j

qi + q j
〈ψi |σν ⊗ I |ψ j 〉〈ψ j |σμ ⊗ I |ψi 〉,

(6)

where qi and |ψi 〉 are respectively the eigenvalues and eigen-
states of � = �i qi |ψi 〉〈ψi | with qi ≥ 0 and �i qi = 1.

3 Theoretical framework

Let us commence by revisiting the precise definition of metric
Hawking radiation as it pertains to the Dirac field model in
Schwarzschild black hole. Typically, the mathematical model
known as the Dirac equation is utilized to explain the behavior
of particles in relation to a space-time that is curved in a
general manner. This phenomenon is commonly expressed
through the following formula [62,63]

[
γ aeμ

a

(
∂μ + 
μ

)]
� = 0, (7)

where γ a is Dirac matrix, 
μ is spin connection, eμ
a is the

inverse of tetrad eaμ, and μ is mass of the Dirac field. In the
background of Schwarzschild, the metric may be delineated
as a mathematical construct that characterizes the spatial and
temporal properties of space-time. This metric can be defined
as

ds2 = − f dt2 + 1

f
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
, (8)

with f = 1−2Mr−1, where M denotes the mass of the black
hole and r is the radial coordinates. In this paper, the grav-
itational constant, reduced Planck constant, speed of light,
and Boltzmann constant are assumed to be equal to one for
simplicity.

Within the framework of Schwarzschild space-time, it is
now possible to derive the Dirac equation as

− γ0 f
−1/2 ∂�

∂t
+ γ1 f

1/2
[

∂

∂r
+ r−1 + f −1M

2r2

]
�

+ γ2

r

(
∂

∂θ
+ cot θ

2

)
� + γ3

r sin θ

∂�

∂ϕ
= 0.

(9)

By solving Eq. (9), it is feasible to derive the outgoing
solutions of positive (fermions) frequency for both the out-
side and inside domains surrounding the event horizon as
[63]

�I+
k,out = Se−iωu, (10)

and

�II+
k,in = Seiωu, (11)

where S is a 4-component Dirac spinor, k is a wave vec-
tor, ω is a monochromatic frequency of Dirac filed, and u
is the retarded time expressed as u = t − r∗ with r∗ =
r + 2M ln[r f/2M] which is the tortoise coordinate.

By employing Damour and Ruffini’s suggestion [64], an
analytic extension can be made for the aforementioned equa-
tion, thereby providing a comprehensive foundation for the
positive energy modes. As a result, it becomes possible
to obtain the Bogoliubov transformations [65,66] that per-
tain to the creation and annihilation operators in both the
Schwarzschild and Kruskal coordinates by quantizing the
Dirac fields in the Schwarzschild and Kruskal modes, respec-
tively. Upon suitably normalizing the state vector, one can
express the expressions of the Kruskal vacuum and excited
states with mode k as

|0〉+k → α |0k〉+I |0−k〉−II + β |1k〉+I |1−k〉−II ,

|1〉+k → |1k〉+I |0−k〉−II , (12)

where α = (e−ωk/T + 1)−1/2 and β = (eωk/T + 1)−1/2

with T = 1/8πM which is the Hawking temperature [67].
Besides, |nk〉+I and |n−k〉−II are respectively represented as
the orthonormal bases for outside and inside domains of the
event horizon. For the sake of simplicity, it is imposed that
ωk = ω = 1, |nk〉+I = |n〉I, and |n−k〉−II = |n〉II.

Finally, in order to investigate the collective effects of
Hawking and decohering effects on quantum correlation, we
shall consider a system comprising two particles (Alice’s
particle–A and Bob’s particle–B) that begin in a state char-
acterized by generic Bell-diagonal state as follows

�AB = 1

4

(
IA ⊗ IB +

3∑

i=1

ciσ
A
i ⊗ σ B

i

)
, (13)
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where σ1 = σx , σ2 = σy and σ3 = σz , and ci =
trAB(�ABσ A

i ⊗ σ B
i ) satisfies 0 ≤ |ci | ≤ 1.

In the present study, we suppose that the particle belonging
to Bob is situated within a Schwarzschild space-time, which
is situated proximal to the event horizon, whilst the particle
belonging to Alice is kept within a static and flat space-time.
Hence, the state of our considered system (13) after inter-
action of Bob’s particle with the Hawking radiation (12) is
given by [37]

�ABIBII

= 1

4

[
(1 + c3){α2|000〉〈000| + αβ(|000〉〈011| + |011〉〈000|)

+ β2|011〉〈011| + |110〉〈110|} + (1 − c3){α2|100〉〈100|
+ αβ(|100〉〈111| + |111〉〈100|) + β2|111〉〈111| + |010〉〈010|}
+ (c1 − c2){α(|000〉〈110| + |110〉〈000|) + β(|011〉〈110|
+ |110〉〈011|)} + (c1 + c2){α(|010〉〈100| + |100〉〈010|)
+ β(|010〉〈111| + |111〉〈010|)}

]
. (14)

4 LQU and LQFI under decoherence

Quantum correlation and coherence are of paramount impor-
tance in both quantum information processing and quantum
communication protocols. Nonetheless, as stated in the intro-
duction, the interaction of quantum systems with their sur-
roundings triggers a phenomenon commonly referred to as
decoherence, which results in the loss of quantum coherence
and the disruption of intricate quantum correlations. Conse-
quently, the system may exhibit more classical behavior and
forfeit some of its distinctive quantum characteristics.

The physical processes that give rise to decoherence
in quantum systems are known as decohering channels.
These channels are often depicted as noise or perturba-
tions that impact the quantum state and cause it to become
mixed or probabilistic, thereby deviating from its pure state
[4,68]. In broad terms, the behavior of particles that inde-
pendently interact with various environments can be eluci-
dated through the solutions derived from the relevant Born–
Markov–Lindblad equations.

In the case of any quantum state that is initially established
as �, the final quantum state that emerges due to the effects of
decohering channels, with the assistance of the Kraus oper-
ator approach, can be ascertained by

ε (�) :=
∑

i

Ki�(Ki )
†. (15)

In the above equation, the Kraus operators Ki are denoted
as the single-qubit quantum channels. Note that these opera-
tors are required to conform to the closure condition, which

Fig. 1 A schematic diagram for the physical model with Alice’s
particle–A in a flat region and Bob’s particle–B near the event horizon
of the Schwarzschild black hole. The dashed lines indicate the quantum
correlation between two particles A and B. Input state is given in Eq.
(13) and output states are provided in Eqs. (17) and (25)

mandates that the summation of (Ki )
†Ki must always be

equal to the identity matrix I .
In the following, we study the quantum correlation

attributes that are associated with our considered system,
which is subject to decoherence effects. As is known, there
are several decohering channels such as phase damping (PD),
depolarizing (De), phase flip (PF), amplitude damping (AD)
and so on [4]. However, in a realistic setting, we consider here
two specific channels, namely PD and De, to investigate their
different effects on the system in question.

4.1 PD channel

A PD channel is a quantum communication concept that
models a specific type of noise or decoherence that can affect
a quantum system during transmission or storage. It repre-
sents the loss of information about the phase of a quantum
state while preserving its energy. In other words, the ampli-
tude of the quantum state remains unchanged, but its phase
information becomes uncertain or randomized due to interac-
tions with the environment. Mathematically, the PD channel
can be represented using Kraus operators. For a single-qubit,
the Kraus operators of PD channel are

K0 = |0〉〈0| + √
1 − p|1〉〈1|, K1 = √

p|1〉〈1|. (16)

The channel applies one of these Kraus operators with
probabilities determined by p to the input quantum state.

By employing Eqs. (14), (15) and (16), we can obtain the
decohered state after passing Alice’s particle through the PD
decohering channel. Finally, after tracing over all degrees
of freedom in the physically inaccessible region (inside the
region of the event horizon–II, see Fig. 1), the system’s state
takes the form
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�PD
ABI

= v+|00〉〈00| + μ+|01〉〈01| + v−|10〉〈10|
+ μ−|11〉〈11| + u−|11〉〈00| + u+|10〉〈01|
+ u+|01〉〈10| + u−|00〉〈11|, (17)

where v± = α2(1 ± c3)/4, μ± = [2 − α2(1 ± c3)]/4, and
u± = α

√
1 − p(c1 ± c2)/4.

Using now the general formulas presented in [69], we
derive the analytical expression of LQU (2) for the above
state as follows

U(�PD
ABI

) = 1 − max{WPD
11 ,WPD

33 }, (18)

where

WPD
11 = (√

γ1 + √
γ2

) (√
γ3 + √

γ4
)

+ (μ+ − v−)(μ− − v+) + 4|u−u+|(√
γ1 + √

γ2
) (√

γ3 + √
γ4

) ,

WPD
33 = 1

2

[ (√
γ1 + √

γ2
)2 + (√

γ3 + √
γ4

)2

+ (μ− − v+)2 − 4|u−|2
(√

γ1 + √
γ2

)2 − (μ+ − v−)2 − 4|u+|2
(√

γ3 + √
γ4

)2

]
,

(19)

with γ1,2 = (v+ + μ− ± √
(v+ − μ−)2 + 4|u−|2)/2 and

γ3,4 = (μ+ + v− ± √
(μ+ − v−)2 + 4|u+|2)/2.

By defining the branches UPD
0 = 1 − WPD

11 and UPD
1 =

1 − WPD
33 , we can rewrite Eq. (18) as below

U(�PD
ABI

) = min{UPD
0 ,UPD

1 }. (20)

Besides, utilizing the general equations from [69], the
analytical expression of LQFI (5) for the state (17) can be
obtained as

F(�PD
ABI

) = 1 − max{MPD
11 ,MPD

33 }, (21)

where

MPD
11 = k1k2

k3
, MPD

33 = 1 − 4

( |u−|2
v+ + μ− + |u+|2

μ+ + v−

)
,

(22)

with

k1 = 64
(
v+v− + μ+μ− + γ1γ2 + γ3γ4 + 2|u+u−|) ,

k2 = (μ+ + v−)γ1γ2 + (v+ + μ−)γ3γ4,

and

k3 =
[
1 − (γ1 − γ2)

2 − (γ3 − γ4)
2
]2

−4 (γ1 − γ2)
2 (γ3 − γ4)

2 .

Further, we can get two branches of LQFI as FPD
0 = 1 −

MPD
11 and FPD

1 = 1 −MPD
33 . Therefore, Eq. (21) is rewritten

as

F(�PD
ABI

) = min{FPD
0 ,FPD

1 }. (23)

4.2 De channel

The De channel refers to a type of quantum channel that
introduces noise into a quantum system by causing a loss
of information about the initial quantum state. This noise
tends to depolarize the quantum state, meaning it reduces
the coherence and fidelity of the quantum information. A
De channel is often represented using a Kraus operator sum
representation. For a single-qubit, the Kraus operators of De
channel can be written as

K0 = √
1 − p(|0〉〈0| + |1〉〈1|), K1 =

√
p

3
(|0〉〈1| + |1〉〈0|),

K2 = i

√
p

3
(|0〉〈1| − |1〉〈0|), K3 =

√
p

3
(|0〉〈0| − |1〉〈1|).

(24)

According to the previous method, by exploiting the Eqs.
(14), (15) and (24), and after tracing over all degrees of free-
dom in the region II (see Fig. 1), the final decohered state
takes the following form

�De
ABI

= ϑ+|00〉〈00| + η+|01〉〈01| + ϑ−|10〉〈10|
+ η−|11〉〈11| + κ−|11〉〈00| + κ+|10〉〈01|
+ κ+|01〉〈10| + κ−|00〉〈11|, (25)

where

ϑ± = 1

12
[2p ∓ α2(c3 ± 1)(−3 + 2p)],

η± = 1

12
[6 − 2p ± α2(c3 ± 1)(−3 + 2p)],

κ± = 1

12
α[3(c1 ± c2) − 2p(c1 ± 2c2)].

The analytical expression of LQU (2) for our state (25)
with the branches UDe

0 = 1 −WDe
11 and UDe

1 = 1 −WDe
33 can

be obtained as

U(�De
ABI

) = min{UDe
0 ,UDe

1 }, (26)

where

WDe
11 =

(√
θ1 + √

θ2

) (√
θ3 + √

θ4

)

+ (η+ − ϑ−)(η− − ϑ+) + 4|κ−κ+|(√
θ1 + √

θ2
) (√

θ3 + √
θ4

) ,
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WDe
33 = 1

2

[ (√
θ1 + √

θ2

)2 +
(√

θ3 + √
θ4

)2

+ (η− − ϑ+)2 − 4|κ−|2
(√

θ1 + √
θ2

)2 − (η+ − ϑ−)2 − 4|κ+|2
(√

θ3 + √
θ4

)2

]
,

(27)

with θ1,2 = (ϑ+ + η− ± √
(ϑ+ − η−)2 + 4|κ−|2)/2 and

θ3,4 = (η+ + ϑ− ± √
(η+ − ϑ−)2 + 4|κ+|2)/2.

Moreover, we obtain the analytical expression of LQFI
(5) for the mentioned state as

F(�De
ABI

) = min{FDe
0 ,FDe

1 }. (28)

where FDe
0 = 1 − MDe

11 and FDe
1 = 1 − MDe

33 , with

MDe
11 = l1l2

l3
, MDe

33 = 1 − 4

( |κ−|2
ϑ+ + η− + |κ+|2

η+ + ϑ−

)
,

(29)

and

l1 = 64
(
ϑ+ϑ− + η+η− + θ1θ2 + θ3θ4 + 2|κ+κ−|) ,

l2 = (η+ + ϑ−)θ1θ2 + (ϑ+ + η−)θ3θ4,

l3 =
[
1 − (θ1 − θ2)

2 − (θ3 − θ4)
2
]2

−4 (θ1 − θ2)
2 (θ3 − θ4)

2 .

Notice that the analytical expressions of W11, W33, M11,
and M33 in the cases of high- and low-temperatures for PD
and De channels are reported in Appendix A.

So, now everything is ready to start a comparative analy-
sis between the LQU and LQFI that were discussed above.
The aim is to explore the qualitative as well as quantita-
tive aspects of the quantum correlations in the vicinity of a
Schwarzschild black hole when subjected to the effects of
decoherence. Without loss of generality, we are motivated to
consider an initial maximally non-classically correlated state
(pure Bell state) throughout this paper under the condition
c1 = −c2 = c3 = 1 because we are interested in knowing
how much quantumness between the non-classically corre-
lated particles of Alice and Bob is lost under the influences
of Hawking radiation and decoherence.

Figure 2 delineates the quantum correlations and their
branches for a non-classically correlated two-qubit state,
which are quantified through the LQU and LQFI measures
under the influence of Hawking radiation for particle B while
the particle A passes through the PD channel. As evidenced
in Fig. 2a, the quantum correlation indicated by the function
U (20) diminishes progressively as the severity of the deco-
herence parameter of the PD channel intensifies, ultimately
arriving at an absence of quantum correlation. Additionally,
the maximum values of quantum correlation are observed to

decrease with increasing Hawking temperature. More specif-
ically, at T = 0.1, the LQU initiates at its maximum value
(U = 1) for p = 0, after which the quantum correlations
decline with escalations in p. Moreover, for T = 0.5, 1, 3
and at the onset of the interaction (p � 0), the values of
U are almost 0.75, 0.60, and 0.49, respectively. There also
exists a locus in these instances where an abrupt alteration
in the behavior of the function transpires, wherein the decay
rate intensifies. More precisely, the function U is smooth
at T = 0.1. However, it experiences abrupt transitions at
p ≈ 0.05, p ≈ 0.11, and p ≈ 0.18 for temperatures
T = 0.5, T = 1, and T = 3, respectively. As seen in Fig. 2b,
the branches at these points intersect and change from U0 to
U1, implying sudden transitions for LQU [69,70].

Figure 2c elucidates that the function F (23) under analo-
gous conditions exhibits comparable behavior to the function
U . The quantum correlation, as quantified by F , decreases
as p increases. However, the decay rate of F is inferior to
that of U . Moreover, at discrete T values, the function F
initiates at 1, 0.88, 0.73, and 0.58 for T = 0.1, 0.5, 1, and
3, respectively. Notice that the abrupt transition points for
LQFI are less pronounced and shift toward escalating p. At
T = 0.1, the functionF shows smooth behavior similar toU .
Nonetheless, the branches of F , namely F0 and F1, intersect
at points p ≈ 0.09, p ≈ 0.20 and p ≈ 0.31 for temperatures
T = 0.5, T = 1, and T = 3, respectively (see Fig. 2d). As
a result, LQFI undergoes sudden transitions at these points
[69]. Overall, at p = 1, the quantum correlations estimated
by both functions are dissipated.

In Fig. 3, we examine the quantum correlations of the two
functions U and F across continuous values of the Hawking
temperature T and discrete values of the PD channel decoher-
ence parameter p. The first qubit, A, passes through the PD
channel, whilst the second qubit, B, is impacted by Hawking
radiation. The outcomes depicted in Fig. 3a, b demonstrate
that LQU and LQFI do not attain their maximal values for
any value of p. Additionally, the behaviors of the functions
are not considerably contingent on elevated temperatures.
Intensifying p increases the decoherence of the system, as
the amounts of U and F at p = 0.1 exceed that at p = 0.7.
Moreover, in agreement with Fig. 2, incrementing p atten-
uates the temperature dependence. The extent of quantum
correlations changes with p values, as the maximum bounds
of quantum correlations diminish, and discrepancies between
the curves become evident as decoherence strength intensi-
fies.

The numerical outcomes of the functions LQU (26) and
LQFI (28) as a function of the De decoherence parameter are
delineated in Fig. 4, accounting for discrete Hawking tem-
perature values. It is discernible that the two functions U and
F decay monotonically toward a non-zero steady-state value,
diminishing as the decoherence parameter p escalates, before
re-surging to augment toward a residual value at superior p.
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Fig. 2 LQU (a), LQFI (c), and their branches (b, d) versus p when
particle A is exposed to PD channel and particle B is positioned near the
event horizon in a Schwarzschild black hole. For temperatures T = 0.5,
T = 1.0 and T = 3.0, the branches U0 and U1 intersect respectively

at p ≈ 0.05, p ≈ 0.11 and p ≈ 0.18, and branches F0 and F1 at
p ≈ 0.09, p ≈ 0.20 and p ≈ 0.31. The red bullets in plots (b) and (d)
show intersection points that lead to sudden changes in the behavior of
LQU and LQFI

Fig. 3 LQU (a) and LQFI (b) versus T when particle A is exposed to PD channel and particle B is positioned near the event horizon in a
Schwarzschild black hole

Figure 4a demonstrates the non-zero steady-state value is
contingent on temperature; for T = 0.1, 0.3, 1, and 3 at p =
1, the residualU values are almost 0.33, 0.18, 0.12, and 0.08,
respectively. Besides, Fig. 4b elucidates the residual value of
LQFI under analogous conditions as F = 0.33, 0.27, 0.20,

and 0.14, respectively.
In Fig. 5, the universal behaviors of LQU and LQFI as

a function of the Hawking temperature T across discrete

values of the De decoherence parameter p are displayed.
Figure 5a illustrates the behavior of LQU, which initially
decreases from its initial values and then stabilizes at a spe-
cific value corresponding to the given decoherence param-
eter. For high temperatures, the function U becomes a con-
stant with a fixed value that varies according to the value
of the decoherence parameter p. Similarly, Fig. 5b demon-
strates that LQFI exhibits analogous behavior to LQU, but
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Fig. 4 LQU (a) and LQFI (b) versus p when particle A is undergoing De channel and particle B is positioned near the event horizon in a
Schwarzschild black hole

Fig. 5 LQU (a) and LQFI (b) versus T when particle A is undergoing De channel and particle B is positioned near the event horizon in a
Schwarzschild black hole

with higher upper bounds. In general, although the quanti-
tative behavior of LQU and LQFI is different as expected,
their qualitative behavior is the same.

Figure 6 presents a comparative study of LQU and LQFI
functions by considering the effects of Hawking radiation
and decohering channels as a function of p at the fixed value
of Hawking temperature T = 0.1. Figure 6a illustrates how
the variation of p, from 0 to 1, causes differences in the
behaviors of LQU related to the impacts of PD and De chan-
nels. At low values of p, especially when p tends to zero, the
behavior of mentioned curves are coincident, but they are
not totally similar. At low values of p, the LQU subjected to
both PD and De channels is decreasing and the value of LQU
under the PD channel is slightly more than that of under the
De channel even when p is close to zero. For a better illus-
tration, a magnified frame of that region is presented in the
inset plot. However, after their intersection and especially at
high values of p, their behaviors are extremely different and
the LQU values related to the PD channel are much lesser
than the values of the De channel. In other words, after the
intersection, the LQU curve extracted by considering the De
channel keeps its value, approximately, but the LQU curve
subjected to the PD channel tends to zero. The second dia-

gram of Fig. 6, plot (b), provides a comparison of LQFI by
considering the influences of PD and De channels. Similar to
the first plot, there are resemblances in their behavior. They
behave similarly to each other in the lower and middle regions
of the p interval. In Fig. 6b also there is an intersection. Just
like previously described in Fig. 6a, after the intersection the
LQFI curve related to the PD channel tends to zero harshly
and the curve related to the De channel maintains its value,
nearly. It is worth mentioning that the curves in Figs. 4 and
6 have local minima around p = 0.7 to p = 0.9.

Figure 7 just like Fig. 6 presents a comparison of quan-
tum correlations (LQU and LQFI) gained by considering the
impacts of PD and De channels under the background of a
Schwarzschild black hole, but this time they are functions
of Hawking temperature T that it varies from 0 to 5 and the
value of p is fixed to 0.1. Both the first and second plots
of Fig. 7 during the whole interval of T have equal gradi-
ents, approximately, in other words, there is no intersection
between them. The values of quantum correlations subjected
to the PD channel are higher than those of the De channel
when T varies in its interval. Note that according to Figs. 6
and 7, it seems more appropriate to plot LQU and LQFI as a
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Fig. 6 LQU (a) and LQFI (b) versus p when particle A is exposed to PD and De channels independently and particle B is positioned near the
event horizon in a Schwarzschild black hole with T = 0.1

Fig. 7 LQU (a) and LQFI (b) versus T when particle A is exposed to PD and De channels independently and particle B is positioned near the
event horizon in a Schwarzschild black hole with p = 0.1

function of p with a fixed value of T to find their significant
differences when exposed to PD and De channels.

5 Quantum coherence under decohering channels

Quantum coherence is the property of quantum systems in
which the different states of the system are in a superposition,
meaning they exist simultaneously [71]. It is essential for
many quantum technologies, such as quantum computing
and quantum cryptography. When a system is in a state of
coherence, it can exhibit interference effects, which allow for
precise control and manipulation of the system’s behavior.
However, coherence is fragile and can be easily disrupted by
interactions with the environment, leading to a phenomenon
known as decoherence. Therefore, maintaining coherence is a
significant challenge in the development of practical quantum
technologies.

Various techniques are at disposal for the evaluation
of quantum coherence [72]. Among the various measures
of coherence, the l1-norm of coherence has been widely
employed in the realm of quantum physics. It is expressed in
the following manner

C(�) =
∑

i �= j

| �i, j | . (30)

From Eq. (30), the l1-norm of coherence value can be
expressed as the summation of the absolute values of the
off-diagonal elements pertaining to the selected basis [7].

Using, as for LQU and LQFI, the system’s states are given
in Eqs. (17) and (25), we arrive at formulas for the l1-norm
of coherence under decohering channels

C(�PD
ABI

) = 2(|u+| + |u−|), (31)

and

C(�De
ABI

) = 2(|κ+| + |κ−|). (32)

It is interesting to mention that based on Refs. [73,74],
the analytical expressions of quantum coherence given in
Eqs. (31) and (32) present the quantum consonance. The
analytical expressions of C(�PD

ABI
) and C(�De

ABI
) at high and

low temperatures are given in Appendix B.
Figure 8 shows the evolution of quantum coherence

between two qubits when qubit A is affected by PD and De

123



42 Page 10 of 14 Eur. Phys. J. C (2024) 84 :42

Fig. 8 Quantum coherence versus p and T when particle A is subjected to PD and De channels independently and particle B is located near the
event horizon in a Schwarzschild black hole with a T = 0.1 and b p = 0.1

channels and qubit B is in the vicinity of the event horizon
in a Schwarzschild black hole. As shown in Fig. 8a, quan-
tum coherence decays with increasing parameter p for both
PD and De channels as expected. Because the superposi-
tion of quantum states, or interference patterns, is destroyed
when those quantum systems interact with their environ-
ments. From this figure, quantum coherence has bigger val-
ues when qubit A is affected by the PD channel than the De
channel for 0 < p < 0.74, However, quantum coherence
tends to zero more quickly when qubit A is subjected to PD
channel after p = 0.74.

In Fig. 8b, quantum coherence has been plotted versus
Hawking temperature T under the effect of PD and De chan-
nels. As depicted in this figure, quantum coherence remains
unchanged for weak values of T and then it decreases to get
an approximately fixed value for both channels like the pre-
vious cases (see LQU and LQFI in Fig. 7). However, despite
the previous case, quantum coherence in PD and De channels
nearly has the same value of 0.67 when T tends to infinity.

6 Bell non-locality in the Schwarzschild space-time

Bell non-locality is a quantum phenomenon characterized
by the presence of correlations between measurements per-
formed on entangled particles that defy the predictions
of classical physics [75,76]. This intriguing phenomenon
strongly indicates that the behavior of the particles in ques-
tion is inherently non-local and thus cannot be explained by
invoking local hidden variables [77].

For systems of dimension 2 × 2, the detection of the non-
locality of a quantum state � can be achieved through the vio-
lation of the Bell-CHSH inequality, as proposed by Clauser,
Horne, Shimony and Holt [77]. This inequality is defined as
follows

|〈BCHSH〉�| ≤ 2, (33)

with 〈BCHSH〉� = tr[�BCHSH] where BCHSH is the Bell
operator related to the quantum CHSH inequality. The max-
imum value of the inequality (33), namely Bmax(�) =
max |〈BCHSH〉�|, is related to the quantity M(�) = maxi< j

(ωi+ω j ) with Bmax(�) = 2
√
M(�) in which ωi (i = 1, 2, 3)

being the eigenvalues of a 3 × 3 matrix X†X , where X here
is a positive matrix with elements xnm = tr(�σn ⊗ σm) [78].
The violation of inequality (33) is manifestly evident if and
only if M(�) exceeds the value of 1. Furthermore, M(�) can
be utilized as an effective measure to evaluate the degree of
Bell non-locality violation for a bipartite state [79].

For the quantum state expressed in Eq. (17), we can obtain

Bmax(�
PD
ABI

) = 2
√
M(�PD

ABI
), (34)

where

M(�PD
ABI

) = max{MPD
1 , MPD

2 }, (35)

with

MPD
1 = 8(|u+|2 + |u−|2),

and

MPD
2 = 4(|u+| + |u−|)2 + (v+ + μ− − v− − μ+)2.

Also, we obtain the maximum value of the inequality (33)
for the state given in Eq. (25) as follows

Bmax(�
De
ABI

) = 2
√
M(�De

ABI
), (36)

where

M(�De
ABI

) = max{MDe
1 , MDe

2 }, (37)

with

MDe
1 = 8(|κ+|2 + |κ−|2),
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Fig. 9 Bell non-locality versus p and T when particle A is subjected to PD and De channels independently and particle B is located near the event
horizon in a Schwarzschild black hole with a T = 0.1 and b p = 0.1

and

MDe
2 = 4(|κ+| + |κ−|)2 + (ϑ+ + η− − ϑ− − η+)2.

Note that the analytical formulas of Bmax(�
PD
ABI

) and

Bmax(�
De
ABI

) for high- and low-temperature limits are reported
in Appendix B.

Figure 9 is devoted to showing the behavior of Bell non-
locality based on Eqs. (34) and (36) when particle A is
exposed to PD and De channels independently and qubit B is
close to the event horizon in a Schwarzschild black hole. In
Fig. 9a, Bell non-locality has been drawn versus p in which
the maximum value of non-locality starts at 3 when there is no
interaction between qubit A and the environment, i.e., p = 0.
Bell non-locality decreases for both channels when particle
A begins to interact with the environment, but, it decreases
for the De channel more rapidly. As shown in this figure by
an arrow, Bell non-locality based on Bmax(�

De
ABI

) in Eq. (36)

becomes less than 2 when p > 0.44, however, Bmax(�
PD
ABI

)

in Eq. (34) goes never under 2. Hence, Bell inequality is
violated for all values of p in the PD channel.

By looking at Figs. 6, 8a and 9a, one can see that LQU,
LQFI, and quantum coherence in our considered system
when qubit A is exposed to PD channel have greater values
than De channel for weak values of p. But, Bell non-locality
in the PD channel is more robust than the De channel for all
values of p.

We have plotted Bell non-locality versus T for De and PD
channels in Fig. 9b. It is clear that Bell non-locality has a
fixed value for low Hawking temperature like previous cases
in Figs. 7 and 8. Then, it goes down smoothly to get values
less than 2 for which non-locality effects disappear in the De
channel when T > 2.1, and we have Bmax(�

De
ABI

) � 1.8 for
T → ∞. Nonetheless, Bell non-locality value for the PD
channel becomes less than 2, i.e. Bmax(�

PD
ABI

) � 1.9, when
T → ∞. Thus, one may infer that PD and De channels
have more serious effects on quantum correlations or other

characteristics of quantumness (quantum coherence and non-
locality) than the effect of Hawking temperature.

7 Conclusion and outlook

The research conducted in the field of convergence of quan-
tum information theory and black hole physics is promis-
ing in revealing new perspectives regarding the fundamental
characteristics of gravity in the realm of quantum scales. Such
research has the potential to have significant implications for
our understanding of black holes as well as the complex fab-
ric of space-time.

Motivated to investigate the relationship between these
two important concepts, we considered a practical model in
which a particle residing in the flat region interacts with its
surroundings while the other particle experiences free fall
in the vicinity of the event horizon of a Schwarzschild black
hole. Based on this scenario, we studied the quantum correla-
tions, quantum coherence, and non-locality under the collec-
tive effects of Hawking radiation and two decohering chan-
nels (PD and De).

As expected, the quantumness (quantum correlations,
quantum coherence, and non-locality) of the considered sys-
tem consisting of two maximally non-classically correlated
qubits in the background of the Schwarzschild black hole
decreases with increasing decoherence parameter p. It is
worthwhile to note that in the case of the PD channel, quan-
tum correlations and quantum coherence tend to zero when
p → 1. However, in the case of the De channel, although
they decrease, they do not go to zero. Interestingly, quantum
correlations experience abrupt transitions in certain values of
p at fixed temperatures when qubit A is exposed to the PD
channel, but they decrease with increasing p in a monotonic
way when Alice’s qubit is subjected to the De channel.

Regarding the effect of Hawking radiation, it is not an
exciting result that increasing the Hawking temperature
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reduces quantum correlations, quantum coherence, and non-
locality. But the intriguing result is that at high tempera-
tures (T → ∞), corresponding to the case of the black hole
approximating to evaporate completely, we observe that the
two-qubit system still preserves its quantumness, which is of
great importance in quantum information theory for practi-
cal goals. Notably, when the Bell non-locality is present, its
strength diminishes by enlarging the intensity of the Hawking
effect.

These results not only explain how quantum correlations
and quantum coherence decay but also provide better insight
into quantum non-locality near black holes. Hence, our find-
ings are helpful to guide us in choosing suitable quantum
channels and quantum states to tackle relativistic quantum
information processing tasks.
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Appendix A: LQU and LQFI at high and low tempera-
tures

In this appendix, we provide the analytical expressions of
W11(33) andM11(33) in two cases (high- and low-temperature
limits) for PD and De channels.

From expression (19), we obtain

lim
T→∞WPD

11 (T ) = 2 + √
2p

2
√

3 + 2
√

2p
, (A1)

lim
T→∞WPD

33 (T ) = (1 + √
2p)2

3 + 2
√

2p
, (A2)

and

lim
T→0

WPD
11 (T ) = 0, (A3)

lim
T→0

WPD
33 (T ) = √

p, (A4)

Likewise, based on Eq. (22) we have

lim
T→∞MPD

11 (T ) = 1 + p

2 + p
, (A5)

lim
T→∞MPD

33 (T ) = 1 + 2p

3
, (A6)

and

lim
T→0

MPD
11 (T ) = 0, (A7)

lim
T→0

MPD
33 (T ) = p. (A8)

Further, using Eqs. (27) and (29), we get

lim
T→∞WDe

11 (T ) = 1

144

[
24(4p(3 − 5p) + 9)

(w1− + w1+) (w2− + w2+)

+ 6 (w1− + w1+) (w2− + w2+)

]
, (A9)

lim
T→∞WDe

33 (T )

= 1

48

[
− 4(4p(p + 3) − 9)

(w1− + w1+) 2 + (w1− + w1+) 2

− 4(4p(17p − 33) + 63)

(w2− + w2+) 2 + (w2− + w2+) 2
]
, (A10)

where

w1± =
√

3 + 2p ± √
3
√

4p(p − 1) + 3,

w2± =
√

9 − 2p ± √
4p(19p − 39) + 81,

and

lim
T→0

WDe
11 (T ) = lim

T→0
WDe

33 (T ) = 2

3

√
p(3 − 2p). (A11)

Besides

lim
T→∞MDe

11 (T ) = (8p(2p − 3) − 9)(p(4p + 3) − 18)

6[p(4p(2p − 9) + 9) + 54] ,

(A12)

lim
T→∞MDe

33 (T ) = 1 − 2

3

[16p3 + 9(3 − 4p)]
(3 + 2p)(9 − 2p)

, (A13)
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and

lim
T→0

MDe
11 (T ) = lim

T→0
MDe

33 (T ) = 4p(3 − 2p)

3(3 − p)
. (A14)

Appendix B: Quantum coherence and Bell non-locality
at high and low temperatures

Here, we give the analytical expressions ofC(�) and Bmax(�)

in two cases (high- and low-temperature limits) for PD and
De channels.

From expressions (31) and (32), we get

lim
T→∞C[�PD

ABI
](T ) =

√
1 − p

2
, (B1)

lim
T→0

C[�PD
ABI

](T ) = √
1 − p, (B2)

and

lim
T→∞C[�De

ABI
](T ) = 3 − 2p

3
√

2
, (B3)

lim
T→0

C[�De
ABI

](T ) = 3 − 2p

3
. (B4)

Moreover, according to Eqs. (34) and (36) we obtain

lim
T→∞ Bmax[�PD

ABI
](T ) = 2

√
1 − p, (B5)

lim
T→0

Bmax[�PD
ABI

](T ) = 2
√

2 − p, (B6)

and

lim
T→∞ Bmax[�De

ABI
](T ) = 2

3

√
2p(5p − 9) + 9, (B7)

lim
T→0

Bmax[�De
ABI

](T ) = 2

3

√
2(3 − 2p). (B8)
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