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Abstract We investigate the single transverse-spin asym-
metry with a sin(φh − φS) modulation in the charged Kaon
produced and in � hyperon produced SIDIS process within
the theoretical framework of transverse momentum depen-
dent (TMD) factorization at the next-to-leading-logarithmic
order. The asymmetry is contributed by the convolution of
Sivers function and the unpolarized fragmentation function
D1 for the produced hadron. The parametrization for the pro-
ton Qiu–Sterman function, which is closely related to the
Sivers function, is adopted to numerically estimate the Sivers
asymmetry at the kinematical region of Electron Ion Col-
lider (EIC) and Electron Ion Collider in China (EicC). The
TMD evolution of the TMD parton distribution functions
are considered by employing the non-perturbative Sudakov
form factor. It is found that the predicted Sivers asymmetries
Asin(φh−φS)
UT as functions of x , z and PhT are sizable at the

kinematical configurations of both EIC and EicC. The strange
constituent of the produced charged Kaon and � hyperon in
the final state can be a promising probe of the sea quark Sivers
function as well as the flavor dependence in the proton target.
Therefore, it is important to utilize the future EIC facilities to
constrain the sea quark distribution functions as well as the
validity of the generalized universality of the Sivers function.

1 Introduction

Since the measurement by the European Muon Collabora-
tion [1,2] showed that the spin fraction carried by the internal
quarks is much smaller than the spin of the proton, which con-
tradicts the conventional theoretical prediction that the con-
stituent quark spin contributes the total proton spin, numer-
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ous studies have been carried out to explore the nucleon spin
structure from both theoretical and experimental aspects.
Among the spin-related observables, the transverse single
spin asymmetries (TSSAs) can be the key access to the infor-
mation of transverse momentum structure of nucleon, which
is encoded in the transverse momentum dependent parton
distribution functions (TMD PDFs). In leading twist there
are eight TMD PDFs, each one describes a distribution of
three-dimensional motion of partons with specified polariza-
tion inside the nucleon. Particularly, the time-reversal odd (T-
odd) Sivers function f ⊥

1T (x, pT ) [3,4] denotes the asymmet-
ric distribution of unpolarized quarks inside a transversely
polarized nucleon, which arises from the correlation between
the quark transverse momentum and the nucleon transverse
spin. Due to its T-odd property, Sivers function as well as
its chiral-odd partner the Boer–Mulders function has been
assumed to be forbidden by the naive time-reversal invari-
ance of QCD [5], the very existence of the two T-odd dis-
tribution functions was not so obvious. However, the sit-
uation has changed since the calculations in Refs. [6–8],
which showed that the T-odd distributions can actually sur-
vive using spectator model calculations incorporating gluon
exchange between the struck quark and the spectator. In
Ref. [9], the time-reversal-invariant argument was reexam-
ined and showed the gauge-link in the operator definition of
the correlators guarantee the T-odd distribution functions to
be nonzero. More importantly, the presence of the gauge-link
indicates that Sivers function or the Boer–Mulders function
has opposite sign between semi-inclusive deeply inelastic
scattering (SIDIS) and Drell–Yan processes [6,7,9]

f ⊥
1T (x, pT )[SIDIS] = − f ⊥

1T (x, pT )[DY] , (1)

which is a significant prediction by QCD. The verification of
the sign change is one of the most fundamental tests of QCD
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prediction, and it is also the main pursue of the existing and
future Drell–Yan facilities.

The transverse single spin asymmetry can be utilized
to extract the information of the Sivers function, and has
been intensively investigated in the past two decades from
both experimental and theoretical aspects. The first non-zero
Sivers asymmetry was measured by the HERMES Collabo-
ration at DESY in electroproduction of charge pions off the
transversely polarized hydrogen target [10]. Updated mea-
surements on the Sivers asymmetry in pion produced as well
as those in Kaon and p/ p̄ produced in three-dimensional
kinematic bin and enlarged phase space were reported in
Refs. [11,12]. The COMPASS Collaboration at CERN also
measured the Sivers asymmetries in charged hadrons pro-
duced SIDIS process through muon beam scattering off the
transversely polarized proton and deuteron targets [13–18].
In addition, the data on the weighted Sivers asymmetry are
also released in Ref. [19], allowing for the extractions of the
Sivers function and its first transverse moment. The Hall A
Collaboration at Jefferson Lab presented the measurement
of TSSA in charged pion produced SIDIS process with a
transversely polarized 3He target [20,21]. Besides the SIDIS
process, COMPASS also measured the Sivers asymmetry in
Drell–Yan process via π N collision [22]. Future opportuni-
ties will open up at CERN with the LHCspin project [23].
Measurement of TSSAs sensitive to Sivers function in the
W± boson produced in proton-proton collisions has also been
performed by the STAR experiments at RHIC [24]. The data
from these measurements have been applied to extract the
Sivers function using parametrizations and phenomenolog-
ical approaches [25–36]. Particularly, In Ref. [37], for the
first time the 3-dimensional quark density in a fully con-
sistent way within the TMD framework has been utilized
to extract the Sivers function, which provide an important
parametrization to constrain as well as to cross check the
theoretical model calculation and the lattice QCD.

From the theoretical aspect, intensive studies on the
quark Sivers function were performed using the QCD-
inspired models, such as the spectator model [6,8,38]. Then,
Ref. [39] separated the diquak spectators into isoscalar
(ud-like) and isovector (uu-like) spectators to perform the
model calculation and obtained all of the leading-twist
TMD parton distribution functions. Also the light-cone quark
model [40,41], the light-front quark-diquark model [42,43],
the non-relativistic constituent quark model [44], the MIT
bag model [45,46], and the Holographic QCD [47] have been
developed and applied to estimate the valence quark Sivers
function. The sea quark Sivers function has been estimated
from the light-cone wave function in Refs. [48–50]. However,
so far only the valence quark Sivers functions are constrained
in the valence region with relatively large uncertainties in
the transverse momentum space. One of the reasons is that
it is difficult to describe the corresponding physical observ-

ables since there are complicated TMD effects. The TMD
evolution effects are encoded in the Sudakov-like form fac-
tor which also includes details of the non-perturbative QCD
dynamics. Therefore, this part of the Sudakov-like form fac-
tor can not be calculated from the perturbative QCD and is
mostly unknown. Another reason is that the knowledge of the
scale dependence of the TSSAs is very limited since the mea-
surements are mostly performed in the fixed-target experi-
ments with similar hard scales. With the expected high energy
and high precision of the Electron Ion Collider (EIC) [51–
53] and the Electron Ion Collider in China (EicC) [54,55],
the precise knowledge on the TMD distribution functions
may be gained, not only for the valence quarks, but also for
sea quarks and gluons. Concerning the sea quark TMDs, the
charged Kaon produced or the Lambda hyperon produced in
SIDIS can be recognized as an ideal probe to the sea quark
distribution of the proton due to the strange constituent quark
inside the Kaon and the Lambda hyperon. Therefore, through
the Sivers asymmetry in K± produced and in Lambda pro-
duced off transversely polarized nucleon at EIC and EicC,
there might be an opportunity to obtain the information of
the Sivers distribution function of the sea quark as well as its
flavor dependence.

The purpose of this work is to evaluate the Sivers asymme-
try in ep↑ → eK±X and in ep↑ → e�X at the kinematical
region of EIC and EicC. The theoretical tool adopted in this
study is the TMD factorization formalism [56–59], which
has been widely applied to various high energy processes,
such as SIDIS [56,58,60–66], e+e− annihilation [58,67,68],
Drell–Yan [58,64–66,69,70], and W/Z produced in hadron
collision [57,58,64,71]. In this framework, the differential
cross section can be written as the convolution of the well-
defined TMD PDFs and/or fragmentation functions (FFs) at
the small transverse momentum region with PhT /z � Q
as the constraint to guarantee the TMD factorization valid-
ity. The energy dependence of the TMD PDFs and FFs is
encoded in the TMD evolution equations, their solutions are
usually given in b space, which is conjugate to the transverse
momentum space [57,58] through Fourier transformation.
After solving the TMD evolution equations, the scale depen-
dence of the TMDs may be included in the exponential form
of the so-called Sudakov-like form factor [57,58,61,72]. The
Sudakov-like form factor can be further separated into pertur-
batively calculable part and the non-perturbative part, the lat-
ter one can not be calculated through perturbative theory and
may be obtained by fitting experimental data. We will con-
sider the TMD evolution effects of the corresponding TMDs
to obtain the numerical results for the Sivers asymmetry in
charged Kaon K± and � hyperon produced SIDIS process.

The rest of the paper is organized as follows. In Sect. 2,
we provide the theoretical framework of Sivers asymmetry
Asin(φh−φS)
UT in the charged Kaon produced and � hyperon
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produced in SIDIS process within the TMD factorization
formalism. In Sect. 3, we perform the numerical estimation
of the Sivers asymmetry at the kinematical region of EIC
and EicC. In Sect. 4, we summarize the work and discuss the
results.

2 Formalism of the sivers asymmetry in SIDIS process

In this section, we will set up the detailed formalism of the
Sivers asymmetry with a modulation of sin(φh − φS) in the
charged Kaon or Lambda produced SIDIS process with an
unpolarized electron beam scattered off a transversely polar-
ized proton target

e(�) + p(P)↑ → e
(
�′)+ K±/� (Ph) + X, (2)

where � and �′ represent the four-momenta of the incoming
and outgoing electrons, P is the four-momentum of the target
proton, the up-arrow represents the proton is transversely
polarized, Ph stands for the four-momentum of the final-state
hadron, which can be charged Kaon K± or Lambda hyperon.
The four-momentum of the exchanged virtual photon is q =
� − �′ and the usual defined energy scale is Q2 = −q2.
We denote the masses of the proton target and the final-state
hadron by M and Mh . To express the differential cross section
as well as the physical observables, we adopt the following
Lorentz invariants

S = (P + �)2, x = Q2

2P · q , y = P · q
P · �

, z = P · Ph
P · q ,

(3)

where S is the squared center of mass energy, x represents
the Bjorken variable, y represents the lepton energy momen-
tum transferring fraction, and z represents the longitudinal
momentum fraction of the final fragmented hadron to the
parent quark.

The reference frame applied in our study is shown in
Fig. 1. According to the Trento convention [73], the z-axis is
defined by the direction of the virtual photon momentum. The
azimuthal angle φh of the outgoing hadron (charged Kaon or
Lambda) is defined by

cos φh = −�μPhνg
μν
⊥√

�2
T P

2
hT

, (4)

with �
μ
T = gμν

⊥ �ν and Pμ
hT = gμν

⊥ Phν being the transverse
components of � and Ph respect to z-axis. The tensor gμν

⊥ is

gμν
⊥ = gμν − qμPν + Pμqν

P(1 + γ 2)
+ γ 2

1 + γ 2

(
qμqν

Q2 − PμPν

M2

)
,

(5)

with γ = 2Mx
Q . The azimuthal angle φS of the proton spin

vector S is defined by replacing Ph by S in Eq. (4), and the
transverse component of S is Sμ

T = gμν
⊥ Sν similar to the

definition of PhT .
Assuming one photon exchange, the model-independent

differential cross section can be written as a set of structure
functions with the general form as [74]

dσ

dxdydzdφSdφhd P2
hT

= α2
em

xyQ2

y

2(1 − ε)

(
1 + γ 2

2x

)

×
{
FUU,T + |S⊥| sin (φh − φS) F

sin(φh−φS)
UT,T + · · ·

}
,

(6)

where FUU,T stands for the unpolarized structure function,
F sin(φh−φs )
UT,T is the transverse spin-dependent structure func-

tion contributed by the Sivers function, ε is the ratio of
the longitudinal flux and the transverse flux of the pho-

ton which has the definition ε = 1−y− 1
4 γ 2 y2

1−y+ 1
2 y

2+ 1
4 γ 2y2 and the

ellipsis denotes other structure functions, which will not be
considered in this work. The three subscripts in the struc-
ture functions FXY,Z stand for the polarization of the lepton
beam (X ), the target proton (Y ) and the virtual photon (Z )
with U being unpolarized, T being transversely polarized.
The Sivers asymmetry is defined as the ratio of the differ-
ence between the spin-dependent differential cross sections
and the unpolarized differential cross section

Asin(φh−φs )
UT ≡ dσ↑ − dσ↓

dσ↑ + dσ↓ = sin (φh − φs) F
sin(φh−φs )
UT,T

FUU,T
.

(7)

The structure functions in Eq. (7) can be expressed as the
convolution of the corresponding TMD PDFs and FFs as [74]

FUU,T = C [ f1D1] , (8)

F sin(φh−φs )
UT,T = C

[

− ĥ · pT
M

f ⊥
1T D1

]

. (9)

Here, f1(x, p2T ) is the unpolarized TMD PDF, and f ⊥
1T (x, p2

T )

is the Sivers function. D1(z, k2
T ) is the unpolarized TMD

FF, which depends on the longitudinal momentum fraction
z and the transverse momentum kT of the final-state quark.
ĥ = PhT|PhT | is the unit vector along PhT . The notation C rep-
resents the convolution among the transverse momenta

C
[
ω f D

] = x
∑

q

e2
q

∫
d2 pT d2kT δ(2)

(
pT − kT − PhT /z

)

× ω( pT , kT ) f q(x, p2
T ) Dq(z, k2

T ). (10)
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Fig. 1 The reference frame in
SIDIS process

Substituting Eq. (10) into Eq. (8), we can expand the unpo-
larized structure function FUU,T as

FUU,T (Q; PhT ) = C [ f1D1]

= x
∑

q

e2
q

∫
d2 pT d2kT δ(2) ( pT − kT − PhT /z)

× f q1

(
x, p2

T

)
Dq

1

(
z, k2

T

)

= x
∑

q

e2
q

∫
d2 pT d2 K⊥

z2 δ(2) ( pT + K⊥/z − PhT /z)

× f q1

(
x, p2

T

)
Dq

1

(

z,
K 2⊥
z2

)

= x
∑

q

e2
q

∫
d2 pT d2 K⊥

z2

∫
d2b

(2π)2 e
−i( pT +K⊥/z−PhT /z)·b

× f q1

(
x, p2

T

)
Dq

1

(

z,
K 2⊥
z2

)

= x
∑

q

e2
q

∫
d2b

(2π)2 e
i PhT ·b/z f̃ q/p

1 (x, b) D̃h/q
1 (z, b) ,

(11)

where K⊥ represents the transverse momentum of the final
state hadron with respect to the fragmentation quark, which
has the relation K⊥ = −zkT with kT being the final-state
quark transverse momentum respect to z axis. The δ-function
Fourier transformation was performed in the fourth line. The
TMD distribution function f̃1(x, b) and TMD fragmentation
function D̃1(z, b) in the b space can be obtained by perform-

ing Fourier transformation from momentum space to b space

∫
d2 pT e−i pT ·b f q1 (x, p2

T ) = f̃ q/p
1 (x, b), (12)

∫
d2 K⊥

z2 e−iK⊥/z·bDq
1 (z, K 2⊥) = D̃h/q

1 (z, b) , (13)

hereafter, the term with a tilde denotes it is in theb space. Sim-
ilarly, substituting Eq. (10) into Eq. (9), we can obtain expan-
sions for the spin-dependent structure function F sin(φh−φs )

UT,T as

F sin(φh−φS)
UT,T (Q; PhT )

= C
[

− ĥ · pT
M

f ⊥
1T D1

]

= x
∑

q

e2
q

∫
d2 pT d2kT

δ(2) ( pT + K⊥/z − PhT /z)

[

− ĥ · pT
M

× f ⊥
1T

(
x, p2

T

)
Dq

1

(
z, k2

T

)]

= x
∑

a

e2
q

∫
d2 pT d2 K⊥

z2 δ(2) ( pT + K⊥/z − PhT /z)

×
[

− ĥ · pT
M

f ⊥
1T

(
x, p2

T

)
Dq

1

(

z,
K 2⊥
z2

)]

= x
∑

q

e2
q

∫
d2 pT d2 K⊥

z2

∫
d2b

(2π)2 e
−i( pT +K⊥/z−PhT /z)·b

×
[

− ĥ · pT
M

f ⊥
1T

(
x, p2

T

)
Dq

1

(

z,
K 2⊥
z2

)]
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= − x

2

∑

q

e2
q

∫
d2b

(2π)2 e
i PhT ·b/zi ĥαb

αTq,F (x, x)

× D̃h/q
1 (z, b) . (14)

The Sivers function in b space can also be obtained from
momentum space f ⊥

1 (x, p2
T ) to b space by Fourier Transfor-

mation as

f ⊥q(α)
1T (x, b) = 1

M

∫
d2 p⊥e−i p⊥·b pα⊥ f ⊥q

1T

(
x, p2⊥

)

= ibα

2
Tq,F (x, x) , (15)

where α is the uncontracted spatial index of the momentum
space and b vectors, the Tq,F (x, x) is the Qiu–Sterman (QS)
function. Therefore, the Sivers asymmetry can be rewritten
as

Asin(φh−φs )
UT =

− x
2

∑
q e

2
q

∫ d2b
(2π)2 e

i PhT ·b/zi ĥ · b̂ sin (φh − φs) Tq,F (x, x) D̃h/q
1 (z, b)

x
∑

q e
2
q

∫ d2b
(2π)2 ei PhT ·b/z f̃ q/p

1 (x, b) D̃h/q
1 (z, b)

. (16)

One should note that the energy dependence of the TMD
structure functions were not encoded in the above formalism,
which will be studied in details in the following subsections.

2.1 TMD evolution effects

In this subsection, we set up the basic formalism of the TMD
evolution effects for TMD PDFs and FFs, which mainly
serves to solve the energy dependence of the TMD PDFs
f1(x, p2T ), f ⊥

1T (x, p2
T ) and the TMD FF D1(z, k2

T ). Since
the complicated convolution among the transverse momenta
can be transformed into a simple product after performing the
Fourier Transformation, it is convenient to solve the energy
dependence in b space.

Particularly, there are two different energy dependencies
μ and ζF (ζD) of the TMD PDF F̃(x, b) and the TMD FF
D̃(z, b) in b space according to TMD factorization. μ is the
renormalization scale related to the corresponding collinear
PDFs/FFs, and ζF (ζD) is the energy scale serving as a
cutoff to regularize the light-cone singularity in the opera-
tor definition of the TMDs. The μ and ζF (ζD) dependen-
cies are encoded in different TMD evolution equations. The
energy evolution for the ζF (ζD) dependence is encoded in
the Collins–Soper (CS) equation[57,58,75]

∂ ln F̃ (x, b;μ, ζF )

∂ ln
√

ζF
= ∂ ln D̃ (z, b;μ, ζD)

∂ ln
√

ζD
= K̃ (b;μ),

(17)

while theμ dependence is given by the renormalization group
equation

d K̃

d ln μ
= −γK (αs(μ)) , (18)

d ln F̃ (x, b;μ, ζF )

d ln μ
= γF

(

αs(μ); ζ 2
F

μ2

)

, (19)

d ln D̃ (z, b;μ, ζD)

d ln μ
= γD

(

αs(μ); ζ 2
D

μ2

)

, (20)

with αs being the running strong coupling at the energy scale
μ, K̃ being the CS evolution kernel, and γK , γF and γD

being the anomalous dimensions. Hereafter, we will assume
μ = √

ζF = √
ζD = Q, then the TMD PDFs and FFs can

be written as F̃(x, b; Q) and D̃(z, b; Q) for simplicity.

Solving these TMD evolution equations, one can obtain
the solution of the energy dependence for TMD parton distri-
bution functions and the fragmentation functions, of which
the solution has the general form as

F̃q/p(x, b; Q) = F × e−S × F̃q/p(x, b;μB), (21)

D̃h/q(z, b; Q) = D × e−S × D̃h/q(z, b;μB), (22)

where F and D is the factor related to the hard scattering and
depend on the factorization schemes, S is the Sudakov-like
form factor. Equations (21) and (22) show that the energy
evolution of TMD PDFs and TMD fragmentation functions
from an initial energy μB to another energy Q is encoded
in the Sudakov-like form factor S by the exponential form
exp(−S).

By performing the reverse Fourier transformation of the
TMDs in b space, the TMDs in momentum space can be
obtained, thus it is of great importance to study the b space
behavior of the TMDs. In the small b region (b � 1/�QCD),
the b dependence of TMDs is perturbative and can be calcu-
lated by perturbative QCD. However, the dependence in large
b region turns to be non-perturbative, since the operators are
separated by a large distance. To include the evolution effect
in this region, a non-perturbative Sudakov-like form factor
SNP is introduced and is usually given in a parameterized
form. The parameters of SNP can be determined by analyzing
experimental data, given the lack of non-perturbative calcu-
lations. In order to combine the information from both the
small b region and the large b region, a matching procedure
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is applied with a parameter bmax serving as the boundary
between the two regions. Furthermore, one can define a b-
dependent function b∗, which has the property b∗ ≈ b in
small b region and b∗ ≈ bmax in large b region

b∗ = b
√

1 + b2/b2
max

, bmax < 1/�QCD, (23)

as given in the original CSS prescription [57]. The prescrip-
tion also allows for a smooth transition from perturbative to
non-perturbative regions and avoids the Landau pole singu-
larity in αs(μB). The typical value of bmax is chosen around
1.5 GeV−1 to guarantee that b∗ is always in the pertur-
bative region. With the constraint of b∗, we can calculate
TMDs within a small b region. While, one should notice that,
although the original CSS prescription can provide an effec-
tive way to perform the calculation at small b region, there
can be an issue at very small b → 0 region, the value of μB

may be larger than Q, which will lead to problems of Fourier
Transformation as well as the computation of Sudakov form
factor. It can be resolved by introducing the lower limit of
b∗ [64,66,70].

In the small b region, the TMDs can be expressed as
the convolutions of the perturbatively calculable hard coeffi-
cients and the corresponding collinear counterparts at fixed
energy μB , which could be the collinear PDFs/FFs or the
multiparton correlation functions [56,76]

F̃q/p(x, b;μB) = Cq←i ⊗ Fi/p(x, μB), (24)

D̃h/q (z, b;μB) = Ĉ j←q ⊗ Dh/j (z, μB) , (25)

where μB = c0/b∗ and c0 = 2e−γE and the Euler constant
γE ≈ 0.577 [56], the ⊗ stands for the convolution in the
momentum fraction x

Cq←i ⊗ Fi/p(x, μB) ≡
∑

i

∫ 1

x

dξ

ξ
Cq←i

×
(
x

ξ
, μB

)
Fi/p(ξ, μB), (26)

Ĉ j←q ⊗ Dh/j (z, μB) ≡
∑

j

∫ 1

z

dξ

ξ
Ĉ j←q

×
(
z

ξ
, μB

)
Dh/j (ξ, μB) , (27)

where C coefficients in the formula has different values in
different processes, and its specific value will be given in the
subsequent calculation. In addition, the sum

∑
i runs over all

parton flavors. Now we can combine all the above informa-
tion to get the expression for TMD distribution function and
the fragmentation function in b space as

F̃q/p(x, b; Q) = F × e−S × Cq←i ⊗ Fi/p(x, μB)

= F × e−S ×
∑

i

∫ 1

x

dξ

ξ
Cq←i

(
x

ξ
, μB

)

× Fi/p(ξ, μB), (28)

D̃h/q(z, b; Q) = D × e−S × Ĉq←i ⊗ Dh/j (z, μB)

= D × e−S ×
∑

j

∫ 1

z

dξ

ξ
Ĉ j←q

(
z

ξ
, μB

)

× Dh/j (ξ, μB) . (29)

The Sudakov-like form factor S can be separated into the
perturbatively calculable part Spert(Q; b∗) and the non-
perturbative part SNP(Q; b)

S(Q; b) = Spert(Q; b∗) + SNP(Q; b). (30)

The perturbative part Spert(Q; b∗) has a general form and can
be expanded as the series of (αs

π
) [32,63,77–79].

Spert(Q; b∗) =
∫ Q2

μ2
B

dμ̄2

μ̄2

[
A(αs(μ̄)) ln

(
Q2

μ̄2

)
+ B(αs(μ̄))

]
.

(31)

Also the coefficients A and B can be expanded as following

A =
∞∑

n=1

A(n)
(αs

π

)n
, (32)

B =
∞∑

n=1

B(n)
(αs

π

)n
. (33)

In our calculation we take A(n) up to A(2) and B(n) up to B(1)

[57,61,63,77,80,81],

A(1) = CF , (34)

A(2) = CF

2

[
CA

(
67

18
− π2

6

)
− 10

9
TRn f

]
, (35)

B(1) = −3

2
CF . (36)

For the non-perturbative Sudakov-like form factor
SNP(Q; b), it cannot be obtained from perturbation calcu-
lation, and it is usually extracted from the experimental data.
Inspired by Refs. [80,82], a widely used Gaussian form
parametrization of SNP for TMD PDFs or fragmentation
functions was proposed [32,64,66,70,76,80,82–84]

Spdf/ff
NP = b2

(
gpdf/ff

1 + g2

2
ln

Q

Q0

)
, (37)
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where the initial energy is Q2
0 = 2.4 GeV2, and the factor

1/2 in front of g2 comes from the fact that only one hadron
is involved for the parametrization of Spdf/ff

NP . The parameter

gpdf/ff
1 in Eq. (37) depends on the type of TMDs, which can be

regarded as the width of the intrinsic transverse momentum
for the relevant TMDs at the initial energy scale Q0 [30,61,
81]. Assuming a Gaussian form with a constant width for the
dependence on the transverse momentum, we obtain

gpdf
1 = 〈p2⊥〉Q0

4
, gff

1 = 〈k2⊥〉Q0

4z2 , (38)

where 〈p2⊥〉Q0 and 〈k2⊥〉Q0 represent the averaged intrinsic
transverse momenta squared for TMD PDFs and FFs at the
initial scale Q0, respectively. The value of g2 is different
in the different TMD analyses, here we follow Ref. [32] to
choose g2 = 0.16.

As the information on the Sudakov-like form factor for
the Kaon fragmentation functions can not be determined, we
assume that the evolution of the TMD distribution function
and the fragmentation function for producing the K meson
from the initial energy scale μ to another energy scale Q
follows the Gaussian form of g2(b) in Eq. (37), so we can
obtain the non-perturbative Sudakov-like form factor for the
PDF and FF for the production of the K mesons as

Spdf
NP (Q; b) = g2

2
ln

(
Q

Q0

)
b2 + gpdf

1 b2, (39)

Sff
NP(Q; b) = g2

2
ln

(
Q

Q0

)
b2 + gff

1 b
2. (40)

Combining all the steps mentioned above together, the
scale-dependent TMD PDFs and FFs in b space as functions
of x (or z), b, and Q can be rewritten as

F̃q/p(x, b; Q) = e− 1
2 SPert(Q;b∗)−Spdf

NP (Q;b)F(αs(Q))

×
∑

i

∫ 1

x

dξ

ξ
Cq←i

(
x

ξ
, μB

)
Fi/p(ξ, μB), (41)

D̃h/q(z, b; Q) = e− 1
2 SPert(Q;b∗)−Sff

NP(Q;b)D(αs(Q))

×
∑

j

∫ 1

z

dξ

ξ
Ĉ j←q

(
z

ξ
, μB

)
Dh/j (ξ, μB) . (42)

2.2 The solution of the unpolarized structure function

In the following we solve the denominator of the Sivers asym-
metry in details, which is the unpolarized structure function
FUU,T in Eq. (8). Since we have expanded FUU,T in Eq. (11),
we will directly follow Eq. (11) to give the complete expres-
sion for FUU,T . According to Eqs. (41) and (42), f̃ q1 (x, b)

and D̃h/q
1 (z, b) can be expanded as

f̃ q/p
1 (x, b; Q) = e− 1

2 SPert(Q;b∗)−S
f1

NP(Q;b)F(αs(Q))

×
∑

i

∫ 1

x

dξ

ξ
Cq←i (

x

ξ
, μB) f i/p1 (ξ, μB), (43)

D̃h/q
1 (z, b; Q) = e− 1

2 SPert(Q;b∗)−S
D1
NP (Q;b)D(αs(Q))

×
∑

j

∫ 1

z

dξ

ξ
Ĉ j←q

(
z

ξ
, μB

)
Dh/j

1 (ξ, μB) , (44)

substituting Eqs. (43) and (44) into the unpolarized structure
function in Eq. (8), one can have the following expression

FUU,T (Q; PhT ) = x
∫

d2b

(2π)2 e
i PhT ·b/z F̃UU,T (Q; b)

= x
∫ ∞

0

dbb

2π
J0(

PhT b

z
)F̃UU,T (Q; b),

(45)

where J0(
PhT b
z ) represents the Bessel function, F̃UU,T (Q; b)

has the expression as

F̃UU,T (Q; b)
= e−Spert (Q;b∗)−SSIDIS

NP (Q;b)∑

q

e2
qF(αs(Q))D(αs(Q))

×
(
∑

i

∫ 1

x

dξ

ξ
C (SIDIS)
q←i

( x
ξ

, μB

)
f i/p1 (ξ, μB)

)

×
⎛

⎝
∑

j

∫ 1

z

dξ

ξ
Ĉ (SIDIS)

j←q

(
z

ξ
, μB

)
Dh/j

1 (ξ, μB)

⎞

⎠ , (46)

where the Sudakov-like form factor is expressed in Eqs. (31),
(39) and (40). The hard scattering coefficients F(αs(Q)) and
D(αs(Q)) can be set equal to 1. In addition, the C and Ĉ
coefficient in Eqs. (43) and (44) can be expressed as [85]

C (SIDIS)

q←q ′ (x, μB) = δq ′q

[
δ(1 − x) + αs

π

(
CF

2
(1 − x)

−2CFδ(1 − x)

)]
, (47)

C (SIDIS)
q←g (x, μB) = αs

π
TR x(1 − x) , (48)

Ĉ (SIDIS)

q ′←q (z, μB) = δq ′q

[
δ(1 − z) + αs

π

(
CF

2
(1 − z)

−2CFδ(1 − z) + Pq←q(z) ln z

)]
,

(49)

Ĉ (SIDIS)
g←q (z, μB) = αs

π

(
CF

2
z + Pg←q(z) ln z

)
, (50)
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where αs represents the strong coupling, and the expansion
at the next-to-leading order can be written as follows

αs

(
Q2
)

= 12π
(
33 − 2n f

)
ln
(
Q2/�2

QCD

)

×
⎧
⎨

⎩
1 − 6

(
153 − 19n f

)

(
33 − 2n f

)2
ln ln

(
Q2/�2

QCD

)

ln
(
Q2/�2

QCD

)

⎫
⎬

⎭
.

(51)

In Eq. (51), Q2 is the running energy scale and n f = 5,
�QCD = 0.225 GeV. The splitting functions Pq←q and
Pg←q in Eqs. (49) and (50) have the general form

Pq←q(z) = CF

[
1 + z2

(1 − z)+
+ 3

2
δ(1 − z)

]
, (52)

Pg←q(z) = CF
1 + (1 − z)2

z
, (53)

where CF = 4/3, TR = 1/2, and the subscript symbol “+”
denotes the following prescription

∫ 1

0
dz

f (z)

(1 − z)+
=
∫ 1

0
dz

f (z) − f (1)

(1 − z)
. (54)

Combining the above information, we can obtain the final
expression of the unpolarized structure function FUU,T

(Q; PhT ) as follows

FUU,T (Q; PhT )

= x
∑

q

e2
q

∫ ∞

0

bdb

(2π)
J0(

PhT b

z
)e−Spert(Q;b∗)−SSIDIS

NP (Q;b)

×
(
∑

i

∫ 1

x

dξ

ξ
C (SIDIS)
q←i (

x

ξ
, μB) f i/p1 (ξ, μB)

)

×
⎛

⎝
∑

j

∫ 1

z

dξ

ξ
Ĉ (SIDIS)

j←q

(
z

ξ
, μB

)
Dh/j

1 (ξ, μB)

⎞

⎠ , (55)

where the non-perturbative Sudakov-like form factor SSIDIS
NP

(Q; b) receives the contribution from the unpolarized TMD
PDF and FF:

SSIDIS
NP (Q; b) = Sf1

NP(Q; b) + SD1
NP(Q; b)

= g2 ln

(
Q

Q0

)
b2 + gf1

1 b2 + gD1
1 b2. (56)

Here, gf1
1 and gD1

1 are obtained from Eq. (38), so gf1
1 = gpdf

1 =
〈p2⊥〉Q0

4 , gD1
1 = gff

1 = 〈k2⊥〉Q0
4z2 .

2.3 The solution of the transverse spin-dependent structure
function

Similar to the previous subsection, we further obtain the
expression for the transverse spin-dependent structure func-
tion F sin(φh−φs )

UT,T . We have initially expanded F sin(φh−φs )
UT,T in

Eq. (14), we will directly follow Eq. (14) to give the com-
plete expression for F sin(φh−φs )

UT,T . According to Eq. (41), the
QS function Tq,F

(
x ′, x ′′) in the b space has a similar solution

form after solving the TMD evolution equations

Tq,F (x, x; Q) = T × e−S × Tq,F (x, x;μB) , (57)

In the small b region, the QS function can be calculated from
the convolution of the hard scattering coefficients and the
collinear counterpart utilizing the perturbative QCD

Tq,F (x, x;μB) = �CT
q←i ⊗ Ti,F (x, x;μB) , (58)

where ⊗ denotes convolution and can be expanded as

�CT
q←i ⊗ Ti,F (x, x;μB)

=
∑

i

∫ 1

x

dξ

ξ
�CT

q←i

(
x

ξ
, μB

)
Ti,F (ξ, ξ ;μB) , (59)

substituting Eq. (59) into Eq. (58), we can obtain the expan-
sion of the QS function Tq,F

(
x ′, x ′′) as

Tq,F (x, x; Q) = e− 1
2 SPert(Q;b∗)−S

f1
NP(Q;b)T(αs(Q))

×
∑

i

∫ 1

x

dξ

ξ
�CT

q←i

(
x

ξ
, μB

)

× Ti,F (ξ, ξ ;μB) . (60)

In addition, the expansions of the fragmentation function
D̃h/q

1 (z, b) can be obtained from Eq. (44) as

D̃h/q
1 (z, b; Q) = e− 1

2 SPert(Q;b∗)−S
D1
NP (Q;b)D(αs(Q))

×
∑

j

∫ 1

z

dξ

ξ
Ĉ j←q

(
z

ξ
, μB

)
Dh/j

1 (ξ, μB) ,

(61)

substituting Eqs. (60) and (61) into the transverse spin-
dependent structure function in Eq. (14), one can have

F sin(φh−φs )
UT,T (Q; PhT )

= − x

2

∫
d2b

(2π)2 e
i PhT ·b/zi ĥαb

α F̃UT,T (Q; b)

= x

2

∫ ∞

0

b2db

2π
J1(

PhT b

z
)F̃UT,T (Q; b), (62)
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the structure function F̃UT,T (Q; b) can be expanded into

F̃UT,T (Q; b)
= e−Spert (Q;b∗)−SSIDIS

NP Sivers(Q;b)∑

q

e2
qT(αs(Q))D(αs(Q))

×
(
∑

i

∫ 1

x

dξ

ξ
�CT (DI S)

q←i

(
x

ξ
, μB

)
Ti,F (ξ, ξ ;μB)

)

×
⎛

⎝
∑

j

∫ 1

z

dξ

ξ
Ĉ (SI DI S)

j←q

(
z

ξ
, μB

)
Dh/j

1 (ξ, μB)

⎞

⎠ ,

(63)

where the Sudakov-like form factor is expressed in Eqs. (31),
(39) and (40). And the hard scattering coefficient T(αs(Q))

and D(αs(Q)) equal to 1. The Ĉ coefficient of D̃q
1 (z, b) is

expressed in Eqs. (49), (50), (52) and (53). The expression
of �C in Eq. (60) is [86]

�CT (DI S)
qq (x, μB)

= δ(1 − x) + αs(μB)

π

(
− 1

4Nc
(1 − x) − 2CFδ(1 − x)

)
,

(64)

where Nc = 3. Combining the above information, we can
obtain the final expression of the transverse spin-dependent
structure function F sin(φh−φs )

UT,T as follows

F sin(φh−φS)
UT,T

= x

2

∑

q

e2
q

∫ ∞

0

b2db

2π
J1(

PhT b

z
)e−Spert (Q;b∗)−SSIDIS

NP Sivers(Q;b)

×
(
∑

i

∫ 1

x

dξ

ξ
�CT (DI S)

q←i

(
x

ξ
, μB

)
Ti,F (ξ, ξ ;μB)

)

×
⎛

⎝
∑

j

∫ 1

z

dξ

ξ
Ĉ (SI DI S)

j←q

(
z

ξ
, μB

)
Dh/j

1 (ξ, μB)

⎞

⎠ ,

(65)

where the non-perturbative Sudakov-like form factor
SSIDIS

NP Sivers(Q; b) is the combination of the one for the Sivers
function and the one for the unpolarized TMD FF

SSIDIS
NP Sivers(Q; b) = SSiversNP (Q; b) + SD1

NP(Q; b)
= g2 ln

(
Q

Q0

)
b2 + gSivers1 b2 + gD1

1 b2,

(66)

where gSivers1 = 〈k2
s⊥〉
4 , gD1

1 = 〈k2⊥〉Q0
4z2 .

3 Numerical estimate

In this section, we present the numerical estimate for the
Sivers asymmetry in charged Kaon and � hyperon produced
SIDIS process at the kinematical configurations of EIC and
EicC.

In order to obtain the results for the Sivers asymmetry, we
shall have the collinear distribution functions and fragmenta-
tion functions as input. For the unpolarized proton collinear
distribution function f1(x, μB), we apply the parametriza-
tion from MSTW2008 [87]. For the collinear unpolarized
fragmentation function D1(z) of charged Kaon, the DSS
parameterization results at LO accuracy is used [88]. For
the collinear unpolarized fragmentation function D�

1 (z) of
� hyperon, we adopt the model results from the diquark
spectator model [89]

D�
1 (z) = g2

s

4(2π)2

e− 2m2
q

�2

z4L2

{
z(1 − z)

((
mq + M�

)2 − m2
D

)

× exp

( −2zL2

(1 − z)�2

)

+ ((1 − z)�2 − 2((mq + M�)2 − m2
D))

× z2L2

�2 �(0,
2zL2

(1 − z)�2 )

}
. (67)

The values of the free parameters in Eq. (67) are taken from
Ref. [89]. Since the model result is obtained at the initial
energy of 0.23 GeV2, to make it applicable to a more general
energy range, we use the QCDNUM evolution package [90]
to evolve the unpolarized fragmentation function D1(z) from
the initial energy of 0.23 GeV2 to another energy scale.

For the Qiu–Sterman (QS) function Tq,F (x, x;μB), we
adopt the extraction from the parameterization in Ref. [32]

Tq,F (x, x, μB) = Nq

(
αq + βq

)(αq+βq)

α
αq
q β

βq

q

xαq (1 − x)βq

× f1(x, μB). (68)

The parameters obtained by fitting to the data in SIDIS pro-
cesses from HERMES, COMPASS and JLab [11,15,17,20],
are listed in Table 1.

In Fig. 2, we depict the QS function Tq,F (x, x, μB) for u
quark, d quark and s quark in the proton target as the function
of x at the initial energy scale Q2

0 = 2.4 GeV2, the solid
lines correspond to the results from the central values of the
parameters, the shaded area shows the uncertainty bands lead
by the parameters of Table 1. As one can see from Fig. 2, there
are still large errors in the parametrization of the QS function
due to the limited amount of the experimental data especially
in the case of s quark QS function. Thus, we emphasis the
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Fig. 2 The QS function for u quark (left panel), d quark (middle panel) and s quark (right panel). The solid lines correspond to the results from
the central values of the parameters, the shaded area shows the uncertainty bands lead by the parameters of Table 1

Table 1 Values of the parameters in the parameterization of the Qiu-
Sterman function in Ref. [32]

Parameter Value Parameter Value

αu 1.051+0.192
−0.180 Nū −0.012+0.018

−0.020

αd 1.552+0.303
−0.275 Nd̄ −0.105+0.043

−0.060

αsea 0.851+0.307
−0.305 Ns 0.103+0.548

−0.604

β 4.857+1.534
−1.395 Ns̄ −1.000 ± 1.757

Nu 0.106+0.011
−0.009 〈k2

s⊥〉 0.282+0.073
−0.066GeV2

Nd −0.163+0.039
−0.046

planned electron ion colliders can play an important role in
constraining Sivers function in the future.

We should notice that in Ref. [32], the QS function is
assumed to be proportional to the collinear unpolarized dis-
tribution function f1(x, μB) in which the DGLAP evolution
effect is not included. To investigate the impact of the QS
function DGLAP evolution effect on the Sivers asymmetry,
we take Q2

0 = 2.4 GeV2 as the initial energy and evolve
the QS function in Eq. (68) into another energy. We adopt
two different approaches to evolve the QS function: one is
to assume the QS function follows the same evolution effect
as that for unpolarized distribution function, the other one is
to change the evolution kernel in the QCDNUM evolution
package to include the QS evolution kernel by considering
the homogenous terms [the terms containing Tq,F (x, x, μB)]
in the evolution kernel as an approximation [91]:

PSivers
qq ≈ 4

3

(
1 + z2

(1 − z)+
+ 3

2
δ(1 − z)

)

− 3

2

1 + z2

1 − z
− 3δ(1 − z). (69)

In Eqs. (37) and (38), the free parameter g1 and the uni-
versal parameter g2 contain information about the evolution
of TMDs and are the key parameters that determine the
evolution of TMDs from one initial energy μ to another
Q. Here we adopt the results given in Ref. [32] for the
mean transverse momentum squared

〈
p2⊥
〉 = 0.38 GeV2 and

〈
k2⊥
〉 = 0.19 GeV2. For the universal parameter g2 in the

non-perturbative Sudakov-like form factor, the specific value
g2 = 0.16 is also given in Ref. [32].

The kinematical region that is available at EIC is chosen
as follows [52]

0.001 < x < 0.4, 0.07 < y < 0.9, 0.2 < z < 0.8,

1GeV2 < Q2, W > 5GeV,√
s = 100GeV, PhT < 0.5GeV. (70)

As for the EicC, the following kinematical cuts are adopted

0.005 < x < 0.5, 0.07 < y < 0.9, 0.2 < z < 0.7,

1GeV2 < Q2 < 200GeV2,

W > 2GeV,
√
s = 16.7GeV, PhT < 0.5GeV, (71)

where W 2 = (P + q)2 ≈ 1−x
x Q2 is invariant mass of the

virtual photon-nucleon system. Since TMD factorization is
proved to be valid to describe the physical observables in the
region PhT /z � Q, PhT /zQ < 0.5 is chosen to guarantee
the validity of TMD factorization. Combining Eqs. (7), (55)
and (65) and the kinematical regions of EIC and EicC, we
can calculate the single-spin dependent Sivers asymmetry of
charged Kaon and � hyperon produced SIDIS process within
the EIC and EicC kinematical region.

The numerical results are shown in Fig. 3. The six rows
in the figure depict the results of Sivers asymmetry of K+
production, K− production, and � hyperon production in the
EIC and EicC kinematical region, respectively. The predicted
experimental observable Sivers asymmetry are plotted with
the statistical error bars (enlarged in the figure), which are
estimated as

�A = 1√
Lσ

, (72)

where σ is the unpolarized cross sections of the correspond-
ing process, and L is the integrated luminosity, for which
L = 10 f b−1 for EIC and 50 f b−1 for EicC. The left, central
and right panels denote the Sivers asymmetry as the function
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of x , z and PhT , respectively. In the figure, the black solid
line represents the Sivers asymmetry that is obtained when
the QS evolution kernel is included to evolve Eq. (68). The
red dashed line represents the Sivers asymmetry obtained
by using the evolution kernel for the unpolarized distribu-
tion function from QCDNUM evolution package to evolve
Eq. (68).

As can be seen from Fig. 3, the central values of Sivers
asymmetries in the charged Kaon produced and in � hyperon
produced SIDIS process are sizable in the EIC and EicC kine-
matical region. Thus, the measurements of the Sivers asym-
metry in these facilities provide an ideal tool to obtain the
sea quark Sivers function as well as the flavor dependence
of the Sivers function. Also, it seems that the magnitude of
the asymmetry in EicC is larger than that in EIC. In addi-
tion, Fig. 3 shows that the value of the solid line is larger
than the dashed line, which indicates that the Sivers asym-
metry obtained using the evolution kernel of QS function
is greater than that obtained using the unpolarized distri-
bution function evolution kernel. One should note that the
DGLAP evolution in the TMD effects may play some role in
the future phenomenological analysis of the Sivers asymme-
try. Besides, in Fig. 3, the shaded area shows the uncertainty
bands of the Sivers asymmetry caused by the parametriza-
tion of QS function, which still show large errors. Since we
focus on the effect of the QS function on the result, here
we don’t include the source of uncertainly coming from the
DSS parametrization of the collinear unpolarized fragmen-
tation function D1(z).

We can also find from Fig. 3 that the central values of the
Sivers asymmetries about z-dependent and PhT -dependent
in K+ produced SIDIS process at the kinematical region of
EIC and EicC are negative, and the magnitude of the cen-
tral values of the Sivers asymmetry increases with increas-
ing z or increasing PhT . While for the central values of the
Sivers asymmetries about x dependent of K+ production in
the EIC and EicC kinematical region, there is a node around
x = 0.15. On the other hand, for the central values of the
Sivers asymmetries of K− production, it is always posi-
tive in all cases. The central values of the Sivers asymmetry
increases with x at small x region and decreases along x at
large x region, and gradually increases with z and PhT . In
addition, by comparing the magnitudes of the central values
of the Sivers asymmetry of K+ produced with that of K−
produced, we can see that the former one is larger than the
latter one, since for K+ meson the constituent quarks are u
and s̄, and for K− meson are ū and s quarks. Therefore there
is relatively larger contribution of valence u quark Sivers
function for K+, while the contributions for K− are both
from sea quark Sivers function. It is known from Ref. [32]
that the QS function of the valence quark is larger than the
that of the sea quarks, so the Sivers asymmetry in K+ pro-
duced process is greater than that in K− produced process.

In addition, we can clearly see from Fig. 3 that when we con-
sider the uncertainty bands of the QS function, the sign as
well as the trend of the asymmetry for K± production will
become blurred. Therefore, it is important that more precise
experimental measurements are needed in the future to fur-
ther constrain the Sivers function. Finally, the central value of
Sivers asymmetry for � hyperon production in both the EIC
and EicC kinematical region is positive, and the tendency of
x, z and PhT dependent asymmetry is generally consistent
with that of K− meson. In addition, the Sivers asymmetry
in � hyperon produced process is larger than that in charged
Kaon K± produced process with much smaller uncertainty
bands. Thus, the future higher precision EICs may provide
a unique opportunity to extract the proton Sivers function of
valence quark and sea quark, to investigate the flavor depen-
dence from the � hyperon produced SIDIS process, as well
as to deeper understand sea quark Sivers function through
the analysis with the charged Kaon K+ production SIDIS
process. Combining the experimental data from Drell-Yan
process, it may also provide a tool to study the sign change
of the Sivers function and the generalized universality of the
T-odd distribution functions.

4 Conclusion

In this work, we apply the TMD factorization formalism to
study the Sivers asymmetry with sin (φh − φs) modulation
in charged K± produced and � hyperon produced in SIDIS
process at the kinematical configurations of EIC and EicC.
We take into account the TMD evolution effects of distri-
bution functions as well as fragmentation functions. In our
calculation we adopt the Gaussian form parametrization with
constant width for the non-perturbative Sudakov-like form
factor, the accuracy of the perturbative Sudakov-like form
factor as well as the hard coefficients is kept at the NLL
order. Two different ways to deal with the energy dependence
of Qiu-Sterman function associated with the Sivers function
are applied. The first approach is to assume the Qiu–Sterman
function evolves as the same way as the unpolarized dis-
tribution functions f1(x, Q2). The second one is to evolve
Qiu–Sterman function considering an approximate evolution
kernel for the Qiu–Sterman function containing the homoge-
nous terms by customising the DGLAP kernel. The Sivers
asymmetries are calculated as the functions of x, z, and PhT .
Our numerical results demonstrate that the Sivers asymme-
tries of charged Kaon production and � hyperon production
are measurable at the kinematics of EIC and EicC, with the
magnitudes of around few percents. The results show that the
Sivers asymmetry in � hyperon production in SIDIS process
might serve as a tool to extract the information of sea quark
Sivers function as well as to constrain the flavor dependence
of Sivers function together with K± production process by
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Fig. 3 The Sivers asymmetry in semi-inclusive charged Kaon and �

hyperon produced SIDIS process at the kinematics of EIC and EicC as
functions of x (left panels), z (middle panels), and PhT (right panels).

The shaded area shows the uncertainty bands of the Sivers asymmetry
caused by the parametrization of QS function
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utilizing future high energy and high luminosity EICs. In
addition, the difference between the Sivers asymmetries from
considering two different evolution kernels suggests that the
DGLAP evolution of the Qiu–Sterman function in the TMD
evolution schemes will play a role in the phenomenological
calculation, which should be considered in the future inter-
pretation of experimental data as well as theoretical studies.
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