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Abstract The shadow of a black hole or a collapsing star is
of great importance as we can extract important properties of
the object and of the surrounding spacetime from the shadow
profile. It can also be used to distinguish different types of
black holes and ultra compact objects. In this work, we have
analytically calculated the shadow of a higher dimensional
collapsing dark star, described by higher dimensional Vaidya
metric, by choosing a slightly generalized version of Misner–
Sharp mass function. We have also numerically investigated
the properties of the shadows of the black holes and the col-
lapsing stars for a slightly more general mass function. Exam-
ining the potential influence of extra spatial dimensions on
the shadow, we have explored the possibility of distinguish-
ing higher dimensions from the standard four-dimensional
spacetime.

1 Introduction

Photon sphere plays a very important role in the study of
light trajectories around a blackhole. Light passing near a
black hole gets deflected by the strong gravitational field in
such a way that it moves along a circular orbit around the
black hole and for the case of a spherically symmetric black
hole, these circular light trajectories form a sphere called
the photon sphere. Observation of a black hole against the
backdrop of light sources reveals a black disc – known as the
shadow of a black hole. For a Schwarzschild black hole, the
shadow is circular due to the spherical symmetry of the space
time and the light rays spiral in a orbit with radius r = 3mbh ,
where mbh is the mass parameter of the black hole. On the
other hand, for a rotating Kerr black hole the shadow gets
deformed and it is flattened on one side.
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In the minimal set up, an observer will see the shadow
if the space around the black hole is filled with light rays
and there lies no light source between the observer and the
black hole. All past-oriented light rays that starts at observer’s
position can be categorised into two classes: (i) light rays
getting deflected by the black hole and meeting with a source
on their way and (ii) light rays going directly to the horizon.
We thus assign brightness to the first class of light rays and
darkness to the second group. There is a third category of
light rays in between these two aforementioned classes and
they asymptotically spiral in a photon sphere.

In 2000, Falcke et al. [1] proposed that a shadow can
be observed practically and in 2019, Event Horizon Tele-
scope (EHT) [2–6] successfully observed the gravitational
light deflection by the supermassive black hole of M87. This
is a major breakthrough in this field, followed by the obser-
vation of the shadow of supermassive black hole Sagittarius
A* in the center of our Milky Way in 2022 [7]. Testing of
compact gravitational objects, arising out of different theo-
retical propositions is being done through this new window
of observation.

Analytical calculations of shadow is generally done by
considering a black hole against the backdrop of light sources
with the assumption that there is no source between the black
hole and the observer. The eternal black holes have been the
popular choice for these calculations so far. In 1966, Synge
[8] analytically calculated the angular radius of the shadow of
a Schwarzschild black hole and Bardeen [9] found the shape
of the shadow of a Kerr black hole for an observer at infinity
by choosing eternal black holes. According to our present
knowledge, the black holes are formed by gravitational col-
lapse and evolve by accretion of surrounding matter or merg-
ers with other black holes. Thus we find it quite interesting
to explore the shadow of evolving systems. Visual appear-
ance of a star collapsing through its gravitational radius was
first studied by Ames and Thorne [10], after that Jaffe [11],
Lake and Roeder [12] and Frolov et al. [13] studied the fre-
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quency shift of light coming from the surface of a collapsing
non-transparent star. On the other hand, work by Kong et al.
[14,15] and Ortiz et al. [16,17] dealt with the frequency shift
of light passing through a collapsing transparent star, thereby
contrasting the collapse to a black hole with the collapse to
a naked singularity. General properties of photon sphere of a
static, spherically symmetric spacetime is discussed in [18].
A detailed review of analytical calculations of black shadow
is presented in [19]. Recently Schneider and Perlick [20]
studied the shadow of a dark and non-transparent collaps-
ing star. Also Solanki and Perlick [21] studied the shadow
of a time-dependent black hole described by Vaidya metric.
The above-mentioned works are all in 4-dimensions. How-
ever, the shadows of different kinds of black holes in higher
dimensions have also been studied with great interest by sev-
eral physicists. Singh and Ghosh obtained the shadow of a
Schwarzschild–Tangherlini black hole [22], while Papnoi et
al. [23] studied the shadow of 5-dimensional rotating Myers–
Perry black hole and its regular version respectively. The
shadows of other types of higher dimensional black holes
and the effect of extra dimensions on the shadow have been
explored in [24–28].

In this work, we consider a higher dimensional collaps-
ing dark star emitting radiation and non-relativistic matter
particles. In the situation when the amount of radiation is too
feeble to be detected, the star will appear as a non-transparent,
black disc against the background of light sources. In order
to explore the evolution of the black disc, we choose the gen-
eralized Vaidya metric which is a non-vacuum solution of
the Einstein’s field equation around a spherically symmetric
body and generalized it to the higher dimensions. The pho-
ton sphere and shadow profile have been studied thereafter.
In a recent work by Banerjee et al. [29] it has been argued
that the observed shadow of the M87 and Sgr A* may carry
a signature of extra dimension through a tidal charge as the
hair. It was shown that the observed shadow and the image
diameter of the Sgr A* always predict a non-zero value of
the tidal charge parameter within the allowed range of angu-
lar diameter of the shadow. An independent probe of the
tidal charge will be required to come to a conclusion about
the extra dimension. However, a more complete study is due
where one should consider the effect of the environment on
the shadow profile in the higher dimensional scenario. The
degeneracy in the existing explanations of the shadow pro-
files can only be lifted by means of independent experimental
results. In this work we have adopted a different way through
which we explored how the shadow of a Vaidya collapsing
star (as well as of a Vaidya black hole) strongly depends on the
mass and the dimensionality of spacetime. We have argued
that the position of the photon sphere will remain unchanged
by changing the spacetime dimension (D) and accordingly
the mass function. Therefore, the mass turns out to be an
important parameter characterizing the “same” shadow in

different dimensions. We have utilized this property to com-
ment on how the mass of a compact object may be utilized
to fix the dimensionality of the spacetime. It is worthy men-
tioning – this method is useful with the aid of astrophysical
observations that will provide us with an independent probe
of the mass which in turn lead us to the conclusion. The stud-
ies done so far in this direction consider only the vacuum
spacetime. Our work is based on Vaidya spacetime, which
is a more realistic choice to model a black hole as well as
a collapsing star. Obtaining the shadow of such a collapsing
star both analytically and numerically, we have shown how
the mass of the star can be used to speculate a signature of
the extra spatial dimensions.

The work is organised in the following way. In Sect. 2,
we have discussed the generalized D-dimensional Vaidya
metric in Eddington–Finkelstein like coordinates and the
generalized mass function. A new conformal symmetry has
been identified through a coordinate transformation. The null
geodesic has been studied in this new coordinate for a spe-
cial type of mass parameter. Section 3 deals with the angu-
lar radius and the shape of a higher dimensional evaporat-
ing black hole in outgoing Vaidya metric. We have used a
slightly generalized version of Misner–Sharp mass function.
The escape angle of a higher dimensional Vaidya black hole
has been calculated in the frame of a static observer. In Sect.
4, we first obtained the shadow of a collapsing star for a
static observer in the transformed frame and then reverted
back to the original coordinates (Eddington–Finkelstein-like
coordinates). Numerical analysis of the photon sphere and
the shadow profile is shown in Sect. 5. Next we explored the
detection possibilities of extra dimensions using the shadow
of a collapsing star. Finally concluded in Sect. 7.

2 Null geodesics in higher dimensional Vaidya
spacetime

The matter fields present in the nature can be classified in gen-
eral into two broad categories – (i) with energy-momentum
tensor having one timelike and three spacelike eigenvectors
(this includes dust, perfect fluid, called type-I matter field)
and (ii) with energy-momentum tensor having double null
eigenvectors (which includes radiation, null dust, called type-
II matter field). The most general spherically symmetric met-
ric for any arbitrary combination of these two types of matter
fields in outgoing Eddington–Finkelstein-like coordinates is
given by [30,31],

ds2 = −e2ψ4(u,r)
[

1 − 2m4(u, r)

r

]
du2

−2eψ4(u,r)dudr + r2d�2
2 (1)
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where m4(u, r) is the Misner–Sharp mass function in 4-
dimensions [31,32]. This tells about the amount of energy
inside radial distance r at retarded time u and d�2

2 is the
metric on a 2-dimensional unit sphere. Wang and Wu [33]
proved that a specific combination of the two types of matter
fields mentioned above can give rise to a generalized Vaidya
metric as follows

ds2
4 = −

(
1 − 2m4(u, r)

r

)
du2 − 2dudr + r2d�2

2 (2)

This is a straight forward generalisation of the original
Vaidya metric [34]. The same metric was generalized for
D-dimensions by Iyer and Vishveshwara in [35] (further gen-
eralisation for charged blackholes can be found in [36]),

ds2
D = −

(
1 − 2mD(u, r)

r D−3

)
du2 − 2dudr + r2d�2

D−2 (3)

where d�2
D−2 denotes the metric on a (D − 2)-dimensional

unit sphere, defined by,

d�2
D−2 = dθ2

1 +
D−2∑
i=2

⎛
⎝i−1∏

j=1

sin 2θ j

⎞
⎠ dθ2

i (4)

andmD(u, r) is the D-dimensional Misner–Sharp mass func-
tion [22] defined as

mD(u, r) = 4π−(D−3)/2

(D − 2)
�

(
D − 1

2

)

×GDMD(u, r) ∝ GDMD(u, r) (5)

whereGD is Newton’s gravitational constant in D-dimensions
and MD(u, r) is the mass of the star for its radius r at time u.
Let us consider that the star is collapsing by radiating shell
of null dusts and other matter particles. We take outgoing
Eddington–Finkelstein time in the metric. Also throughout
the paper, we consider a soft version of the Oppenheimer–
Snyder model [37], i.e. a very small amount of outward pres-
sure resides at the surface of the dark star, so that a radial
timelike inward geodesic of a free particle can represent the
collapse of the star surface. A careful examination reveals
there is no other conformal Killing vector field except ∂

∂φ
,

where we have set θD−2 = φ. Therefore, it is almost impos-
sible (barring some exceptions) to do any analytical calcula-
tion of the shadow profile due to lack of enough constants of
motion. In that case, one has to import some kind of numer-
ical techniques (which we will do later).

In the following we will show that analytically one can
proceed with a special form for mD(u, r). Ojako et al. stated
in [32] that there exists a homothetic Killing vector field, for
which the spacetime is self-similar and the mass function for
the same is as follows.

m4(u, r) =
∑
n∈Z

anun

rn−1 (6)

where Z represents the set of all integers on the real line.
In the very similar fashion the mass function will take the
following form in D-dimensions

mD(u, r) =
∑
n∈Z

anun

rn+3−D
(7)

Obviously, the values of an’s should be so chosen that
the convergence of the series is confirmed. It is trivial to
notice if all an’s are zero except for a1, the mass function
will correspond to constant mass accretion or expel in 4-
dimensions. We now perform a coordinate transformation to
non–angular coordinates, (u, r) −→ (T, R), following [21],
to identify a new conformal symmetry,

u = r0 eT/r0 and r = R eT/r0 (8)

where r0 is an arbitrary constant with the dimension of length.
In the transformed coordinates, the line element (3) becomes,

ds2
D = e2T/r0

{
−
(

1 −
∑
n∈Z

anrn0
Rn

− 2R

r0

)
dT 2

−2dTdR + R2d�2
D−2

}
(9)

The Lagrangian density corresponding to a massless particle
(on the equatorial plane i.e. θi = π/2 for 1 ≤ i ≤ D − 3) in
this set of new coordinates is given by

LD = e2T/r0

{
−
(

1−
∑
n∈Z

anrn0
Rn

+ 2R

r0

)
Ṫ 2−2Ṫ Ṙ+R2φ̇2

}
= 0

(10)

It is trivial to identify the conformally conserved angular
momentum from the above Eq. (10):

L = R2e2T/r0 φ̇ (11)

In addition to this we also get ∂
∂T from Eq. (10), as a con-

formal Killing vector field leading to a constant of motion E ,
along every null geodesic.

E = e2T/r0

{
−
(

1 −
∑
n∈Z

anrn0
Rn

− 2R

r0

)
Ṫ − Ṙ

}
(12)

It is also apparent from Eq. (10) that for radial light rays(
φ̇ = 0

)
one can have following relations for T .

T = T0 (constant) or T = T0

−2
∫ (

1 −
∑
n∈Z

anrn0
Rn

− 2R

r0

)−1

dR (13)

where the first equation is valid for outgoing and the second
stands for incoming radial light rays. We now explore the
geodesic motion of massless particles in this background.
For this purpose, we have to solve two coupled equations,
one appearing from the Lagrangian density in Eq. (10) and
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the other from the combined version of the conservation laws
in Eqs. (11) and (12):

(
1 −

∑
n∈Z

anrn0
Rn

− 2R

r0

)(
dT

dφ

)2

+ 2
dT

dφ

dR

dφ
= R2 (14)

(
1 −

∑
n∈Z

anrn0
Rn

− 2R

r0

)
dT

dφ
+ dR

dφ
= ER2

L
(15)

Solution of the above set of Eqs. (14) and (15), will provide
us with the motion of a test photon on the equatorial plane in
this spacetime. Simplifying the above equations we obtain

dT

dφ
=

−ER2

L
∓
√√√√E2R4

L2 +
∑
n∈Z

anrn0
Rn−2 + 2R3

r0
− R2

1 −
∑
n∈Z

anrn0
Rn

− 2R

r0

(16)

dR

dφ
= ±

√√√√E2R4

L2 +
∑
n∈Z

anrn0
Rn−2 + 2R3

r0
− R2 (17)

Note that the above equations will give T and R as function of
φ. We do not find the geodesics explicitly. The expression in
Eq. (17) has been used in Sect. 3 to calculate the shadow of an
evaporating black hole as well as the shadow of a collapsing
dark star in Sect. 5.

3 Shadow profile of a higher-dimensional black hole
described by Vaidya metric

Let us consider a higher dimensional evaporating black hole.
In four dimensions an evaporating black hole can be – very
idealistically – modelled by a 4D Vaidya metric with decreas-
ing mass function [38–41]. We assume this model remains
valid in higher dimensions also. The shadow profile of a 4D
Vaidya spacetime was studied by Solanki and Perlick [21]
for a linearly increasing and decreasing Misner–Sharp mass
function. They have shown for a black hole with linearly
increasing mass there exist two horizons. This is in con-
trast to the linearly decreasing mass, which admits only one
horizon. The angular radius of an evaporating Vaidya black
hole shadow is shown to be time-independent for a confor-
mally static observer though the area of the photon sphere is
decreasing. On the contrary to this work, we have general-
ized the functional dependence of the mass function slightly
as given in Eq. (7).

In this section, we find the expression for the photon sphere
and angular radius of a Vaidya black hole as seen by a static
observer in (T, R) frame. Let us identify the tetrad basis for

the metric in Eq. (3),

eT = e−T/r0

(
1 −

∑
n∈Z

anrn0
Rn

− 2R

r0

)−1/2
∂

∂T
(18)

eR = e−T/r0

⎡
⎣
(

1 −
∑
n∈Z

anrn0
Rn

− 2R

r0

)−1/2
∂

∂T

−
(

1 −
∑
n∈Z

anrn0
Rn

− 2R

r0

)1/2
∂

∂R

⎤
⎦ (19)

eφ = e−T/r0

R

∂

∂φ
(20)

We have also set θD−2 = φ as the azimuthal angle of
the coordinate system and have restricted ourselves on the
equatorial plane (i.e. θi = π/2 for 1 ≤ i ≤ D − 3) of the
collapsing star.

We now consider a null geodesic (T (s), R(s), φ(s)) on
the equatorial plane, where s is the affine parameter along
the geodesic of a massless particle. Let us expand the tangent
vector with respect to the tetrad (18). Since the tangent vector
is light-like, the expansion can be written in terms of the angle
(α) between the photon geodesic and the radial direction in
the rest system of the observer in the following manner.

Ṫ
∂

∂T
+ Ṙ

∂

∂R
+ φ̇

∂

∂φ
= κ

(
eT + eR cos α + eφ sin α

)
(21)

where κ is a scale factor (κ > 0), α denotes the celestial
coordinate and Ṫ represents dT

ds and so on. Comparison of
the coefficients of ∂

∂T , ∂
∂R and ∂

∂φ
on both sides of Eq. (21)

results in

Ṫ = κ e−T/r0

(
1 −

∑
n∈Z

anrn0
Rn

− 2R

r0

)−1/2

(1 + cos α) ,

(22)

Ṙ = −κ e−T/r0

(
1 −

∑
n∈Z

anrn0
Rn

− 2R

r0

)1/2

cos α and (23)

φ̇ = κ e−T/r0

R
sin α (24)

From the last two equations above we can write
(
dR

dφ

)2

= R2 cot 2α

(
1 −

∑
n∈Z

anrn0
Rn

− 2R

r0

)
(25)

Further comparing Eqs. (17) and (25) we obtain

sin 2α = L2

E2R2

(
1 −

∑
n∈Z

anrn0
Rn

− 2R

r0

)
(26)

where E/L represents some proportionality of the impact
parameter of a photon within the black hole spacetime. Here
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it is a constant of motion. However, in practice it is not that
much reliable while observing a shadow. Instead a photon
sphere or something like that may be a more useful param-
eter. That is why we express L2/E2 in terms of the posi-
tion of the photon sphere (or any equivalent quantity) of this
spacetime. Evaluating the condition dR

dφ
= 0 one can get

the extremum points of light paths, R = Rm [21] from the
following equation

L2

E2 = R2
m

(
1 −

∑
n∈Z

anrn0
Rn
m

− 2Rm

r0

)−1

(27)

The radial coordinate Rm will be the position of photon

sphere if it satisfies the condition d2R
dφ2

∣∣∣
R=Rm

= 0 [21].

Imposing this we get

∑
n∈Z

an(
n
2 + 1)rn0
Rn
m

+ Rm

r0
= 1 (28)

The solution of this equation will give the position of photon
sphere. Now by using Eqs. (26) and (27), we have

sin α = Rm

R

√√√√√ 1 −∑ anrn0
Rn − 2R

r0

1 −∑ anrn0
Rn
m

− 2Rm
r0

(29)

An observer situated at R = RO will measure the angular
radius of the shadow of a D-dimensional evaporating Vaidya
black hole as

sin αbh
sh = Rm

RO

√√√√√1 −∑ anrn0
Rn
O

− 2RO
r0

1 −∑ anrn0
Rn
m

− 2Rm
r0

(30)

where the subscript sh and the superscript bh in α will mean
the shadow of the black hole for the corresponding observer.
This formula clearly depicts that the angular radius of this
shadow is time independent for an observer on the constant–
R line i.e. the boundary of the shadow profile, which will
be circular in shape due to the spherical symmetry of the
spacetime, will not evolve over time T and this is quite obvi-
ous from the fact that the spacetime is conformally static in
(T, R)-frame, as shown earlier.

4 Shadow of a collapsing dark star for a static observer

We start by considering the free fall of a radially ingoing
massive particle (residing just above the star surface) on the
equatorial plane of this spacetime. The star is collapsing in
a spherically symmetric way, so if we consider infinitely
many particles, all at the same distance from the origin of the
coordinate system, then all of them will follow the similar
infalling geodesics, which will in turn represent the infalling
trajectory of the star surface. Thus to mimic the collapse of

the star surface, it is enough to consider a timelike geodesic
depicting free infall towards the origin [20]. The Lagrangian
and the conformally conserved energy of such a vertically
infalling massive test particle on the equatorial plane of this
spacetime are given by Eqs. (10) and (12) for φ̇ = 0. The
Lagrangian of a vertically infalling massive particle follow-
ing Eq. (10) implies

(
1 −

∑
n∈Z

anrn0
Rn

− 2R

r0

)
Ṫ 2 + 2Ṫ Ṙ = e−2T/r0 (31)

and the conformal constant of motion (from Eq. (12)) corre-
sponding to the Killing vector ∂

∂T takes the form

−
(

1 −
∑
n∈Z

anrn0
Rn

− 2R

r0

)
Ṫ − Ṙ = e−2T/r0E . (32)

In the following, we restrict ourselves to the condition
u̇ > 0, which depicts that time is future oriented and ṙ < 0,
i.e. the particle is infalling. Recalling the inverse coordinate

transformations: T = r0 ln
u

r0
and R = r0

r

u
we get

Ṫ = r0
u̇

u
and Ṙ = r0

u2 (uṙ − r u̇) . (33)

The conditions of infall of a massive particle mentioned
above automatically imply Ṫ > 0 and Ṙ < 0. One does
not find any solution set for Ṫ and Ṙ admitting this infalling
condition while solving Eqs. (31) and (32). However, there is
no physical reason behind the non-existence of an infalling
timelike geodesic in this spacetime as we know Vaidya space-
time can describe the infall of massive particles. The space-
time under consideration is just a coordinate-transformed
version of the Vaidya metric. Therefore, it should possess
an infalling timelike geodesic which can represent the radial
infall of the star surface and hence star collapse. One good
way is to identify the conformally conserved energy, E as
−E = −∂LD/∂ Ṫ . Accordingly, we get

(
1 −

∑
n∈Z

anrn0
Rn

− 2R

r0

)
Ṫ + Ṙ = e−2T/r0 E (34)

Solving Eqs. (31) and (34), we obtain (for Ṫ > 0 and Ṙ < 0)

Ṫ = e−2T/r0

⎧⎨
⎩E +

√√√√E2 − e2T/r0

(
1 −

∑
n∈Z

anrn0
Rn

− 2R

r0

)⎫⎬
⎭

×
(

1 −
∑
n∈Z

anrn0
Rn

− 2R

r0

)−1

(35)

Ṙ = −e−2T/r0

√√√√E2 − e2T/r0

(
1 −

∑
n∈Z

anrn0
Rn

− 2R

r0

)
(36)
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Further simplification of Eqs. (35) and (36) yields

dR

dT
= e−2T/r0 E2 −

(
1 −

∑
n∈Z

anrn0
Rn

− 2R

r0

)

−e−2T/r0 E2

√√√√1 − e2T/r0

E2

(
1 −

∑
n∈Z

anrn0
Rn

− 2R

r0

)
(37)

The relative velocity between a radially infalling observer
and a static observer outside the star in (T, R) frame is found
to be 1

vR =
√√√√1 − e2T/r0

E2

(
1 −

∑
n∈Z

anrn0
Rn

− 2R

r0

)
(38)

We now calculate the orthogonal tetrads for a radially
infalling observer in the (T, R) frame using the above results.
For this purpose it is necessary to generalize the family of
orthogonal tetrads (denoted by ẽμ) for any arbitrary observer
in D-dimensions, moving with velocity �v ≡ (v1, v2, v3, ...)

with respect to a static frame.2 Careful observations reveal
that the extra dimensional coordinates being angular in
nature, the number of non-zero components of basis tetrads
reduces due to spherical symmetry and we are left with only
T , R and φ components. Here the φ component is identical
with its counterpart in 4-dimensions for obvious reasons.

The orthogonal tetrads for a freely infalling observer with
respect to a static frame thus become

ẽT = eT + vR eR√
1 − v2

R

= e−2T/r0

[
E −

√
E2 − m∗e2T/r0

m∗
∂

∂T
−
√
E2 − m∗e2T/r0

∂

∂R

]

(39)

ẽR = vR eT + eR√
1 − v2

R

= e−2T/r0

[
E −

√
E2 − m∗e2T/r0

m∗
∂

∂T
− E

∂

∂R

]

(40)

ẽφ = eφ = e−T/r0

R

∂

∂φ
(on the equatorial plane) (41)

where m∗ = 1 −∑n∈Z
anrn0
Rn

− 2R

r0
has been defined for the

sake of brevity.

1 This has been discussed in [42] for a general static 4-dimensional case
and the formula for the relative velocity (�v ≡ (vR, 0, 0, ...)) between
a radially infalling observer and a static observer has been derived in
[43]; and it turns out that the proof is easily extendable to any higher
dimensional static case.
2 The method of generating the family of orthogonal tetrads in 4-
dimensions with respect to a static frame has been discussed in [44,45].

4.1 Shadow profile of a collapsing star from a static frame
in (T,R) coordinates

In order to determine the escape angle for the collapsing star,
we will follow exactly the same method, as we did earlier
in the case of a static observer (in (T, R) frame) in Sect.
(3). Let us denote this angle (celestial angle) between the
photon geodesic and the radial direction in the rest frame of
the observer by α̃ and therefore (the scale factor in this case
is κ̃ > 0),

Ṫ
∂

∂T
+ Ṙ

∂

∂R
+ φ̇

∂

∂φ
= κ̃

(
ẽT + ẽR cos α̃ + ẽφ sin α̃

)
(42)

Comparing the coefficients of
∂

∂T
,

∂

∂R
and

∂

∂φ
on both sides

of Eq. (42), we have

(
dR

dφ

)2

= R2e−2T/r0

sin 2α̃

(√
E2 − m∗e2T/r0 − E cos α̃

)2

(43)

Now using the expression of
dR

dφ
from Eq. (17), we have,

E2R2

L2 −
(

1 −
∑
n∈Z

anrn0
Rn

− 2R

r0

)
= e−2T/r0

sin 2α̃

×
⎧⎨
⎩
√√√√E2 −

(
1 −

∑
n∈Z

anrn0
Rn

− 2R

r0

)
e2T/r0 + E cos α̃

⎫⎬
⎭

2

(44)

and finally by substituting E2/L2 = E2/L2 from Eq. (27),
we now get,

R2

R2
m

⎛
⎝1 −

∑
n∈Z

anrn0
Rn
m

− 2Rm
r0

⎞
⎠−

⎛
⎝1 −

∑
n∈Z

anrn0
Rn − 2R

r0

⎞
⎠

= e−2T/r0

sin 2α̃

⎧⎪⎨
⎪⎩

√√√√√E2−
⎛
⎝1−

∑
n∈Z

anrn0
Rn − 2R

r0

⎞
⎠ e2T/r0+E cos α̃

⎫⎪⎬
⎪⎭

2

(45)

One can obtain the expression for the celestial angle α̃ from
the above equation. However, that will not be useful in cal-
culating the shadow of a collapsing star for a static observer.
So, we skip that part. The shadow is obtained by consider-
ing the null geodesics that are grazing the surface of the star.
One can (in principle) determine Rm by equating R = Rs

(where Rs is the radius of the star) and α̃ = π/2, if such a
null geodesic passes through a minimum radius value Rm .
An observer on the star surface will see its entire sky to be
covered by the shadow. Therefore we get from the above Eq.
(46)
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R2
s

R2
m

(
1 −

∑
n∈Z

anrn0
Rn
m

− 2Rm

r0

)
−
(

1 −
∑
n∈Z

anrn0
Rn
s

− 2Rs

r0

)

= e−2T/r0

{
E2 −

(
1 −

∑
n∈Z

anrn0
Rn
s

− 2Rs

r0

)
e2T/r0

}

(46)

Substituting the above expression in the equation of the
escape angle of a black hole in (30), we obtain

sin αcs
sh = Rs

RO

eT/r0

|E |

√√√√1 −
∑
n∈Z

an
rn0
Rn
O

− 2RO

r0
(47)

where the superscript cs stands for the shadow of the col-
lapsing star. Using the expressions of Ṫ in (35) and Ṙ in
(36) one can in principle obtain |E | from the energy of the
infalling observer when the process of collapse starts, let’s
say at radius Rm = Ri . Substituting this in Eq. (47) we get
the final expression of the escape angle of the collapsing star
as seen by a static observer in (T, R) coordinate system.

4.2 Analysis in the original Eddington–Finkelstein-like
coordinates

In this section, our aim is to find the outcomes in the
Eddington–Finkelstein coordinates. We perform a coordi-
nate transformation back to the original coordinate system
(u, r, θ, φ), which will eventually enable us to examine the
characteristics of the collapsing star shadow from the view-
point of an observer sitting on a line with constant (r, θ, φ).
Using the inverse coordinate transformation and

considering the radius of the star at time u(T ) is rs =
RseT/r0 we obtain the escape angle of the collapsing star as

sin αcs
sh = rsu

r0rO |E |
√

1 −
∑
n∈Z

anun

rnO
− 2rO

u
(48)

where the photon orbit is situated at rm and the radial
position of the observer is at rO . Rescaling u/r0, rs/r0 and
rO/r0 (i.e. setting r0 to unity) we get the angular radius of
the shadow of a collapsing star from the following relation

sin αcs
sh = rs

rO

u

|E |
√

1 −
∑
n∈Z

anun

rnO
− 2rO

u
. (49)

The only issue that can arise regarding the evaluation of rs
at any particular instant of time, can be managed by studying
the collapse of the star (or alternatively by studying a radial
timelike inward geodesic in this spacetime) with appropriate
physical conditions (which has been studied by Schneider
and Perlick [20] in 4-dimensions for the Schwarzschild met-
ric at the exterior).

5 Simulating a collapsing star with a mass function
asymptotically approaching
Schwarzschild–Tangherlini black hole mass

The profile of a collapsing dark star surface for an evaporating
black hole is studied in this section following the method
presented in [46]. We have already emphasized in Sect. 4 that
a radially infalling timelike geodesic can mimic the collapse
of the star surface. It will be sufficient to study the ingoing
geodesics of a massive free particle to visualize the collapse.
The Lagrangian for a radially infalling massive particle in
retarded Eddington–Finkelstein like coordinates is given by

−
(

1 − 2mD(u)

r D−3

)
u̇2 − 2u̇ṙ = −1 (50)

Here we choose the Misner–Sharp mass function depen-
dent only on u. The equations of motion reduce to the fol-
lowing form with the above choice.

r̈ +
(

1− 2mD

r D−3

)
ü− 1

r D−3

dmD

du
u̇2+ 2(D − 3)mD

r D−2 u̇ṙ =0

(51)

ü = (D − 3)
mD

r D−2 u̇2 (52)

Substituting in Eq. (51) the expression of ü from Eq. (52)

and

(
1 − 2mD

r D−3

)
u̇2 from Eq. (50) we get a simplified ver-

sion of the same equation

r̈ + (D − 3)
mD

r D−2 − 1

r D−3

dmD

du
u̇2 = 0 (53)

We choose an ansatz for the mass function to proceed
further with the analysis [47]. The choice has been made
in such a way that the star collapses to form a spherically
symmetric, static black hole (which has been considered to
be Schwarzschild–Tangherlini black hole) at future infinity.
The mass function approaches a constant value mbh

D at a suf-
ficiently large time, i.e. mD(u → −∞) → mbh

D = GDMbh
D ,

where Mbh
D is interpreted as the (resulting) black hole mass

in D-dimensions. A detailed discussion on this condition can
be found in [47,48]. To proceed further with the numerical
studies we have to choose a particular value of the mass Mbh

D .
Let us choose it to be unity for the sake of simplicity. How-
ever, it is worthwhile to mention that the analysis will remain
unaffected for any other value of Mbh

D . Hence

mD(u) = 1

2
mbh

D (2 + sech u) = 1

2
GD (2 + sech u) (54)

The evolution of the mass function and the expel profile
(represented by the derivative of the mass function) over the
course of time for a collapsing star obeying Vaidya metric at
the exterior has been shown in the Fig. 1 below. The mass
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Fig. 1 Evolution of Miser–Sharp mass parameter, mD(u) and its time
derivative

Fig. 2 Radius vs. proper time diagram of a collapsing star. The star
starts collapsing from outgoing Eddington-Finkelstein time u = 0 with
radius ri = 50

function is peaked at u = 0 and gradually decreases as one
probes deep into negative u direction.

Now we find the solution of Eqs. (52) and (53) subject to
the initial conditions – (i) at s = u = 0, r = ri (ri is the
initial radius of the star) and (ii) u̇ = ṙ = 0. The solution
has been shown below for D = 4, 5 and 6-dimensions. The
typical size of extra dimension has been chosen as R. Due
to lack of our knowledge about the exact size of the higher
dimension, we have plotted r(s)/R versus s/R instead of
plotting only s or r(s).

It is apparent from the graph that the rate of collapse is
faster in four dimensions compared to higher dimensions.
The Fig. 2 shows a star with same initial radius (ri = 50) will
collapse more rapidly in four-dimensions than in the higher
dimension(s). A more massive star in higher dimension will
exhibit same rate of collapse compared to a less heavy star in
four dimensions. This is, undoubtedly, a very interesting as
well as important feature. We now explore the shadow and
photon sphere cast by this collapsing star. For this we refer
to the general Vaidya metric (3):

ds2
D = − fD(u, r)du2 − 2dudr + r2d�2

D−2 (55)

where fD(u, r) ≡ 1 − 2mD(u)

r D−3 . The position of the pho-

ton sphere and the corresponding shadow in 4D have been
obtained in [47]. We generalize the results in D-dimensions
and extend it to the case of a collapsing star possessing the
same metric. Consider α and β as the celestial coordinates
that define a two-dimensional celestial plane perpendicular
to the observer’s line of sight and located at spatial infinity
[49]. The resulting shadow configuration turns out to be

α(u)2 + β(u)2 = r2
m

f (u, rm)

⎡
⎣1 −

{
drm
du

f (u, rm) + drm
du

}2
⎤
⎦
(56)

The photon sphere at rm ≡ rm(u) in this spacetime is
obtained by solving the following differential equation [47,
Eq. 2.9]

d2rm
du2 −

{
3

rm
f (u, rm) − 3

2

∂ f

∂r

∣∣∣∣
u,rm

}
drm
du

− 2

rm

(
drm
du

)2

+1

2

{
f (u, rm)

∂ f

∂r

∣∣∣∣
u,rm

+ ∂ f

∂u

∣∣∣∣
u,rm

}
− 1

rm
f (u, rm)2 = 0

(57)

Substituting f (u, r) for D dimensions and doing some
manipulations we get the following form of the above equa-
tion

d2rm
du2 − 3

{
1

rm
− (D − 1)

mD(u)

r D−2
m

}
drm
du

− 2

rm

(
drm
du

)2

− 1

rm
− 2(D − 1)

mD(u)2

r2D−5
m

+ (D + 1)
mD(u)

r D−2
m

− 1

r D−3
m

dmD

du
= 0 (58)

The time evolution of the photon sphere of a Vaidya space-
time, possessing mass function (54), has been studied by
solving Eq. (58). We impose the asymptotic condition – that
after a sufficiently large time, the star will collapse to form
a Schwarzschild–Tangherlini black hole to solve the above
equation. The mass function is chosen accordingly such that
it follows the above condition.

lim
u→−∞ rm(u) =

[
4�
( D−1

2

)
GD

π
D−3

2

(
D − 1

D − 2

)] 1
D−3

(59)

and lim
u→−∞

drm(u)

du
= 0 (60)

From the above conditions we find that a Schwarzschild–
Tangherlini black hole has its photon sphere at a position
given by the first condition [50], [22] and the second condi-
tion indicates that the position is not changing over the course
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Fig. 3 Evolution of the photon sphere over the course of time

of time. We have shown time variation of the position of pho-
ton sphere of a Vaidya black hole with mass function (54) in
Fig. 3 where R represents the size of each extra dimension.
As evident from the graph, the photon sphere will shrink
more slowly as we go to higher dimension(s). To combat
with our lack of knowledge about the exact size of the extra
dimension, we have plotted u/R in the x-axis and rm/R in
the y-axis instead of plotting only u or rm .

The relative time evolution of the photon sphere can be
visualized more clearly from the evolution of the correspond-
ing collapsing star shadow with u. Here we have substituted
numerical values of rm and its first derivatives in Eq. (56) to
plot the shadow at nine different snapshots of time.

In the plots in Fig. 4 each circle represents the boundary of
the shadow at a particular Eddington-Finkelstein time. This
can be seen from the figures that in a fixed time interval,
the rate of shrinking of the shadow boundary appears to be
slower with the increment in the dimensionality of the space-
time. Therefore, in spite of the similar physical conditions
(i.e. the boundary conditions) in all the cases, the collapsing
star shadow shrinks more faster in 4-dimensions than that in
the higher dimensions. This is quite expected and obvious
from our previous analyses in Fig. 2 where it has been shown
that the rate of collapse of the star surface is faster in four
dimensions compared to the higher dimensions and there-
fore the rate of the collapse of shadow profile will behave
accordingly.

6 Signature of extra spatial dimensions

Let us critically examine the analytical results obtained in the
preceding sections. It is evident from Eq. (58) that the shadow
of a Vaidya collapsing star (as well as of a Vaidya black
hole) strongly depends on the mass and the dimensionality of
spacetime. If the position of the photon sphere is kept same
(as calculated from the observational data) and dimension
(D) is changed, the mass parameter mD has to be modified
accordingly. Therefore, the mass parameter turns out to be

an important parameter characterizing the same shadow in
different dimensions and we can use this property to extract
the dimensionality of the spacetime.

To justify our claim we will choose the mass function as
in (7) to explore what are the different values of the mass
parameter are responsible for casting the same shadow in
D = 4 and D > 4. The possibility of existence of such
a shadow degeneracy and isospectral spacetimes have been
discussed in [51] but there all the isospectral spacetimes are
in four dimensions and the approach is slightly different.

We now ask the obvious question – whether the extra
dimensions can be observationally detected from the isospec-
trality of spacetime? Or in other words, if different masses
cast the same shadow in different dimensions and by some
means we get to know which of those theoretically calcu-
lated masses is the actual mass of the star – can we detect the
extra dimensions? We present a proposal to give a positive
answer to the above question. To demonstrate this, we find the
relationship between the mass of the star in D-dimensional
spacetime and the mass in four dimension, that will cast the
identical shadow. Note that we are proposing just a model.
So, instead of going into the complications of establishing
the relationship between a general mass parameter and the
dimensionality of spacetime, we only talk about the analyt-
ical form of the mass parameter, that has been considered
earlier (7).

mD

m4
=

r D−3
O

∑
an (u/rO)n

rO
∑

an (u/rO)n
= r D−4

O (61)

Our aim is to get an order of magnitude estimation of the
upper bound of the ratio MD/M4. It is judicious to adopt a
sufficiently generalized approach that includes all the addi-
tional dimensions with almost of the same magnitude, partic-
ularly in the context of our specific mass function (Eq. (7)).
Therefore,

MD ∼ M4

(rO
R
)D−4

(62)

where Newton’s constant in D and four dimensions are
related by the relation GD ∼ G4RD−4 for R being the
typical size of each of the extra dimensions. Using the cur-
rent bound from LHC we present a crude estimate on the
mass MD . Substituting the highest achievable energy scale
of LHC, i.e. ∼ 13.6 TeV we derive an upper bound on the
size R as

R <
hc

13.6 TeV
= 9.12 × 10−23 km (63)

From Eq. (62) we find a lower bound on mass in D > 4
dimensions

MD >
(

3.56 × 105 rO
)D−4

M4 (64)
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Fig. 4 Profile of collapsing star shadow for the same set of physical conditions, but in different dimensions

Note that the typical size of a standard galaxy lies around
a few kpc. That is why we have chosen rO in kpc. Now to
determine MD or M4 which one is actually the mass of that
collapsing star we have to rely on astrophysical methods that
are generally used to determine the properties of various dark
objects in the sky.

It is worth noting that the particular shadow given by
Eq. (49) can also be cast by some other completely differ-
ent spacetime. The degeneracy is a serious issue here. We
plan to explore this in detail in a future study. The focus of
present work was investigation of the 4-dimensional isospec-
tral counterpart of the higher dimensional spacetime (3) and
presenting the method of how the higher dimensional fea-
ture of the spacetime can be extracted. The treatment is quite
general and can be used in specific case studies. However,
different geometry and size of higher dimensions will modify
the shadow calculation and will have different outcome.

7 Concluding remarks

In this work, higher dimensional Vaidya metric has been con-
sidered to model a collapsing dark star. The analytical part
of the work is restricted to a special type of mass function
for which we have calculated the escape angle and the posi-
tion of the photon sphere for black hole and collapsing dark
star. We have also explored numerically shadow of the black
hole and the collapsing star for an explicit choice of mass
function, which is extendable for any mass function under
certain physical conditions. This has been elaborated in the
text. We have further shown how this shadow can be used
to study the possible signatures and distinctive features of
higher dimensions.
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The analysis is done for a spherically symmetric collapse,
however, this method can also be applied for a (slowly) rotat-
ing dark star. The major issues along this direction are two
fold – (i) lack of a suitable metric around a collapsing rotat-
ing star and (ii) of course the mathematical complications
involved. The second one can still be handled somehow, but
the first one is a major issue.

The procedure we discussed here can also be applied
to search the higher spatial dimensions from a black hole
shadow [22–27]. However, in the case of a black hole shadow
the difference between the masses in different dimensions
are generally much smaller and the effects are observation-
ally less prominent than that in our case. The mass of the
star has to be much different in four-dimensions than that in
the higher dimensions for the formation of same shadow by
the collapsing dark star. This makes it much easier from the
astrophysical point of view to identify the correct one using
other physical parameters as mentioned in Sect. 6. Overall the
process of studying the shadow of a collapsing dark star is
very much complex compared to a blackhole shadow. As the
Vaidya metric is very general and our work is based on this
geometry, the methodology presented here is widely appli-
cable.

Avenues for future research include applying this method
to a more realistic and phenomenologically driven mass func-
tion, such as the (relativistic) Bondi–Hoyle-Lyttleton mass
function. Subsequently, comparing the obtained results with
the EHT data could provide conclusive insights into the
dimensionality of the spacetime.
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