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Abstract We investigate gravitational capture of magnetic
monopoles by primordial black holes (PBH) that evaporate
before Big Bang Nucleosynthesis (BBN), a hypothetical pro-
cess which was once proposed as an alternative solution to
the monopole problem. Magnetic monopoles produced in
phase transitions of a grand or partially unified gauge theory
are considered. We prove analytically that for all extended
PBH mass functions that preserve radiation domination, it is
impossible to reduce the monopole abundance via gravita-
tional capture by PBHs to values significantly below the one
set by monopole annihilation (or below its initial abundance
if it is smaller), regardless of the nature of the capture pro-
cess (diffusive or non-diffusive). Therefore, the monopole
problem cannot be solved by PBH capture in a radiation-
dominated era in the early universe.

1 Introduction

Magnetic monopoles arise as a class of topological objects in
grand or partially unified theories with intriguing theoretical
properties and important observational implications. Their
magnetic charges are constrained by the Dirac quantization
condition while their masses are tied to the corresponding
unification scale. The abundance of magnetic monopoles is
a cosmological issue [4], which is one of the main driving
forces behind the development of the inflation theory. Nev-
ertheless, despite the great success of the inflation theory
in solving the horizon and flatness problems and provid-
ing a natural mechanism for generating the primordial den-
sity fluctuations that lead to structure formation, there have
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been a persistent interest in finding alternative solution to the
monopole abundance problem, or more generally, the prob-
lem of overabundance of cosmological relics [5–21].

In the context of the monopole problem, whether mag-
netic monopoles are inflated away depends on whether they
are produced before, during or after inflation. The current
constraint on the scalar-to-tensor ratio [22,23] sets an upper
bound on the reheating temperature with the implication that
magnetic monopoles associated with grand unification are
likely to be diluted by inflation [24,25]. Nevertheless, lighter
monopoles, such as those associated with the Pati-Salam par-
tially unified theories [26,27], may also easily overclose the
universe if they are copiously produced. It is not clear whether
such monopole problems are also solved by inflation, since
the inflation energy scale is still unknown.

One alternative solution to the monopole problem is grav-
itational capture by primordial black holes (PBH) that evap-
orate before Big Bang Nucleosynthesis (BBN) [15]. The
implication of this solution goes beyond the monopole prob-
lem itself, as it would imply PBHs in the early universe may
also significantly affect the relic abundance of other stable
massive particles (SMP) [28]. Such SMPs may even serve
as dark matter candidates. For example, in a dark sector in
which a semi-simple dark gauge group is broken to a U (1)

subgroup, hidden monopoles arise as a result of the dark
gauge symmetry breaking and may also serve as dark matter
candidate [18,19,29–42]. It is thus motivated to consider the
effect of PBHs on the abundance of such SMPs as well.

In a recent work [43] the present authors revisited the grav-
itational capture of magnetic monopoles by PBHs. It was
found that the earlier analysis of Ref. [15] overestimates the
capture cross section in the diffusive regime and thus leads to
an overly optimistic assessment of the PBH capture capabil-
ity. The point is that Ref. [15] has modelled the PBH capture
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somewhat different from monopole annihilation while in fact
these two processes are quite similar. In [43] we have put the
two processes on the same footing and explained the ratio-
nale behind our treatment. For a monochromatic PBH mass
function that preserves radiation domination it was shown
that the PBH capture rate is several orders of magnitude
below what is expected from the earlier treatment, and also
far from what is needed to reduce the monopole abundance
significantly. On the other hand, the earlier work [15] actu-
ally proposed an extended PBH mass function so that lighter
PBHs keep evaporating while heavier PBHs keep forming
to maintain radiation domination. Such an extended PBH
mass function is expected to lead to a better capture capa-
bility in the radiation-dominated era as it makes full use of
the energy density fraction that can be allocated to PBHs. It
is therefore well-motivated to generalize our previous anal-
ysis to the case of such an extended PBH mass function as
well, which is important for a proper assessment of the PBH
capture capability regarding the relic abundance of various
SMPs.

Such a generalization to the case of extended PBH mass
functions while still assuming radiation domination is the
main focus of the present work. Assuming the PBHs account
for a nearly fixed fraction of total energy density that is
smaller than that of radiation, it is possible to derive a func-
tional equation for the PBH mass function. Nevertheless, it
is not straightforward to analytically or numerically employ
such a mass function if one only knows the functional equa-
tion it obeys. Here we utilize a special feature of the dif-
fusive PBH capture rate which can be easily generalized to
the extended case to facilitate the analysis. In fact we intro-
duce a parametrization of the capture term that is appropri-
ate for both diffusive and non-diffusive capture. The special
feature of diffusive capture allows us to prove easily that
assuming radiation domination, the monopole abundance
cannot be reduced significantly by PBH capture (barring
the effect of monopole annihilation) even if an extended
PBH mass function is allowed. Moreover, we carry over
the analysis to the case of non-diffusive PBH capture. In
the non-diffusive regime, the special feature associated with
the diffusive regime does not exist. Nevertheless, we prove
via tricks of inequalities that assuming radiation domination
the non-diffusive PBH capture cannot significantly reduce
the monopole abundance either. Therefore, we reach a quite
generic conclusion that in the radiation-dominated era, the
abundance of magnetic monopoles cannot be reduced sig-
nificantly by PBH capture to values below the one set by
monopole annihilation (or below its initial abundance if it
is smaller). Since it is well-known that monopole annihila-
tion alone cannot solve the monopole problem [44,45], this
implies that PBH capture in a radiation-dominated era cannot
solve the monopole problem either.

This work is organized as follows. In Sect. 2 we review
the modelling of PBH capture of magnetic monopoles,
explain the subtleties involved, and work out the various
constraints on the parameter space from the assumption of
existence of diffusive or non-diffusive PBH capture of mag-
netic monopoles in the early universe. In Sect. 3 we intro-
duce a general parametrization of the capture term, which is
then employed to study both the diffusive and non-diffusive
PBH capture, for both monochromatic and extended PBH
mass functions assuming radiation domination. We prove
the inability for PBH capture to significantly reduce the
monopole abundance (barring the monopole annihilatiopn
effect) in a radiation-dominated era. Finally we give our dis-
cussion and conclusions in Sect. 4.

2 Modelling of PBH capture and parameter space

2.1 Monopole production and annihilation

For definiteness we consider magnetic monopoles associated
with a partially unified gauge theory such as the Pati-Salam
model, though the exact origin (i.e. the particle physics model
behind) of magnetic monopoles is not essential to the analy-
sis. The virtue to consider partially unified gauge theories
rather than grand unified theories is that their unification
scales are less constrained and may span a large range of
energy scales depending on model construction. For exam-
ple, the Pati-Salam breaking scale can range from just below
the Planck scale, to as low as O(10 TeV) depending on the
field content [27,46–50]. Thus, the corresponding magnetic
monopole mass m is also flexible. It is related to the symme-
try breaking temperature Tc via

m = δTc. (1)

Typically δ = O(10). We will adopt the reference point value

δ = 50, (2)

The magnetic charge of the monopole is subject to the Dirac
quantization condition. We parameterize the magnitude of its
magnetic charge as χg, in which

g � 5.9 (3)

is the unit magnetic charge in natural Gaussian units, and χ is
a positive integer determined by the particle physics model.
For example, Pati-Salam extensions of the Standard Model
feature χ = 2 which we adopt as the reference value in this
work, while trinification scenarios feature χ = 3 [51–55].

The initial abundance of magnetic monopoles depends on
the nature of the symmetry breaking phase transition that
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produces them. We assume radiation domination in the early
universe, with the energy density ρ and entropy density s at
temperature T given by

ρ = K1T
4, s = K2T

3, (4)

in which

K1 = π2

30
N , K2 = 2π2

45
N , (5)

with N being the number of effective relativistic degrees of
freedom at temperature T . The Hubble parameter is then

H = K
T 2

MPl
, (6)

with

K =
(

4π3N

45

)1/2

, (7)

and the Planck mass

MPl = 1.2 × 1019 GeV = 2.2 × 10−5g. (8)

Causality considerations limit the maximum correlation
length at a given temperature, which implies a lower bound
on the density of topological defects produced by the phase
transition if it is associated with a nontrivial homotopy group
[56]. In the case of magnetic monopoles whose number den-
sity is denoted nM , we introduce the monopole yield

r ≡ nM
s

, (9)

and the reduced phase transition temperature

x ≡ Tc
MPl

, (10)

then the lower bound on the initial monopole yield (Kibble
estimate) can be expressed as [43]

ri � rKibble
i , rKibble

i = p(8π)3/2N 1/2x3, (11)

where p is a number not much less than 0.1.
First-order phase transitions proceed via bubble nucle-

ation. In such a case the initial monopole yield can be
expressed in terms of the bubble wall velocity vw and the β

parameter that characterizes the inverse duration of the phase
transition [57]. More specifically we introduce the dimen-
sionless β parameter

β̃ ≡ β

H(Tp)
, (12)

with Tp being the percolation temperature. Then the initial
monopole yield ri can be expressed as

ri � p(β̃v−1
w )3(8π)1/2N 1/2x3. (13)

Here p is a number not much less than 0.1. For a strongly
first-order phase transition β̃v−1

w � O(1), the initial yield is
close to the Kibble estimate,1 while for a typical weakly first-
order phase transition β̃v−1

w � O(10 ∼ 103), the initial yield
can be orders of magnitude larger than the Kibble estimate.

For second-order phase transitions, the initial monopole
yield is determined by the Kibble–Zurek mechanism [58,59].
The essential idea is the correlation length should be frozen
when the temporal distance to the critical point is equal to
the equilibrium relaxation time. If we introduce two critical
exponents ν, ν associated with the equilibrium correlation
length and equilibrium relaxation time respectively

ξ(ε) = ξ0

|ε|ν , τ (ε) = τ0

|ε|μ , (14)

the initial monopole yield can be expressed in terms of ν, μ

as

ri � λ3/2K−1
2

(
Kx√

λ

) 3ν
1+μ

, (15)

in which λ ∼ O(1) is a typical scalar quartic coupling in the
theory. We typically consider

μ = ν, λ � 1, (16)

then

ri � 0.02

(
17Tc
MPl

) 3ν
1+ν

, for N = 100, λ = 1. (17)

Typically ν = 0.5− ∼ 0.8 [29] and the resulting monopole
yield is much larger than that of the Kibble estimate.

After being produced in the phase transition, monopoles
behave as nonrelativistic objects that are in kinetic (but not
chemical) equilibrium with the primordial plasma. The num-
ber of magnetic monopoles in a comoving volume changes
as a result of monopole annihilation [60,61]. The annihila-
tion is mostly in the diffusive regime which is characterized
by two main features:

1. Monopoles and antimonopoles drift toward each other as
a result of the balancing between the magnetic attraction
force and the drag force exerted by the plasma.

1 The Kibble estimate does not apply to the case of extreme supercool-
ing where Tp/Tc � 1, which we do not consider in this work.
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2. Monopoles and antimonopoles undergo Brownian motion
in the plasma with a characteristic root-mean-square
velocity and mean free path.

The drag force exerted on a nonrelativistic magnetic
monopole can be approximated as [62]

Fdrag = −CT 2v, (18)

where C ∼ (1 − 5)Ncχ
2 with Nc being the number of rela-

tivistic effective charged degrees of freedom [62]. Therefore
when the distance between monopole and antimonopole is
R, the drift velocity of the monopole is given by

vD � χ2g2

CT 2R2 . (19)

Equating the negative Coulomb magnetic energy with the
thermal kinetic energy of the monopole yields the annihila-
tion capture radius

rc = χ2g2

T
. (20)

The mean free path of the monopole is [44,62]

� � 1

CT

(
m

T

)1/2

. (21)

The diffusive capture is effective only if rc > �, which trans-
lates into a condition on the temperature

T > Tann, Tann = m

C2χ4g4 . (22)

In terms of the reduced temperature zann ≡ Tann
Tc

zann = δC−2χ−4g−4. (23)

The rationale behind the rc > � criterion is that once the
distance between a monopole and an antimonopole is smaller
than rc, then rc > � implies that thermal Brownian motion
of the monopole (and antimonopole) is unlikely to increase
their distance to be larger than rc again. The motion of the pair
will then be dominated by the drifting so they are doomed
to annihilate. Once the temperature drops below Tann, then
rc < �, which implies with a distance between monopole
and antimonopole smaller than rc it is not guaranteed that the
pair will annihilate. In this non-diffusive capture regime the
monopole and antimonopole lose their energy by radiative
capture via bremsstrahlung emission, and the corresponding
capture rate turns out to be much smaller than the diffusive
capture regime [44].

Taking into account of monopole annihilation, the monopole
yield at T = Tann can be estimated as follows. The evolution
of nM obeys the equation

ṅM = −Dn2
M − 3

ȧ

a
nM . (24)

The −3 ȧ
a nM term obviously takes into account of the effect

of cosmic expansion, and the annihilation capture coefficient
D can be computed from the characteristic capture time τann

(with typical monopole separation dann ∼ n−1/3
M )

τann � dann

vD(dann)
= CT 2

χ2g2nM
, (25)

and [44]

D = 1

τannnM
= χ2g2

CT 2 . (26)

The evolution equation Eq. (24) can then be solved analyti-
cally, and the monopole yield rann at T = Tann is found to be
[43]

rann � min{ri , r}, r ≡ K−1
2 KC−1χ−6g−6δx . (27)

Here ri is the initial monopole yield at T = Tc.

2.2 Modelling of diffusive monopole capture by PBHs

PBHs may form from primordial density fluctuations and a
number of other mechanisms in the early universe [63–71].
Here we review gravitational capture of magnetic monopoles
by PBHs [43], which depends on the PBH mass and energy
density fraction, but not its formation mechanism. If the PBH
mass function is monochromatic, then the PBHs are char-
acterized by a single mass mbh, or the reduced PBH mass
parameter

y ≡ mbh

MPl
. (28)

The gravitational capture is similar to monopole annihilation
in the sense that both are driven by long-range forces that
obey an inverse-square law. A gravitational capture radius
which is the counterpart of rc in the annihilation case can be
likewise defined

rgc
c = mmbh

M2
PlT

, (29)

The diffusive gravitational capture regime is characterized
by rgc

c > �, which translates into a requirement on the tem-
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perature

T > Tgc, Tgc ≡ M4
Pl

C2m2
bhm

. (30)

The corresponding reduced temperature zgc is then

zgc = C−2δ−1x−2y−2. (31)

The evolution of nM can be written as

ṅM = −Dn2
M − FnM − 3

ȧ

a
nM , (32)

where the new term −FnM embodies the effect of PBH
capture. The coefficient F can be found as follows. The
monopole drift velocity uD is a function of the monopole-
PBH distance R

uD(R) = mbhm

M2
Pl

1

CT 2R2 . (33)

Suppose the number density of PBHs is nbh. The typical
PBH separation is then n−1/3

bh , thus we use the typical drift
velocity

uD(n−1/3
bh ) = mbhm

M2
Pl

n2/3
bh

CT 2 . (34)

The typical gravitational capture time is

τgc = n−1/3
bh

uD(n−1/3
bh )

= M2
PlCT 2

nbhmbhm
. (35)

F should be interpreted as the typical capture frequency per
monopole, and is given by

F ≡ τ−1
gc = nbhmbhm

M2
PlCT 2

. (36)

Alternatively, we may derive F in the flux description [43].
In the diffusive regime, each PBH can be viewed as carrying
a capture cross section

σgD ≡ π(rgc
c )2, (37)

and being hit by monopoles with a characteristic incident
velocity vMD. The appropriate choice for vMD is the drift
velocity at a monopole-PBH distance R = rgc

c

vMD ≡ uD(rgc
c ) = mbhm

M2
Pl

1

CT 2(rgc
c )2

= M2
Pl

Cmmbh
. (38)

Therefore in the flux description, F is found to be

F = σgDvMDnbh = π
nbhmbhm

M2
PlCT 2

, (39)

which agrees with Eq. (36) up to an O(1) factor.
In the case of a monochromatic PBH mass function, the

above expressions (Eqs. (36) and (39)) for F do not agree
with Ref. [15] which first proposed PBH capture as a solution
to the monopole problem. The modelling of Ref. [15] would
lead to F ∝ T 3 while Eq. (39) leads to F ∝ T (assum-
ing nbh ∝ T 3). The two ways of modelling are compared in
our previous work [43] which found that Eq. (39) leads to a
gravitational capture rate that is several orders of magnitude
smaller than what is expected from Ref. [15]. The difference
originates from the use of the gravitational capture cross sec-
tion: When both ways of modelling are framed in the flux
language, it is found that the same monopole incident veloc-
ity is used, but the gravitational capture cross sections used in
the two approaches are drastically different. Reference [15]
has used a gravitational capture cross section that is derived
from solving the geodesic motion of a test massive particle in
a Schwarzschild geometry, which does not make sense in the
diffusive regime when rgc

c > �. The reasonable estimate for
the gravitational capture cross section in the diffusive regime
should be given by π(rgc

c )2, based on the physical picture
of a competition between monopole drift and random walk.
In fact one may use a similar flux description for monopole
annihilation. With an annihilation capture cross section esti-
mated as πr2

c it is possible to derive the expression for D
(Eq. (26)) again.

2.3 Constraints on parameter space

A number of constraints have to be taken into account when
we analyze gravitational capture of magnetic monopoles by
PBHs. To this end, besides Tann and Tgc, we consider two
more characteristic temperatures Tev and Tb, associated with
PBH evaporation and formation, respectively.

Tev is defined to be the temperature of the primordial
plasma at the time of PBH evaporation, for a given PBH
mass. Since the PBH lifetime can be estimated as [72,73]

τbh = ε
m3

bh

M4
Pl

, ε = 10240π

G 〈g,H 〉 , (40)

with G � 3.8 is the grey body factor, and 〈g,H 〉 � N
depends on the particle physics model, equating τbh with the
cosmic time in a radiation-dominated era t = 1

2H determines

Tev, or one may use the reduced temperature zev ≡ Tev
Tc

zev = (2εK )−1/2x−1y−3/2. (41)
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Table 1 Summary of the
parameters that appear in the
analysis, with their definitions,
reference point values, and
floating range

Parameter Definition Reference point value Floating range

MPl Eq. (8) 1.2 × 1019 GeV NA

N Eq. (5) 100 100 � N � 1000

g Eq. (3) 5.9 1 � g � 10

χ Integer magnetic charge 2 χ = 1, 2 or 3

δ Eq. (1) 50 10 � δ � 100

C Eq. (18) 200 100 � C � 1000

γ Eq. (42) 0.2 0.01 � γ � 1

ε Eq. (40) 100 10 � ε � 300

Tb is defined to be the temperature of the primordial
plasma at the time of PBH evaporation, for a given PBH
mass. Usually the mass of a PBH at formation is linked to
the horizon mass [63]

mbh = γ

2
M2

PlH
−1
form, H−1

form = K
T 2
b

MPl
, (42)

Typically γ � 0.2 [74]. Therefore the reduced temperature
zb ≡ Tb

Tc
associated with PBH formation is

zb =
( γ

2K

)1/2
x−1y−1/2. (43)

We summarize the parameters that appear in the analysis
in Table 1, along with their definition and reference point
values. The “Floating range” column indicates the range of
parameters taking into account of uncertainties and the need
to consider alternative scenarios. The expressions for the
four reduced characteristic temperatures zann, zgc, zev, zb are
summarized in Table 2, along with the corresponding expres-
sions at the reference point.

We may derive constraints on the PBH mass by requiring
the PBH form after inflation (Tb � Tmax

RH � 1016 GeV) and
evaporate before BBN Tev � TBBN � 1 MeV. The resulting
constraint on y can be expressed as

γ

2K

(
MPl

Tmax
RH

)2

� y � (2εK )−1/3
(

MPl

TBBN

)2/3

, (44)

Table 2 Summary of the reduced characteristic temperatures

Reduced
temperature

Analytic expression Reference point
expression

zb
( γ

2K

)1/2
x−1y−1/2 0.078x−1y−1/2

zann δC−2χ−4g−4 6.4 × 10−8

zev (2εK )−1/2x−1y−3/2 0.017x−1y−3/2

zgc C−2δ−1x−2y−2 5 × 10−7x−2y−2

which reads at the reference point

8.7 × 103 � y � 3.5 × 1013. (45)

In the case of a monochromatic PBH mass function, we
may derive a simple condition for radiation domination. To
this end we introduce the parameter β (not to be confused
with the phase transition parameter β), which is the ratio
between PBH energy density and radiation energy density at
PBH formation

(nbhmbh)|form = βK1(Tb)T
4
b . (46)

Since PBH is nonrelativistic, nbhmbh ∝ a−3 ∝ s = K2T 3,
we find that at the time PBH evaporation

(nbhmbh)|evap = β
K1(Tb)

K2(Tb)
K2(Tev)T

3
evTb. (47)

If we require (nbhmbh)|evap be smaller than the radiation
energy density at Tev, we find

(nbhmbh)|evap

K1(Tev)T 4
ev

= β
K1(Tb)

K1(Tev)

K2(Tev)

K2(Tb)

Tb
Tev

� 1. (48)

If we neglect the difference in N defined in terms of the
energy density and entropy density, then

K1(Tb)

K1(Tev)

K2(Tev)

K2(Tb)
= 1, (49)

and Eq. (48) becomes

β
Tb
Tev

� 1. (50)

Using Table 2 this condition is turned into

βy � (γ ε)−1/2, (51)

which reads at the reference point

βy � 0.22. (52)

123



Eur. Phys. J. C (2024) 84 :100 Page 7 of 18 100

It is interesting that this condition is not sensitive to the
change of N with respect to temperature.

In the following we generally use z ≡ T
Tc

to represent the
reduced temperature. Let us define two reduced temperatures
zs and zt as

zs = max{zev, zgc}, zt = min{1, zb}. (53)

Diffusive PBH capture can only start at zt and end at zs , so
the existence of diffusive PBH capture requires

zs < zt , (54)

which encodes four conditions, that is zev < 1, zev <

zb, zgc < 1, zgc < zb. It turns out that when we take into
account the constraints on PBH mass Eq. (44), the most con-
straining condition among them is zgc < 1, which can be
translated into a constraint on y for a given value of x

y > C−1δ−1/2x−1, (55)

which reads at the reference point

y > 7.1 × 10−4x−1. (56)

In the following we will also be interested in non-diffusive
gravitational capture of monopoles by PBHs. The non-
diffusive gravitational capture is possible because for a test
massive particle with nonrelativistic incident velocity v at

infinity there is a capture cross section σnr ≈ 4πR2
bh

v2 , with
Rbh being the Schwarzschild radius of the PBH. This cap-
ture cross section is derived from solving the geodesic motion
of the test particle in the Schwarzschild geometry [75]. In
order to have non-diffusive gravitational capture of mag-
netic monopoles, two conditions must be satisfied. The first
is zev < 1, which is equivalent to

y > (2εK )−1/3x−2/3, (57)

which reads at the reference point

y > 6.7 × 10−2x−2/3. (58)

The second is zev < zgc, which is equivalent to

y < (2εK )C−4δ−2x−2, (59)

which reads at the reference point

y < 8.3 × 10−10x−2. (60)

In considering the capture of monopoles by PBHs, we
implicitly treat monopoles like classical point particles.

Depending on the value of parameters, this approximation
may break down. First, a magnetic monopole produced in a
phase transition at temperature Tc is an extended object with
classical size

rcl = 2g

χTc
. (61)

Requiring Rbh > rcl gives

y > χ−1gx−1, (62)

which reads at the reference point

y > 3x−1. (63)

This constraint due to the monopole classical size is more
stringent than both zgc < 1 in the case of diffusive capture
and zev < 1 in the case of non-diffusive capture. Moreover,
when the temperature drops so that the electroweak symme-
try is broken, the classical size of the monopole will grow
to v−1

EW ∼ 246 GeV−1, which is certainly larger than the
Schwarzschild radius of the PBH which satisfies Eq. (44).
However, at this moment it is not clear what will occur if a fat
magnetic monopole encounters a small PBH with Rbh < rcl.
It is possible that the PBHs still act as anchoring sites that
facilitate the annihilation of monopoles and antimonopoles,
but in any case we do not expect the corresponding capture
rate to be significantly enhanced relative to the Rbh > rcl

case. Therefore, the main conclusions of this work are not
affected no matter we include or exclude the classical size
constraint Rbh > rcl.

Another factor that might affect the PBH capture of mag-
netic monopoles is the quantum mechanical uncertainty.
When the monopoles are in kinetic equilibrium with the pri-
mordial plasma at temperature T , it acquires a mean thermal
de Broglie wavelenth λTdB ∼ (mT )−1/2. When Rbh < λTdB,
which can be realized in some portion of the parameter space,
the PBH will not be able to capture the monopole efficiently
as usual. However, λTdB is only appropriate for monopoles
far from the PBH. For monopoles close to the PBH drifting at
high speed due to gravitational attraction, their momenta are
significantly increased relative to the thermal value, which
in turn decreases their de Broglie wavelength and makes the
gravitational capture possible.

In Fig. 1 we plot the various lines of constraints and the
region of diffusive and non-diffusive gravitational capture on
the x − y plane, on logarithmic scales for both x and y (see
figure caption for details). The range of x under consider-
ation is 10−20 � x � 10−3. If the classical size constraint
Rbh > rcl is neglected, we see that diffusive gravitational cap-
ture is only possible for x � 2 × 10−17 while non-diffusive
gravitational capture is only possible for x � 3.1 × 10−7.
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Fig. 1 Illustration of the various lines of constraints and the region
of diffusive and non-diffusive gravitational capture on the x − y plane
(plotted on logarithmic scales). Parameters are taken using the refer-
ence point values in Table 1. The two horizontal solid lines correspond
to the maximum and minimum PBH masses allowed by Eq. (44). The
remaining solid lines correspond to zev = 1 (purple), zgc = 1 (blue)
and zev = zgc (red), respectively. The shadowed region to the right of

the solid blue line allows to have diffusive gravitational capture, while
the shadowed region to the left of solid red line allows to have non-
diffusive gravitational capture. The dark green dashed line corresponds
to the classical size line Rbh = rcl, while the red dashed line corre-
sponds to the boundary when non-diffusive capture is saturated by the
monopole mean free path for z = 1

In the overlapping shadowed region both diffusive and non-
diffusive capture are possible, corresponding to the case in
which there is a transition from diffusive to non-diffusive
capture when the temperature drops below Tgc.

3 Diffusive and non-diffusive analyses of PBH capture
with extended mass functions

3.1 General evolution equations

In all cases, the evolution of the monopole number density
nM can be expressed as

ṅM = −Dn2
M − FnM − 3

ȧ

a
nM , (64)

where the −Dn2
M term characterizes the effect of monopole

annihilation, the −FnM term characterizes the effect of PBH
capture, and the −3 ȧ

a nM characterizes the effect of cosmic
expansion. Equation (64) is sufficiently general in that the
feature of the annihilation or capture process can be encoded
in the functional form of the D, F coefficients. With the intro-
duction of the monopole yield r ≡ nM

s , Eq. (64) can then be
transformed into

ṙ = −Dsr2 − Fr, (65)

which holds even if N is a function of temperature. Next we
make the time-to-temperature transition, which leads to

dr

dT
= Ds

HT
r2 + F

HT
r. (66)

This equation holds when we ignore the temperature depen-
dence of N , but the dependence of D, F on temperature is
not restricted.

We now introduce the power-law parametrization of D
and F which is applicable to a wide variety of scenarios:

D = D0T
nD , F = F0T

nF , (67)

with D0, F0 being temperature-independent functions of x, y
carrying the appropriate mass dimensions, and nD, nF are
real constants determined by the corresponding annihilation
or capture scenarios. Let us define

w = − ln z, or z = exp(−w). (68)

Then Eq. (66) can be turned into

d ln r

dw
= −JDe

−(nD+1)wr − JFe
−(nF−2)w, (69)

where

JD = D0K2K
−1MPlT

nD+1
c , JF = F0K

−1MPlT
nF−2
c .

(70)

When both JD, JF terms are present, Eq. (69) does not allow
for simple analytic solutions except for some special cases.
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For example, in the case of diffusive annihilation, D is
given by Eq. (26). This is equivalent to

D0 = C−1χ2g2, nD = −2,

(Diffusive monopole annihilation) (71)

and JD is given by

JD = C−1K−1K2χ
2g2x−1,

(Diffusive monopole annihilation) (72)

If PBH capture can be neglected, the evolution equation
Eq. (69) becomes

d ln r

dw
= −JDe

wr, (Diffusive monopole annihilation).

(73)

If one considers non-diffusive annihilation, then D is
given by [44,60,62,76]

D =
(g2

m

)2(m
T

)9/10
,

(Non-diffusive monopole annihilation) (74)

which amounts to

D0 = g4m−11/10, nD = − 9

10
,

(Non-diffusive monopole annihilation). (75)

If PBH capture can be neglected, the evolution equation
Eq. (69) becomes

d ln r

dw
= −JDe

−w/10r,

(Non-diffusive monopole annihilation) (76)

where JD is computed using Eq. (75).
For diffusive capture with a monochromatic PBH mass

function, which is the focus of Ref. [43], F is given by
Eq. (36). One may trade nbh for the β parameter to express
F as (neglecting the dependence of N on temperature)

F = βδK1C
−1

( γ

2K

)1/2
xy−1/2T,

(Diffusive PBH capture,monochromatic) (77)

which amounts to

F0 = βδK1C
−1

( γ

2K

)1/2
xy−1/2, nF = 1,

(Diffusive PBH capture,monochromatic). (78)

The corresponding JF is computed to be

JF =
(γ

2

)1/2
K1K

−3/2C−1δβy−1/2,

(Diffusive PBH capture,monochromatic). (79)

This expression of JF corresponds to �̄ in Ref. [43]. If
monopole annihilation can be neglected, then

d ln r

dw
= −JFe

w,

(Diffusive PBH capture,monochromatic). (80)

If monopole annihilation is also in the diffusive regime, then

d ln r

dw
= −JDe

wr − JFe
w,

(Diffusive annihilation and diffusive PBH capture,

monochromatic). (81)

Since the right-hand side of Eq. (81) is proportional to ew,
it also allows for an analytic solution, which is presented in
Ref. [43].

3.2 Extended PBH mass function

If we consider an extended PBH mass function, the expres-
sion for F should be generalized from the monochromatic
case Eq. (36) to

F = m

MPlCT 2

∫
n(y, z)yd ln y, (82)

where

n(y, z) ≡ dnbh

d ln y
. (83)

The physical meaning of n(y, z) is: at the reduced temper-
ature z, the PBHs with a reduced mass associated with the
logarithmic interval [ln y, ln y+d ln y] have number density
n(y, z)d ln y.

For a given value of y, there are the reduced characteris-
tic temperatures zb, zev associated with PBH formation and
evaporation, see Table 2. These relations can be inverted to
find the reduced mass yb of the PBHs that form at the reduced
temperature z and the reduced mass yev of the PBHs that just
evaporate at the reduced temperature z

yb = γ

2K
x−2z−2, yev = (2εK )−1/3x−2/3z−2/3. (84)

Then n(y, z) should vanish if y < yev or y < yb at any
given reduced temperature z. On the other hand, for yev ≤
y ≤ yb, n(y, z) should scale as z3, which reflects the fact
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that the number density of nonrelativistic objects that are not
created or destroyed in the early universe should scale as T 3.
Therefore, generally we may parameterize n(y, z) as

n(y, z) = A(y)T 3
c z

3θ(y − yev)θ(yb − y), (85)

where A(y) is a dimensionless function of y only, and θ

denotes the Heaviside step function.
In order to maximally employ the capture capability of

PBHs while retaining the radiation domination condition, we
may envision a kind of PBH mass function (i.e. a choice of
A(y)) such that the energy density of PBHs remain a constant
fraction f ≤ 1 of the radiation energy density, due to the con-
stant formation and evaporation of PBHs. Strictly speaking,
such a requirement can only be satisfied for an intermedi-
ate range of reduced temperature. This is because we require
PBHs form after inflation and evaporate before BBN. Thus at
very high temperature there is a period when the PBH energy
density fraction starts to grow and at temperatures close to
BBN there is a period when the PBH energy density frac-
tion gradually drops to zero. Despite this complication, let
us focus our attention in the intermediate temperature range
when the PBH energy density fraction is indeed a constant.
Suppose the PBH energy density is ρbh and the radiation
energy density is ρr , by analyzing the equation

d(ρbh/ρr )

d ln z
= 0, (86)

we may arrive at a functional equation that should be satisfied
by A(y). Introducing

B(y) ≡ A(y)y, (87)

and

k0 = f K1x, (88)

this functional equation can be expressed as

6B(yb(z)) − 2B(yev(z)) + 3k0z = 0, (89)

which should be satisfied for all z in the above-mentioned
intermediate range of the reduced temperature. Moreover,
there is the normalization condition

∫ yb(z)

yev(z)
B(y)d ln y = k0z, (90)

which should be satisfied by all z when f is held constant.
Although it is possible to find the functional equation

Eq. (89) and the normalization condition Eq. (90) that deliver
the desired PBH mass function, it is not straightforward to
subject them to analytic or numerical analyses. The desired

PBH mass function depends on the implementation at the
high and low temperature ends and might not be unique. In
the following, instead of using some analytic or numerical
implementation of mass functions satisfying Eq. (89) and
Eq. (90), we will take advantage of important features of the
capture term in relevant cases to facilitate the analyses in this
work.

3.3 Diffusive gravitational capture in the extended case

The key to analyzing diffusive gravitational capture for
extended PBH mass function is the observation that in the
monochromatic case, according to Eq. (36), F ∝ nbhmbh at a
given temperature, while nbhmbh is just the energy density of
PBHs. Therefore, when we consider an extended PBH mass
function, at a given temperature we should have F ∝ ρbh.
This implies that F is only sensitive to the total energy den-
sity of PBHs but not the differential PBH mass distribution.
Assuming radiation domination, let us consider

ρbh = f K1T
4, (91)

where 0 ≤ f ≤ 1 is a constant. Assuming all the PBH
energy density contributes to diffusive gravitational capture,
we obtain

F = f K1T 4m

M2
PlCT 2

, (92)

which can be expressed as

F = f K1C
−1δxM−1

Pl T 2. (93)

This corresponds to

F0 = f K1C
−1δxM−1

Pl , nF = 2. (94)

The corresponding JF is

JF = f K1K
−1C−1δx, (95)

which reads

JF � 0.5 f x (96)

at the reference point.
Suppose the annihilation term can be neglected, which is

the case for ri < r or z < zann. The evolution equation can
be cast into

d ln r

dw
= −JF . (97)

At the reference point JF is given by Eq. (96), which is
much smaller than 1 for the range of x under consideration
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(x � 10−3). This means that even with an extended PBH
mass function, the fractional efficiency − d ln r

dw
of monopole

abundance reduction by diffusive capture is always smaller
than 1 for the range of x under consideration. However, we
should also check the cumulative effect of diffusive capture
since the cosmic time increases by many orders of mag-
nitude. To this end, we note that since JF is temperature-
independent, Eq. (97) can be analytically solved

r2 = r1 exp[−JF (w2 − w1)], (98)

where the subscripts 1 and 2 refer to the corresponding quan-
tity at two arbitrary temperatures T1 and T2 respectively
(T1 > T2). To have a significant reduction of the monopole
abundance, one would need a sufficiently long duration of
diffusive gravitational capture, that is, JF (w2 − w1) � 1.
For the largest value of x under consideration x � 10−3,
w2 − w1 = ln(z1/z2) reaches its maximum w2 − w1 � 41,
while JF also reaches its maximum, so that

JF (w2 − w1) � 0.02 f � 1. (99)

This proves that with an extended PBH mass function, it is
not possible to reduce the monopole abundance significantly
with diffusive gravitational capture, assuming radiation dom-
ination. The above derivation assumes x � 10−3, but obvi-
ously it is still valid as long as x � 0.1 (which is roughly
equivalent to a sub-Planckian monopole mass).

3.4 Non-diffusive gravitational capture in the
monochromatic case

We now turn to non-diffusive gravitational capture of mag-
netic monopoles by PBHs with a monochromatic PBH mass
function. This non-diffusive gravitational capture regime is
possible if zev < zgc and zev < 1, corresponding to the
shadowed region to the left of the red solid line in Fig. 1.
The corresponding requirement on x is x � 3.1 × 10−7

at the reference point. If one further imposes the classical
size constraint Rbh > rcl which excludes the region below
the dashed dark green line in Fig. 1, the allowed parameter
space for non-diffusive gravitational capture would be the
small triangle bounded by the solid cyan and red lines and
the dashed dark green line in Fig. 1. Nevertheless, the con-
clusions of this work do not depend on whether we impose
the classical size constraint, thus we will not be restricted by
it in the following.

The capture coefficient F in the flux description should
be given by

F = nbhσgNDvM , (100)

where vM = (3T/m)1/2 is the thermal velocity of the
monopole, and σgND is the effective capture cross section
in the non-diffusive regime, which is given by

σgND = min{πr2
ND, π�2}. (101)

Here � is the monopole mean free path (see Eq. (21)), and
rND is given by [75]

rND ≡ 2Rbh

vM
. (102)

As discussed above Eq. (57), rND is obtained by solving
the geodesic motion of a test nonrelativistic particle in the
Schwarzschild geometry (with an incident velocity vM ). In
Eq. (101) the effective capture cross section is determined by
a comparison between rND and�, because in the non-diffusive
regime characterized by � > rgc

c , the capture should be lim-
ited by the monopole mean free path. The boundary � = rND

when z = 1 is shown as the red dashed line in Fig. 1. Below
this boundary, σgND is always given by πr2

ND.
In any case, π�2 sets an upper limit of the capture cross

section in the non-diffusive regime. Therefore, let us simply
replace σgND with

π�2 = πm

C2T 3 , (103)

which can only overestimate the capture rate. The corre-
sponding expression for F is

F = πnbh
√

3mT

C2T 3 . (104)

Now we trade nbh for the β parameter introduced in Eq. (46),
so that F is expressed as

F = πC−2βK1

( γ

2K

)1/2
y−3/2(3m)1/2T 1/2, (105)

which corresponds to

F0 = πC−2βK1

( γ

2K

)1/2
y−3/2(3m)1/2, nF = 1

2
. (106)

The expression for JF is

JF = π
(3γ

2

)1/2
K1K

−3/2C−2δ1/2x−1βy−3/2, (107)

which reads at the reference point

JF = 1.5 × 10−4x−1βy−3/2. (108)
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Thus, if the monopole annihilation term can be neglected,
Eq. (69) becomes

d ln r

dw
= −JFe

3w/2. (109)

Strictly speaking, this applies to the case in which z ≥√
3

2 C−1x−1y−1. For more general cases, Eq. (109) overesti-
mates the non-diffusive gravitational capture rate.

Equation (109) can be analytically solved:

r2 = r1 exp

[
− 2

3
JF (z−3/2

2 − z−3/2
1 )

]
. (110)

For non-diffusive capture let us consider z2 = zev, we find
that

2

3
JF z

−3/2
ev =

2

3
π

(3γ

2

)1/2
(2εK )−3/4K1K

−3/2C−2δ1/2x1/2βy3/4. (111)

Assuming the radiation domination condition Eq. (51) is sat-
urated, then

2

3
JF z

−3/2
ev = 2−1/43−1/2πε−5/4K1K

−9/4C−2δ1/2x1/2y−1/4,

(112)

which reads at the reference point

2

3
JF z

−3/2
ev � 1.4 × 10−4x1/2y−1/4. (113)

For the range of x, y that allows for non-diffusive gravita-
tional capture, we have

2

3
JF (z−3/2

ev − z−3/2
1 ) <

2

3
JF z

−3/2
ev

� 1.4 × 10−4x1/2y−1/4 � 1. (114)

Thus for non-diffusive gravitational capture, it is not possi-
ble to achieve r(zev) � r1 for a monochromatic PBH mass
function assuming radiation domination. This conclusion is
robust against possible variation of the parameters according
to the “Floating range” listed in Table 1.

3.5 Non-diffusive gravitational capture in the extended case

We now consider non-diffusive gravitational capture of mag-
netic monopoles by PBHs, assuming an extended PBH mass
function that preserves the radiation domination condition.
This is more complicated than the corresponding diffusive
case as the capture coefficient F is not simply proportional

to ρbh at a given temperature. Instead, F is generalized from
Eq. (105) to

F = πC−2K1

( γ

2K

)1/2
(3m)1/2T 1/2

×
∑
i

βi y
−3/2
i θ(z − zevi )θ(zbi − z). (115)

Here we have divided the PBH mass range into a sufficiently
large number of small bins, with the i th bin characterized by
its reduced mass yi and β parameter βi . βi is defined via

(nbhimbhi )|form = βi K1(Tbi )T
4
bi . (116)

mbhi and nbhi are the PBH mass and number density asso-
ciated with the i th bin, respectively. The summation in
Eq. (115) is over all PBH mass bins.

In order to proceed, we note that the radiation domination
constraint can be expressed in the extended case as

∑
i

nbhimbhiθ(z − zevi )θ(zbi − z) � K1T
4. (117)

If we neglect the temperature dependence of N , then
Eq. (117) becomes

∑
i

βi zbiθ(z − zevi )θ(zbi − z) � z, at any z. (118)

Using the expression for zb in Table 2, we obtain

∑
i

βi y
−1/2
i θ(z−zevi )θ(zbi−z)�

( γ

2K

)−1/2
xz, at any z.

(119)

Note the similarity between the summation in Eq. (115) and
Eq. (115): the only difference is the power on yi . This sug-
gests using the trick of expanding or shrinking. If the reduced
PBH mass is bounded from below for all mass bins under
consideration

yi ≥ ym, ∀i, (120)

we may expand the summation in Eq. (115) as

∑
i

βi y
−3/2
i θ(z − zevi )θ(zbi − z)

≤ y−1
m

∑
i

βi y
−1/2
i θ(z − zevi )θ(zbi − z). (121)

Therefore, we may use Eq. (119) to obtain

∑
i

βi y
−3/2
i θ(z − zevi )θ(zbi − z)
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≤
( γ

2K

)−1/2
xzy−1

m , at any z. (122)

Then at all temperature F from non-diffusive capture is
bounded by

F ≤ Fm ≡ πC−2K1(3m)1/2M−1
Pl y−1

m T 3/2. (123)

In the following let us simply consider F = Fm , which nec-
essarily overestimates the capture rate. This corresponds to

F0 = πC−2K1(3m)1/2M−1
Pl y−1

m , nF = 3

2
. (124)

The corresponding JF is given by

JF = √
3πδ1/2C−2K−1K1y

−1
m . (125)

If the monopole annihilation can be neglected, Eq. (69)
becomes

d ln r

dw
= −JFe

w/2. (126)

Equation (126) can be solved analytically

r2 = r1 exp
[

− 2JF (z−1/2
2 − z−1/2

1 )
]
. (127)

With this solution we find that it is not quite helpful to con-
sider a universal ym for the range of parameters that may
produce non-diffusive gravitational capture. The reason is
simple to understand: for the parameter range associated with
non-diffusive gravitational capture shown in Fig. 1, in a large
portion of region the actual value of y is larger than ym by
many orders of magnitude. Thus using a universal ym wors-
ens significantly the power of the inequality. Nevertheless,
this weakness is easy to fix. We may simply divide the evolu-
tion of monopole yield into multiple stages, with each stage
a corresponding value of ym . For example, let us consider
three stages of evolution:

Stage I: z = 1 → z = zmid1 ≡ 10−4,

Stage II: z = zmid1 → z = zmid2 ≡ 10−8,

Stage III: z = zmid2 → z = zmin ≡ TBBN

Tc
. (128)

For each of the three stages, we use a corresponding value
of ym , and the value of JF is determined accordingly. To be
explicit, let us introduce

xmax ≡ 2ε1/2γ −1/2KC−2δ−1 T
max
RH

MPl
(129)

which reads xmax � 3.1 × 10−7 at the reference point. xmax

is just the maximum value of x allowed for non-diffusive
gravitational capture. We also introduce

xmid1 ≡ zmid1xmax, xmid2 ≡ zmid2xmax. (130)

Then xmid1MPl corresponds to the maximum temperature in
Stage II, while xmid2MPl corresponds to the maximum tem-
perature in Stage III. Then ym for three stages are determined
as follows

ym = ym1 ≡ γ

2K

(
MPl

Tmax
RH

)2

, Stage I,

ym = ym2 ≡ (2εK )−1/3x−2/3
mid1 , Stage II,

ym = ym3 ≡ (2εK )−1/3x−2/3
mid2 , Stage III. (131)

The choice of ym in three stages are motivated by the non-
diffusive gravitational capture region in Fig. 1. For example,
ym1 comes from requiring the PBH be formed after inflation,
ym2 and ym2 come from the zev < 1 requirement in Fig. 1,
which translate into zev < zmid1 and zev < zmid2 in the cur-
rent setting. At the reference point ym2 � 6.8 × 105, ym3 �
3.2 × 108. JF ’s in three stages are then given by

JF = JF1 ≡ √
3πδ1/2C−2K−1K1y

−1
m1 , Stage I,

JF = JF2 ≡ √
3πδ1/2C−2K−1K1y

−1
m2 , Stage II,

JF = JF3 ≡ √
3πδ1/2C−2K−1K1y

−1
m3 , Stage III.

(132)

Equation (127) is generalized to

r(zmid1) = ri exp
[

− 2JF1(z
−1/2
mid1 − 1)

]
,

r(zmid2) = r(zmid1) exp
[

− 2JF2(z
−1/2
mid2 − z−1/2

mid1 )
]
,

r(zmin) = r(zmid2) exp
[

− 2JF3(z
−1/2
min − z−1/2

mid2 )
]
. (133)

We therefore see that the effect of non-diffusive gravitational
capture in each stage can be characterized by the correspond-
ing exponent (barring the negative sign), which we call the
reduction exponent. For example, the reduction exponent
associated with Stage I is 2JF1(z

−1/2
mid1 − 1), and likewise for

Stage II and III. The reduction exponents of the three stages
may be added cumulatively to characterize the total effect
of non-diffusive gravitational capture. A significant reduc-
tion of monopole yield is possible only if the total reduction
exponent is much larger than 1. In the current setting where
we only have three stages, the reduction exponent of at least
one stage must be much larger than 1 to allow for a sig-
nificant reduction of the monopole yield. However, we now
show that this is impossible assuming radiation domination.
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For definiteness, in Stage III let us set

zmin = TBBN

Tcmax
= TBBN/MPl

xmax
, (134)

which reads zmin � 2.7 × 10−16 at the reference point. This
allows to maximize the capture effect in Stage III. The reduc-
tion exponents in three stages, along with their values calcu-
lated at the reference point, are (the reduction exponents are
dominated by the term associated with the lower end of z,
which we retain as a good approximation)

2JF1z
−1/2
mid1 = 4

√
3πδ1/2C−2K1γ

−1
(Tmax

RH

MPl

)2
z−1/2

mid1

� 4.4 × 10−5,

2JF2z
−1/2
mid2 = 2

√
3πδ1/2C−2K−1K1y

−1
m2 z

−1/2
mid2

� 5.6 × 10−5,

2JF3z
−1/2
min = 2

√
3πδ1/2C−2K−1K1y

−1
m3 z

−1/2
min

� 7.4 × 10−4. (135)

We see that at the reference point, all reduction exponents
are much smaller than 1, and thus a significant reduction of
the monopole yield is not possible. Moreover, this conclu-
sion is also robust against possible variation of the parame-
ters according to the “Floating range” listed in Table 1. This
robustness check is important as these numbers appear in the
exponent which sensitively determines the capture capabil-
ity. If we divided the evolution of monopole yield only into
two stages, then although we may still get a small reduction
exponent at the reference point, it would be hard to argue that
it is insensitive to parameter variations.

We may divide the evolution of the monopole yield into
even more stages and obtain more stringent upper bounds on
the total reduction exponent for non-diffusive gravitational
capture. If the number of stages is large, the discrete sum
can be turned into a continuous integral. Let us perform the
analysis of the continuous generalization for

z = zmid1 ≡ 10−4 → z = zmin ≡ TBBN

Tc
, (136)

which corresponds to Stage II and III previously. Now we
divide Eq. (136) into a large number of stages so that we
may write the total reduction exponent (denoted R) as a
continuous integral

R = 2
∫ zmin

zmid1

JFdz
−1/2

= √
3πδ1/2C−2K−1K1

∫ zmid1

zmin

y−1
m z−3/2dz. (137)

In analogy to the expressions of ym2 and ym3 in Eq. (131),
here we should write

ym = 1

2
ε−2/3γ 1/3K−1C4/3δ2/3

(Tmax
RH

MPl

)−2/3
z−2/3. (138)

Then it is easy to deduce

R � 2
√

3πδ−1/6C−10/3K1ε
2/3γ −1/3

(Tmax
RH

MPl

)2/3
zmid1,

(139)

which reads at the reference point

R � 1.3 × 10−10. (140)

This is about five orders of magnitude smaller than the esti-
mate of the reduction exponent based on the three-stage
expanding/shrinking analysis. The result confirms that the
effect of non-diffusive gravitational capture by PBHs on the
monopole yield is tiny.

In the above analyses of gravitational capture of monopoles
by PBHs with an extended PBH mass function, it seems
that we have assumed the capture is all diffusive, or all non-
diffusive. The actual case is at any given temperature, some
PBH capture is diffusive while some other PBH capture can
be non-diffusive, depending on the PBH mass. Nevertheless,
the validity of our main conclusion that both diffusive and
non-diffusive gravitational capture by PBHs cannot signif-
icantly reduce the monopole yield, is not affected. This is
simply because we may disregard the comparison between
rgc
c and � which is used to distinguish the diffusive and

non-diffusive regimes and include both contributions math-
ematically. This can only overestimate the reduction of the
monopole yield. Such an overestimate can be divided into
a diffusive part and a non-diffusive part which according to
our previous analyses neither can reduce significantly the
monopole yield.

We also comment that the neglect of monopole annihila-
tion term in the above analyses also does not affect the main
conclusions. If the initial yield ri is larger than r, monopole
annihilation can reduce it to r but not smaller. If the ini-
tial yield ri is smaller than r, monopole annihilation cannot
reduce it further significantly. This is determined by the com-
petition between monopole annihilation and cosmic expan-
sion. In Eq. (69) the monopole annihilation and PBH capture
contributes independently and whether one term can signif-
icantly affect the monopole yield depends on its own com-
petition with the cosmic expansion. Therefore when r ≤ r
it is not possible to reduce r significantly further via PBH
capture.
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4 Discussion and conclusions

We have generalized the analysis of gravitational capture
of magnetic monopoles by PBHs of Ref. [43] to extended
PBH mass functions and different capture types (diffusive
and non-diffusive) within the assumption of radiation dom-
ination in the early universe. A general parametrization of
the monopole annihilation and capture term is introduced for
solving the evolution of the monopole yield, which is suit-
able for a variety of scenarios. We employ the feature of the
associated capture term and tricks of inequalities to prove that
assuming radiation domination, gravitational capture of mag-
netic monopoles of sub-Planckian masses by PBHs cannot
significantly reduce the monopole yield beyond the value set
by monopole annihilation (or its initial yield if it is smaller).
This suggests that the monopole problem associated with a
grand or partially unified gauge theory cannot be solved by
PBH capture in a radiation-dominated era. Or in other words,
if we wish to solve the monopole problem by PBH capture,
we must consider matter domination by PBHs. In such a case,
consequences of a number of effects must be evaluated, such
as PBH clustering [77] and entropy generation due to PBH
evaporation [9]. Moreover, residual magnetic charge fluctu-
ation and “hot spot” effects [78,79] must also be evaluated.
Even if PBHs evaporate before BBN, their abundance is con-
strained through the associated effect of induced gravitational
waves [80,81], limiting their ability of gravitational capture
even in the matter domination period.

An interesting issue related to the gravitational capture of
magnetic monopoles by PBHs in the early universe is the
formation of magnetic black holes. Near-extremal magnetic
black holes have fascinating theoretical and observational
properties, which have been a subject of intense studies [82–
89].2 In Ref. [43] we have demonstrated that cosmologically
long-lived near-extremal magnetic black holes cannot form
from magnetic charge fluctuation during the gradual diffu-
sive PBH capture process. Due to the inefficiency of non-
diffusive gravitational capture as demonstrated in Sect. 3, we
do not expect non-diffusive PBH capture could lead to cos-
mologically long-lived near-extremal magnetic black holes.
Instead, as shown in Ref. [43], they can form from mag-
netic charge fluctuation at PBH formation, when magnetic
monopoles inside a horizon volume are collapsed into a black
hole almost instantaneously.3 Nevertheless, this formation
mechanism entails a monopole yield that is many orders of
magnitude larger than the value allowed by the Parker bound
[92–99]. Therefore, in order to have an abundance of near-
extremal magnetic black holes that is of observational inter-

2 Properties of PBHs having gravitomagnetic monopole charge are also
investigated in the literature; see e.g. [90].
3 This is similar to the formation mechanism of dark extremal black
holes studied in Ref. [91].

est, some non-inflationary solution to the monopole problem
is needed to get rid of the excessive monopoles. The present
study implies that PBH capture in a radiation-dominated era
cannot be such a solution.

The analyses presented in this work can be generalized
to studying PBH capture of hidden sector monopoles which
are in thermal equilibrium with the hidden sector plasma, or
other SMPs in the diffusive or non-diffusive regime, which
we leave for future work. These studies will help to under-
stand the effect of PBHs on relic abundance of interesting
cosmological relics and clarify the role played by PBHs in
the early universe.
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