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Abstract This note provides a new point of view for boot-
strapping the tree amplitudes of the nonlinear sigma model
(NLSM). We use the universality of single soft behavior,
together with the double copy structure, to completely deter-
mine the tree amplitudes of the NLSM. We first observe
Adler’s zero for four-point NLSM amplitudes, by consider-
ing kinematics. Then we assume the universality of Adler’s
zero and use this requirement to construct general tree ampli-
tudes of the NLSM in the expanded formula, i.e., the formula
of expanding NLSM amplitudes to bi-adjoint scalar ampli-
tudes, which allows us to give explicit expressions of ampli-
tudes with arbitrary numbers of external legs. The construc-
tion does not require the assumption of quartic diagrams. We
also derive double soft factors for NLSM tree amplitudes
based on the resulting expanded formula, and the results are
consistent with those in the literature.

1 Introduction

Soft theorems describe the universal infrared (IR) behavior
of scattering amplitudes when one or more external massless
momenta are taken to near zero. This limit can be achieved
by rescaling the massless momenta via a soft parameter as
kμ → τkμ, and taking the limit τ → 0. Soft theorems then
state the factorization of amplitudes. For instance, when one
of the external gravitons is taken to be soft, the (n+ 1)-point
general relativity (GR) amplitude factorizes as [1–3]

An+1 →
(
τ−1 S(0)

h + τ 0 S(1)
h + τ S(2)

h + · · ·
)
An, (1)

where An is the sub-amplitude of An+1, which is generated
from An+1 by removing the soft external graviton. The uni-
versal operators S(0)

h , S(1)
h , and S(2)

h are called soft factors, or
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soft operators, at leading, sub-leading, and sub-sub-leading
orders.

Soft theorems have been exploited in the construction of
tree amplitudes, such as the related on-shell recursion rela-
tions, the inverse soft theorem program, and so on [4,6–
12]. Impressively, in [10], it was shown that soft theorems
uniquely fix tree amplitudes. However, the previous con-
structions mentioned above require the explicit forms of soft
factors. To derive soft factors, one needs a certain expres-
sion for amplitudes, for example, summations of contri-
butions from Feynman diagrams [13,14], Britto–Cachzo–
Feng–Witten (BCFW) on-shell recursion relations [1,15–
17], or Cachazo–He–Yuan (CHY) contour integrals [2,3,18–
22]. Then the question arises: of the tree amplitude and the
soft factor, which one determines the other one?

On the other hand, the factorization in (1) has an intuitive
physical picture. Roughly speaking, in the soft limit, the soft
particle can be thought of as vanishing, leaving a lower-point
amplitude with the soft external leg removed, and the univer-
sal soft factors carried by the soft particle. Thus, to avoid
the logical confusion mentioned previously, it is natural to
ask whether we can take the soft behavior in (1) as the prin-
ciple and use it to construct tree amplitudes without know-
ing the explicit forms of soft factors. In the recent work of
one of the authors for the present note, it was shown that
such construction can be realized at least for tree amplitudes
of the Yang–Mills scalar, pure Yang–Mills, Einstein–Yang–
Mills, and pure gravitational theories [23]. The factorization
behaviors and the universality of soft factors, together with
the double copy structure [24–28], completely determine tree
amplitudes of these theories.

This note is a generalization of the previous work in
[23] and applies a similar idea to consider the tree ampli-
tudes of the NLSM. The NLSM tree amplitudes vanish in
the single soft limit (one of the external legs being soft),
known as Adler’s zero [29]. For such a case, the factoriza-
tion behavior in (1) does not occur. However, one can still
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talk about the universality of the single soft behavior. As
will be seen in Sect. 3.1, it is easy to determine Adler’s
zero for the four-point NLSM tree amplitude by consider-
ing kinematics. Then, the universality of soft behavior indi-
cates that all NLSM tree amplitudes vanish in the single soft
limit. This condition, together with the double copy struc-
ture and the requirement for manifest permutation invariance
among external legs, uniquely determines the general NLSM
tree amplitudes. We obtain the general expression of NLSM
tree amplitudes with an arbitrary even number of external
legs in the expanded formula, i.e., the formula of expand-
ing NLSM amplitudes to bi-adjoint scalar (BAS) amplitudes.
Using the resulting expanded formula, we also re-derive dou-
ble soft factors for the NLSM tree amplitudes [30,31], which
describe the behavior when two external scalars are taken to
be soft simultaneously.

It is well known that Adler’s zero together with other con-
straints completely determines the tree-level NLSM ampli-
tudes [32–34]—for instance, using the Adler’s zero condi-
tion with the singularity structure [4,5,34] or using Adler’s
zero with the double soft theorem for the NLSM [10]. Mean-
while, imposing Bern–Carrasco–Johansson (BCJ) relations
and the assumption of quartic diagrams also uniquely fixes
NLSM tree amplitudes [34,35]. Compared with construc-
tions in the literature, our method in this note is based on
different assumptions, which are listed as follows:

• The amplitude describes the scattering of massless
scalars with a single coupling constant.

• The kinematic part of the amplitude has a mass dimension
of 2.

• The amplitude is color-ordered.
• The universality of single soft behavior: the single

soft behavior of low-point amplitudes holds for general
higher-point ones.

• The double copy structure: when expanding to a double-
ordered BAS basis, coefficients depend on only one
ordering.

• The manifest permutation symmetry among external
legs.

First, our method does not assume the locality, i.e, does not
assume quartic diagrams. Secondly, we do not employ the
double soft theorem. An advantage of our construction is that
we obtain the explicit expression for general NLSM ampli-
tudes with an arbitrary number of external legs, while in
other studies, the explicit formula is absent. This is because
we have chosen the expanded formula to represent general
amplitudes, and the coefficients have an elegant universal
form.

Let us offer some remarks for the universality of soft
behaviors. As will be seen, Adler’s zero plays a central role
in our bottom-up construction. However, from the bottom-

up perspective, without the aid of a Lagrangian, one needs to
explain why the amplitudes should exhibit Adler’s zero. In
this note, Adler’s zero is observed from the four-point ampli-
tude determined by bootstrapping, then imposed to higher-
point amplitudes due to the universality of soft behaviors. In
other words, logically, we did not know Adler’s zero at the
beginning. For example, suppose that the four-point NLSM
amplitudes behave similarly to the gravitational ones in (1)
when taking one of the external momenta to be soft; then we
will impose the universal soft factors to higher-point ampli-
tudes. We emphasize that Adler’s zero for four-point ampli-
tudes is well known and obvious, and technically there is no
difference between assuming the universality of soft behav-
iors and assuming Adler’s zero. However, it seems that the
universality is a more general feature since it also holds for the
Yang–Mills scalar, pure Yang–Mills, Einstein–Yang–Mills,
and pure gravitational amplitudes [23]. Furthermore, we want
to determine whether the method developed in our previous
work [23] based on the universality of soft behaviors and
double copy structure can be applied to other theories. Thus,
we assume the universality instead of Adler’s zero.

The remainder of this note is organized as follows. In
Sect. 2, we provide a quick introduction to the necessary
background, including BAS tree amplitudes and expansions
of other amplitudes to them. In Sect. 3, we use the the uni-
versality of single soft behavior to construct the NLSM tree
amplitudes in the expanded formula. In Sect. 4, we derive
the double soft factor for NLSM tree amplitudes based on
the expanded formula obtained in Sect. 3. Finally, we close
with a brief summary in Sect. 5.

2 Background

In this section we briefly review the necessary background.
In Sect. 2.1, we introduce the tree-level amplitudes of bi-
adjoint scalar (BAS) theory. Some notations and techniques
which will be used in subsequent sections are also included.
In Sect. 2.2, we introduce the expansions of tree amplitudes
to BAS amplitudes, including the choice of basis, as well as
the double copy structure for coefficients.

2.1 Tree-level BAS amplitudes

The BAS theory describes the bi-adjoint scalar field φaā with
the Lagrangian

LBAS = 1

2
∂μφaā ∂μφaā − λ

3! f abc f āb̄c̄ φaāφbb̄φcc̄, (2)

where the structure constant f abc and generator T a satisfy

[T a, T b] = i f abcT c, (3)
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Fig. 1 Two five-point diagrams

and the dual-color algebra encoded by f āb̄c̄ and T ā is
analogous. The tree-level amplitudes of this theory con-
tain only propagators and can be decomposed into double-
color-ordered partial amplitudes via the standard technique.
Each double-color-ordered partial amplitude is simultane-
ously planar with respect to two color orderings, arising from
expanding the full n-point amplitude to Tr(T aσ1 · · · T aσn )

and Tr(T āσ̄1 · · · T āσ̄n ), respectively, where σi and σ̄i denote
the permutations among all external scalars. Here we give
the five-point example AS(1, 2, 3, 4, 5|1, 4, 2, 3, 5). In Fig.
1, the first diagram satisfies both of the two color order-
ings (1, 2, 3, 4, 5) and (1, 4, 2, 3, 5), while the second one
satisfies the ordering (1, 2, 3, 4, 5) but not (1, 4, 2, 3, 5).
Thus, the first diagram is allowed by the dual-color order-
ings (1, 2, 3, 4, 5|1, 4, 2, 3, 5), while the second one is not.
It is easy to see that other diagrams are also forbidden by
the ordering (1, 4, 2, 3, 5); thus, the first diagram in Fig.
1 is the only diagram that contributes to the amplitude
AS(1, 2, 3, 4, 5|1, 4, 2, 3, 5).

It is convenient to calculate double-color-ordered partial
amplitudes via the diagrammatical rules proposed by Cac-
hazo, He, and Yuan [20]. For the above example, one can
draw a disk diagram as follows:

• Draw points on the boundary of the disk according to the
first ordering (1, 2, 3, 4, 5).

• Draw a loop of line segments connecting the points
according to the second ordering (1, 4, 2, 3, 5).

The obtained disk diagram is shown in the first diagram in
Fig. 2. One can see that two orderings share the bound-
aries {1, 5} and {2, 3}. These co-boundaries indicate channels
1/s15 and 1/s23, therefore the first Feynman diagram in Fig.
1. Then the BAS amplitude AS(1, 2, 3, 4, 5|1, 4, 2, 3, 5) can
be computed as

AS(1, 2, 3, 4, 5|1, 4, 2, 3, 5) = 1

s23

1

s51
, (4)

up to an overall sign. The Mandelstam variable si ··· j is defined
as

si ··· j ≡ K 2
i ··· j , Ki ··· j ≡

j∑
a=i

ka, (5)

where ka is the momentum carried by the external leg a.

Fig. 2 Diagram for AS(1, 2, 3, 4, 5|1, 4, 2, 3, 5) and AS(1, 2, 3, 4, 5|
1, 2, 4, 3, 5)

As another example, let us consider the BAS amplitude
AS(1, 2, 3, 4, 5|1, 2, 4, 3, 5). The corresponding disk dia-
gram is shown in the second configuration in Fig. 2, and
one can see that the two orderings have co-boundaries {3, 4}
and {5, 1, 2}. The co-boundary {3, 4} indicates the chan-
nel 1/s34. The co-boundary {5, 1, 2} indicates the channel
1/s512, which is equivalent to 1/s34, as well as sub-channels
1/s12 and 1/s51. Using the above decomposition, one can
calculate AS(1, 2, 3, 4, 5|1, 2, 4, 3, 5) as

AS(1, 2, 3, 4, 5|1, 2, 4, 3, 5) = 1

s34

( 1

s12
+ 1

s51

)
, (6)

up to an overall sign.
The overall sign, determined by color algebra, can be fixed

by the following rules:

• Each polygon with an odd number of vertices contributes
a plus sign if its orientation is the same as that of the disk,
and a minus sign if opposite.

• Each polygon with an even number of vertices always
contributes a minus sign.

• Each intersection point contributes a minus sign.

We now apply these rules to previous examples. In the first
diagram in Fig. 2, the polygons are three triangles, namely,
51A, A4B, and B23, which contribute a plus sign, minus
sign, and plus sign, respectively, while two intersection points
A and B contribute two minus signs. In the second one in
Fig. 2, the polygons are 512A and A43, which contribute
two minus signs, while the intersection point A contributes
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Fig. 3 The overall sign + under the new convention

a minus sign. Then we arrive at the full results

AS(1, 2, 3, 4, 5|1, 4, 2, 3, 5) = − 1

s23

1

s51
,

AS(1, 2, 3, 4, 5|1, 2, 4, 3, 5) = − 1

s34

( 1

s12
+ 1

s51

)
. (7)

In the remainder of this note, we adopt another conven-
tion for the overall sign. If the line segments form a con-
vex polygon, and the orientation of the convex polygon
is the same as that of the disk, then the overall sign is a
plus sign. For instance, the disk diagram in Fig. 3 indi-
cates that the overall sign is a plus sign under the new
convention, while the old convention gives a minus sign
according to the square formed by the four line segments.
Note that the diagrammatical rules described previously
still give the related sign between different disk diagrams.
For example, the two disk diagrams in Fig. 2 show that
the relative sign between AS(1, 2, 3, 4, 5|1, 4, 2, 3, 5) and
AS(1, 2, 3, 4, 5|1, 2, 4, 3, 5) is a plus sign. The advantage of
the new convention is that when removing a soft external
scalar, the resulting sub-amplitude carries the same sign as
the original one.

When considering the soft limit, the two-point channels
play the central role. Since the partial BAS amplitude car-
ries two color orderings, if the two-point channel contributes
1/sab to the amplitude, the external legs a and b must be
adjacent to each other in both orderings. Suppose the first
color ordering is (· · · , a, b, · · · ); then 1/sab is allowed by
this ordering. To denote whether it is allowed by the other
one, we introduce the symbol δab, whose ordering of the two
subscripts a and b is determined by the first color ordering.1

The value of δab is δab = 1 if the other color ordering is
(· · · , a, b, · · · ), and δab = −1 if the other color ordering
is (· · · , b, a, · · · ), due to the anti-symmetry of the structure
constant, i.e., f abc = − f bac, and δab = 0 otherwise. From
the definition, it is straightforward to see that δab = −δba ,

1 The Kronecker symbol will not appear in this paper; thus we hope
that the notation δab will not confuse the readers.

and a simple but useful identity
∑
b �=a

δab = 0. (8)

Before ending this subsection, we discuss the single soft
behavior of BAS amplitudes at the leading order. Consider
the double-color-ordered BAS amplitude AS(1, . . . , n|σn).
We rescale ki as ki → τki and expand the amplitude in τ .
The leading-order contribution manifestly arises from two-
point channels 1/s1(i+1) and 1/s(i−1)i , which provide the
1/τ -order contributions, namely,

A(0)
S (1, . . . , n|σn)
= 1

τ

(
δi(i+1)

si(i+1)

+ δ(i−1)i

s(i−1)i

)

AS(1, . . . , i − 1,�, i + 1, . . . , n|σn\i)
= S(0)

s (i)AS(1, . . . , i − 1,�, i + 1, . . . , n|σn\i), (9)

where � stands for removal of the leg i , and σn\1 signifies
the color ordering generated from σn by eliminating i . The
leading soft operator S(0)

s (i) for the scalar i is extracted as

S(0)
s (i) = 1

τ

(δi(i+1)

si(i+1)

+ δ(i−1)i

s(i−1)i

)
, (10)

which acts on external scalars that are adjacent to i in two-
color orderings.

2.2 Expanding tree-level amplitudes to the BAS basis

Tree-level amplitudes for massless particles and cubic inter-
actions can be expanded to double-color-ordered BAS ampli-
tudes, given the observation that each Feynman diagram for
pure propagators can be mapped to at least one disk diagram
whose polygons are all triangles. An illustrative example is
given in Fig. 4. For higher-point vertices, one can decom-
pose them into cubic ones via the well-known technique,
i.e., inserting 1 = D/D with the propagator 1/D and the
numerator D. An example is shown in Fig. 5. Based on
such insertions, one can decompose each tree amplitude to
tree Feynman diagrams with only cubic interactions. Since
each Feynman diagram contributes propagators which can
be provided by BAS amplitudes, along with a numerator that
is dependent on kinematic variables, one can conclude that
each tree amplitude for massless particles can be expanded
to double-color-ordered partial BAS amplitudes, with coeffi-
cients which are polynomials that are dependent on Lorentz-
invariant combinations of external kinematic variables.

To realize the expansion, one needs to find the basis that
consists of BAS amplitudes. Such basis can be determined
by the well-known Kleiss–Kuijf (KK) relation [36]

AS(1, �ααα, n, �βββ|σn) = (−)|ααα| AS(1, �ααα� �βββT
, n|σn). (11)
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Fig. 4 Map between Feynman diagram and disk diagram

Fig. 5 Turning the four-point vertex to three-point vertices. The bold
line corresponds to the inserted propagator 1/D. This manipulation
turns the original numerator N to DN and splits the original coupling
constant g to two

√
g for two cubic vertices

Here, �ααα and �βββ are two ordered subsets of external scalars,

and �βββT
represents the ordered set generated from �βββ by

reversing the original ordering. The n-point BAS amplitude
AS(1, �ααα, n, �βββ|σn) on the l.h.s of (11) carries two color order-
ings: one is (1, �ααα, n, �βββ), and the other is denoted by σn . The
symbol� means summing over all possible shuffles of two
ordered sets �βββ1 and �βββ2, i.e., all permutations in the set �βββ1∪�βββ2,
while preserving the orderings of �βββ1 and �βββ2. For instance,
suppose that �βββ1 = {1, 2} and �βββ2 = {3, 4}; then

A(�βββ1 �
�βββ2)

= A(1, 2, 3, 4) + A(1, 3, 2, 4) + A(1, 3, 4, 2)

+A(3, 1, 2, 4) + A(3, 1, 4, 2) + A(3, 4, 1, 2). (12)

The analogous KK relation holds for the other color order-
ing σn . The KK relation implies that different double-color-
ordered BAS amplitudes are not independent; thus, the basis
can be chosen as BAS amplitudes AS(1, σ1, n|1, σ2, n), with
1 and n fixed at two ends in each color ordering. We call such
a basis the KK BAS basis. Based on the discussion above, the
KK BAS basis can provide any structure of massless prop-
agators; thus, any amplitude which includes only massless
particles can be expanded to this basis.2 In other words, the

2 The well-known Bern–Carrasco–Johansson (BCJ) relation [25–28]
links BAS amplitudes in the KK basis together, and the independent
BAS amplitudes can be obtained by fixing three legs at three particular
positions in the color orderings. However, in the BCJ relation, the coef-
ficients of BAS amplitudes depend on Mandelstam variables, which
leads to poles in coefficients when expanding to the BCJ basis. On the
other hand, when expanding to the KK basis, one can find the expanded
formula in which the coefficients contain no poles. In this paper, we

basis provides propagators, and the coefficients in expansions
provide numerators. From this point of view, one can regard
the BAS KK basis as the complete set of different structures
of propagators, and disregard the corresponding Lagrangian
in (2).

In this note, we will consider the expansion of NLSM
amplitudes. The color-ordered NLSM amplitude
AN(1, σn−2, n) can be expanded to the KK BAS basis as

AN(1, σn−2, n)

=
∑

σ ′
n−2

C(σ ′
n−2, ki )AS(1, σ ′

n−2, n|1, σn−2, n), (13)

where σn−2 and σ ′
n−2 are permutations among (n− 2) exter-

nal legs in {2, · · · , n − 1}. The double copy structure [24–
28] indicates that the coefficient C(σ ′

n−2, ki ) is dependent
on momenta ki carried by external scalars, and permutations
σ ′
n−2, but is independent of the permutation σn−2.3 Thus,

suppose we replace (1, σn−2, n) by the more general order-
ing σn among all external legs, without fixing 1 and n at any
position; the expansion in (13) still holds. The coefficients
C(σ ′

n−2, ki ) will be constructed in the next section.
Note that the expanded formula (13) indicates the BCJ

relations among NLSM amplitudes with different σn , since
amplitudes AS(1, σ ′

n−2, n|σn) with fixed σ ′
n−2 satisfy BCJ

relations individually. This means that we do not need to solve
constraints from BCJ relations as in [35]. Indeed, using BCJ
relations, together with the appropriate structure of poles,
one can also completely determine the NLSM amplitudes,
as shown in [34,35]. In this note, we take a different path: we
regard the universality of soft behaviors as the principle, and
do not use unitarity and locality as tools for construction.

3 Expanded NLSM amplitudes

Tree amplitudes can be expressed in various formulas, and
in this note we choose the expansions of tree amplitudes to
the KK BAS basis as discussed in Sect. 2.2. To determine
the NLSM tree amplitudes, it is sufficient to fix coefficients
C(σ ′

n−2, ki ) in (13). This is the goal in the present section.
The standard NLSM Lagrangian in the Cayley parameter-

ization is given as

LN = 1

8λ2 Tr(∂μU†∂μU), (14)

Footnote 2 continued
choose the KK basis since we hope that all poles of tree amplitudes are
included in the basis, and the coefficients serve only as numerators.
3 Originally, the double copy meant that the GR amplitude could be
factorized as AG = AY ×S ×AY, where the kernel S was obtained by
inverting propagators. Our assumption that the coefficients depend on
only one color ordering is equivalent to the original version; see [23].
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with

U = (I + λ
) (I − λ
)−1, (15)

where I is the identity matrix, and 
 = φI T I , with T I the
generators ofU (N ). Fields φI describe massless scalars, and
the accompanying generators T I indicate the color order-
ing for the corresponding partial tree amplitudes. From the
Lagrangian in (14), we see that the mass dimension of cou-
pling constant λ is (2 − d)/2, in d-dimensional spacetime.
The mass dimension of the n-point amplitude is d − d−2

2 n,
and the coupling constants contribute (2 −d)(n− 2)/2; thus
the kinematic part must have mass dimension 2.

Our purpose, therefore, is to find the n-point amplitude
(kinematic part) AN(σn) for pure massless scalars that carry
the color ordering σn among n external scalars, which has
mass dimension 2. As will be seen, the requirements men-
tioned above, together with the universality of soft behav-
ior and the permutation symmetry among external scalars,
are sufficient to determine the NLSM tree amplitudes com-
pletely, without using any other information. In this sense,
in the remainder of this section, one can disregard the tradi-
tional Lagrangian and Feynman rules and concentrate only
on the color ordering and mass dimension. Since the prop-
agators contribute the mass dimension −2(n − 3), the mass
dimension of numerators can be fixed as 2(n − 2). This is
the mass dimension of coefficients C(σ ′

n−2, ki ) in the expan-
sion (13), which plays an important role in the subsequent
subsections.

We will argue that the three-point NLSM tree amplitude
does not exist, while the four-point one has vanishing single
soft behavior at the τ 0 order, via the general consideration
of Mandelstam variables. Such consideration also yields the
statement that the non-vanishing NLSM tree amplitudes only
have an even number of external legs. Then, by imposing
the universality of single soft behavior observed from the
four-point case, we will construct the general C(σ ′

n−2, ki ) for
n � 6. The whole process uses only the mass dimension, the
universality of soft behavior, and the permutation invariance
among external scalars.

3.1 Four-point NLSM amplitude

The three-point NLSM tree amplitude has mass dimension 2
and contains no pole. However, one can never use three on-
shell massless momenta satisfying momentum conservation
to construct any non-vanishing Lorentz invariant with mass
dimension 2. Thus, the three-point NLSM amplitude does
not exist.

The simplest NLSM amplitudes are the four-point ones
AN(σ4). The absence of the three-point amplitude implies
that the four-point ones have no pole. Then, the mass dimen-
sion requires the four-point amplitudes to be linear combi-
nations of Mandelstam variables s, t , and u, where s = s12,

t = s14, and u = s13, satisfying s + u + t = 0. Such com-
binations can be fixed via the symmetry. For AN(1, 2, 3, 4),
the color ordering indicates symmetry between s and t ; thus,
AN(1, 2, 3, 4) is proportional to s + t or u. We can choose

AN(1, 2, 3, 4) = u = −(s + t), (16)

via an overall rescaling of amplitude. Similarly, we have

AN(1, 3, 2, 4) = s = −(t + u),

AN(1, 2, 4, 3) = t = −(u + s). (17)

It is straightforward to observe that all of the above ampli-
tudes vanish when taking any external momentum to be soft,
due to the definition of s, t , and u. Thus, we conclude that
the single soft behavior of the four-point NLSM amplitude
does not exist at τ−1 and τ 0 orders. Such behavior is known
as Adler’s zero.

The vanishing of the four-point amplitude in the single
soft limit is further evidence for the vanishing of the three-
point one. Suppose that the n-point and (n+1)-point NLSM
amplitudes exist; by taking an external leg to be soft, one can
always factorize the latter one as the product of the former one
and a non-vanishing leading soft factor. Thus, the vanishing
of the (n+1)-point amplitude in the single soft limit indicates
the vanishing of the n-point amplitude.

In this note, one of the basic assumptions is the universal-
ity of soft behaviors. As a consequence of universality, the
vanishing of amplitude at τ−1 and τ 0 orders holds for any
NLSM amplitude with an arbitrary number of external legs.
If we adopt the existence of the four-point amplitudes, then
the five-point ones must vanish; otherwise the vanishing of
five-point amplitudes in the single soft limit will imply the
vanishing of four-point ones. One can further generalize the
above argument and conclude that the number of external legs
for each non-vanishing NLSM amplitude should be even.

The four-point NLSM tree amplitudes can be expanded to
the KK BAS basis; the double copy assumption requires the
following expanded formula:

AN(σ4) = C1 AS(1, 2, 3, 4|σ4) + C2 AS(1, 3, 2, 4|σ4), (18)

where the coefficients C1 and C2 have mass dimension 4.
Using (16) and (17), we obtain the following equations:

C1 AS(1, 2, 3, 4|1, 2, 3, 4) + C2 AS(1, 3, 2, 4|1, 2, 3, 4)=u,

C1 AS(1, 2, 3, 4|1, 3, 2, 4) + C2 AS(1, 3, 2, 4|1, 3, 2, 4)=s,

C1 AS(1, 2, 3, 4|1, 2, 4, 3) + C2 AS(1, 3, 2, 4|1, 2, 4, 3)= t.

(19)

After evaluating the BAS amplitudes via the diagrammatical
rules introduced in Sect. 2.1=, the above equations can be
reduced to

C1

s
+ C2

u
= t. (20)

123



Eur. Phys. J. C (2024) 84 :68 Page 7 of 15 68

The solution of this equation is not unique, and it is hard
to choose a particular one since all these solutions lead to
the correct four-point amplitudes. Thus, we do not give the
explicit formula of C1 and C2 in the current subsection. In
Sect. 3.2, we will use the universality of soft behaviors to
determine the n-point NLSM amplitudes in the expanded
formula, with n ≥ 6. In the next section, we will use this
expanded formula to derive the double soft factors for NLSM
amplitudes at τ 0 and τ 1 orders. Imposing the universality of
the double soft factor, the four-point amplitude can be gener-
ated by removing two soft legs from the six-point one; then
the expansion for the four-point case can be fixed through
such manipulation, as will be shown in Sect. 4.1.

3.2 The n-point case

As noted at the end of Sect. 3.1, the universality of soft behav-
iors indicates that each NLSM amplitude vanishes at τ−1 and
τ 0 orders when one of the external legs is soft. This subsec-
tion aims to find C(σ ′

n−2, ki ) for the n-point NLSM amplitude
with n ≥ 6, by imposing the above requirement, as well as the
permutation symmetry among external legs in {2, . . . , n−1},
which is evident in (13).

Coefficients C(σ ′
n−2, ki ) have mass dimension 2(n −

2) and depend on color orderings (1, σ ′
n−2, n) carried by

AS(1, σ ′
n−2, n|σn). Consider k2 → τk2, and expand AN(σn)

in τ . In order to construct AN(σn) which vanishes at τ−1

and τ 0 orders, the simplest idea is to require each term in
C(σ ′

n−2, ki ) to contain the factor (k2 ·Ka2) (k2 ·Kb2), where
Ka2 and Kb2 are combinations of external momenta. Then,
considerations for ki → τki for other i ∈ {2, . . . , n − 1}
yield the conclusion that each term in C(σ ′

n−2, ki ) also con-
tains (ki · Kai ) (ki · Kbi ). The total number of ki required
by the above construction is 2(n − 2), which satisfies the
correct mass dimension of C(σ ′

n−2, ki ). This means that each
C(σ ′

n−2, ki ) can be decomposed as the linear combination of

building blocks
∏n−2

j=1 ka j · kb j , where the set {a j , b j } con-
tains two i for each i ∈ {2, . . . , n − 1}, since when expand-
ing to the KK basis, the coefficients do not contain any pole.
When taking k1 → τk1 or kn → τkn and expanding in τ ,
the coefficients C(σ ′

n−2, ki ) constructed in this way are at the
τ 0 order, which causes the single soft behavior of AN(σn) to
be at the τ−1 order, therefore violating the universality of the
soft behavior. Consequently, the above naive construction is
not correct.

To find the correct answer, we consider k2 → τk2 and
express the leading-order contribution of AN(σn) as

A(0)
N (σn) =

∑

σ ′
n−2

C(0)(σ ′
n−2, ki ) S

(0)
S (2)AS(1, σ ′

n−2 \ 2, n|σn\2),

(21)

where the soft theorem (9) for the external BAS scalar has
been used. The leading-order contribution C(0)(σ ′

n−2, ki ) is
obtained from C(σ ′

n−2, ki ) as follows. For each Ka ·Kb con-
tained in C(σ ′

n−2, ki ), where Ka and Kb are again two com-
binations of external momenta, we turn it as Ka · Kb →
K(0)
a ·K(0)

b . The combinatorial momentum K(0)
a is defined as

K(0)
a =

{
τk2 if Ka = k2,

Ka − k2 otherwise.
(22)

The definition of K(0)
b is analogous. The universality of soft

behavior requires A(0)
N (1, . . . , n) to be of the τ 1 order. The

simplest and most natural solution to the above condition
can be obtained by assuming the independence of BAS
amplitudes in the KK BAS basis. This assumption indi-
cates that at τ−1 and τ 0 orders, coefficients for different
AS(1, σ ′

n−2\2, n|σn\2) vanish individually, that is,

0 = C(0)(2� {σ3, . . . , σn−1}, ki ) S(0)
S (2)

AS(1, � 2� {σ3, . . . , σn−1}, n|σn\2)

= C(1, � 2)
1

τ

(
δ12

s12
+ δ2σ3

s2σ3

)
AS(1, � 2, σ3, · · · , σn−1, n|σn\2)

+
n−2∑
j=3

C(σ j , � 2)
1

τ

(
δσ j2

sσ j2
+ δ2σ j+1

s2σ j+1

)

AS(1, σ3, . . . , σ j , � 2, σ j+1, . . . , σn−1, n|σn\2)

+C(σn−1, � 2)
1

τ

(
δσn−12

sσn−12
+ δ2n

s2n

)

AS(1, σ3, . . . , σn−1, � 2, n|σn\2), (23)

therefore,

0 = C(1, � 2)

(
δ12

s12
+ δ2σ3

s2σ3

)
+ C(σn−1, � 2)

(
δσn−12

sσn−12
+ δ2n

s2n

)

+
n−2∑
j=3

C(σ j , � 2)

(
δσ j2

sσ j2
+ δ2σ j+1

s2σ j+1

)
. (24)

Here, we abbreviatedC(0)(2�{σ3, . . . , σn−1}, ki ) asC(a, � 2),
where (a, � 2) emphasizes the position of external leg 2 in the
color ordering (· · · , a, 2, · · · ). The symbol� in the first line
of (23) means the summation over particular permutations,
which preserves the ordering (σ3, · · · , σn−1), as explained
below (11). The notation � 2 means delaying the leg 2, and
thus all AS(1, � 2 � {σ3, . . . , σn−1}, n|σn\2) are the same
BAS amplitude. Note that since our first attempt has failed,
we must assume that C(a, � 2) are at the τ 0 or τ 1 order.

Since the ordering of σn is arbitrary, which means that the
values of δab have not been fixed, the only way to obtain the
nonzero solution of C(a, � 2) to the Eq. (24) is to employ the
identity
∑
i �=2

δi2 = 0, (25)
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which is the special case of identity (8). In other words, Eq.
(24) should be reduced to

0 = C̃
∑
i �=2

δi2, (26)

where C̃ is Lorentz-invariant, constructed from external
momenta. The formula (26) requires that all δi2 have a com-
mon coefficient C̃ . Applying this condition to δ12, we imme-
diately find that C(1, � 2) = 2(k2 · k1) C̃ . Then, applying the
same condition to δσ32, we have

C̃ = C(σ3, � 2) − C(1, � 2)

s2σ3

= C(σ3, � 2) − 2 (k2 · k1) C̃

s2σ3

,

(27)

and the only solution is C(σ3, � 2) = 2(k2 · K1σ3) C̃ , where
Ka1···am ≡ ∑m

i=1 kai . Repeating the above process recur-
sively, we obtain

C(a, � 2) = 2(k2 · K1σ3···σa ) C̃, (28)

for arbitrary a ∈ {3, . . . , n − 1}.
Some remarks are in order. First, when expanding the

NLSM amplitude to the KK basis, the coefficients do not
contain any poles. Thus, C̃ is Lorentz-invariant without any
pole; otherwise, one cannot ensure that no C(a, � 2) contains
any pole. Secondly, we previously assumed that C(a, � 2)

are at the τ 0 or τ 1 order. Since C(a, � 2) includes the fac-
tor k2 · K1σ3···σa accompanied by τ under the rescaling of
k2 → τk2, we now exclude the τ 0 case and conclude that
C(a, � 2) and C̃ are at the τ 1 order. Finally, for a given
color ordering (1, σ3, . . . , σn−1, n) carried byAS(1, σ3, . . . ,

σn−1, n|σn\2), C̃ is independent of the position of leg 2 in
the original orderings (1, 2� {σ3, . . . , σn−1}, n).

The solution (28) indicates that the coefficientsC(σ ′
n−2, ki )

contain the component k2 · X2, where the combinatorial
momentum Xi is defined as the summation of momenta car-
ried by external legs on the l.h.s of i in the color ordering.
This result can be generalized as C(σ ′

n−2, ki ) ∝ ki · Xi for
each i ∈ {2, . . . , n− 1}, because of the permutation symme-
try among external legs i ∈ {2, . . . , n − 1} in the expansion
(13). Since the coefficients C(σ ′

n−2, ki ) have mass dimen-
sion 2(n − 2), the above information fixes them completely,
namely,

C(σ ′
n−2, ki ) = α

n−1∏
i=2

ki · Xi , (29)

where α is an constant with mass dimension 0. Since
C(σ ′

n−2, ki ) contains no pole, α is independent of any kine-
matic variable. Furthermore, α is also independent of the
color ordering (1, σ ′

n−2, n), due to the permutation invari-
ance. Substituting the solution (29) into (13), the expanded

formula of the n-point NLSM amplitude is found to be

AN(σn) =
∑

σ ′
n−2

( n−1∏
i=2

ki · Xi

)
AS(1, σ ′

n−2, n|σn). (30)

Here we have fixed the constant α as α = 1 via an over-
all rescaling of the amplitude. The expression in (30) is
the desired expanded formula of the NLSM amplitude with
n ≥ 6. In Sect. 4.1, we will show that (30) is also correct for
the four-point case.

It is not hard to verify that AN(σn) given in (30) van-
ishes at τ−1 and τ 0 orders under the rescaling k1 → τk1

or kn → τkn ; thus the expanded formula (30) satisfies the
correct single soft behavior for any external leg being soft.
Taking k2 → τk2, C̃ in the solution (28) can be calculated
from(30) as

C̃ = τ

2

n−1∏
i=3

ki · K1σ3···σi−1 , (31)

which satisfies our expectations: C̃ is Lorentz-invariant, with
no pole, and is independent of the position where leg 2 is
inserted. The situations for other ki → τki are analogous.

The solution (29) is obtained by assuming the indepen-
dence of BAS amplitudes in the KK BAS basis. Indeed, such
independence is violated by the well-known Bern–Carrasco–
Johansson (BCJ) relations among BAS amplitudes. BCJ rela-
tions allow for more solutions to Eq. (24). For instance, one
can modify the expanded formula in (30) by adding terms
which vanish automatically, such as

AN(σn) =
∑

σ ′
n−2

( n−1∏
i=2

ki · Xi

)
AS(1, σ ′

n−2, n|σn)

+(k2 · X2) T AS(1, σ ′
n−2, n|σn), (32)

where T is Lorentz-invariant with mass dimension 2(n− 3).
The above modification is guaranteed by the fundamental
BCJ relation

0 = (k2 · X2)AS(1, 2� {σ3, . . . , σn−1}, n|σn). (33)

Thus, when considering BCJ relations, the expanded formula
(30) should be understood as an equivalent class rather than
a unique expression.

The disadvantage of the modified formula (32) is the
breaking of manifest permutation symmetry among legs in
{2, . . . , n − 1}. Let us focus only on the expanded formulas
that manifest such permutation invariance, and ask whether
the BCJ relations lead to different solutions to Eq. (24) which
satisfy this symmetry, and the coefficients C(σ ′

n−2, ki ) do not
contain any poles. Quite surprisingly, for the six-point and
eight-point cases, such a new solution which is nonequiva-
lent to (30) cannot be found. Thus, we conjecture that this
situation is a general one and claim that the expansion in (30)
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is the only solution which manifests the desired permutation
invariance, although the general proof is absent.

4 Double soft factors

As discussed in Sect. 3.1, using the single soft theorem, one
can generate the n-point tree amplitude from the (n + 1)-
point one by removing the soft external leg. The NLSM tree
amplitude does not have such luxuries, since the number of
external legs must be even. However, it is natural to think
of the n-point NLSM amplitude as the resulting object of
removing two soft legs from the (n + 2)-point one. This
picture leads to the consideration of the double soft behavior
of NLSM tree amplitudes.

The double soft theorems for NLSM tree amplitudes have
been obtained by different methods [30,31]. The leading soft
factor is at the τ 0 order, while the sub-leading one is at the τ 1

order. Such leading-order behavior coincides with the picture
of generating the n-point amplitude from the (n + 2)-point
one, since such manipulation forbids the vanishing of the
(n + 2)-point amplitude in the limit τ → 0. In this section,
we propose an efficient new approach to derive the leading
and sub-leading double soft factors, based on the expansion
in (30).

Without loss of generality, we consider ka → τka, kb →
τkb and expand AN(1, · · · , n, a, b) by τ . We chose as the
basis BAS amplitudes whose external legs 1 and n are fixed
at two ends in the first color ordering; thus the n + 2-point
amplitude AN(1, . . . , n, a, b) can be expanded as

AN(1, . . . , n, a, b)

= (ka · Xa) (kb · Xb)

( n−1∏
i=2

ki · Xi

)

AS(1, a � b� 2� · · ·� n − 1, n|1, . . . , n, a, b).

(34)

According to the meaning of � mentioned below (11), one
can rewrite the expansion in (30) as

AN(σn) =
( n−1∏

i=2

ki · Xi

)
AS(1, 2� · · ·� n − 1, n|σn).

(35)

We used this notation in (34) to emphasize the positions of
special legs a and b in the first color ordering carried by
AS(1, σ1, · · · , σn, n|1, . . . , n, a, b). For later convenience,
in the remainder of this section, we denote the BAS amplitude
AS(1, σ1, . . . , σn, n|1, . . . , n, a, b) as A(σ1, . . . , σn), where
{σ1, . . . , σn} = {a, b, 2, . . . , n − 1}.

Fig. 6 First type of Feynman diagram

4.1 Leading order

To derive the double soft factor at leading order, let us con-
sider Feynman diagrams for BAS amplitudes A(a�b�2�
· · ·� n − 1) whose external legs a and b are coupled to a
common vertex. Such diagrams allowed by the second color
ordering are shown in Fig. 6. Among terms on the r.h.s of the
expansion (34), contributions from the first configuration in
Fig. 6 are contained in

(ka · k1) (kb · K1a)

( n−1∏
i=2

ki · Xi

)

A(a, b, 2� · · ·� n − 1)

+(kb · k1) (ka · K1b)

( n−1∏
i=2

ki · Xi

)

A(b, a, 2� · · ·� n − 1), (36)

while contributions from the second configuration are
included in

(kb · kn) (ka · Kbn)

( n−1∏
i=2

ki · Xi

)

A(2� · · ·� n − 1, a, b)

+(ka · kn) (kb · Kan)

( n−1∏
i=2

ki · Xi

)

A(2� · · ·� n − 1, b, a). (37)

After taking ka → τka, kb → τkb and expanding in τ , the
leading-order contribution from (36) can be calculated as

L1 = τ2 (ka · k1)
(
kb · (k1 + τka)

)

×
( n−1∏
i=2

ki · X (0)
i

) 1

s(0)
ab

1

s(0)
ab1

A(2� · · ·� n − 1)

−τ2 (kb · k1)
(
ka · (k1 + τkb)

)

×
( n−1∏

i=2

ki · X (0)
i

)
1

s(0)
ab

1

s(0)
ab1

A(2� · · ·� n − 1)
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= (ka − kb) · k1

4(ka + kb) · k1

[( n−1∏
i=2

ki · X (0)
i

)
A(2� · · ·� n − 1)

]

= (ka − kb) · k1

4(ka + kb) · k1
AN(1, . . . , n), (38)

where X (0)
i arises from Xi by deleting ka and kb, and

s(0)
ab and s(0)

ab1 stand for leading-order contributions of sab
and sab1, respectively. Therefore, s(0)

ab = 2τ 2 ka · kb, and

s(0)
ab1 = 2τ (ka + kb) · k1. Here, the relative minus sign in the

first equality can be determined via the diagrammatic rules,
and a more direct way to see it is by employing the anti-
symmetry of the structure constant f abc of the Lie group,
which indicates a minus sign when swapping legs a and b.
Because of this minus sign, terms at the τ−1 order cancel
each other, leaving the non-vanishing L1 at the τ 0 order. The
last equality uses the observation

AN(1, · · · , n) =
( n−1∏

i=2

ki · X (0)
i

)
A(2� · · ·� n − 1),

(39)

based on the expansion (30) and the definition of X (0)
i .

The consideration for (37) is analogous and gives

L2 = (kb − ka) · kn
4(ka + kb) · kn AN(1, . . . , n), (40)

which is also at the τ 0 order. We claim that (38) and (40)
provide the full double soft behavior of AN(1, . . . , n, a, b)
at leading order. The reasoning can be explained as follows.
For diagrams whose legs a and b are coupled to different
vertices, the double soft limit can be achieved by taking single
soft limits for a and b successively. Since the single soft
behavior for a or b vanishes at the τ 0 order, one can conclude
that taking two single soft limits consecutively contributes
nothing at the τ 0 order. Thus, the leading double soft factor
can be found by combining (38) and (40), which gives

A(0)
N (1, . . . , n, a, b) = S(0)

N (a, b)AN(1, . . . , n), (41)

where

S(0)
N (a, b) = (ka − kb) · k1

4(ka + kb) · k1
+ (kb − ka) · kn

4(ka + kb) · kn . (42)

This result is the same as that obtained in [30,31] by different
approaches.

The universality of the leading soft factor (42) indicates
that the expanded formula (30) is valid for the four-point
NLSM amplitude. The reasoning is as follows. The univer-
sality imposes

A(0)
N (1, 2, 3, 4, a, b) = S(0)

N (a, b)AN(1, 2, 3, 4), (43)

which is a special case of (41). Since the relation (41) is based
on the expansion (39), AN(1, 2, 3, 4) in (43) must satisfy the
expansion (39), which is equivalent to (30).

4.2 Sub-leading order

The sub-leading double soft factor is more complicated, since
Feynman diagrams whose a and b are coupled to different
vertices also have non-vanishing contributions at the τ 1 order.
We will consider the corresponding diagrams one by one.

Let us start with the first configuration in Fig. 6 and express
corresponding terms contained in (36) as

[
(ka · k1) (kb · K1a)

( n−1∏
i=2

ki · Xi

)

−(kb · k1) (ka · K1b)

( n−1∏
i=2

ki · Xi

)]
1

sab

1

sab1
M

= (ka − kb) · k1

2sab1

( n−1∏
i=2

ki · Xi

)
M. (44)

The relative minus sign was interpreted in Sect. 4.1 around
(38). When ka → τka, kb → τkb, (44) behaves as

(ka − kb) · k1

4(ka + kb) · k1 + 4τ ka · kb
( n−1∏

i=2

ki · Xi (τ )

)
M(τ ). (45)

Our purpose is to extract the τ 1-order terms from (45). First,
one can expand M(τ ) as

M(τ ) = M(0) + τ
∂

∂τ
M(τ )

∣∣
τ=0 + · · · (46)

and pick up the second term. One can observe that the param-
eter τ enters M(τ ) only through the combinatorial momen-
tum k1 + τ(ka + kb); thus

∂

∂τ
= 1

τ
(ka + kb) · ∂

∂(ka + kb)
= (ka + kb) · ∂

∂k1
, (47)

which leads to

∂

∂τ
M(τ )

∣∣
τ=0 = (ka + kb) · ∂

∂k1
A(2� · · ·� n − 1),

(48)

where the observationM(0) = A(2� · · ·�n−1) was used.
Consequently, the first piece is found to be

P1;1 = τ
(ka − kb) · k1

4(ka + kb) · k1

( n−1∏
i=2

ki · X (0)
i

)

×
[
(ka + kb) · ∂k1 A(2� · · ·� n − 1)

]
, (49)

where

∂k1 ≡ ∂

∂k1
. (50)

Secondly, one can expand the denominator in (45) and pick
up the second terms on the r.h.s of
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1

4(ka + kb) · k1 + 4τ ka · kb
= 1

4(ka + kb) · k1
− τ ka · kb

4
(
(ka + kb) · k1

)2 + · · · , (51)

which gives the second piece

P2;1 = −τ

(
(ka − kb) · k1

)
(ka · kb)

4
(
(ka + kb) · k1

)2

×
( n−1∏

i=2

ki · X (0)
i

)
A(2� · · ·� n − 1). (52)

Finally, each Xi (τ ) contains τ (ka + kb); thus the third piece
is found to be

P3;1 = τ
(ka − kb) · k1

4(ka + kb) · k1

×
[ n−1∑

j=2

(
k j · (ka + kb)

∏n−1
i=2 ki · X (0)

i

k j · X (0)
j

)]

A(2� · · ·� n − 1)

= τ
(ka − kb) · k1

4(ka + kb) · k1

[
(ka + kb) · ∂k1

( n−1∏
i=2

ki · X (0)
i

)]

A(2� · · ·� n − 1). (53)

Similarly, considering the second configuration in Fig. 6
yields

P1;2 = τ
(kb − ka) · kn

4(ka + kb) · kn
( n−1∏

i=2

ki · X (0)
i

)

×
[
(ka + kb) · ∂kn A(2� · · ·� n − 1)

]
, (54)

P2;2 = −τ

(
(kb − ka) · kn

)
(ka · kb)

4
(
(ka + kb) · kn

)2

( n−1∏
i=2

ki · X (0)
i

)

A(2� · · ·� n − 1) , (55)

as well as

P3;2 = τ
(kb − ka) · kn

4(ka + kb) · kn
×

[ n−1∑
j=2

(
k j · (ka + kb)

∏n−1
i=2 ki · X (0)

i

k j · X (0)
j

)]

A(2� · · ·� n − 1)

= τ
(kb − ka) · kn

4(ka + kb) · kn
×

[
(ka + kb) · ∂kn

( n−1∏
i=2

ki · X (0)
i

)]

A(2� · · ·� n − 1). (56)

The process is parallel to those for obtaining (49), (52), and
(53). To derive (56), one should use momentum conserva-

Fig. 7 Second type of Feynman diagram

tion to replace the explicit form of Xi by the equivalent one
Xi = Xi − (

ka + kb + ∑n
i=1 ki

)
. The special expressions

for Xi imply that the individual results in (53) and (56) are
inconsistent with momentum conservation. In (56), suppose
one uses momentum conservation to remove kn in X (0)

i ; then

ki · X (0)
i will be annihilated by the operator ∂kn . A similar

phenomenon occurs for (53). However, after combining (53)
and (56), the resulting object is consistent with momentum
conservation. One can use momentum conservation to freely
modify the explicit expression of any Xi ; the combination
P4;1 + P4;2 always gives the correct result. Similarly, the
individual pieces (49) and (54) are inconsistent with momen-
tum conservation, while the combination P1;1 + P1;2 does
not have this problem.

Now we turn to a new type of Feynman diagram, which
can be seen in Fig. 7. We focus on the first configuration in
Fig. 7, and the second one can be treated similarly. On the
r.h.s of (34), contributions from such diagrams are included
in

(kb · k1) (ka · K1b)
( n−1∏

i=2

ki · Xi

)
A(b, a, 2� · · ·� n − 1),

(57)

and can thus be expressed as

(kb · k1) (ka · K1b)

( n−1∏
i=2

ki · Xi

)
1

sb1

1

sab1
N

= ka · K1b

2sab1

( n−1∏
i=2

ki · Xi

)
N . (58)

Taking ka → τka, kb → τkb turns (58) into

ka · k1 + τ ka · kb
4(ka + kb) · k1 + 4τ ka · kb

( n−1∏
i=2

ki · Xi (τ )

)
N (τ ), (59)

and one can extract four pieces at the τ 1 order. In the first
one, expanding N (τ ) by τ gives
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P4;1 = −τ
ka · k1

4(ka + kb) · k1

( n−1∏
i=2

ki · X (0)
i

)

×
[
(ka + kb) · ∂k1 A(2� · · ·� n − 1)

]
, (60)

where the observation N (0) = −A(2� · · ·�n−1) is used,
and the minus sign can be verified via diagrammatical rules.
The second piece arises from expanding the denominator of
(59), which is given by

P5;1 = −τ
ka · kb

4(ka + kb) · k1

×
( n−1∏

i=2

ki · X (0)
i

)
A(2� · · ·� n − 1). (61)

The third one is obtained by expanding the denominator of
(59), which is found to be

P6;1 = τ
(ka · k1) (ka · kb)
4
(
(ka + kb) · k1

)2

( n−1∏
i=2

ki · X (0)
i

)

A(2� · · ·� n − 1). (62)

The final one comes from τ (ka + kb) contained in Xi (τ ),
and thus is given as

P7;1 = −τ
ka · k1

4(ka + kb) · k1

×
[
(ka + kb) · ∂k1

( n−1∏
i=2

ki · X (0)
i

)]
A(2� · · ·� n − 1).

(63)

Considering the second configuration in Fig. 7 gives analo-
gous results

P4;2 = −τ
kb · kn

4(ka + kb) · kn
( n−1∏

i=2

ki · X (0)
i

)

×
[
(ka + kb) · ∂kn A(2� · · ·� n − 1)

]
, (64)

P5;2 = −τ
ka · kb

4(ka + kb) · kn
( n−1∏

i=2

ki · X (0)
i

)

A(2� · · ·� n − 1) , (65)

P6;2 = τ
(kb · kn) (ka · kb)
4
(
(ka + kb) · kn

)2

( n−1∏
i=2

ki · X (0)
i

)

A(2� · · ·� n − 1) , (66)

and

P7;2 = −τ
kb · kn

4(ka + kb) · kn
[
(ka+kb) · ∂kn

( n−1∏
i=2

ki · X (0)
i

)]

A(2� · · ·� n − 1). (67)

Fig. 8 Third type of Feynman diagram

Fig. 9 Fourth type of Feynman diagram

Combinations P4;1 +P4;2 and P7;1 +P7;2 allow the expres-
sions of X (0)

i to be rewritten via momentum conservation,
while individual pieces do not.

We then consider the configuration in Fig. 8, which cor-
responds to

− (kb · k1) (ka · kn)
( n−1∏

i=2

ki · Xi

)
A(b, 2� · · ·� n−1, a)

(68)

on the r.h.s of (34). Here, we have used on-shell and momen-
tum conservation conditions to rewrite Xa as −kn . Under the
rescaling ka → τka, kb → τkb, the leading-order contribu-
tions from these terms are the τ 1 order, which provides

P8 = τ

4

[(
kb · ∂k1 + ka · ∂kn

) ( n−1∏
i=2

ki · X (0)
i

)]

A(2� · · ·� n − 1). (69)

Only one of the operators ∂k1 and ∂kn is effective, since the

definition of X (0)
i implies that k1 and kn cannot be included

in X (0)
i simultaneously. The formula (69) gives a correct

result for any expression of X (0)
i , and thus is consistent with

momentum conservation.
Next we deal with the configuration in Fig. 9, in which legs

a and b are coupled to a common vertex and then coupled
to an internal line. On the r.h.s of (34), this type of Feynman
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diagram corresponds to

(ka · K1···i ) (kb · K1···ia)
( n−1∏

j=2

k j · X j

)

A(2� · · ·� i, a, b, i + 1� · · ·� n − 1)

+(kb · K1···i ) (ka · K1···ib)
( n−1∏

j=2

k j · X j

)

A(2� · · ·� i, b, a, i + 1� · · ·� n − 1). (70)

When ka → τka, kb → τkb, the leading-order contribu-
tions corresponding to Fig. 9 are at the τ 1 order and can be
calculated as

τ
(ka − kb) · K1···i

2s2
1···i

( n−1∏
j=2

k j · X (0)
j

)
ML MR

= −τ

4

(
(ka − kb) · ∂k1

1

s1···i

)( n−1∏
j=2

k j · X (0)
j

)
ML MR

= −τ

4

(
(kb−ka) · ∂kn

1

si+1···n

)( n−1∏
j=2

k j · X (0)
j

)
ML MR .

(71)

The last equality is obtained by replacing K1···i with
−Ki+1···n via momentum conservation. Note that since s1···i
is defined as s1···i = K 2

1···i which contains k2
1, we have

∂k1,μ s1···i = 2Kμ
1···i , although k2

1 = 0, and we usually omit
it when expressing s1···i explicitly. The analogous situation
holds for ∂kn,μ si+1···n . Summing over all possible i leads to
the piece

P9 = −τ

4

( n−1∏
j=2

k j · X (0)
j

)

×
[(

(ka − kb) · ∂k1 + (kb − ka) · ∂kn

)

A(2� · · ·� n − 1)

]
. (72)

The operator (ka − kb) ·∂k1 + (kb − ka) ·∂kn is introduced for
two reasons. First, this operator is consistent with momen-
tum conservation. Secondly, this operator annihilates terms
from Feynman diagrams in Fig. 10, which also contributes to
A(2� · · ·�n−1) and leaves only the desired contributions
corresponding to the configuration in Fig. 9.

Finally, we should consider diagrams provided in Fig. 11.
Let us focus on the first configuration in Fig. 11. On the r.h.s
of (34), the corresponding terms are

(kb · k1) (ka · Kb1···i )
( n−1∏

j=2

k j · X j

)

A(1, b, 2� · · ·� i, a, i + 1� · · ·� n − 1). (73)

Fig. 10 Feynman diagrams which should be excluded

When ka → τka, kb → τkb, leading contributions are at the
τ 1 order and are given by

−τ
ka · K1···i

2s2
1···i

( n−1∏
j=2

k j · X (0)
j

)
NL NR

= τ

4

(
ka · ∂k1

1

s1···i

)( n−1∏
j=2

k j · X (0)
j

)
NL NR . (74)

Summing over all possible i , we obtain

P10;1 = τ

4

( n−1∏
j=2

k j · X (0)
j

) (
ka · ∂k1 A(2� · · ·� n − 1)

)
.

(75)

Applying the same manipulation to the second configuration
in Fig. 11 gives

P10;2 = τ

4

( n−1∏
j=2

k j · X (0)
j

) (
kb · ∂kn A(2� · · ·� n − 1)

)
.

(76)

Again, the combination P10;1 + P10;2 is consistent with
momentum conservation, while individual pieces are not.

Now we are ready to determine the sub-leading double soft
operator. To realize this, we need to regroup the sub-leading
contributions at the τ 1 order as

A(1)
N (1, . . . , n, a, b) = S(1)

N (a, b)AN(1, . . . , n), (77)

where S(1)
N (a, b) is an operator at the τ 1 order. We first add

P2;1, P5;1, P6;1, P2;2, P5;2, and P6;2 in (52), (61), (62), (55),
(65), and (66) together to get

R1 = −τ (ka · kb)
×

(
ka · k1

4
(
(ka + kb) · k1

)2 + kb · kn
4
(
(ka + kb) · kn

)2

)

AN(1, · · · , n). (78)
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Fig. 11 Fifth type of Feynman diagram

Then by combining P3;1, P7;1, P3;2, P7;2, and P8 in (53),
(63), (56), (67), and (69), we obtain

R21 = τ

[
J

( n−1∏
i=2

ki · X (0)
i

)]
A(2� · · ·� n − 1), (79)

where

J = (ka · k1) (kb · ∂k1) − (kb · k1) (ka · ∂k1)

4(ka + kb) · k1

+ (kb · kn) (ka · ∂kn ) − (ka · kn) (kb · ∂kn )

4(ka + kb) · kn
= ka · J1 · kb

4(ka + kb) · k1
+ kb · Jn · ka

4(ka + kb) · kn . (80)

In the second line on the r.h.s, Jμν
a is the angular momentum

operator of the scalar particle a, which is defined by

Jμν
a ≡ kμ

a
∂

∂ka,ν

− kν
a

∂

∂ka,μ

. (81)

Putting pieces P1;1, P4;1, P10;1, P1;2, P4;2, P10;2, and P9 in
(49), (60), (75), (54), (64), (76), and (72) together, we find

R22 = τ

( n−1∏
i=2

ki · X (0)
i

)(
J A(2� · · ·� n − 1)

)
. (82)

One can combine R21 and R22 to obtain

R2 = R21 + R22 = τ J AN(1, . . . , n). (83)

Consequently, we can express A(1)
N (1, . . . , n, a, b) as

A(1)
N (1, . . . , n, a, b)=R1 + R2 = S(1)

N (a, b)A(1)
N (1, . . . , n),

(84)

where the soft operator S(1)
N (a, b) is given as

S(1)
N (a, b)

= −τ

[
(ka · kb)

(
ka · k1

4
(
(ka + kb) · k1

)2 + kb · kn
4
(
(ka + kb) · kn

)2

)

+ kb · J1 · ka
4(ka + kb) · k1

+ ka · Jn · kb
4(ka + kb) · kn

]
, (85)

which is again the same as the result found in [30,31].

5 Summary

In this note, we bootstrapped NLSM tree amplitudes based
on the assumptions listed in Sect. 1. Note that the existence
of expansions and the characteristic wherein coefficients do
not involve any pole are proven rather than assumed, as can
be seen in Sect. 2.2. Within the above assumptions, we first
observed Adler’s zero for four-point NLSM amplitudes by
considering kinematics. Then we determined the expanded
formula of general NLSM tree amplitudes, which manifests
the permutation invariance among external legs, by using
the universality of Adler’s zero. The whole process does
not require the assumption of quartic diagrams. We also re-
derived double soft factors for NLSM tree amplitudes at lead-
ing and sub-leading orders, via the resulting expanded for-
mula. The obtained double soft factors are coincident with
those in the literature.

Our soft bootstrap method, based on the universality of
soft behaviors and a double copy structure, is proven to be
useful for constructing tree amplitudes of Yang–Mills scalar,
Yang–Mills, Einstein–Yang–Mills, gravity [23], and nonlin-
ear sigma models. It will be interesting to apply this method
to a wider range of theories. Another potential future direc-
tion is to generalize this method from the tree level to the
loop level.
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