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Abstract We carry out a compact phase space analysis of
a non-canonical scalar field theory whose Lagrangian is of
the form F(X) − V (φ) within general relativity. In partic-
ular, we focus on a kinetic term of the form F(X) = βXm

(m �= 1/2) with power-law potential V0φ
n and exponential

potential V0e−λφ/MPl of the scalar field. The Cuscuton case
m = 1/2 where the scalar field is non-dynamical is left out
of consideration. The main aim of this work is to investigate
the genericity of nonsingular bounce in these models and to
investigate the cosmic future of the bouncing cosmologies
when they are generic. A global dynamical system formula-
tion that is particularly suitable for investigating nonsingular
bouncing cosmologies is used to carry out the analysis. We
show that when F(X) = βXm (β < 0), nonsingular bounce
is generic for a power law potential V (φ) = V0φ

n only

within the parameter range
{

1
2 < m < 1, n < 2m

m−1

}
and for

an exponential potential V (φ) = V0e−λφ/MPl only within
the parameter range

{ 1
2 < m ≤ 1

}
. Except in these cases,

nonsingular bounce in these models is not generic due to the
non-existence of global past or future attractors. Our anal-
ysis serves to show the importance of a global phase space
analysis to address important questions about nonsingular
bouncing solutions, an idea that may and must be adopted
for such solutions even in other theories.

a e-mail: agrawalamar61@gmail.com
b e-mail: saikat.ch@nu.ac.th
c e-mail: bivu@hyderabad.bits-pilani.ac.in (corresponding author)
d e-mail: jibitesh@nehu.ac.in
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1 Introduction

The nonsingular bouncing paradigm has been under study
for quite a long time now as an alternative to the infla-
tionary paradigm. The main problem with the inflation-
ary paradigm is that it is inherently singular; timelike and
null geodesics cannot be extended indefinitely towards the
past in a nonsingular way [1]. Studies on the nonsingular
bouncing paradigm were fuelled mainly by the theoretical
necessity of avoiding this singularity problem. Nonsingular
bouncing cosmologies consist of a pre-bounce contracting
phase (ȧ(t) < 0, a(t) being the scale factor of the Uni-
verse) connecting smoothly through a nonsingular bounce
(ȧ = 0, ä > 0 or H = 0, Ḣ > 0, H(t) being the Hubble
parameter) to the post bounce expanding phase (ȧ(t) > 0)
that we live in. Various aspects of the nonsingular bouncing
solutions have been studied in the literature, for example, the
anisotropy problem during the contraction phase and the evo-
lution of cosmological perturbations through a bounce. For a
critical review of the bouncing paradigm, one can see Refs.
[2,3]. An aspect that is rarely addressed in relevant literature
is, even if a theory admits nonsingular bouncing solutions,
how generic these bouncing solutions are i.e. how sensitive
are these solutions to small changes in the initial conditions
of the universe? This is precisely the question that we will
address in this article.

In this article, we will be dealing with a single scalar
field model whose Lagrangian density can be written as
L = F(X) − V (φ). With a phantom field, this model can
produce nonsingular bouncing solutions [4,5]. It is known
that if one tries to achieve nonsingular bouncing solutions
within general relativity (GR), one needs to allow for the vio-
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lation of the null energy condition (NEC) and/or the strong
energy condition (SEC) [6]. NEC violation is necessary for
the spatially flat case we consider here. When the dynamics
of inhomogeneous cosmological perturbations are consid-
ered, NEC-violating scalar fields may exhibit ghost insta-
bility [7–9] and gradient instability [10]. We must mention
here that attempts to construct stable nonsingular bouncing
models despite the fact that NEC violation has given birth to
more sophisticated and involved models that involve, instead
of a usual scalar field, either ghost condensates [11,12] and
Galileons [13–15]. However, since the main focus of this
paper is not an analysis of the dynamics of inhomogeneous
perturbations but to address the question of stability of a
bouncing solution with slight perturbation in the initial con-
dition, we stick to the more straightforward F(X) − V (φ)

model here to explain our method. The analysis can, in prin-
ciple, of course, be generalized to the more sophisticated
bouncing models mentioned above.

Considering a simple form of the kinetic term F(X) and
two particular examples for the potential V (φ), we will
attempt to address the question of the generality of nonsingu-
lar bouncing solutions. The canonical field, often referred to
as the quintessence field with potential, is the most basic type
of scalar field [16]. However, there are several complex cos-
mological dynamics in the universe that the canonical scalar
field is unable to fully explain. For instance, the crossing of
the phantom divide line and the bouncing solution cannot be
explained by the quintessence field model. This leads to a
broader explanation of the non-canonical scalar field, a type
of scalar field. The coincidence problem may be solved in
the non-canonical scenario without causing any fine-tuning
problems, which is another benefit over the canonical setup.
In addition, the tensor-to-scalar ratio in non-canonical mod-
els is smaller than in canonical models, resulting in better
agreement with CMB measurements. We are inspired to learn
more about the cosmic dynamics of non-canonical scalar
fields by their intriguing properties [17].

Our approach to tackling the problem of genericity of
bouncing solutions will be to carry out a dynamical sys-
tem analysis of the models and investigate the nonsingular
bouncing solutions within the phase space. The dynamical
systems technique has been a very useful tool in understand-
ing the qualitative behaviors of cosmological models with-
out analytically solving the system of differential equations
[18,19]. With this technique, one can reframe cosmological
dynamics as the phase flow in a suitably defined phase space.
Although this technique is now extensively used in investigat-
ing inflationary and dark energy models [20], it is rarely used
to investigate nonsingular bouncing cosmologies. The main
reason seems to be that the Hubble normalized dimensionless
dynamical variables that are mostly used for the cosmologi-
cal phase space analysis diverge at a nonsingular bounce. On
the other hand, the dynamical system formulation seems to be

perfectly fitted to answer qualitative questions like the gener-
icity of a cosmological solution. By genericity of the bounc-
ing solutions in theory, we mean how sensitive they are to the
initial conditions. Suppose one sets some initial conditions
at a random moment during the contracting phase of the evo-
lution, numerically evolves the field equations and obtains a
bounce. The question is whether one would also get a bounce
if (s)he applies a random slight change in the initial condition.
To investigate nonsingular bouncing solutions in the phase
space picture, one needs to either define an alternative set of
dimensionless dynamical variables or compactify the infinite
phase space into a finite domain using a specific compacti-
fication prescription. Apart from the question of genericity,
the phase space picture also provides information about the
past and future asymptotics of a nonsingular bouncing cos-
mology. The future asymptotic is really important, as they
determine the end states of the bouncing cosmologies. Do
they end up being asymptotically De-Sitter like in �CDM,
or lead to a big-rip? These are our main motivations behind
this work.

Cosmological phase space of F(X) − V (φ) models have
been investigated in Ref. [21], where the authors also attempt
to touch upon the bouncing solutions from a phase space point
of view by defining an alternative set of dynamical variables.
Ref. [22] extends the same analysis to the case of Bianchi-
I. However, none of the above works carries out a compact
phase space analysis. The system, in general, may contain
interesting cosmological scenarios described by fixed points
hidden at infinity; in that case, compact analysis is required
to extract the global dynamics of the system. For example, in
Ref. [21], even though the authors could show phase trajec-
tories that represent nonsingular bounce, one cannot really
answer the question of genericity and future asymptotics. In
the present work, we employ the same dynamical system
formulation as was used in Refs. [21,22] but complement
these earlier works by carrying out a compact phase space
analysis and hence answering the aforementioned questions.
For the functions F(X) and V (φ) considered in this analysis,
we explicitly identify the scenarios where a bounce occurs
generically. Additionally, we determine when these scenar-
ios exhibit asymptotically De-Sitter behavior or lead to a big-
rip. It is crucial to note that the absence of generic bouncing
solutions does not imply that bouncing solutions are unattain-
able altogether. Under certain specific initial conditions, it is
still possible to obtain a bounce. However, unlike the case
of generic bounces, a chosen initial condition that yields a
bounce cannot be assured to retain this property under a ran-
dom slight perturbation. Consequently, the cases where the
bounce is generic are particularly intriguing when construct-
ing bouncing models.

The paper is structured as follows: In Sect. 2, we present
the basic equations for F(X) − V (φ) model consider-
ing a spatially flat homogeneous and isotropic Friedmann-
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Lamaitre-Robertson-Walker (FLRW) Universe. In Sect. 3,
we present the dynamical system formulation suitable for
investigating nonsingular bouncing cosmologies and carry
out the phase space analysis for two particular models. In
Sect. 4, we summarize the take-home results from our phase
space analysis. Finally, we conclude in Sect. 5.

2 Basic cosmological equations for L = F(X) − V (φ)

The most general action of a minimally coupled scalar field
theory is given by

S =
∫

d4x
√−g

(
M2

Pl

2
R + L(φ, X)

)
+ Sm, (1)

where MPl is the reduced Planck mass, R is the Ricci scalar, g
is the metric determinant, L(φ, X) is the Lagrangian density
of scalar field φ whose kinetic component is denoted by X
(i.e., X = − 1

2∂μφ∂μφ) and the last term Sm is the action
corresponds to the matter component taken to be a perfect
fluid.

Variation of (1) with respect to the metric gμν yields the
Einstein field equations given by

Gμν = T (φ)
μν + T (m)

μν , (2)

whereGμν denotes the Einstein tensor, T (φ)
μν is the scalar field

energy-momentum tensor given by

T (φ)
μν = ∂L

∂X
∂μφ∂νφ − gμνL, (3)

and the matter energy-momentum tensor T (m)
μν is given by

T (m)
μν = (ρm + Pm)uμuν + Pmgμν. (4)

Here ρm and Pm denote the energy density and pressure of
the matter component, respectively, with the four-velocity
vector uμ. In this paper, we consider a spatially flat FLRW
cosmology described by the metric

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2), (5)

where a(t) is a scale factor, t is cosmic time and x, y, z are
the Cartesian coordinates. We also focus on a scalar field
model whose generic form of the Lagrangian is given by

L(φ, X) = F(X) − V (φ), (6)

where V (φ) is a scalar field potential and F(X) is an arbitrary
function of X .

The energy–momentum tensor (4) of a perfect fluid under
the FLRW cosmology is

Tμ(m)
ν = diag(−ρm, Pm, Pm, Pm) (7)

The spatially flat FLRW space time transforms the above
Einstein field equations to the following cosmological field
equations,

H2 = 1

3M2
Pl

[2XFX − F + V + ρm] , (8a)

Ḣ = − 1

2M2
Pl

[2XFX + (1 + ωm)ρm] , (8b)

where H = ȧ
a is the Hubble parameter and an over dot denote

derivative with respect to t , the subscript X denotes derivative
with respect to X and ωm is the perfect fluid equation of state
parameter defined as Pm = ωmρm . When there is no energy
exchange between the fluid and the field, the fluid component
scales according to the ordinary continuity equation

ρ̇m + 3H(1 + ωm)ρm = 0 ⇒ ρm ∝ a−3(1+ωm ), (9)

and the scalar field satisfies the generic Klein–Gordon equa-
tion

d

dN
(2XFX − F + V ) + 6XFX = 0, (10)

where N = ln a.
In the next section, we shall construct the corresponding

autonomous system for the above cosmological equations
and then we investigate the bouncing scenarios via a global
dynamical system analysis.

3 Dynamical system formulation of L = F(X) − V (φ)

models suitable for investigating nonsingular bounces

In order to obtain an autonomous system of equations that
is suitable to investigate nonsingular bouncing solutions
through a phase space point of view, we follow a dynami-
cal system construction that was presented in Ref. [21]. We
define the dynamical variables

x =
√

3MPl H√|ρk | , y =
√

|V |
|ρk | sgn(V ), 
m = ρm

|ρk | ,

σ = −MPlVφ

V

√
2X

3|ρk | sgn(φ̇) = − MPl√
3|ρk |

dlogV

dt

(11)

where we have denoted the kinetic part of the energy density
by

ρk = 2XFX − F. (12)
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The kinetic part of the pressure is just

Pk = F. (13)

Motivated with this, one can define

ωk ≡ Pk
ρk

= F

2XFX − F
, (14)

which can be interpreted as the equation of state parameter
for the kinetic part of the Lagrangian. The equation of state
of the scalar field can be obtained in terms of the new variable
as,

ωφ = pφ

ρφ

= ωk x2 − y2

x2 + y2 . (15)

Next, we define two auxiliary variables

� = XFXX

FX
,  = VVφφ

V 2
φ

, (16)

which will be required to write the dynamical system. Lastly,
we define the phase space time variable [21]

dτ =
√

|ρk |
3M2

Pl

dt. (17)

With respect to the dynamical variables and auxiliary vari-
ables defined in Eqs. (11) and (16), the Friedmann constraint
and the dynamical equations become

x2 − y|y| − 
m = 1 × sgn(ρk), (18a)
dx

dτ
= 3

2
x

[
(ωk + 1)x − σ y|y| sgn(ρk)

]

−3

2

[
(ωk − ωm) sgn(ρk) + (1 + ωm)(x2 − y|y|)

]
,

(18b)
dy

dτ
= 3

2
y
[−σ + (ωk + 1)x − σ y|y| sgn(ρk)

]
, (18c)

dσ

dτ
= −3σ 2( − 1)

+3σ [2�(ωk + 1) + ωk − 1]
2(4� + 1)(ωk + 1)

(
(ωk + 1)x − σ y2

)
.

(18d)

Because of the definition of the dynamical variable y, y|y|
can also be written as y2 sgn(V ). Therefore, the dynamical
system (18) can also be written as

x2 − y2 sgn(V ) − 
m = 1 × sgn(ρk), (19a)
dx

dτ
= 3

2
x

[
(ωk + 1)x − σ y2 sgn(V ) sgn(ρk)

]

−3

2

[
(ωk − ωm) sgn(ρk) + (1 + ωm)(x2 − y2 sgn(V ))

]
,

(19b)

dy

dτ
= 3

2
y
[−σ + (ωk + 1)x − σ y2 sgn(V ) sgn(ρk)

]
,

(19c)
dσ

dτ
= −3σ 2( − 1)

+3σ [2�(ωk + 1) + ωk − 1]
2(2� + 1)(ωk + 1)

(
(ωk + 1)x − σ y2) . (19d)

Since 
m ≥ 0, the phase space of the system (19) is given
by

{(x, y, σ ) ∈ R
3 : x2 − y2 sgn(V ) − sgn(ρk) ≥ 0}. (20)

It is important to express the quantity Ḣ
H2 in terms of the

dynamical variables as this will help us to find the cosmo-
logical evolution corresponding to a fixed point

Ḣ

H2 = − 3

2x2

[
(1 + ωm)(x2 − y|y|) + (ωk − ωm) sgn(ρk)

]
.

(21)

Additionally, one can introduce the effective equation of
state ωeff given by

ωeff = −1 − 2

3

Ḣ

H2

= −1 + 1

x2

[
(1 + ωm)(x2 − y|y|) + (ωk − ωm) sgn(ρk)

]
.

(22)

Below we consider some specific examples of F(X) −
V (φ) models and look for nonsingular bouncing solutions in
the phase space.

3.1 Specific case I: F(X) = βX

In this section we consider scalar field Lagrangians of the
form

L(φ, X) = βX − V (φ). (23)

Since ρφ + Pφ = 2XFX = 2βX and X ≥ 0, it reduces to a
canonical scalar field when β > 0 and to a phantom scalar
field when β < 0. One can notice from Eq. (8b) that for
Ḣ > 0 near the bounce one must necessarily require β < 0,
i.e. a phantom scalar field.

3.1.1 Power law potential V (φ) = V0φ
n

The first example we consider is the specific case given by
F(X) = βX, V (φ) = V0φ

n where β, V0 are constants with
suitable dimension and n is a dimensionless constant. For
this choice, we have

� = 0,  = 1 − 1

n
, ωk = 1, ρk = βX. (24)
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Finite fixed point analysis
In this case, the system (19) reduces to

dx

dτ
= 3

2
x

[
2x − σ y2 sgn(V ) sgn(β)

]

−3

2

[
(1 − ωm) sgn(β) + (1 + ωm)(x2 − y2 sgn(V ))

]
,

(25a)
dy

dτ
= 3

2
y
[
−σ + 2x − σ y2 sgn(V ) sgn(β)

]
, (25b)

dσ

dτ
= 3

n
σ 2. (25c)

One can notice that the dynamical system (25) is symmetric
under reflection against the y = 0 plane, i.e. under the trans-
formation y → −y. This implies that it suffices to take into
consideration only the y > 0 region of the phase space, since
the phase portrait in the y < 0 region will just be a reflection
of that against y = 0. From the physical point of view, this
means that the qualitative behaviour of the model is inde-
pendent of the signature of the potential and we can confine
our attention to sgn(V ) = 1. Also, the y = 0 line acts as an
invariant submanifold, meaning that dynamics taking place
in the positive branch of the potential can never cross into
the negative branch of the potential, and vice versa. Further-
more, for the physical viability of the model, one requires
the condition 
m ≥ 0. The phase space of the system (25) is
therefore constrained within the region given by

{(x, y, σ ) ∈ R
3 : y ≥ 0, x2 − y2 − sgn(β) ≥ 0}. (26)

The system (25) contains two finite fixed points viz. A1+
and A1− (see Table 1). Both points exist only in the case
of the canonical scalar field, i.e., β > 0. From the value of
x-coordinate and the nature of scale factor a(t) (see Table
2), we see that while point A1+ corresponds to a decelerated
expansion of the universe, point A1− corresponds to a decel-
erated contraction of the universe. We note here that point
A1− is non-hyperbolic with an empty unstable subspace near
a point and therefore, we refer to the center manifold theory
for further analysis. On performing the analysis, we obtained
that the point A1− is a saddle point (see Appendix A). We
also find that the trajectories flow from an unstable point A1+
towards a saddle point A1−. Therefore, from the finite anal-
ysis one can not extract any bouncing solution but it shows
recollapsing solutions (see Fig. 1).
Fixed points at infinity

To get a global picture of the phase space, we introduce
the following compact dynamical variables

x̄ = x√
1 + x2

, ȳ = y√
1 + y2

, σ̄ = σ√
1 + σ 2

. (27)

Fig. 1 Phase portrait of system (25) for ωm = 0, n = 4 and β > 0

The evolution Eq. (19) can be converted to the following
system of equations

dx̄

dτ
= 3

2
(1 − x̄2)

3
2

[
(ωk − ωm)

(
x̄2

1 − x̄2 − sgn(β)

)

+
(

1 + ωm − σ̄ x̄ sgn(β)√
1 − σ̄ 2

√
1 − x̄2

)
ȳ2 sgn(V )

1 − ȳ2

]
,

(28a)
d ȳ

dτ
= 3

2
ȳ(1 − ȳ2)

[
− σ̄√

1 − σ̄ 2
+ (ωk + 1)x̄√

1 − x̄2

− σ̄ ȳ2 sgn(V )√
1 − σ̄ 2(1 − ȳ2)

sgn(β)

]
, (28b)

dσ̄

dτ
= 3

n
σ̄ 2

√
1 − σ̄ 2. (28c)

Note that the variables x̄, ȳ, σ̄ are bounded between −1 and
1. The dynamical system in Eq. (28) is however not regular at
the boundaries of the compact phase space x̄2 = 1, ȳ2 = 1
and σ̄ 2 = 1, it has a pole of order 1

2 at x̄2 = 1 and σ̄ 2 = 1 and
a pole of order 1 at ȳ2 = 1. This can be regularized following
a prescription from Ref. [23]. The idea is to redefine the phase
space time variable as

dτ → d τ̄ = dτ

(1 − x̄2)
1
2 (1 − ȳ2)(1 − σ̄ 2)

1
2

. (29)

With respect to this redefined time variable, the dynamical
system (28) can be rewritten as

dx̄

d τ̄
= 3

2
(ωk − ωm)

(
x̄2 − (1 − x̄2) sgn(β)

)
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Table 1 Existence and physical
viability conditions for finite
fixed points for a scalar field
with kinetic term F(X) = βX
and potential V (φ) = V0φ

n ,
calculated from the system (25)

Point Co-ordinate (x, y, σ ) Existence Physical viability (
m ≥ 0)

A1+ (1, 0, 0) β > 0 Always

A1− (−1, 0, 0) β > 0 Always

Table 2 Stability condition of
physically viable fixed points
given in Table 1 along with their
cosmological behavior. Here
and throughout the paper, NH
stands for nonhyperbolic

Point Co-ordinates (x, y, σ ) Stability Cosmology

A1+ (1, 0, 0) Unstable a(t) = (t − t∗)
1
3 , t ≥ t∗

A1− (−1, 0, 0) Saddle (NH) a(t) = (t∗ − t)
1
3 , t ≤ t∗

×(1 − x̄2)(1 − ȳ2)
√

1 − σ̄ 2

+3

2

(
(1 + ωm)(1 − x̄2)

√
1 − σ̄ 2

−σ̄ x̄ sgn(β)
√

1 − x̄2
)

(1 − x̄2)ȳ2, (30a)

d ȳ

d τ̄
= 3

2
ȳ(1 − ȳ2)

[
(−σ̄

√
1 − x̄2

+(ωk + 1)x̄
√

1 − σ̄ 2)(1 − ȳ2)

−σ̄ ȳ2
√

1 − x̄2 sgn(β)
]
, (30b)

dσ̄

d τ̄
= 3

n
σ̄ 2(1 − σ̄ 2)

√
1 − x̄2(1 − ȳ2). (30c)

In terms of the compact variables, the constraint equation
(19a) can be rewritten for this model as

x̄2

1 − x̄2 − ȳ2

1 − ȳ2 − sgn(β) = 
m . (31)

Therefore, for a canonical scalar field where sgn(β) = 1, the
physical viability condition requires

x̄2

1 − x̄2 − ȳ2

1 − ȳ2 − 1 = 
m ≥ 0. (32)

It can be checked that the necessary and sufficient condi-
tions for physical viability of canonical scalar field are given
respectively as follows

ȳ2 ≤ 2 − 1

x̄2 , x̄2 ≥ 1

2
. (33)

For a phantom scalar field where sgn(β) = −1, the physical
viability condition requires

x̄2

1 − x̄2 − ȳ2

1 − ȳ2 + 1 = 
m ≥ 0. (34)

The necessary and sufficient condition for the above to be
satisfied is

ȳ2 ≤ 1

2 − x̄2 . (35)

The constraints in Eqs. (33) and (35) specify the physically
viable region of the entire 3-dimensional compact phase
space for canonical and phantom scalar fields respectively.
One can notice that the line x̄ = 0 is physical only for the case
of a phantom scalar field (β < 0), which is consistent with
the fact that a phantom scalar field is necessarily required to
achieve a nonsingular bounce.

The system (30) presents a total of six invariant subman-
ifolds x̄ = ±1, ȳ = 0, 1 and σ̄ = ±1. Their stability is
calculated in Appendix B. The fixed points for system (30)
are presented in Table 3, along with their stability condi-
tions in Table 4. Although from Table 3 it might appear that
there are five different pairs of fixed points at the infinity of
the phase space, the pair B4± is physically viable only for
σ̄ = 0, in which case they already lie on the line of fixed
points B1±. Therefore there are only four different pairs of
fixed points at infinity. B1± are De-Sitter solutions, whereas
B2± correspond to cosmological phases dominated by the
hydrodynamic matter component. For ωm = 0, the fixed
point B2+ can be interpreted as the matter-dominated epoch
since this is a saddle and therefore, always represents an inter-
mediate phase of evolution. Fixed points on the line B3± can
exhibit various cosmological scenarios. For instance, they
can describe a matter-dominated universe for x̄ = 1, β > 0,
static universe for x̄ = 0, β < 0. Finally, the fixed points
B5± correspond to a static universe.

In the left panel of Fig. 2, we present the phase portrait of
the system (30) in the compact phase space that corresponds
to physically viable nonsingular bouncing solutions. We also
observe that there is a violation of the null energy condi-
tion (NEC) during bounce (see the right panel of Fig. 2), as
expected. The plots also clearly show the matter-dominated
fixed points B2± are saddles, i.e. intermediate epochs of evo-
lution, as expected.

The phase trajectories in the upper left panel, which cor-
responds to F(X) = βX (β < 0), V (φ) = V0φ

4, show
nonsingular bouncing solutions connecting the contracting
and expanding De-Sitter phases B1− and B1+ respectively.
However, one cannot say this is the generic behaviour of
phase trajectories as B1− and B1+ are not global repellers
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Table 3 Existence and physical viability condition for fixed points at infinity for a scalar field with kinetic term F(X) = βX and potential
V (φ) = V0φ

n calculated from the system (30)

Point Co-ordinate (x̄, ȳ, σ̄ ) Existence Physical viability (
m ≥
0)

B1+ (1, 1, σ̄ ) Always Always

B1− (−1, 1, σ̄ ) Always Always

B2+ (1, 0, σ̄ ) Always Always

B2− (−1, 0, σ̄ ) Always Always

B3+ (x̄, 0, 1) Always 1
2 ≤ x̄2 ≤ 1 &
x̄ �= 0 if sgn(β) = 1
x̄2 ≤ 1 if sgn(β) = −1

B3− (x̄, 0,−1) Always 1
2 ≤ x̄2 ≤ 1 &
x̄ �= 0 if sgn(β) = 1
x̄2 ≤ 1 if sgn(β) = −1

B4+
(

(1+ωm )
√

1−σ̄ 2√
(1+ωm )2−σ̄ 2ωm (ωm+2)

, 1, σ̄

) ((
σ̄ 2 ≤ (1+ωm )2

ωm (ωm+2)

)
∧ ((β < 0) ∧ [(σ̄ ≤ 0) ∨ (σ̄ = 1)])

)
∨((

σ̄ 2 ≤ (1+ωm )2

ωm (ωm+2)

)
∧ ((β > 0) ∧ [(σ̄ ≥ 0) ∨ (σ̄ = −1)])

) σ̄ = 0

B4−
(

− (1+ωm )
√

1−σ̄ 2√
(1+ωm )2−σ̄ 2ωm (ωm+2)

, 1, σ̄

) ((
σ̄ 2 ≤ (1+ωm )2

ωm (ωm+2)

)
∧ ((β < 0) ∧ [(σ̄ ≥ 0) ∨ (σ̄ = −1)])

)
∨((

σ̄ 2 ≤ (1+ωm )2

ωm (ωm+2)

)
∧ ((β > 0) ∧ [(σ̄ ≤ 0) ∨ (σ̄ = 1)])

) σ̄ = 0

B5+
(

0, 1√
2
, 1

)
β < 0 Always

B5−
(

0, 1√
2
,−1

)
β < 0 Always

Table 4 Stability condition of physically viable fixed points given in
Table 3 along with their cosmological behavior. Stability of the lines of
fixed points B1±, B2± and B3± can be determined by investigating the

stability of the invariant submanifolds x̄ = ±1, ȳ = 0, 1 and σ̄ = ±1
(see Appendix B)

Point Co-ordinates (x̄, ȳ, σ̄ ) Stability Cosmology

B1+ (1, 1, σ̄ ) Stable for σ̄ = 0 or {σ̄ �=
0, sgn(β) �= sgn(σ̄ )} &
Saddle for
{σ̄ �= 0, sgn(β) = sgn(σ̄ )}

De Sitter

B1− (−1, 1, σ̄ ) Unstable for σ̄ = 0 or {σ̄ �=
0, sgn(β) = sgn(σ̄ )}&
Saddle for
{σ̄ �= 0, sgn(β) �= sgn(σ̄ )}

De Sitter

B2+ (1, 0, σ̄ ) Saddle always a(t) = (t − t∗)
2

3(1+ωm ) , t ≥ t∗
B2− (−1, 0, σ̄ ) Saddle always a(t) = (t∗ − t)

2
3(1+ωm ) , t ≤ t∗

B3+ (x̄, 0, 1) Stable if sgn(n) > 0 saddle
otherwise

Depending on x̄ and β

B3− (x̄, 0,−1) Unstable if sgn(n) > 0 saddle
otherwise

Depending on x̄ and β

B5+
(

0, 1√
2
, 1

)
Unstable if sgn(n) < 0 saddle

otherwise
a(t) = constant

B5−
(

0, 1√
2
,−1

)
Stable if sgn(n) < 0 saddle

otherwise
a(t) = constant

and attractors. Apart from B1− and B1+ there is also another
repeller B3− and another attractor B3+. Therefore, there can
exist heteroclinic trajectories connecting B3− to B1+, B1−
to B3+ and B3− to B3+, which may or may not correspond

to a nonsingular bouncing cosmology, depending on how the
trajectories evolve.

The phase trajectories in the lower left panel, which corre-
sponds to F(X) = βX (β < 0), V (φ) = V0φ

−4, show non-
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singular bouncing solutions connecting two De-Sitter phases
(B1− → B1+) or a De-Sitter phase with a static universe
(B1− → B5− or B5+ → B1+). However, again, one cannot
say that such behaviour is generic. For n = −4 < 0, the fixed
points B3± are saddles, but B5± becomes an attractor/repeller
pair. Thus, there can exist heteroclinic trajectories connect-
ing B5− to B5+, which, again, may or may not correspond
to a nonsingular bouncing cosmology, depending on how the
trajectories evolve.

3.1.2 Exponential potential V (φ) = V0e−λφ/MPl :

The second example we consider is the specific case given
by F(X) = βX, V (φ) = V0e−λφ/MPl where β, V0 are con-
stants with suitable dimension, λ is a dimensionless constant.
For this choice, we have

� = 0,  = 1, ωk = 1, ρk = βX, σ =
√

2/3λ√|β| .

(36)

Finite Fixed Point Analysis
In this case, since σ is a constant, the system (19) reduces

to a 2-dimensional dynamical system

dx

dτ
= 3

2
x

[
2x − σ y2 sgn(V0) sgn(β)

]

−3

2

[
(1 − ωm) sgn(β) + (1 + ωm)(x2 − y2 sgn(V0))

]
,

(37a)
dy

dτ
= 3

2
y
[
2x − σ

(
1 + y2 sgn(V0) sgn(β)

)]
. (37b)

As in the power law case, one can notice that the dynamical
system (37) is symmetric under reflection against the y = 0
line, i.e. under the transformation y → −y. This implies that
it suffices to take into consideration only the y > 0 region of
the phase space, since the phase portrait in the y < 0 region
will just be a reflection of that against y = 0. From the phys-
ical point of view, this means that the qualitative behavior
of the model is independent of the signature of the potential
and we can confine our attention to sgn(V0) = 1. Therefore,
the interpretation of the y = 0 invariant submanifold is very
clear in this case. As before, for the physical viability of the
model, one requires the condition 
m ≥ 0. The phase space
of the system (25) is therefore constrained within the region
given by

{(x, y) ∈ R
2 : y ≥ 0, x2 − y2 − sgn(β) ≥ 0}. (38)

The system (37) contains seven finite fixed points viz.
A1±, A2±, A3± and A4 (see Table 5). The stability and cos-
mological evolution corresponding to each fixed point are
listed in Table 6. The fixed points A1± that exist only for

the case of a canonical scalar field, correspond to deceler-
ated expanding and contracting phases respectively, which
we also obtained for the power law potential. The rest of the
finite fixed points obtained for the exponential potential have
no counterpart for the power law potential. For the case of
a canonical scalar field, we get another pair of expanding
and contracting solutions, A3±, which can be accelerated
or decelerated according to σ 2 > 4

3 or σ 2 < 4
3 respectively.

A3± coincide with A1± in the limit |σ | → 2. Apart from that,
for the canonical case, we also have an expanding power law
solution A4, which is accelerated or decelerated according to
1+3ωm > 0 or 1+3ωm < 0, i.e. whether the matter compo-
nent satisfies the SEC or not. For the case of a phantom scalar
field, we get two solutions A2±, which represent finite time
singularities in the past and the future respectively. In fact,
A2+ is a phantom-dominated phase that ends, as expected,
in a big-rip singularity.
Fixed points at infinity

To get a global picture of the 2-dimensional phase space
we employ the compact dynamical variables x̄, ȳ as in Eq.
(27). For a constant σ Eq. (28) reduces to

dx̄

dτ
= 3

2
(1 − x̄2)

3
2

[
(ωk − ωm)

(
x̄2

1 − x̄2 − sgn(β)

)

+
(

1 + ωm − σ x̄ sgn(β)√
1 − x̄2

)
ȳ2

1 − ȳ2

]
,

(39a)

d ȳ

dτ
= 3

2
ȳ(1 − ȳ2)

[
−σ + (ωk + 1)x̄√

1 − x̄2
− σ ȳ2

1 − ȳ2 sgn(β)

]
.

(39b)

As in the previous case, to regularize the dynamical system
Eq. (39) we redefine the phase space time variable as

dτ → d τ̄ = dτ

(1 − x̄2)
1
2 (1 − ȳ2)

. (40)

With respect to this redefined time variable, the dynamical
system (39) can be rewritten as

dx̄

d τ̄
= 3

2
(ωk − ωm)

(
x̄2 − (1 − x̄2) sgn(β)

)

×(1 − x̄2)(1 − ȳ2) + 3

2

(
(1 + ωm)(1 − x̄2) − σ x̄

× sgn(β)
√

1 − x̄2
)
(1 − x̄2)ȳ2, (41a)

d ȳ

d τ̄
= 3

2
ȳ(1 − ȳ2)

[
(−σ

√
1 − x̄2 + (ωk + 1)x̄)(1 − ȳ2)

−σ ȳ2
√

1 − x̄2 sgn(β)
]
. (41b)
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Fig. 2 Phase portrait of the
system (30) with the shaded
region representing the
non-physical region of the phase
space (upper and lower left
panels). Here ωm = 0, β < 0
with n = 4 in the upper left
panel and n = −4 in the lower
panel. A plot of variables x̄ and
effective equation of state ωeff is
shown in the upper and lower
right panel for the blue
trajectories of the upper and
lower left panel, which
represents two characteristic
types of nonsingular bouncing
solutions, namely,
asymptotically De-Sitter and
asymptotically static in future

Table 5 Existence and physical viability conditions for finite fixed points for a scalar field with kinetic term F(X) = βX and potential V (φ) =
V0e−λφ/MPl , calculated from the system (37)

Point Co-ordinate (x, y) Existence Physical viability (
m ≥ 0)

A1+ (1, 0) β > 0 Always

A1− (−1, 0) β > 0 Always

A2+
(

2
|σ | ,

√
4+σ 2

|σ |
)

β < 0 and σ < 0 Always

A2−
(
− 2

|σ | ,
√

4+σ 2

|σ |
)

β < 0 and σ > 0 Always

A3+
(

2
|σ | ,

√
4−σ 2

|σ |
)

β > 0 and 0 < σ < 2 Always

A3−
(
− 2

|σ | ,
√

4−σ 2

|σ |
)

β > 0 and −2 < σ < 0 Always

A4

(
σ

(1+ωm )
,

√
1−ωm
1+ωm

)
β > 0 |σ | ≥ √

2(1 + ωm)
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Table 6 Stability condition of physically viable fixed points given in
Table 5 along with their cosmological behavior. Stability of A2±, A3±
and A4 are determined from the Jacobian eigenvalues whereas the sta-

bility of A1± are determined by examining the stability of the invariant
submanifolds y = 0 and 
m = 0 (see Appendix B)

Point Co-ordinates (x, y) Stability Cosmology

A1+ (1, 0) Unstable always a(t) = (t − t∗)
1
3 , t ≥ t∗

A1− (−1, 0) Stable always a(t) = (t∗ − t)
1
3 , t ≤ t∗

A2+
(

2
|σ | ,

√
4+σ 2

|σ |
)

N.H. always a(t) = 1

(t∗−t)
4

3σ2
, t < t∗

A2−
(
− 2

|σ | ,
√

4+σ 2

|σ |
)

N.H. always a(t) = 1

(t−t∗)
4

3σ2
, t > t∗

A3+
(

2
|σ | ,

√
4−σ 2

|σ |
)

N.H. always a(t) = (t − t∗)
3σ2

4 , t ≥ t∗

A3−
(
− 2

|σ | ,
√

4−σ 2

|σ |
)

N.H. always a(t) = (t∗ − t)
3σ2

4 , t ≤ t∗

A4

(
σ

(1+ωm )
,

√
1−ωm
1+ωm

)
N.H. always a(t) = (t − t∗)

2
3(1+ωm ) , t ≥ t∗

The constraints in Eqs. (33) and (35), which specified the
physically viable region of the phase space for power law
potential, remain valid also for exponential potential. This
implies we can only focus on phantom scalar field (β < 0) in
whatever follows if we want to achieve nonsingular bounces.

Fixed points for the system (41) are listed in Table 7,
along with their stability conditions in Table 8. Although
from Table 7 it might appear that there are three different
pairs of fixed points at the infinity of the phase space, the
pair B3± is physically viable only for σ = 0, in which case
it coincides with B1±. Therefore there are only two different
pairs of fixed points at infinity. B1± are De-Sitter solutions
whereas B2± corresponds to cosmological phases dominated
by the hydrodynamic matter component. For ωm = 0 the
fixed point B2+ can be interpreted as the matter-dominated
epoch since this is a saddle and therefore always represents
an intermediate phase of evolution. It might also be noted
that A2± and A3± merges with B1± at the limit |σ | → ∞.

Below we provide compact 2-dimensional phase portraits
for various cases. In all the plots we also specify the phys-
ically viable region as calculated by the constraints (33) or
(35) and the regions where the NEC and SEC are satisfied.
The NEC and SEC are determined in terms of the “effective”
equation of state parameter defined in Eq. (22).

From Figs. 3 and 4, it can be seen that for a phantom scalar
field (β < 0), all the phase trajectories within the physi-
cally viable region show a nonsingular bounce. Nonsingular
bounce is a generic feature in this case. the figures also con-
firm the violation of both NEC and SEC to achieve a bounce.
For the sake of completeness, we also show the phase portrait
for a particular case for β > 0 in Fig. 5, which shows that all
the trajectories representing a nonsingular bounce fall within
the physically non-viable region, as expected.

Fig. 3 The phase space portrait for ωm = 0 with σ = 0, β < 0 and
V0 > 0. Satisfaction of the NEC is shown in light green, the satisfaction
of the SEC in dark green and the red area denotes a non-physical part
of the phase space

3.2 Specific case II: noncanonical scalar field
F(X) = βXm (m �= 1)

In this section, we generalize our scalar field Lagrangian to
the noncanonical form

L(φ, X) = βXm − V (φ), (42)

Since ρφ + Pφ = 2XFX = 2mβXm and X ≥ 0, it cor-
responds to a non-phantom scalar field when mβ > 0 and
to a phantom scalar field when mβ < 0. Again, one can
notice from Eq. (8b) that for Ḣ > 0 near the bounce one
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Table 7 Existence and physical viability condition for fixed points at infinity for a scalar field with kinetic term F(X) = βX and potential
V (φ) = V0e−λφ/MPl , calculated from the system (41)

Point Co-ordinate (x̄, ȳ) Existence Physical viability (
m ≥ 0)

B1+ (1, 1) Always Always

B1− (−1, 1) Always Always

B2+ (1, 0) Always Always

B2− (−1, 0) Always Always

B3+
(

1+ωm√
(1+ωm )2+σ 2

, 1

)
((1 + ωm)2 + σ 2 > 0) ∧ ((β < 0) ∧ (σ ≤ 0)) ∨ ((β > 0) ∧ (σ ≥ 0)) σ = 0

B3−
(

− 1+ωm√
(1+ωm )2+σ 2

, 1

)
((1 + ωm)2 + σ 2 > 0) ∧ ((β < 0) ∧ (σ ≥ 0)) ∨ ((β > 0) ∧ (σ ≤ 0)) σ = 0

Table 8 Stability condition of physically viable fixed points given in Table 7 along with their cosmological behavior. The stability of these fixed
points is determined by investigating the stability of the invariant submanifolds x̄ = ±1 and ȳ = 0, 1 (see Appendix B)

Point Co-ordinates (x̄, ȳ) Stability Cosmology

B1+ (1, 1) Stable for σ = 0 or {σ �= 0, sgn(β) �= sgn(σ )}&
Saddle for {σ �= 0, sgn(β) = sgn(σ )}

De Sitter

B1− (−1, 1) Unstable for σ = 0 or {σ �= 0, sgn(β) = sgn(σ )}&
Saddle for {σ �= 0, sgn(β) �= sgn(σ )}

De Sitter

B2+ (1, 0) Saddle always a(t) = (t − t∗)
2

3(1+ωm ) , t ≥ t∗
B2− (−1, 0) Saddle always a(t) = (t∗ − t)

2
3(1+ωm ) , t ≤ t∗

Fig. 4 The phase space portrait
for σ = 0.8 (upper left panel)
σ = −0.8 (upper right panel)
σ = 3 (lower left panel) σ = −3
(lower right panel) with ωm = 0,
β < 0 and V0 > 0. Satisfaction
of the NEC is shown in light
green, the satisfaction of the
SEC in dark green and the red
area denotes a non-physical part
of the phase space
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Fig. 5 The phase space portrait for ωm = 0 with σ = 0, β > 0 and
V0 > 0. The shaded region represents the non-physical viable region

must necessarily need mβ < 0, i.e. a phantom scalar field.
We particularly concentrate on the case m �= 1, as the case
m = 1 has been considered previously.

The analysis in this paper relies on the scalar field being
a dynamical degree of freedom. The case m = 1/2, i.e.
F(X) ∝ ±√

X is a very special case for which the scalar field
becomes non-dynamical in the homogeneous limit [24,25].
In this case, the field is called Cuscuton. Since the field is
nondynamical, violation of NEC during a bounce does not
lead to a pathology [26]. This case is also left out of con-
sideration in this paper. For more about Cuscustun bounce
cosmology (See Refs. [27–29]).

One can calculate that, in this case,

ρk = (2m − 1)βXm . (43)

We keep on using the same compact and non-compact
dynamical variables as introduced earlier. The physical via-
bility of the model requires the condition 
m ≥ 0. In terms of
the non-compact dynamical variables (x, y), it can be written
as

{(x, y, σ ) ∈ R
3 : x2 − y2 − sgn((2m − 1)β) ≥ 0}. (44)

In terms of the compact dynamical variables (x̄, ȳ) defined
in (27), one can write

x̄2

1 − x̄2 − ȳ2

1 − ȳ2 − sgn ((2m − 1)β) = 
m . (45)

Note that the physical viability conditions for m �= 1 differ
from that for m = 1 only in the fact that sgn(β) is replaced
by sgn((2m − 1)β). When sgn((2m − 1)β) = 1 one needs

x̄2

1 − x̄2 − ȳ2

1 − ȳ2 − 1 = 
m ≥ 0. (46)

This leads to the necessary and sufficient conditions for the
physical viability respectively as

ȳ2 ≤ 2 − 1

x̄2 , x̄2 ≥ 1

2
, (47)

which are the same conditions obtained in Eq. (33). When
sgn((2m − 1)β) = −1 one needs

x̄2

1 − x̄2 − ȳ2

1 − ȳ2 + 1 = 
m ≥ 0. (48)

This leads to the necessary and sufficient conditions as

ȳ2 ≤ 1

2 − x̄2 , (49)

which is the same condition as obtained in Eq. (35). Just
like one could conclude for the case of F(X) = βX that a
physically viable nonsingular bounce requires β < 0, one
can conclude here that for the generic case F(X) = βXm , a
physically viable nonsingular bounce requires (2m − 1)β <

0. This implies the following parameter range

{(m > 1/2) ∧ (β < 0)} ∨ {(m < 1/2) ∧ (β > 0)}. (50)

As we have already seen from (8b) that achieving a nonsin-
gular bounce necessarily requires a phantom scalar field, i.e.
mβ < 0, together with the condition (2m − 1)β < 0 this
slightly constrain the parameter range

{(m > 1/2) ∧ (β < 0)} ∨ {(m < 0) ∧ (β > 0)}. (51)

In summary, the parameter range 0 ≤ m < 1/2 is not
allowed if we want to achieve a nonsingular bounce and the
Cuscuton case m = 1/2 is not taken into consideration.

3.2.1 Power law potential V (φ) = V0φ
n

For the kinetic term F(X) = βXm and the potential V (φ) =
V0φ

n , we have

� = m − 1,  = 1 − 1

n
,

ωk = 1

2m − 1
, ρk = (2m − 1)βXm . (52)
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Finite fixed point analysis
In this case, the system (19) reduces to

dx

dτ
= 3

2
x

[(
2m

2m − 1

)
x − σ y2 sgn(V ) sgn[(2m − 1)β]

]

−3

2

[(
1

2m − 1
− ωm

)
sgn[(2m − 1)β]

+(1 + ωm)(x2 − y2 sgn(V ))

]
, (53a)

dy

dτ
= 3

2
y

[
−σ +

(
2m

2m − 1

)
x − σ y2

sgn(V ) sgn[(2m − 1)β]
]

, (53b)

dσ

dτ
= 3

n
σ 2 + 3σ

(2m − 3)m + 1

(4m − 2)m

×
((

2m

2m − 1

)
x − σ y2 sgn(V )

)
. (53c)

The above system reduces to the system (25) for m = 1.
As in the case of m = 1, the system is symmetric under
reflection around y = 0, which happens to be an invariant
submanifold. Therefore it suffices to consider only the part
of the phase space given by

{(x, y, σ ) ∈ R
3 : y ≥ 0, x2 − y2 − sgn((2m − 1)β) ≥ 0}.

(54)

The system (53) contains two finite fixed points A1±,
which exist only for non-phantom fields (see Table 9). The
stabilities and corresponding cosmologies are given in Table
10. Since these critical points exist only when (2m−1)β > 0.
When (2m − 1)β > 0, they cannot give rise to physically
viable nonsingular bouncing trajectories.

Fixed points at infinity
In terms of the compact dynamical variables (x̄, ȳ, σ̄ )

defined in Eq. (27) and the redefined time variable defined
in Eq. (29), the dynamical system for F(X) = βXm, V =
V0φ

n can be rewritten in the following form

dx̄

d τ̄
= 3

2

(
1

2m − 1
− ωm

)(
x̄2 − (1 − x̄2) sgn[(2m − 1)β]

)

×(1 − x̄2)(1 − ȳ2)
√

1 − σ̄ 2

+3

2

(
(1 + ωm)(1 − x̄2)

√
1 − σ̄ 2

−σ̄ x̄ sgn[(2m − 1)β]
√

1 − x̄2
)
(1 − x̄2)ȳ2, (55a)

d ȳ

d τ̄
= 3

2
ȳ(1 − ȳ2)

[(
−σ̄

√
1 − x̄2 +

(
2m

2m − 1

)
x̄
√

1 − σ̄ 2
)

× (1 − ȳ2) − σ̄ ȳ2
√

1 − x̄2 sgn[(2m − 1)β]
]

, (55b)

dσ̄

d τ̄
= (1 − σ̄ 2)

[
3

n
σ̄ 2

√
1 − x̄2(1 − ȳ2)

+3σ̄
(2m − 3)m + 1

(4m − 2)m

((
2m

2m − 1

)
x̄
√

1 − σ̄ 2(1 − ȳ2)

−σ̄ ȳ2
√

1 − x̄2
) ]

. (55c)

The system (55) presents six invariant submanifolds x̄ =
±1, ȳ = 0, 1 and σ̄ = ±1. Their stability is calculated in
Appendix C). The fixed points for the system (55) are pre-
sented in Table 11. In the presence of pressureless dust, their
stability conditions and corresponding cosmologies are pre-
sented in Table 12. The lines of fixed points B1±, B3± and the
isolated fixed points B5± are the same ones that we obtained
earlier for the case m = 1 (see Table 3). However, unlike
in the case of m = 1, the entire lines B2± and B4± are not
lines of fixed points when m �= 1. Instead, in this case, we
only get two isolated fixed points Ba

2± that lie on the line B2±
respectively, and six isolated fixed points Ba,b,c

4± that lie on
the line B4± respectively. The points are listed in Table 11.
Moreover, Ba,b,c

4± are physically viable only for σ̄ = 0, in
which case they fall back into the lines of fixed points B1±
respectively. Therefore at the infinity of the phase space there
are only two lines of fixed points B1±, B3± and two pairs of
isolated fixed points Ba

2± and B5±, whose nature of stability
and the corresponding cosmology is listed in Table 12. The
cosmologies are the same as we have earlier obtained for
m = 1, as expected. Figure 6 presents the 3D phase portrait
of the system (55) in the compact space for two cases, show-
ing different types of physically viable nonsingular bouncing
trajectories.

The phase trajectories in the right panel of Fig. 6 shows
nonsingular bouncing trajectories for the case F(X) =
βX3 (β < 0), V (φ) = V0φ

4. Several different types of
bouncing trajectories are possible, e.g. trajectories connect-
ing a contracting De-Sitter phase to an expanding De-Sitter
phase (B1− → B1+), trajectories connecting a static and a
De-Sitter phase (B1− → B5− and B1+ → B5+) and tra-
jectories connecting B3± with B1± or B5±. However, one
cannot say this is the generic behaviour of phase trajectories
for F(X) = βX3 (β < 0), V (φ) = V0φ

4, as B1− and B1+
are not global repellers and attractors. For m = 3, n = 4,
there are two other attractor/repeller pairs B3± and B5±.
Therefore, there can exist heteroclinic trajectories connect-
ing them, which may or may not correspond to a nonsingu-
lar bouncing cosmology, depending on how the trajectories
evolve.

The phase trajectories in the left panel of Fig. 6, which
corresponds to F(X) = βX2/3 (β < 0), V (φ) = V0φ

−5,
show nonsingular bouncing trajectories connecting two De-
Sitter phases (B1− → B1+). For m = 2

3 , n = −5, B1+ and
B1− are the only attractor/repeller pair possible, i.e., they
are global attractors and repellers. The trajectories connect-
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Table 9 Existence and physical
viability conditions for finite
fixed points for a non-canonical
scalar field with kinetic term
F(X) = βXm (m �= 1) and
potential V (φ) = V0φ

n ,
calculated from the system (53)

Point Co-ordinate (x, y, σ ) Existence Physical viability (
m ≥ 0)

A1+ (1, 0, 0) (2m − 1)β > 0 ∧ m �= 0 Always

A1− (−1, 0, 0) (2m − 1)β > 0 ∧ m �= 0 Always

Table 10 Stability condition of physically viable critical points given in Table 9 along with their cosmological behaviour

Point Co-ordinates (x, y, σ ) Stability Cosmology

A1+ (1, 0, 0) Stable for 0 < m < 1
2 & Unstable for 1

2 < m < 1 saddle otherwise a(t) = (t − t∗)
2m−1

3m , t ≥ t∗
A1− (−1, 0, 0) Stable for 1

2 < m < 1 & Unstable for 0 < m < 1
2 saddle otherwise a(t) = (t∗ − t)

2m−1
3m , t ≤ t∗

Table 11 Existence and physical viability condition for fixed points at infinity for a noncanonical scalar field with kinetic term F(X) = βXm

(m �= 1) and potential V (φ) = V0φ
n , calculated from the system (55)

Point Co-ordinate (x̄, ȳ, σ̄ ) Existence Physical viability (
m ≥ 0)

B1+ (1, 1, σ̄ ) Always Always

B1− (−1, 1, σ̄ ) Always Always

Ba
2+ (1, 0, 0) Always Always

Ba
2− (−1, 0, 0) Always Always

B3+ (x̄, 0, 1) Always 1
2 ≤ x̄2 ≤ 1 if sgn((2m − 1)β) = 1 and x̄2 ≤ 1 if sgn((2m − 1)β) = −1

B3− (x̄, 0,−1) Always 1
2 ≤ x̄2 ≤ 1 if sgn((2m − 1)β) = 1 and x̄2 ≤ 1 if sgn((2m − 1)β) = −1

Ba
4+

(
(1+ωm )

√
1−σ̄ 2√

(1+ωm )2−σ̄ 2ωm (ωm+2)
, 1, 1

)
σ̄ 2 ≤ (1+ωm )2

ωm (ωm+2)
σ̄ = 0

Bb
4+

(
(1+ωm )

√
1−σ̄ 2√

(1+ωm )2−σ̄ 2ωm (ωm+2)
, 1,−1

)
σ̄ 2 ≤ (1+ωm )2

ωm (ωm+2)
σ̄ = 0

Bc
4+

(
(1+ωm )

√
1−σ̄ 2√

(1+ωm )2−σ̄ 2ωm (ωm+2)
, 1, 0

)
σ̄ 2 ≤ (1+ωm )2

ωm (ωm+2)
σ̄ = 0

Ba
4−

(
− (1+ωm )

√
1−σ̄ 2√

(1+ωm )2−σ̄ 2ωm (ωm+2)
, 1, 1

)
σ̄ 2 ≤ (1+ωm )2

ωm (ωm+2)
σ̄ = 0

Bb
4−

(
− (1+ωm )

√
1−σ̄ 2√

(1+ωm )2−σ̄ 2ωm (ωm+2)
, 1,−1

)
σ̄ 2 ≤ (1+ωm )2

ωm (ωm+2)
σ̄ = 0

Bc
4−

(
− (1+ωm )

√
1−σ̄ 2√

(1+ωm )2−σ̄ 2ωm (ωm+2)
, 1, 0

)
σ̄ 2 ≤ (1+ωm )2

ωm (ωm+2)
σ̄ = 0

B5+
(

0, 1√
2
, 1

)
(2m − 1)β < 0 Always

B5−
(

0, 1√
2
,−1

)
(2m − 1)β < 0 Always

ing them must necessarily undergo a nonsingular bounce and
we have shown explicitly in the figure four such character-
istic trajectories. In this case, one can confidently say that
a nonsingular bounce is a generic behaviour of the phase
trajectories.

3.2.2 Exponential potential V (φ) = V0e−λφ/MPl

For the kinetic term F(X) = βXm and the potential V (φ) =
V0e−λφ/MPl , we have

� = m − 1,  = 1, ωk = 1

2m − 1
, ρk = (2m − 1)βXm

(56)

Finite fixed point analysis
In this case, the system (19) reduces to

dx

dτ
= 3x

2

[(
2m

2m − 1

)
x − σ y2 sgn[(2m − 1)β]

]

−3

2

[(
1

2m − 1
− ωm

)
sgn[(2m − 1)β]

+(1 + ωm)(x2 − y2)

]
, (57a)

dy

dτ
= 3

2
y

[
−σ +

(
2m

2m − 1

)
x − σ y2 sgn[(2m − 1)β]

]
, (57b)

dσ

dτ
= 3σ

(2m − 3)m + 1

(4m − 2)m

[(
2m

2m − 1

)
x − σ y2

]
. (57c)
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Table 12 Stability condition and the cosmology of the fixed points
given in Table 11 in presence of pressureless dust (ωm = 0). Stability
of the lines of fixed points B1± and B3± can be determined by investi-

gating the stability of the invariant submanifolds x̄ = ±1, ȳ = 0, 1 and
σ̄ ± 1 (see Appendix C)

Point Co-ordinates (x̄, ȳ, σ̄ ) Stability Cosmology

B1+ (1, 1, σ̄ ) Stable for
(
m > 1

2

) ∧ (sgn(σ̄ ) �= sgn β) or(
m > 1

2

) ∧ (σ̄ = 0) saddle otherwise
De Sitter

B1− (−1, 1, σ̄ ) Unstable for
(
m > 1

2

) ∧ (sgn(σ̄ ) = sgn β)

or
(
m > 1

2

) ∧ (σ̄ = 0) saddle otherwise
De Sitter

Ba
2+ (1, 0, 0) Saddle always a(t) = (t − t∗)

2
3 , t ≥ t∗

Ba
2− (−1, 0, 0) Saddle always a(t) = (t − t∗)

2
3 , t ≤ t∗

B3+ (x̄, 0, 1) Stable for n > 0 saddle otherwise Depending on x̄ and sgn(2m − 1)β

B3− (x̄, 0,−1) Unstable for n > 0 saddle otherwise Depending on x̄ and sgn(2m − 1)β

B5+
(

0, 1√
2
, 1

)
Unstable for 3(mn−n−2m)

2mn ≥ 0 saddle otherwise a(t) = constant

B5−
(

0, 1√
2
,−1

)
Stable for 3(mn−n−2m)

2mn ≥ 0 saddle otherwise a(t) = constant

Fig. 6 Phase portrait of the
system (55) with shaded region
represents a non-physical region
of the phase space. The left plot
is for n = −5,m = 2

3 and the
right plot is for n = 4,m = 3
moreover sgn((2m − 1)β) = −1

Form = 1 the dynamical system for the exponential potential
was 2D ((37)). For m �= 1, the dynamical system for the
exponential potential becomes 3D. The dynamical system is
independent of the parameter λ. The above system reduces
to the system (37) for m = 1. The system is symmetric under
reflection around y = 0, which happens to be an invariant
submanifold. Therefore it suffices to consider only the part
of the phase space given by

{(x, y, σ ) ∈ R
3 : y ≥ 0, x2 − y2 − sgn((2m − 1)β) ≥ 0},

(58)

which corresponds to taking V0 > 0.
The system (57) contains two finite fixed points A1±,

which exist only for non-phantom fields (see Table 13). The
stabilities and corresponding cosmologies are given in Table
14. Since these critical points exist only when (2m−1)β > 0.
When (2m − 1)β > 0, they cannot give rise to physically
viable nonsingular bouncing trajectories. The finite fixed
points A2±, A3± and A4 that appeared in Table 5, are specific
to the case m = 1 and does not arise for m �= 1.

Fixed points at infinity
In terms of the compact dynamical variables (x̄, ȳ, σ̄ )

defined in Eq. (27) and the redefined time variable defined
in Eq. (29), the dynamical system for F(X) = βXm, V =
V0e−λφ/MPl can be rewritten in the following form

dx̄

d τ̄
= 3

2

(
1

2m − 1
− ωm

) (
x̄2 − (1 − x̄2) sgn[(2m − 1)β]

)

×(1 − x̄2)(1 − ȳ2)
√

1 − σ̄ 2

+3

2

(
(1 + ωm)(1 − x̄2)

√
1 − σ̄ 2

−σ̄ x̄ sgn[(2m − 1)β]
√

1 − x̄2
)
(1 − x̄2)ȳ2, (59a)

d ȳ

d τ̄
= 3

2
ȳ(1 − ȳ2)

[(
−σ̄

√
1 − x̄2 +

(
2m

2m − 1

)
x̄
√

1 − σ̄ 2
)

× (1 − ȳ2) − σ̄ ȳ2
√

1 − x̄2 sgn[(2m − 1)β]
]
, (59b)

dσ̄

d τ̄
= 3σ̄ (1 − σ̄ 2)

[
(2m − 3)m + 1

(4m − 2)m

((
2m

2m − 1

)
x̄

×
√

1 − σ̄ 2(1 − ȳ2) − σ̄ ȳ2
√

1 − x̄2
)]

. (59c)
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Table 13 Existence and the
physical viability condition for
finite fixed points for a
noncanonical scalar field with
kinetic term F(X) = βXm

(m �= 1) and potential
V (φ) = V0e−λφ/MPl , calculated
from the system (57)

Point Co-ordinate (x, y, σ ) Existence Physical viability (
m ≥ 0)

A1+ (1, 0, 0) (2m − 1)β > 0 Always

A1− (−1, 0, 0) (2m − 1)β > 0 Always

Table 14 Stability and
cosmological behavior of the
physically viable fixed points
given in Table 13

Point Co-ordinate (x, y, σ ) Stability Cosmology

A1+ (1, 0, 0) Unstable if m > 1 saddle otherwise a(t) = (t − t∗)
2m−1

3m , t ≥ t∗
A1− (−1, 0, 0) Stable if m > 1 saddle otherwise a(t) = (t − t∗)

2m−1
3m , t ≤ t∗

Table 15 Existence and the physical viability condition for fixed points at infinity for a noncanonical scalar field with kinetic term F(X) = βXm

(m �= 1) and V (φ) = V0e−λφ/MPl , calculated from the system (59)

Point Co-ordinate (x̄, ȳ, σ̄ ) Existence Physical viability (
m ≥ 0)

B1+ (1, 1, σ̄ ) Always Always

B1− (−1, 1, σ̄ ) Always Always

Ba
2+ (1, 0, 1) Always Always

Bb
2+ (1, 0,−1) Always Always

Bc
2+ (1, 0, 0) Always Always

Ba
2− (−1, 0, 1) Always Always

Bb
2− (−1, 0,−1) Always Always

Bc
2− (−1, 0, 0) Always Always

Ba
3+

(
(1+ωm )

√
1−σ̄ 2√

(1+ωm )2(1−σ̄ 2)+σ̄ 2
, 1, 1

)
(1 + ωm)2(1 − σ̄ 2) + σ̄ 2 ≥ 0 σ̄ = 0

Bb
3+

(
(1+ωm )

√
1−σ̄ 2√

(1+ωm )2(1−σ̄ 2)+σ̄ 2
, 1,−1

)
(1 + ωm)2(1 − σ̄ 2) + σ̄ 2 ≥ 0 σ̄ = 0

Bc
3+

(
(1+ωm )

√
1−σ̄ 2√

(1+ωm )2(1−σ̄ 2)+σ̄ 2
, 1, 0

)
(1 + ωm)2(1 − σ̄ 2) + σ̄ 2 ≥ 0 σ̄ = 0

Ba
3−

(
− (1+ωm )

√
1−σ̄ 2√

(1+ωm )2(1−σ̄ 2)+σ̄ 2
, 1, 1

)
(1 + ωm)2(1 − σ̄ 2) + σ̄ 2 ≥ 0 σ̄ = 0

Bb
3−

(
− (1+ωm )

√
1−σ̄ 2√

(1+ωm )2(1−σ̄ 2)+σ̄ 2
, 1,−1

)
(1 + ωm)2(1 − σ̄ 2) + σ̄ 2 ≥ 0 σ̄ = 0

Bc
3−

(
− (1+ωm )

√
1−σ̄ 2√

(1+ωm )2(1−σ̄ 2)+σ̄ 2
, 1, 0

)
(1 + ωm)2(1 − σ̄ 2) + σ̄ 2 ≥ 0 σ̄ = 0

B5+
(

0, 1√
2
, 1

)
(2m − 1)β < 0 Always

B5−
(

0, 1√
2
,−1

)
(2m − 1)β < 0 Always

The system (59) presents six invariant submanifolds x̄ =
±1, ȳ = 0, 1 and σ̄ = ±1, same as in the power law case.
Their stability is calculated in Appendix C. The fixed points
for the system (59) are presented in Table 15. In the pres-
ence of pressureless dust, their stability conditions and cor-
responding cosmologies are presented in Table 16. The six
isolated fixed points Ba,b,c

3± exist only for σ̄ = 0, for which
they fall back on the lines of fixed points B1±. The {x, y}
coordinates of the fixed points B1± and Bc

2± are the same as
the fixed points B1± and B2± of the 2D phase space for the
case m = 1 (see Table 7). Since for the case m �= 1, σ is a

dynamical variable, we get the fixed points Ba,b
2± and B5± at

the boundary σ → ±∞. We did not get any corresponding
point for the casem = 1 because in that case, σ was a param-
eter and we considered it to be finite. In Fig. 7 we present the
3D phase portrait of the system (59) in the compact phase
space for two cases, showing different types of physically
viable nonsingular bouncing trajectories.

The phase trajectories in the right panel of Fig. 7 shows
nonsingular bouncing trajectories for the case F(X) =
βX3 (β < 0), V (φ) = V0e−λφ/Mpl . In this case, two types
of bouncing trajectories are possible, e.g. trajectories con-
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Table 16 Stability and the cosmological behavior of the physically
viable fixed points defined in Table 15 in presence of pressureless dust
(ωm = 0). Stability of the fixed points (or the line of fixed points) B1±,

Ba,b,c
2± can be determined by investigating the stability of the invariant

submanifolds x̄ = ±1 and ȳ = 0, 1 (see Appendix C)

Point Co-ordinates (x̄, ȳ, σ̄ ) Stability Cosmology

B1+ (1, 1, σ̄ ) Stable for
(
m > 1

2

) ∧ (sgn(σ̄ ) �= sgn β) or
(
m > 1

2

) ∧ (σ̄ = 0) saddle otherwise De Sitter

B1− (−1, 1, σ̄ ) Unstable for
(
m > 1

2

) ∧ (sgn(σ̄ ) = sgn β) or
(
m > 1

2

) ∧ (σ̄ = 0) saddle otherwise De Sitter

Ba
2+ (1, 0, 1) Saddle always a(t) = (t − t∗)

2
3 , t ≥ t∗

Bb
2+ (1, 0,−1) Saddle always a(t) = (t − t∗)

2
3 , t ≥ t∗

Bc
2+ (1, 0, 0) Saddle always a(t) = (t − t∗)

2
3 , t ≥ t∗

Ba
2− (−1, 0, 1) Saddle always a(t) = (t − t∗)

2
3 , t ≤ t∗

Bb
2− (−1, 0,−1) Saddle always a(t) = (t − t∗)

2
3 , t ≤ t∗

Bc
2− (−1, 0, 0) Saddle always a(t) = (t − t∗)

2
3 , t ≤ t∗

B5+
(

0, 1√
2
, 1

)
Unstable for m < 0 or m > 1 saddle otherwise a(t) = constant

B5−
(

0, 1√
2
,−1

)
Stable for m < 0 or m > 1 saddle otherwise a(t) = constant

necting a contracting De-Sitter phase to an expanding De-
Sitter phase (B1− → B1+), trajectories connecting a static
and a De-Sitter phase (B1− → B5− and B5+ → B1+). How-
ever, one cannot say this is the generic behaviour of phase tra-
jectories for F(X) = βX3 (β < 0), V (φ) = V0e−λφ/Mpl ,
as B1− and B1+ are not global repellers and attractors.
For m = 3, there are another attractor/repeller pair B5±.
Therefore, there can exist heteroclinic trajectories connect-
ing them, which may or may not correspond to a nonsingu-
lar bouncing cosmology, depending on how the trajectories
evolve.

The phase trajectories in the left panel of Fig. 7, which cor-
responds to F(X) = βX2/3 (β < 0), V (φ) = V0e−λφ/Mpl ,
show nonsingular bouncing trajectories connecting two De-
Sitter phases (B1− → B1+). For m = 2

3 , B1+ and B1− are
the only attractor/repeller pair possible, i.e., they are global
attractors and repellers. The trajectories connecting them
must necessarily undergo a nonsingular bounce and we have
shown explicitly in the figure five such characteristic trajec-
tories. In this case, one can confidently say that a nonsingular
bounce is a generic behaviour of the phase trajectories.

4 Summary

A careful analysis of the phase space structure of the models
considered reveals some important physical aspects of the
models. In this section, we summarize some of the main
points of our phase space analysis.

• Matter dominated epoch: At the fixed points B2±,
(x, y) → (±∞, 0) and one can write from Eqs. (11)
and (19a)


m

x2 = ρm

3M2
Pl H

2
→ 1. (60)

Therefore these two points are matter-dominated fixed
points having a power law evolution (see Tables 4, 8, 12,
16). In all the cases considered above B2± are saddles.
The saddle fixed point B2+ can be interpreted as the inter-
mediate matter-dominated epoch during the expanding
phase of the universe.

• Genericity of nonsingular bounces:By genericity of non-
singular bouncing solutions, what we mean is, no matter
what initial state one may choose during the contracting
phase (i.e. whatever phase space point one chooses in the
region x̄ < 0), one always ends up with a nonsingular
bounce. If there is a global repeller in the region x̄ < 0
and a global attractor in the region x̄ > 0, then all the
heteroclinic trajectories must necessarily represent a non-
singular bounce and one can say that nonsingular bounce
is generic. In this case, one can also say that the bounc-
ing solutions are stable in both past and future directions.
No perturbation of initial conditions alters the past and
future asymptotic of the evolution.
Nonsingular bounces are only possible for phantom
scalar fields within GR. When the kinetic term in the
Lagrangian of the scalar field is F(X) = βX (β < 0),
nonsingular bounce is generic for an exponential poten-
tial but not for a power law potential, as we have discussed
in Sects. 3.1.1 and 3.1.2 and as is also clear from Figs. 2, 3,
4. This is because the fixed points B1± are global attrac-
tors/repellers for an exponential potential but not for a
power law potential.
When the kinetic term in the Lagrangian of the scalar
field is F(X) = βXm with β, m belonging to the range
specified in (51), nonsingular bounce is not generic for
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Fig. 7 Phase portrait of the
system (59) with shaded region
represents a non-physical region
of the phase space. The plots are
for m = 2/3 (left panel) and
m = 3 (right panel) moreover
sgn((2m − 1)β) = −1

either power law or exponential potentials, as we have
discussed in Sects. 3.2.1 and 3.2.2 and as is also clear
from the examples presented in Figs. 6, 7. This is because
the fixed points B1± are not global attractors/repellers
for either case. It is possible for heteroclinic trajecto-
ries to exist which do not undergo any bounce. However,
there exist specific ranges for the model parameters for
which nonsingular bounce is generic. For F(X) = βXm

(m �= 1) and V (φ) = V0φ
n , when {m, n} is within the

range

1

2
< m < 1, n <

2m

m − 1
, (61)

the points B3± and B5± are saddles and B1± becomes
global attractors and repellers (see Table 12). For F(X) =
βXm (m �= 1) and V (φ) = V0e−λφ/MPl , when

1

2
< m < 1, (62)

the points B5± are saddles and B1± becomes global
attractors and repellers (see Table 16). In these cases,
nonsingular bounce becomes generic, as can be seen in
the examples presented in the left panels of Figs. 6 and 7.

• Cosmic future when the bounce is generic: It is interest-
ing to investigate from the phase space the cosmic future
of the nonsingular bouncing cosmologies when they are
generic.
For F(X) = βX (β < 0) and an exponential potential,
although mathematically the fixed points A2± are non-
hyperbolic, from Fig. 4 one can see that they are actu-
ally global future and past attractors. The end state of
a nonsingular bouncing cosmology is a future attractor
which can be either a De-Sitter phase or a big-rip cosmol-
ogy, depending on the choice of the model parameters. If

σ =
√

2/3λ√−β
≥ 0, the future attractor is a De-Sitter phase

given by the point B1+. In this case, the cosmology can
be matched with the �CDM at the asymptotic future. If,

however, σ =
√

2/3λ√−β
< 0, then the future attractor is a

big-rip singularity given by the point A2+.

On the contrary, when F(X) = βXm for either a power
law or an exponential potential, and in cases when the
bounce is generic, the only end state that is possible is
the De-Sitter phases represented by the point B1+. In
these cases, the cosmology can be matched with �CDM
at the asymptotic future.

5 Conclusion

Nonsingular bouncing solutions are important candidates for
early universe cosmology and it is necessary to investigate
different aspects of them. This article deals with investigating
them from the phase space point of view. For our analysis,
we have taken nonsingular bouncing models in F(X)−V (φ)

theory, considering two simple choices for the potential,
namely power law and exponential potential. Our main moti-
vation behind doing this exercise is to find how generic non-
singular bouncing solutions are. More precisely, even if for a
theory a bouncing solution may exist, whether or not it arises
from a large number of initial conditions. In the phase space
picture, this question can be recast as to whether phase tra-
jectories representing nonsingular bouncing solutions come
from a large area of the phase space or only from some small
patches.

For the purpose of a dynamical system analysis we have
used the formulation of references [21,22]. The formula-
tion employs density-normalized dimensionless dynamical
variables instead of the usual Hubble-normalized dynamical
variables. This is because the Hubble normalized dynamical
variables diverge at the bounce. We extend the phase space
analysis of [21] by compactifying the phase space. Compact-
ification of the phase space helps us visualize its global struc-
ture and answer questions regarding past and future asymp-
totic of a cosmological model. In our case, the compact phase
space analysis helps us investigate the genericity of solutions
as well as answer questions about their past and future asymp-
totic dynamics.

For both potentials, we prove the existence of interme-
diate matter-dominated epochs which arise as saddle fixed
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points in the phase space. We recover the result that for
a nonsingular bounce to happen in an F(X) − V (φ) type
scalar field Lagrangian in GR, the scalar field needs to be
phantom.1This result is also expected out of the fact that
nonsingular bounce in spatially flat FLRW cosmology in GR
requires violation of NEC [2,3]. We showed that, in general,
nonsingular bounce in these models is not generic due to
the non-existence of global past or future attractors. How-
ever, we identify the parameter range for which nonsingular
bounce can be generic. For the kinetic term F(X) = βXm

(m �= 1/2, β < 0), these ranges are as follows:

• For a power law potential V (φ) = V0φ
n , the range is{

1
2 < m < 1, n < 2m

m−1

}
.

• For an exponential potential V (φ) = V0e−λφ/MPl , the
range is

{ 1
2 < m ≤ 1

}
.

When the model parameters lie outside this specific range,
obtaining a bouncing solution is still feasible by carefully
selecting a particular set of initial conditions and numerically
evolving the system. However, in such cases, achieving a
bounce may require fine-tuning the initial conditions. Even
a slight arbitrary alteration in the initial conditions may lead
to a phase trajectory that does not exhibit a bounce.

Conversely, when the model parameters fall within the
mentioned range, any arbitrary change in the initial condi-
tions will still result in a bounce. In this scenario, there is
no need for precise fine-tuning of the initial conditions to
achieve the bouncing behavior. For the special case when
F(X) = βX (β < 0) and V (φ) = V0e−λφ/MPl , the asymp-
totic future of the bouncing cosmology can be either De-Sitter
or a big-rip. In all the other cases when the bounce is generic,
the asymptotic future is definitely De-Sitter.

Despite the challenges arising from inhomogeneous cos-
mological perturbations in the F(X)−V (φ) model, we have
chosen to work with this simpler model to highlight the sig-
nificance of exploring the genericity of bouncing solutions,
specifically their stability concerning initial condition pertur-
bations. Our investigation employs the compact phase space
formulation to address this question. A case that we left
out of consideration is the very special case of Cuscuton
(F(X) ∝ ±√

X ). Phase space analysis of Cuscuton cosmol-
ogy should be done with care as the Cuscuton field is non-
dynamical and provides an additional constraint. Since the
field is nondynamical, it has been suggested that a bounce
with a phantom Cuscuton does not lead to ghost instabilities
[26]. It is therefore interesting to do the same exercise for a

1 If one goes beyond a scalar field with an F(X) − V (φ) type
Lagrangians and GR, it is possible to achieve a nonsingular bounce even
without non-phantom scalar fields e.g. ghost condensate or Galileon
models.

Cuscuton bounce, something which we plan to address in a
future work.

We assert that, within the context of the theory being con-
sidered, cases where the bounce is generic hold greater inter-
est than those where it is not. By examining the generic-
ity of bounces, we gain valuable insights into the stability
and robustness of these solutions against variations in ini-
tial conditions. This knowledge is crucial in understanding
bouncing cosmological models’ overall behaviour and via-
bility. Furthermore, employing a compact phase space anal-
ysis enables us to explore the cosmic fate of nonsingular
bouncing cosmologies when they are considered as generic
solutions. The existing literature is replete with various non-
singular bouncing models, spanning both in GR and mod-
ified gravity theories (for a comprehensive overview, refer
to the reviews [3,6]). Recent works [10,30,31] have also
contributed to this intriguing area of research. Given that a
compact phase space analysis captures the system’s global
dynamics, it holds tremendous potential for studying theories
that feature nonsingular bouncing solutions. It would be par-
ticularly captivating to explore the compact phase space for
such theories, identifying cases where the bounce is generic
and comprehending the cosmic future within these scenar-
ios. These fascinating ideas remain as promising avenues for
future projects, enriching our understanding of the broader
implications of nonsingular bouncing cosmologies in the cos-
mos.
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Appendix A: Center manifold dynamics for point A1− of
model F(X) = βX, V (φ) = V0φ

n

In this appendix, we apply the center manifold theory to study
the dynamics of the system (25) near a point A1−(−1, 0, 0).
For detailed mathematical background on center manifold
theory, we refer the reader to Ref. [32].

Firstly, we translate the point (−1, 0, 0) to (0, 0, 0) via a
transformation x → x − 1, y → y, σ → σ under which the
system (25) becomes

dx

dτ
= 3

2
(x − 1)

[
2(x − 1) − σ y2

]

−3

2

[
(1 − ωm) + (1 + ωm)((x − 1)2 − y2)

]
, (A1a)

dy

dτ
= 3

2
y
[
−σ + 2(x − 1) − σ y2

]
, (A1b)

dσ

dτ
= 3

n
σ 2, (A1c)

which can be written as
⎛
⎝

dx
dτ
dy
dτ
dσ
dτ

⎞
⎠ =

⎛
⎝

−3(1 − ωm) 0 0
0 −3 0
0 0 0

⎞
⎠

⎛
⎝

x
y
σ

⎞
⎠ +

⎛
⎝
g1

g2

f

⎞
⎠ ,

where

g1 = −3

2
σ xy2 + 3

2
x2 + 3

2
σ y2 − 3

2
x2ωm

+3

2
y2ωm + 3

2
y2,

g2 = −3

2
σ y3 − 3

2
σ y + 3 xy,

f = 3

n
σ 2.

The local center manifold is given by

{z = h(σ ) : h(0) = 0, Dh(0) = 0}, (A2)

where

h =
(
h1

h2

)
, z =

(
x
y

)
.

The function h can be approximated in terms of a power
series as

h1(σ ) = a2σ
2 + a3σ

3 + O(σ 4), (A3)

h2(σ ) = b2σ
2 + b3σ

3 + O(σ 4), (A4)

which is determined by the quasilinear partial differential
equation [32]

Dh(σ ) [Aσ + F(σ,h(σ ))]−Bh(σ )−g(σ,h(σ )) = 0, (A5)

with

g =
(
g1

g2

)
, F = f, B =

(−3(1 − ωm) 0
0 −3

)
, A = 0.

In order to solve the Eq. (A5), we substitute A,h,F, B, g in
to it. On comparing like powers of σ from Eq. (A5) we obtain
that constants a2 = 0, a3 = 0, b2 = 0, b3 = 0. Thus, the
local center manifold is the σ -axis which coincides with the
center subspace (a subspace generated by the eigenvectors
corresponds to a vanishing eigenvalue of the corresponding
Jacobian matrix).

Finally, the dynamics in a local center manifold is deter-
mined by the equation

dσ

dτ
= A σ + F(σ,h(σ )), (A6)

which is simply

dσ

dτ
= 3

n
σ 2. (A7)

Hence, point A1− is always a saddle as we obtain an even-
parity order term.

Appendix B: Stability at invariant sub-manifold

It is important to investigate the stability of invariant sub-
manifolds because that helps us infer the nature of stability
of the fixed points that lie at the intersection of the invariant
submanifolds. If a fixed point is located at the intersection of
N invariant submanifolds in an N-dimensional phase space,
then the point is

• Stable if all the invariant submanifolds are of attracting
nature.

• Unstable if all the invariant submanifolds are of repelling
nature.

• Saddle if some of the invariant submanifolds are attract-
ing and some are repelling.

For model II considered in Sect. 3.1.2, the fixed points A1±
are at the intersection of the invariant submanifolds y =
0, 
 = 0. For both the models, the fixed points (or the lines
of fixed points) B1± are at the intersection of the invariant
submanifolds x̄ = ±1, ȳ = 1 and the fixed points B2± are at
the intersection of the invariant submanifolds x̄ = ±1, ȳ =
0.

Below we investigate the stability of different invariant
submanifolds.
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B.1 x̄ = ±1

Consider x̄ in the vicinity of +1 or −1, i.e. 0 < ε ≡ (1 −
x̄2) � 1. One can then rewrite Eq. (41a) as

dx̄

d τ̄
= 3

2
(ωk − ωm) (1 − ε − ε sgn(β)) ε(1 − ȳ2)

+3

2

(
(1 + ωm)ε − σ x̄ sgn(β)

√
ε
)
ε ȳ2. (B1)

Since ωk = 1, to the lowest order of ε one can write

dx̄

d τ̄
� 3

2
(1 − ωm)(1 − ȳ2)ε. (B2)

Since all quantities on the right-hand side are positive. The
flow will always be in positive x-direction in the vicinity
of x̄ = ±1. Therefore the invariant submanifold x̄ = 1
is attracting while the invariant submanifold x̄ = −1 is
repelling.

B.2. ȳ = 1

Consider ȳ in the vicinity of 1, i.e. 0 < ε ≡ (1 − ȳ2) � 1.
We will consider the cases σ = 0 and σ �= 0 separately.

B.1.1 σ = 0

One can rewrite Eq. (41b) as

d ȳ

d τ̄
= 3

2
ȳ(1− ȳ2)2(ωk+1)x̄ = 3

2
(ωk+1)x̄ε2

√
1 − ε, (B3)

Since ωk = 1, to the lowest order of ε one can write

d ȳ

d τ̄
� 3x̄ε2. (B4)

From the above one can conclude that

• d ȳ
d τ̄

> 0 in the vicinity of ȳ = 1 i.e. the invariant subman-
ifold ȳ = 1 is attracting for x̄ > 0.

• d ȳ
d τ̄

< 0 in the vicinity of ȳ = 1 i.e. the invariant subman-
ifold ȳ = 1 is repelling for x̄ < 0.

B.1.2 σ �= 0

One can rewrite Eq. (41b) as

d ȳ

d τ̄
= 3

2
ȳ(1 − ȳ2)

[
(−σ

√
1 − x̄2 + (ωk + 1)x̄)(1 − ȳ2)

−σ ȳ2
√

1 − x̄2 sgn(β)
]

= 3

2
ε
√

1 − ε
[
(−σ

√
1 − x̄2 + (ωk + 1)x̄)ε

−σ(1 − ε)
√

1 − x̄2 sgn(β)
]
, (B5)

Since ωk = 1, to the lowest order of ε one can write

d ȳ

d τ̄
� −3

2
εσ

√
1 − x̄2 sgn(β). (B6)

From the above one can conclude that

• d ȳ
d τ̄

> 0 in the vicinity of ȳ = 1 i.e. the invariant subman-
ifold ȳ = 1 is attracting if sgn(β) �= sgn(σ ).

• d ȳ
d τ̄

< 0 in the vicinity of ȳ = 1 i.e. the invariant subman-
ifold ȳ = 1 is repelling if sgn(β) = sgn(σ ).

B.3 ȳ = 0

Consider ȳ in the vicinity of ȳ = 0, i.e. 0 < ȳ � 1. We will
consider the cases σ = 0, σ > 0 and σ < 0 separately.

B.3.1 σ = 0

One can rewrite Eq. (41b) as

d ȳ

d τ̄
= 3

2
ȳ(1 − ȳ2)2(ωk + 1)x̄ . (B7)

Since ωk = 1, to leading order of ȳ one can write

d ȳ

d τ̄
� 3x̄ ȳ. (B8)

From the above one can conclude that

• d ȳ
d τ̄

> 0 in the vicinity of ȳ = 0 i.e. the invariant subman-
ifold ȳ = 0 is repelling for x̄ > 0.

• d ȳ
d τ̄

< 0 in the vicinity of ȳ = 0 i.e. the invariant subman-
ifold ȳ = 0 is attracting for x̄ < 0.

B.3.2 σ �= 0

One can rewrite Eq. (41b) as

d ȳ

d τ̄
= 3

2
ȳ(1 − ȳ2)

[
(−σ

√
1 − x̄2 + (ωk + 1)x̄)(1 − ȳ2)

−σ ȳ2
√

1 − x̄2 sgn(β)
]
. (B9)

Since ωk = 1, to the leading order of ȳ one can write

d ȳ

d τ̄
� 3

2
ȳ
[
−σ

√
1 − x̄2 + 2x̄

]
. (B10)

From the above one can conclude that

• d ȳ
d τ̄

> 0 in the vicinity of ȳ = 0 i.e. the invariant subman-
ifold ȳ = 0 is repelling for x̄ > σ√

4+σ 2 .

• d ȳ
d τ̄

< 0 in the vicinity of ȳ = 0 i.e. the invariant subman-
ifold ȳ = 0 is attracting for x̄ < σ√

4+σ 2 .
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B.3.4 
m = 0

Apart from x̄ = ±1 and ȳ = 0, 1, there is another invariant
submanifold given by 
m = 0. The existence of this invariant
submanifold is not apparent from the dynamical system (41).
One could have guessed the existence of this submanifold
from the physical argument that, if cosmology is initially a
vacuum, it remains so as there is no mechanism for matter
creation in classical physics. That 
m = 0 is an invariant
submanifold can be explicitly shown if one tries to write a
dynamical equation for 
m in terms of τ̄ using the dynamical
equations (19) and the definitions (31), (40)

d
m

d τ̄
= 3
m[(1 − ωm)x̄(1 − ȳ2) − σ ȳ2

√
1 − x̄2 sgn(β)].

(B11)

From the above one can conclude that the invariant subman-
ifold 
m = 0 is

• attracting for (1−ωm)x̄(1− ȳ2)−σ ȳ2
√

1 − x̄2 sgn(β) <

0.
• repelling for (1−ωm)x̄(1− ȳ2)−σ ȳ2

√
1 − x̄2 sgn(β) >

0.

Appendix C: Stability at invariant sub-manifold
of F(X) = βXm

As we have seen the stability through the invariant sub-
manifold, the fixed points (or the lines of fixed points)
B1± are at the intersection of the invariant submanifolds
x̄ = ±1, ȳ = 1, the fixed points Ba

2±, Bb
2±, Bc

2± are at the
intersection of the invariant submanifolds x̄ = ±1, ȳ = 0
and the fixed points B3± are at the intersection of the invariant
submanifolds ȳ = 0, σ̄ = ±1.

C.1 x̄ = ±1

Consider x̄ in the vicinity of +1 or −1, i.e. 0 < ε ≡ (1 −
x̄2) � 1.

dx̄

d τ̄
= 3

2
ε

(
1

2m − 1
− ωm

)
(1 − ȳ2)

√
1 − σ̄ 2 (C1)

Since all the quantities ε, (1 − ȳ2),
√

1 − σ̄ 2 are positive in
the right hand side. If ωm = 0, the quantity 1

2m−1 will decide
the attracting or repelling behaviour of the x̄ = ±1.

• dx̄
d τ̄

> 0 if m > 1
2 the invariant submanifold x̄ = 1

is attracting and the invariant submanifold x̄ = −1 is
repelling.

• dx̄
d τ̄

< 0 if m < 1
2 the invariant submanifold x̄ = 1

is repelling and the invariant submanifold x̄ = −1 is
attracting.

C.2 ȳ = 1

C.2.1 σ̄ �= 0

Consider ȳ in the vicinity of 1, i.e. 0 < ε ≡ (1 − ȳ2) � 1.

d ȳ

d τ̄
= −3

2
εσ̄

√
1 − x̄2 sgn((2m − 1)β) (C2)

• d ȳ
d τ̄

> 0 in the vicinity of ȳ = 1 i.e. the invariant subman-
ifold ȳ = 1 is attracting if sgn((2m − 1)β) �= sgn(σ̄ ).

• d ȳ
d τ̄

< 0 in the vicinity of ȳ = 1 i.e. the invariant subman-
ifold ȳ = 1 is repelling if sgn((2m − 1)β) = sgn(σ̄ ).

C.2.2 σ̄ = 0

d ȳ

d τ̄
=

(
3m

2m − 1

)
x̄ε2 (C3)

• d ȳ
d τ̄

> 0 in the vicinity of ȳ = 1 i.e. the invari-
ant submanifold ȳ = 1 is attracting if (x̄ > 0) ∧(
(m < 0) ∨ (m > 1

2 )
)

or (x̄ < 0) ∧ (0 < m < 1
2 ).

• d ȳ
d τ̄

< 0 in the vicinity of ȳ = 1 i.e. the invariant submani-
fold ȳ = 1 is repelling if (x̄ < 0)∧(

(m < 0) ∨ (m > 1
2 )

)
or (x̄ > 0) ∧ (0 < m < 1

2 ).

C.3 ȳ = 0

C.3.1 σ̄ �= 0

Consider ȳ in the vicinity of 0, i.e. 0 < ȳ � 1.

d ȳ

d τ̄
= 3

2
ȳ

(
−σ̄

√
1 − x̄2 +

(
2m

2m − 1

)
x̄
√

1 − σ̄ 2

)
(C4)

• d ȳ
d τ̄

> 0 in the vicinity of ȳ = 0 i.e. the invariant subman-
ifold ȳ = 0 is repelling if σ̄ = −1.

• d ȳ
d τ̄

< 0 in the vicinity of ȳ = 0 i.e. the invariant subman-
ifold ȳ = 0 is attracting if σ̄ = 1.

• d ȳ
d τ̄

> 0 in the vicinity of ȳ = 0 i.e. the invariant submani-
fold ȳ = 0 is repelling if (x̄ = 1)∧(

(m < 0) ∨ (m > 1
2 )

)
or (x̄ = −1) ∧ (0 < m < 1

2 ).

• d ȳ
d τ̄

< 0 in the vicinity of ȳ = 0 i.e. the invari-
ant submanifold ȳ = 0 is attracting if (x̄ = −1) ∧(
(m < 0) ∨ (m > 1

2 )
)

or (x̄ = 1) ∧ (0 < m < 1
2 ).
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C.3.2 σ̄ = 0

d ȳ

d τ̄
=

(
3m

2m − 1

)
x̄ ȳ (C5)

• d ȳ
d τ̄

> 0 in the vicinity of ȳ = 0 i.e. the invariant submani-
fold ȳ = 0 is repelling if (x̄ > 0)∧(

(m < 0) ∨ (m > 1
2 )

)
or (x̄ < 0) ∧ (0 < m < 1

2 ).

• d ȳ
d τ̄

< 0 in the vicinity of ȳ = 0 i.e. the invari-
ant submanifold ȳ = 0 is attracting if (x̄ < 0) ∧(
(m < 0) ∨ (m > 1

2 )
)

or (x̄ > 0) ∧ (0 < m < 1
2 ).

C.3.4 σ̄ = ±1

dσ̄

d τ̄
= −3ε

√
1 − x̄2

(
(1 − ȳ2)( − 1) + (2m − 3)m + 1

(4m − 2)m
ȳ2

)

dσ̄

d τ̄
=

⎧⎨
⎩

−3ε
√

1 − x̄2
(
− (1−ȳ2)

n + (2m−3)m+1
(4m−2)m ȳ2

)
, For power law potential

− 3((2m−3)m+1)
(4m−2)m ε

√
1 − x̄2 ȳ2, For exponential law potential

(C6)

For the power law potential

C.3.1 ȳ �= 0

• dσ̄
d τ̄

> 0 if − 1
n +

(
(2m−3)m+1
(4m−2)m + 1

n

)
ȳ2 < 0 the invariant

submanifold σ̄ = −1 is repelling and σ̄ = 1 is attracting.

• dσ̄
d τ̄

< 0 if − 1
n +

(
(2m−3)m+1
(4m−2)m + 1

n

)
ȳ2 > 0 the invariant

submanifold σ̄ = −1 is attracting and σ̄ = 1 is repelling.

C.3.2 ȳ = 0

• dσ̄
d τ̄

> 0 if 1
n > 0 the invariant submanifold σ̄ = −1 is

repelling and σ̄ = 1 is attracting.
• dσ̄

d τ̄
< 0 if 1

n < 0 the invariant submanifold σ̄ = −1 is
attracting and σ̄ = 1 is repelling.

For the exponential law potential

• dσ̄
d τ̄

> 0 if (2m−3)m+1
(4m−2)m < 0 i.e. (0 < m < 1) the invariant

submanifold σ̄ = −1 is repeling and σ̄ = 1 is attracting.
• dσ̄

d τ̄
< 0 if (2m−3)m+1

(4m−2)m > 0 i.e. (m < 0) ∨ (m > 1) the
invariant submanifold σ̄ = −1 is attracting and σ̄ = 1 is
repelling.
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