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Abstract We develop a static charged stellar model in
f (R, T ) gravity where the modification is assumed to be
linear in T which is the trace of the energy momentum ten-
sor. The exterior spacetime of the charged object is described
by the Reissner–Nordström metric. The interior solution is
obtained by invoking the Buchdahl–Vaidya–Tikekar ansatz,
for the metric potential grr , which has a clear geometric inter-
pretation. A detailed physical analysis of the model clearly
shows distinct physical features of the resulting stellar con-
figuration under such a modification. We find the maximum
compactness bound for such a class of compact stars which
is a generalization of the Buchdahl bound for a charged
sphere described in f (R, T ) gravity. Our result shows phys-
ical behaviour that is distinct from general relativity.

1 Introduction

One of the main pillars of modern physics for understanding
the present universe is the general theory of relativity (GTR),
discovered by Einstein in 1915, which was first experimen-
tally verified by Eddington in 1920, and later by various tests
in the solar system. Note that GTR was first modified very
soon after its discovery. In 1919, Weyl [1] introduced higher
order invariants in the Einstein–Hilbert (EH) action unify-
ing electromagnetism (EM) and gravity. Later, Kaluza and
Klein [2,3] investigated the higher dimensional effects on
EM. Although the complexity of EH action had no appar-
ent experimental motivations during that period, around the
1960s, many investigators found virtue in such an approach.
Based on Kaluza’s unitary field theory, Brans et al. [4] intro-
duced a scalar-tensor theory from the observation of the solar
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oblateness and the precession of Mercury’s orbit [5] which
was later taken up by Bergmann [6].

The recent shreds of evidence emerging from astrophysics
and observational cosmology suggest that the cosmic accel-
eration of the universe may have occurred in two phases.
Preceding radiation domination, the inflationary phase [7]
took place, which not only solves the flatness problem [8] in
standard cosmology, but also justifies the nearly flat spectrum
of temperature anisotropies observed in cosmic microwave
background (CMB) [9]. The second phase is the matter-
dominated present universe, i.e. the late-time acceleration
supposedly originated from dark energy [10]. A supernova
search team has experimentally verified the late-time expan-
sion of the universe [11] based on the observational data of 10
new high-redshift Type Ia supernovae as well as through rig-
orous and detailed experiments [12] considering the bright-
ness of supernovae as an indicator. Subsequently, the exis-
tence of a small but non-zero cosmological constant [13]
has been justified by the current mass-energy density of
the universe. Moreover, when the information coming from
anisotropies in CMB is combined with measurements of the
light chemical element abundances on a cosmological scale,
one concludes that about one-fifth of our universe is com-
posed of non-luminous and non-baryonic material called
dark matter [14–18]. Thus, despite remarkable success in
predicting many tests of gravitational phenomena including
the most recent discovery of gravitational waves, GTR faces
many challenges on several fronts - both on small and large
scales.

While scientific curiosity on the theoretical front provides
ample motivation to contemplate modifying Einstein’s grav-
ity, the above observational evidence strongly justifies such
exercises. GTR can be modified by adopting the EH action
containing the Lagrangian density

√−gR, R being the cur-
vature scalar. The initial de-Sitter state of the universe is
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explained by adding a term proportional to
√−gRm (m > 0)

to the action, known as Starobinsky inflation [7]. However,
if m < 0, then the acceleration of the universe originates
from gravitation as shown by Carroll et al. [19]. The Λ cold
dark matter (ΛCDM) model, based on inflationary theory,
explains the acceleration of the universe where one adds the
cosmological constant Λ to the EH action [20], which fits
well with several observational data [21], and thereby also
offers the possibility for time varying equation of state of dark
energy [22]. However, the ΛCDM model is burdened with
magnitude problems. A more radical alternative approach
is the modified f (R) gravity, which allows a generalization
of the EH action to interpret some of the basic character-
istics of the higher order curvature gravity. Before experi-
mental observation, treating both the metric and the affine
parameters as independent variables, Palatini [23] formu-
lated a different perspective of f (R) gravity leading to sec-
ond order field equations free from the instability associated
with negative signs of the second order partial derivative of
R in the functional f (R). However, Palatini’s formulation
turned out to be inconsistent with the late-time cosmic accel-
eration. Consequently, the formulation demanded a different
approach to f (R) theory. To obtain a divergence-free Ein-
stein equation, Lanczos [24] proposed a specific combination
of curvature-squared terms offering a modified theory named
Einstein–Gauss–Bonnet (EGB) gravitational theory. Differ-
ent cosmological models have been developed based on EGB
gravity [25]. In higher dimensions, the possible existence of
a black hole was shown by including a 4D Gauss–Bonnet
(GB) term to the EH action [26]. Investigators have also rec-
onciled the early-time inflation with late-time acceleration of
the universe in EGB gravity [20,27–29], and the cosmic his-
tory has been unified via some cosmological models based on
f (R) theories of gravity [30,31]. Recently, EGB gravity has
also received a widespread application in astrophysics. Many
researchers have interpreted the physical quantities in five-
dimensional framework of EGB gravity assuming different
kinds of interior geometries and fluid distributions [32–36].
In addition to EGB gravity, f (R) theory [37–40](and refer-
ences therein) explains how the cosmological constant can
be bypassed geometrically [41] by adding higher order cur-
vature scalar to the action.

To explain the current expansion of the universe as well
as the dark energy scenario, the action in f (R) is further
extended by coupling non-minimally the matter field to the
geometry (viz. the Ricci scalar R) [42], which leads to
f (R, T ) theory, T being the trace of stress-energy tensor.
Thus, the associated continuity equation takes a different
form which justifies the energy exchange between the matter
and geometry beyond the curved spaces. This coupled mat-
ter part generates an additional force term orthogonal to the
four velocities of a massive object connoting a non-geodesic
nature of motion. The non-vanishing divergence of the stress

tensor violates the equivalence principle which, however, can
be controlled by the corresponding coupling parameter. Con-
sidering matter as a perturbation to a locally flat spacetime,
it can be shown that the extension mentioned above satisfies
the equivalence principle [43]. Following this, Harko et al.
[44] developed a model for stellar configuration filled with a
perfect fluid. Various classes of solutions in f (R, T ) gravity
have been discussed by Harko et al. [45]. Note that the action
in f (R, T ) theory is not Lorentz invariant and does not pro-
vide a frame-independent gravitational theory. The theory
can only be formulated properly in a strong gravity regime
by considering a linear functional form of f (R, T ) [46] for a
spherically symmetric stellar configuration. With the linear
functional form of f (R, T ), the anisotropic behaviour of a
collapsing object [47,48], effect of charge [49–51], and the
stability criterion [52–55] have been studied.

Despite the fact that a power law dependency of T in the
modified theories of gravity has been severely challenged
[56], the f (R, T ) gravity models are being extensively used
to analyze astrophysical objects where the coupling is mostly
linear in T . In the recent past, many investigators have ana-
lyzed the gross physical properties of a stellar configuration
by considering different stellar solutions in f (R, T ) grav-
ity, viz. Tolman-IV solution [57], embedded class I solu-
tion with Karmakar condition [58], Krori–Barua type com-
pact stellar solution [59], and solutions obtained by utilizing
Buchdahl’s ansatz [60–62]. The effect of the parameter that
couples the matter contribution to geometry on the interior
structure of a compact object (e.g. neutron star) has been
investigated by Pappas et al. [63] for the Tolman-VII solu-
tion in linear f (R, T ) gravity. The investigation also pro-
vided an analysis of the logical extension for the uniform
density configuration. The analyses in Ref. [63] also facili-
tated an examination of the upper bound on the mass to radius
ratio in an appropriate parametric regime. In addition, the
bound on mass for the compact objects have been analysed in
the framework of f (R) gravity [64–67]. A sharp inequality
indicating the upper bound on compactness was developed
by Andréasson et al. [69] for a charged infinitely thin shell
solution which was shown to satisfy all the required energy
conditions. Motivated by the above developments, we felt it
worthwhile to obtain an upper bound on the compactness of
a charged sphere in f (R, T ) gravity analogous to the Buch-
dahl bound in GTR. Note that a charged generalization of
the Buchdahl bound in Einstein’s gravity was provided by
Sharma et al. [68]. In this paper, we attempt to analyze the
functional dependency of the coupling parameter on the com-
pactness bound for a charged sphere filled with isotropic fluid
by obtaining a solution in f (R, T ) gravity which is linear
in T . The solution is obtained by introducing the Buchdahl–
Vaidya–Tikekar ansatz [70,71] as one of the metric potentials
of the spherically symmetric static distribution. By invoking
a particular coordinate transformation, we solve the system
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of equations and fix the constants of the solution by match-
ing the interior solution to the exterior Reissner–Nordström
(RN) metric across the boundary which facilitates its physical
analysis.

The structure of this paper is as follows: In Sect. 2, the
effective field equations are obtained for a charged object
with perfect fluid distribution enclosed in a sphere in f (R, T )

gravity theory. Section 3 deals with the technique for generat-
ing solutions of the field equations. The section is subdivided
into two classes: (i) uncharged VT model, which reduces to
the Schwarzschild incompressible interior solution for a par-
ticular choice of the model parameters; and (ii) charged VT
model. The unknown constants are fixed in Sect. 4 by match-
ing the interior solution to the exterior RN metric across the
boundary. Gross physical properties are discussed in Sect. 5.
Section 6 is devoted to the analysis of the modification on the
compactness bound of the charged sphere. Some concluding
remarks are made in Sect. 7.

2 Electromagnetic formulation of field equations

To study the stellar configurations of a charged compact star,
Einstein’s gravity is modified in conjunction with the trace of
the stress-energy tensor T to the existing Ricci scalar term R.
Pretel et al. [51] prescribed such a modification in f (R, T )

gravity by rewriting the action as

S =
∫ [ f (R, T )

16π
+ Lm + Le

]√−gd4x, (1)

Lm being the Lagrangian matter density and g is the deter-
minant of the metric tensor gab.1 In (1), Le represents the
electromagnetic field Lagrangian density given by

Le = ja Aa − 1

16π
FabFcdg

acgbd , (2)

where the four-current density is given by ja = σua , with σ

being the electric charge density and ua is the four-velocity of
the fluid satisfying the relations uaub = 1 and ua∇bua = 0.
Fab = ∇a Ab − ∇b Aa is the electromagnetic field strength
tensor where Aa represents the electromagnetic four potential
and ∇a denotes the covariant derivative associated with the
Levi-Civita connection of metric tensor gab.

Thus, the total stress-tensor is a sum of two terms, namely
the matter part (Mab) and the electromagnetic part (Eab),
i.e.

Tab = Mab + Eab. (3)

In this paper, we consider a perfect fluid distribution, which
implies

Mab = (p + ρ)uaub + pgab,

1 All the indices considered in this paper runs from 0 to 3.

where ρ is the matter density and p is the isotropic pressure,
and the electromagnetic field tensor takes the form

Eab = 1

4π

(
FacF

c
b − 1

4
gabFcd F

cd
)

.

The Lagrangian matter density is related to the energy -
momentum tensor as

Mab = − 2√−g

δ(
√−gLm)

δgab
, (4)

where it is assumed that Lm depends only on the metric
and not on its derivatives. The above equation on contraction
yields

Mab = gabLm − 2
∂Lm

∂gab
. (5)

On variation of action (1), with respect to the metric compo-
nents gab, yields the following relationship

δS = 1

16π

∫ [
(Rab + gab� − ∇a∇b) fR(R, T )δgab

+ fT (R, T )
δ(gcdMcd)

δgab
δgab − 1

2
gab f (R, T )δgab

+16π
1√−g

δ(
√−gLm)

δgab

]√−gd4x, (6)

where fR(R, T ) = ∂ f (R,T )
∂R , fT (R, T ) = ∂ f (R,T )

∂T and � ≡
1√−g

∂a(
√−ggab∂b). As the trace of the electromagnetic

energy-momentum tensor vanishes, the variation of the trace
of the stress tensor with respect to the metric tensor is given
by

δ(gcdMcd)

δgab
= Mab + Θab, (7)

where Θab ≡ gcd δMcd
δgab

. On simplification of Eq. (6), and
using Eq. (7), one obtains the modified form of Einstein’s
field equations in f (R, T ) theory as

(
Rab + gab� − ∇a∇b

)
fR(R, T ) − 1

2
f (R, T )gab = T ef f

ab , (8)

where T ef f
ab ≡ 8πTab − fT (R, T )(Mab + Θab).

On account of all the terms contained in the conservation
law [55], performing the covariant derivative of the right hand
side of Eq. (8), and re-arranging, we obtain

∇aMab = fT (R, T )

8π − fT (R, T )

[
(Mab + Θab)∇aln fT (R, T )

+∇aΘab − 1

2
gab∇aT − 8π

fT (R, T )
∇aEab

]
.

(9)

The right hand side of the above equation vanishes if
fT (R, T ) = 0, i.e. f (R, T ) is simply a function of the Ricci
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scalar R, and hence one can easily retrieve the conservation
law in Einstein gravity. The non-vanishing right hand term
of Eq. (9) was shown to play a crucial role in explaining the
gravitational effects on the solar system beyond GR [45].

Motivated by the growing interest of f (R, T ) gravity
in the high gravity regime, we would like to develop and
study the distinctive features of a charged fluid sphere in
f (R, T ) gravity. Even though different functional forms
of f (R, T ) have been explored in the past [45], Cemsi-
nan et al. [46] showed that the only possible and accept-
able form of f (R, T ) is a linear functional form of T which
can provide a plausible relativistic compact star model in
f (R, T ) gravity. Hence, we write the modification in the
form f (R, T ) = R+ 2χT , where χ is a dimensionless cou-
pling parameter. Further, by choosing the matter Lagrangian
density asLm = p [63] (opposite signature was taken in Ref.
[72]), we have Θab = −2Mab + pgab and it’s trace pro-
vides Θ = −2M + 4p. Utilizing (8), we eventually obtain

Gab = 8πTab + χMgab + 2χ(Mab − pgab), (10)

where Gab = Rab − 1
2 Rgab is the Einstein tensor. When χ

vanishes, one regains the unmodified form of Einstein’s field
equations.

3 Einstein–Maxwell system in f (R, T ) gravity

We consider a static charged sphere filled with a perfect fluid
in a spherically symmetric static spacetime metric

ds2− = −e2ν(r)dt2 + e2μ(r)dr2 + r2(dθ2 + sin2 θdφ2),

(11)

in standard coordinates xi = (t, r, θ, φ). The undetermined
functions ν(r) and μ(r) can be obtained by solving (10)
together with Maxwell’s equations

F[ab,c] = 0,
[
e−(ν+μ)r2E

]′ = 4πσeμr2. (12)

Spherical symmetry implies that Ftr is the only non-
vanishing component of the electromagnetic field tensor.
Using Eq. (12), we write the electric field intensity as

E = e(ν+μ)

r2 q(r), (13)

where the total charge q(r) contained within the sphere of
radius r is defined as

q(r) = 4π

∫ r

0
σr2eμdr. (14)

In the natural unit system having G = c = 1, using
Eq. (14), the Einstein-Maxwell field Eqs. (10) and (12) yield

8π

(
ρ + q2

8πr4

)
+ χ(3ρ − p)

= − 1

r2 + 1

r2

d

dr

(
re−2μ

)
, (15)

8π

(
p − q2

8πr4

)
+ χ(−ρ + 3p)

= e−2μ
(2ν′

r
+ 1

r2

)
− 1

r2 , (16)

8π

(
p + q2

8πr4

)
+ χ(−ρ + 3p)

= e−2μ
(
ν′′ + ν′2 − ν′μ′ + ν′

r
− μ′

r

)
, (17)

4πσ = e−μ

r2

dq

dr
. (18)

The prime (′) denotes differentiation with respect to the radial
parameter r . Subtracting Eq. (17) from Eq. (16), we obtain

2q2

r4 = e−2μ

(
ν′′ + ν′2 − ν′μ′ − ν′

r
− μ′

r
− 1 − e2μ

r2

)
.

(19)

It is noted that all the physical quantities like matter density,
pressure, and charge density can be evaluated by solving the
system of Eqs. (15)–(19). To solve the system, the metric
potential μ(r) is assumed in the most general form of the
Buchdahl-VT [70,71] ansatz

eμ =
√

1 + f (r)

1 − r2

C2

, (20)

where C is an arbitrary constant. Setting f (r) = 0 in (20),
it is possible to obtain the Schwarzschid interior solution for
an incompressible fluid sphere, as will be shown later.

Equation (19) is a second order differential equation. To
obtain a tractable form, at this stage, we make a coordinate
transformation x2 = 1 − r2

C2 and introduce a new variable as
in Ref. [68]

eν(1 + f )−
1
4 = ψ(x), (21)

so that Eq. (19) takes the form

d2ψ

dx2 +
[

fxx
4(1 + f )

− 5 f 2
x

16(1 + f )2 + x fx
2(1 − x2)(1 + f )

+ f

(1 − x2)2 − 2q2(1 + f )

C2(1 − x2)3

]
ψ = 0, (22)

where fx represents the first order derivative with respect
to x . The charged analogue of the Schwarzschild solution

demands the linearity of ψ(x), i.e. d2ψ

dx2 must vanish [68]
which implies

q2(x) = C2(1 − x2)3 fxx
8(1 + f )2 − 5C2(1 − x2)3 f 2

x

32(1 + f )3

+C2x(1 − x2)2 fx
4(1 + f )2 + C2(1 − x2) f

2(1 + f )
, (23)
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and hence

ψ(x) = a − bx, (24)

where a and b are integration constants. The expression (23)
in terms of the radial parameter r takes the form

q2(r) = r4(C2 − r2) f ′′

8C2(1 + f )2 − 5r4(C2 − r2) f ′2

32C2(1 + f )3

−r3(3C2 − 2r2) f ′

8C2(1 + f )2 + r2 f

2(1 + f )
, (25)

which ensures that q(r) is well behaved at r = 0 as well
as at all interior points of the star for any particular choice
of f (r). Consequently, the spacetime metric of a static and
spherically symmetric object in the presence of an electric
field is obtained as

ds2− = −(1 + f (r))
1
2

⎛
⎝a − b

√
1 − r2

C2

⎞
⎠

2

dt2 + 1 + f (r)

1 − r2

C2

dr2

+r2(dθ2 + sin2 θdφ2). (26)

The constants (a, b and C) can be determined by matching
this solution to the exterior Reissner–Nordström metric at the
boundary. A physically viable f (R, T ) gravity model can be
obtained by choosing f (r) suitably.

3.1 Uncharged case: (q = 0 which implies f (r) = 0)

For f (r) = 0, Eq. (23) shows that the electric field vanishes.
Using Eqs. (15) and (16), the density and pressure in this case
are obtained as

ρ = 3(4π + χ)
√

1 − r2/C2 − 8a(3π + χ)

4C2(
√

1 − r2/C2 − 2a)(2π + χ)(4π + χ)
, (27)

p = 3χ
√

1 − r2/C2 − 8π(−a + 3b
√

1 − r2/C2)

8C2
(
b
√

1 − r2/C2 − a
)

(2π + χ)(4π + χ)
. (28)

Obviously, for χ = 0, Eqs. (27) and (28) represent the density
and pressure in Einstein’s gravity for an uncharged incom-
pressible fluid sphere. At r = 0, Eq. (28) can be rewritten in
the form

pc =
(pc)0 − 3χ

8πC2(a−b)

(2 + χ/π)(4π + χ)
, (29)

where (pc)0 = 3b−a
(a−b)C2 represents the central pressure in

Einstein’s gravity (χ = 0). It should be stressed that in
our construction the modified gravity contribution essentially
appears on the right hand side of the field equations which
might lead to misleading or unphysical results unless the
coupling parameter χ is fixed appropriately. For example, in
Eq. (29), we note that the central pressure becomes negative
for arbitrarily high values of χ . The parameter space of χ

over which our model may provide a physically meaningful
solution can be evaluated in the following manner.

To find a reasonable bound on χ from Eq. (29), we note
the following:

(i) The central pressure diverges if (1) a = b or, (2) χ =
−2π or, −4π ;

(ii) The central pressure vanishes if χ = 8π
3 (3b − a) which

implies that χ is positive or negative depending on
whether b > a/3 or b < a/3.

(iii) Depending on whether χ is positive or negative, either
pc > (pc)0 or pc < (pc)0, i.e. the respective values of
the central pressure is greater or less in f (R, T ) gravity
than Einstein’s gravity.

(iv) The bound on the dimensionless parameter χ is obtained
in the form

− 4π < χ <
8π

3
(3b − a). (30)

Now the p(r = R) = 0) condition determines the con-

stant R = C
√

1 − a2

9b2 in Einstein’s gravity which is the
radius of the star. For positive pressure, we must also have
b > a/3. In f (R, T ) gravity, the vanishing of pressure con-
dition yields

b = χ

8π
+ a

3
√
1 − R2/C2

, (31)

which leads us to an interesting conclusion that χ must
vanish for Schwarzschild’s interior incompressible solution
for which the constant takes the value b = 1/2, pro-

vided a = 3
2

√
1 − R2

C2 . This issue will be further taken up
in Sect. (5).

Consequently, using Eq. (26), the interior line element
for an uncharged compact object in f (R, T ) gravity can be
written as

ds2− = −
⎡
⎣3

2

√
1 − R2

C2 − 1

2

( χ

4π
+ 1

)√
1 − r2

C2

⎤
⎦

2

c2dt2

+
(

1 − r2

C2

)−1

dr2 + r2(dθ2 + sin2 θdφ2), (32)

where we have substituted a = 3
2

√
1 − R2

C2 . It is easy to note
that the usual form of the Schwarzschild interior solution for
an incompressible fluid sphere can be regained simply by
setting χ = 0.

3.2 Charged Buchdahl–Vaidya–Tikekar model in f (R, T )

gravity: ( f (r) �= 0)

We now consider the Vaidya and Tikekar (VT) [71] ansatz
so that f (r) = k r2

C2 . The VT ansatz is motivated by the
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observation that the t = constant hypersurface of the asso-
ciated spacetime, when embedded in a 4-Euclidean space,
turns out to be spheroidal in which the parameter k denotes
the departure from the sphericity of associated 3-space. The
3-hypersurface becomes flat and spherical for k = −1, 0,
respectively. The associated spacetime is well behaved for
r < C and k > −1. The VT ansatz has been widely used
over the years to model compact stars and radiating stellar
models, and this geometry is relevant in our construction,
particularly in the context of a similar approach adopted by
Sharma et al. [68].

With the VT ansatz, using Eqs. (15–18), (20), (21) and
(24), we obtain the metric potentials, energy-density, pres-
sure and charge-density as

eν(r) = (a − b
√

1 − r2/C2)(1 + kr2/C2)1/4, (33)

eμ(r) =
√√√√1 + kr2

C2

1 − r2

C2

, (34)

ρ = 1

D(r, k, χ)
×
[{

b(C2 − r2) − aC2
√

1 − r2/C2

}

×
{

3C2kr2 [4π(10 + 11k) + 3χ(2 + 5k)] + 12C4

× [8π(1 + k) + χ(2 + 3k)] + k2r4[4π(1 + 4k)

χ(11 − 4k)
]}− 8aC2χ

√
1 − r2/C2

−(C2 + kr2)2
]
, (35)

p = 1

2D(r, k, χ)
×
[{

b(C2 − r2) − aC2
√

1 − r2/C2

}

{
6C2kr2 [χ(k − 22) − 12π(k + 6)] + 24C4

[χ(k − 2) − 8π ] − k2r4[8π(4k + 25) + 2χ

(4k + 37)
]}− 16aC2

√
1 − r2/C2(8π + 3χ)

(C2 + kr2)2
]
, (36)

σ =
√
k(C2 − r2)

8π
√

2(C2 + kr2)3
√
C2(2 − k) + k(7 + 4k)r2

×
[
3C4(2 − k) + (4C2 + kr2)(7 + 4k)kr2

]
, (37)

where

D(r, k, χ) = 32(C2 + kr2)3(2π + χ)(4π + χ)
[
b(C2 − r2)

−aC2
√

1 − r2/C2
]
.

At the centre r = 0, Eq. (35 - 37) take the form

ρc = 1

8(a − b)C2(2π + χ)(4π + χ)
×
[
24π(a − b)(1 + k)

+χ {a(8 + 9k) − 3b(2 + 3k)}
]
, (38)

pc = 8π(3b − a) + 3χ {2b + k(a − b)}
8(a − b)C2(2π + χ)(4π + χ)

, (39)

σc = 3

8πC2

√
k(2 − k)

2
. (40)

Obviously the central density (ρc) will be positive if

k >
2 [3(b − a)(4π + χ) − aχ ]

3(a − b)(8π + 3χ)
.

Moreover the positive central pressure (pc) for the above
bound on k implies

(3b − a)

8C2(a − b)
> 0. (41)

The above bound further suggests that a > b > a/3. For a
well behaved stellar configuration, k can take values within
the range −1 < k < ∞.

Using Eq. (25), the charge contained within a radial dis-
tance r is obtained as

q2(r) = kr6
[
C2(2 − k) + k(7 + 4k)r2

]
8(C2 + kr2)3 , (42)

which clearly vanishes at the centre. It is also interesting to
note that the charge is zero for k = 0.

4 Boundary conditions and fixation of the constants

To evaluate the physical quantities, we need to fix the con-
stants (a, b,C) for given values of χ and k. The constants
can be determined by utilizing the appropriate boundary con-
ditions, as discussed below.

The exterior spacetime of the static charged object is
described by the Reissner–Nordström metric

ds2+ = −
(

1 − 2M

r
+ Q2

r2

)
dt2 +

(
1 − 2M

r
+ Q2

r2

)−1

dr2

+r2(dθ2 + sin2 θdφ2), (43)

where M and Q represent the total mass and charge, respec-
tively. The matching conditions at the boundary r = R are
the continuity of the metric potentials eν, eμ and the vanish-
ing of pressure at the boundary i.e., p(r = R) = 0. Noting
that m(R) = M and q(R) = Q, these conditions imply

1 − 2u + α2u2 = (1 + kn)
1
2 (a − b

√
1 − n)2, (44)

1 − 2u + α2u2 = 1 − n

1 + kn
, (45)

16 (1 + nk)2 =
[ b(1 − n) − a

√
1 − n

8πb(1 − n) + 3χa
√

1 − n

]

×
[
χ
{
24(k − 2) + 6nk(k − 22)

−2n2k2(37 + 4k)
}− 8π

{
8 + nk(22 + 9k)
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+n2k2(9 + 4k)
}]

, (46)

where we have substituted n = R2

C2 , u = M
R and α2 = Q2

M2

for simplicity. Using Eq. (45), we determine the constant

C = R

√
1 + ky

1 − y
, (47)

where y = 1 − 2u + α2u2.
Using Eqs. (44) and (46), we evaluate the remaining two

constants as

b = y

8
√

1 − n(8π + 3χ)(1 + kn)2
√
y
√

1 + kn

×
[
(4π + χ)

{
n2k2(4k + 9) + nk(9k + 22) + 8

}

+4χ(1 + nk)(nk − 3k − 2)
]
, (48)

a = b
√

1 − n + y√
y
√

1 + kn
. (49)

Note that all constants thus are given in terms of k, M , R,
Q and χ . It is interesting to note that in the uncharged case
with k = 0, the above constants take the form

a = 3(4π + χ)
√

1 − 2u

(8π + 3χ)
, (50)

b = 4π

(8π + 3χ)
, (51)

C = R

√
1

2u
, (52)

which is exactly the same as in Sect. 3.1 if one sets χ = 0.
By setting q(R) = Q, we rewrite Eq. (42) in the form

α2u2n = kn3[2 − k + (7 + 4k)kn]
8(1 + kn)3 , (53)

and substitute the value of n to obtain

k = 8α2(
2 − uα2

) [(
2 − uα2

)+ G(u, α2) − 8α2
] , (54)

where G(u, α2) =
√(

2 − uα2
) (

2 + 39uα2
)− 24α2. Thus,

to have α = 0, we must have k = 0 while the converse is
also true as can be seen in Eq. (53).

5 Physical acceptability and analysis of physical
quantities

Any physically acceptable stellar interior solution should
have the following features: (i) The density and pressure
should be positive throughout the interior of the star i.e.,
ρ, p > 0; (ii) the pressure p should vanish at some finite

radial distance i.e., p(r = R) = 0 and (iii) the causality con-
dition should be satisfied throughout the star, which implies

that 0 ≤
√

dp
dρ ≤ 1.

To verify whether the above conditions are fulfilled in this
model, we consider a hypothetical compact object of a given
mass and radius. For this, we take the same set of values as
in Ref. [68] i.e., M = 1.58 M	 and R = 9.1 km. Using
Eqs. (47)–(49), we evaluate the constants for different values
of k and χ .

Let us first consider the feasibility of an uncharged com-
pact object in f (R, T ) gravity. Making use of the data given
in Table 1, we plot the radial variation of matter density and
pressure, which are shown in Figs. 1 and 2. Clearly, in Fig. 2,
we note that the model becomes unphysical for χ �= 0. In
other words, Schwarzschild’s interior solution for an incom-
pressible fluid provides an extreme case which cannot be
further modified.

Let us now consider the charged case. For a charged (k
or q(r) �= 0) compact object with the mass and radius given
above, the values of the constants are given in Table 2. In
the table, we note that all values of a are less than 3/2, and
values of b are greater than a/3 as well as greater than 1/2 [as
discussed in Sect. 3.1]. With this set of values, we investigate
the behaviour of the matter density and pressure for different
choices of k and χ as shown in Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21 and 22. The plots indicate
that the model parameters are regular and well behaved at all
interior points of the compact object. Some features of the
model are discussed below:

Table 1 Values of the model parameters for an uncharged (k = 0)
compact star of mass M = 1.58 M	 and radius R = 9.1 km

C χ a b

12.7152 − 1.0 1.0950 0.5678

0 1.0476 0.5

1.0 1.0104 0.4467

Fig. 1 Radial variation of energy density ρ with χ for an uncharged
compact star
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Fig. 2 Radial variation of pressure p with χ for an uncharged compact
star. Interestingly, a physically meaningful model is obviously possible
only for χ = 0

(i) Figures 3, 5, 7, 9 and 11 show that the radial variation
of matter density monotonically decreases as one goes
outward.

(ii) Figures 4, 6, 8, 10 and 12 show that as χ increases
the matter density gradually decreases near the core
or the central region. Irrespective of the signature and
values of χ , all the density curves cross the constant
density line at r ∼ 6 km, which imply that any uniform
density stellar configuration has the largest value at the
boundary.

(iii) Figures 13, 15, 17, 19 and 21 show that as the charge
increases, the central pressure decreases monotoni-
cally.

(iv) Figures 14, 16, 18, 20 and 22 show the radial varia-
tion of the isotropic pressure for different values of χ .
Figure 14 indicates that the negative values of χ exert
more pressure at the core region than positive values.
Interestingly, k and negative values of χ seem to have
opposite effects.

Table 2 Values of the model parameters for different choices of k and χ for a hypothetical charged compact star of mass M = 1.58 M	 and radius
R = 9.1 km

χ = −1.0

k C a b k C a b k C a b

0.1 13.0983 1.1047 0.5706 1.0 16.0447 1.2042 0.6590 2.0 18.7246 1.3340 0.7828

0.5 14.4983 1.1460 0.5982 1.5 17.4398 1.2676 0.7124

χ = 0

k C a b k C a b k C a b

0.1 13.0983 1.0547 0.5011 1.0 16.0447 1.1299 0.5607 2.0 18.7246 1.2323 0.6619

0.5 14.4983 1.0853 0.5202 1.5 17.4398 1.1796 0.6093

χ = 1.0

k C a b k C a b k C a b

0.1 13.0983 1.0154 0.4464 1.0 16.0447 1.0715 0.4897 2.0 18.7246 1.1524 0.5704

0.5 14.4983 1.0375 0.4589 1.5 17.4398 1.1104 0.5282

χ = 3.0

k C a b k C a b k C a b

0.1 13.0983 0.9575 0.3659 1.0 16.0447 0.9854 0.3852 2.0 18.7246 1.0346 0.4356

0.5 14.4983 0.9672 0.3685 1.5 17.4398 1.0085 0.4087

χ = 5.0

k C a b k C a b k C a b

0.1 13.0983 0.9169 0.3095 1.0 16.0447 0.9251 0.3120 2.0 18.7246 0.9520 0.3412

0.5 14.4983 0.9179 0.3052 1.5 17.4398 0.9371 0.3250
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Fig. 3 Energy density ρ plotted against the radial distance r with k =
0.1

Fig. 4 Energy density ρ plotted against the radial distance r with χ =
0

Fig. 5 Energy density ρ plotted against the radial distance r with k =
0.5

Fig. 6 Energy density ρ plotted against the radial distance r with χ =
−1.0

Fig. 7 Energy density ρ plotted against the radial distance r with k =
1.0

Fig. 8 Energy density ρ plotted against the radial distance r with χ =
1.0

Fig. 9 Energy density ρ plotted against the radial distance r with k =
1.5

Fig. 10 Energy density ρ plotted against the radial distance r with
χ = 3.0

123



64 Page 10 of 14 Eur. Phys. J. C (2024) 84 :64

Fig. 11 Energy density ρ plotted against the radial distance r with
k = 2.0

Fig. 12 Energy density ρ plotted against the radial distance r with
χ = 5.0

Fig. 13 Isotropic pressure p plotted against the radial distance r with
k = 0.1

Fig. 14 Isotropic pressure p plotted against the radial distance r with
χ = 0

Fig. 15 Isotropic pressure p plotted against the radial distance r with
k = 0.5

Fig. 16 Isotropic pressure p plotted against the radial distance r with
χ = −1.0

Fig. 17 Isotropic pressure p plotted against the radial distance r with
k = 1.0

Fig. 18 Isotropic pressure p plotted against the radial distance r with
χ = 1.0
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Fig. 19 Isotropic pressure p plotted against the radial distance r with
k = 1.5

Fig. 20 Isotropic pressure p plotted against the radial distance r with
χ = 3.0

Fig. 21 Isotropic pressure p plotted against the radial distance r with
k = 2.0

It should be pointed out here that in the standard approach
of stellar modelling, a barotropic equation of state (EOS)
is usually assumed i.e., based on our understanding about
the micro-physics of the system, the right hand side of the
field equations is assumed which subsequently determines
the left hand side of the field equations. However, in the
present work, we do not prescribe any EOS to solve the sys-
tem. Rather, by prescribing the geometry, we solve the system
of equations and look for parameter values which can provide
realistic stellar observables. The energy density and pressure
are functions of the radial coordinate r and a parametric plot
of these quantities give us some insight into the nature of
EOS of the composition. In our formulation the geometric
part was provided in the form of Buchdahl–Vaidya–Tikekar
[70,71] metric ansatz. Such an approach turns out to be useful

Fig. 22 Isotropic pressure p plotted against the radial distance r with
χ = 5.0

for physical systems where the nature of particle interaction
remains inconclusive.

6 Compactness bound in f (R, T ) gravity

The mass to radius ratio, i.e compactness (M/R), plays a
crucial role in modelling a compact star. The most compact
object is a black hole (BH) for which the compactness ratio
is 1

2 . For non-BH compact objects, amongst others, the upper
bound on M/R in Einstein’s gravity was investigated by
Sharma et al. [68] in which it has been shown that a charged
non-BH could be overcharged as compared to a charged black
hole. In the current investigation, we intend to analyze the
impact of the modification made in Einstein’s gravity on the
compactness bound. Recently, in the uncharged case, Pappas
et al. [63] have extended the Tolman III and VII solutions
to f (R, T ) gravity and showed that the mass to radius ratio
becomes greater than the Buchdahl limit of compactness for
positive values of χ . The ratio never exceeds the black hole
compactness.

In the charged case, we obtain the bound by demanding
that the central pressure must not diverge. From Eq. (39), it is
evident that (a − b) ≥ 0 is the condition for the divergence-
free central pressure. Substituting the value of a, as given in
Eq. (49) in the above requirement, we obtain

y√
y
√

1 + kn
≥ b

(
1 − √

1 − n
)

. (55)

For an uncharged (k = α = 0) compact object this condition
simplifies to

(4π + χ)
(

3
√

1 − 2u − 1
)

+ χ ≥ 0, (56)

which, on further simplification, gives

M

R
≤ 1

2

[
1 − 1

9
(
1 + χ

4π

)2
]

. (57)
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Fig. 23 Compactness M
R plotted against χ for different choices of α2

One can readily retrieve the Buchdahl bound M
R ≤ 4

9 from
Eq.(57) for χ = 0. For χ �= 0 in the uncharged case, Eq. (57)
provides the maximum compactness bound which can also
be expressed in the form

u ≤ 9χ2 + 72πχ + 128π2

18(χ + 4π)2 , (58)

which is exactly the same as obtained earlier by Pappas et al
[Eq. (33) in Ref. [63]].

For a charged star, condition (55) takes the form as

(4π + χ)
[
16 (1 + nk)2

√
1 − n −

(
1 − √

1 − n
)

×
{

8 + nk(9k + 22) + n2k2(4k + 9)
}]

+ 4χ (1 + nk)

×
[
k(n − 1)(3

√
1 − n − 1) + 2(k + 1)

]
≥ 0. (59)

Equations (45) and (54) suggest that the above condition (59)
is governed by choice of α and χ . Condition (59) can be uti-
lized numerically to find a bound on compactness as shown
in Fig. 23. The black solid line in Fig. 23 corresponds to the
uncharged case which is same as in Ref. [63]. It is noteworthy
that while the compactness for an uncharged stellar config-
uration cannot go beyond black hole compactness, it can go
beyond the BH compactness when the star is charged. As the
values of α2 are increased, the compactness goes beyond the
BH compactness limit even for small values of χ .

Having understood the dependency of χ on compactness
numerically, let us now explore the possibility of obtaining an
analytic expression yielding similar behaviour, which might
be considered as the compactness bound for a charged sphere
in f (R, T ) gravity analogous to the Buchdahl bound. To
achieve this goal, let us assume k = κε and χ = Xε, where
|ε| << 1. This approximation will be valid if the departure
from sphericity is small and the modification is moderate.
With these assumptions, we have from Eq. (54)

α2 =
2
[
(1 − k + 3ku) −

√
(1 − k + 3ku)2 − 5k2u2

]

5ku2

+O(ε2). (60)

Inserting the value of α2 in Eq. (59) and retaining terms upto
O(ε), we obtain

u =
32π

9

[
2

(8π−χ)
− χ

(8π−χ)2

]

1 + 4π
(8π−χ)

√
16α2

9 (
3χ
8π

− 2) + (
χ

4π
− 2)2

, (61)

which for a charged compact object in Einstein’s gravity (i.e.
χ = 0) takes the form

u = M

R
= 8/9

1 +
√

1 − 8α2

9

. (62)

Thus, as far as compactness is concerned, we notice a dis-
tinctive behaviour in f (R, T ) gravity. Equation (61) may
be considered as a charged generalization of the Buchdahl
bound in f (R, T ) gravity.

For a small value of χ (we take = 0.1), we first evaluate the
variation of compactness ( MR ) with α2 by utilizing the con-
dition (59) which is tabulated in Table 3. Figure 24 utilizes
the data obtained in Table 3 to plot the variation of compact-
ness with α2. The plot is then embedded on a similar plot
obtained by utilizing condition (61). The overlapping of the
two plots justifies the validity of our approximation method
and the result in Eq. (61). It should be mentioned here that
the overlapping is good for relatively smaller values of χ

and they seem to diverge for χ ≥ 1. This implies that the
analytical expression for compactness bound of a charged
sphere in f (R, T ) gravity obtained by our approximation
method remains valid when χ takes relatively smaller (≤ 1)
values. Thus, the compactness bound Eq. (61) might not be
the stringiest bound. Moreover, one can not regain Eq. (57)
simply by putting α2 = 0 in Eq. (61). In fact, for α2 = 0
Eq. (61) takes the form (Fig. 25)

u = 16π(16π − 3χ)

9(8π − χ)2 . (63)

We show this variation separately in Fig. 26. The plot shows
that as χ is increased from a negative value, the maxi-
mum compactness steadily increases towards 0.5. On further
increase of χ , the compactness decreases.

7 Concluding remarks

The Buchdahl bound in modified gravity was studied ear-
lier by Goswami et al. [73] leading to new features in stel-
lar objects. We also expect to obtain interesting features in
f (R, T ) theory for the Buchdahl limit. This paper provides
an analysis of the physical behaviour of a charged compact
star in f (R, T ) gravity. The electromagnetic extension of
the Buchdahl bound obtained in f (R, T ) gravity is distinct
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Table 3 Variation of compactness M
R with α2 for χ = 0.1

α2 0 0.1 0.3 0.5 0.7 0.9 0.95

M
R 0.4453 0.4557 0.4803 0.5118 0.5547 0.6137 0.6234

Fig. 24 Compactness ratio M
R plotted against α2 for χ = 0.1 using

Eq. (61) and Eq. (59)

Fig. 25 Compactness ratio M
R plotted against α2 for different choices

of χ

Fig. 26 Compactness ratio M
R plotted against χ for α2 = 0

from the results obtained earlier by Sharma et al. [68] for gen-
eral relativity. Our study shows that the compactness can be
increased by considering a modification in Einstein’s gravity
which is further enhanced by the inclusion of charge. While
in the absence of charge, the compactness never exceeds the
BH compactness 0.5, even a comparatively small amount of
charge together with the impact of the trace of the stress-
energy tensor T can exceed the compactness bound beyond
the BH limit 0.5. Whether this is indicative of a more strin-
gent bound on the coupling term χ requires further probe.

Another point to note is that in Eq. (61), u will be a positive
real quantity if the squared root term in the denominator

remains positive. This restricts the charge to mass ratio Q2

M2 <

9
8

(χ−8π)2

4π(16π−3χ)
. Obviously, Q2

M2 < 9/8 for χ = 0.
While in the absence of charge, the variation of compact-

ness is same as in Ref. [63], the presence of charge changes
the scenario and provides some new insight into the effects
f (R, T ) gravity on the compactness. Equation (61) is the
main result of this investigation which opens up the possi-
bility of studying the most compact stars (other than black
holes) such as a Buchdahl star can be seen in Fig. 23. It is
evident from our analysis that f (R, T ) gravity can accumu-
late more mass within a volume element leading to a greater
compactness. Hence, it will be interesting to explore the mass
gap between the GR predicted compactness bound (4/9) and
black hole compactness (0.5) in the context of f (R, T ) grav-
ity inspired stellar models.

To conclude, the theoretical framework of f (R, T )gravity
remains very much an open area which demands an in-depth
analysis of its relevance and application in physical world
[56]. In the context of its application in astrophysics, fixing
the appropriate boundary conditions remains one such prob-
lem. Once accomplished, such theories are expected to pro-
vide interesting and distinctive features as far as their astro-
physical and cosmological implications are concerned.
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