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Abstract Spectral methods are now common in the solu-
tion of ordinary differential eigenvalue problems in a wide
variety of fields, such as in the computation of black hole
quasinormal modes. Most of these spectral codes are based on
standard Chebyshev, Fourier, or some other orthogonal basis
functions. In this work we highlight the usefulness of a rela-
tively unknown set of non-orthogonal basis functions, known
as Bernstein polynomials, and their advantages for handling
boundary conditions in ordinary differential eigenvalue prob-
lems. We also report on a new user-friendly package, called
SpectralBP, that implements Berstein-polynomial-based
pseudospectral routines for eigenvalue problems. We demon-
strate the functionalities of the package by applying it to a
number of model problems in quantum mechanics and to the
problem of computing scalar and gravitational quasinormal
modes in a Schwarzschild background. We validate our code
against some known results and achieve excellent agreement.
Compared to continued-fraction or series methods, global
approximation methods are particularly well-suited for com-
puting purely imaginary modes such as the algebraically spe-
cial modes for Schwarzschild gravitational perturbations.

1 Introduction

Black holes in general relativity are simple spacetime objects,
fully specified by only a handful of constants. When the
spacetime around black holes is disturbed by surrounding
complex distributions of matter and fields, as they are found
in nature, these spacetime disturbances generically evolve
in the form of damped oscillations known as quasinormal
modes (QNMs).

Quasinormal modes are the characteristic ringing of
spacetime around black holes. They are independent of the
initial excitation that generated them, dependent only on
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parameters of the black hole. A wealth of information can
be extracted from the quasinormal mode spectrum of a black
hole, so they serve as probes for the validity of general rel-
ativity and its extensions in the strong gravity regime. Two
excellent reviews on the topic with an emphasis on astro-
physics can be found in [1] and [2]. A review on higher
dimensional black holes and their connections to strongly
coupled quantum fields can be found in [3].

In general, the quasinormal mode spectrum of a black
hole comes from solving an ordinary differential equation
(ODE) eigenvalue problem. These usually take the form of a
Schrödinger-like equation,

−d2R

dr2∗
+ V (r, ω)R = ω2R. (1)

where r∗ is called a tortoise coordinate.
Various numerical methods have been developed to

solve (1), such as the WKB approach, shooting methods,
continued-fraction methods, and the use of Pöschl-Teller
potentials. A review article with an emphasis on this topic
can be found in [4]. In this paper, we shall be solving (1)
using a pseudospectral method.

The use of spectral and pseudospectral methods in grav-
itational problems is well-established [5,6], and have been
applied to numerous numerical experiments such as [7–9]
to name a few. Here we extend this library of methods to
include the Bernstein polynomial basis, which has particu-
lar properties that lend its use to mixed-type boundary-value
problems.

Likewise, Bernstein polynomials have been used as a
function basis in the numerical solution of various differ-
ential [10–14], fractional differential [15], integral [16–19],
integro-differential [20,21] and fractional integro-differential
[22] equations. Multiple methods have been deployed in
this context, such as the Bernstein–Petrov–Galerkin (BPG)
method, the collocation method, operational matrices and
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direct integration. Our work extends the range of the Bern-
stein basis by exploring its use in ODE eigenvalue problems.

The aim of this paper is two-fold. First, it is a primer on
how Bernstein polynomials (BPs) may be used for boundary-
value problems in a general relativity setting. Second, it
is an introduction to a Mathematica package we call
SpectralBP that implements the pseudospectral method
based on Bernstein polynomials. For examples and bench-
marks, we have applied SpectralBP to a selection of
eigenvalue problems in quantum mechanics and general
relativity: the infinite square well, harmonic and anhar-
monic oscillators, and quasinormal modes of various fields
in a Schwarzschild black hole. Particularly noteworthy is
that SpectralBP is able to find eigenvalues with modest
resources where other numerical methods find with difficulty,
such as the algebraically special modes for gravitational per-
turbations of the Schwarzschild geometry [23,24]. As will
be explained below, this should be expected of any spectral
method for eigenvalue problems.

The method introduced in this paper, and the accompany-
ing Mathematica package, has seen use in general relativ-
ity [25–33] and quantum mechanics [34]. It has been partic-
ularly useful in finding purely imaginary quasinormal modes
[28,32], finding new branches of solutions hitherto unknown
[26,29] and show novel and critical behaviors like spectrum
bifurcation [27] and instability [30]. In quantum mechanics
applications, it has been shown to generate exceedingly accu-
rate solutions where other methods require vast resources in
memory and compute time [34].

Consider an n × n matrix of linear differential operators
L̂(u, ω) dependent on a single independent variable u and
polynomial in the eigenvalue ω of some maximal integer
order m,

L̂ i, j (u, ω) = f̂i, j,0 + ω f̂i, j,1 + · · · + ωm f̂i, j,m,

f̂i, j,k = fi, j,k(u,
d

du
,

d2

du2 , . . . ),
(2)

and let �(u) be a vector of n functions dependent on u

�(u) = (φ1(u), φ2(u), . . . , φn(u))T . (3)

We wish to solve the following eigenvalue problem for ω,

L̂(u, ω)�(u) = 0, (4)

provided the problem satisfies the following criteria:

1. The domain of the solution is compact and analytic over
its whole domain. (u ∈ [a, b])

2. The boundary conditions for all eigenfunctions ψi (u)

specifies that limu→a ψi (u) ∼ (u−a)q and limu→b ψi (u)

∼ (b − u)r for some q, r ≥ 0.

3. The eigenvalues of ω form a discrete spectrum.

The calculation of the bound state energies of quantum
mechanical particles and the quasinormal modes of black
hole spacetimes are examples of such a problem.

To solve (4) we use a pseudospectral method, in which
the solution of the differential equation is approximated as a
weighted sum of a set of basis functions, say {φi (r)}, as in,

R(r) ≈
∑

i

Ciφi (r). (5)

This renders the initial differential problem into a system
of algebraic equations the set of expansion coefficients {Ci }
must satisfy. Since (4) is linear, these algebraic equations
can be cast as a matrix equation generically of the form of a
generalized eigenvalue problem (GEP),

M(ω)C = 0. (6)

We have developed a Mathematica package we call
SpectralBP, written to streamline the numerical solution
of ODE eigenvalue problems. The package utilizes the Bern-
stein polynomials, and the properties which make them par-
ticularly powerful in the context of boundary value problems.

A similar Mathematica package can be found in [35]. It
is a pseudospectral method which uses a Chebyschev polyno-
mial basis, called QNMSpectral. This open-source pack-
age served as the initial inspiration for our work, and so
the two codes unavoidably overlap in some of their func-
tionality. We developed SpectralBP to be a superset of
QNMSpectral, with the intent of developing a spectral
solver not just specifically tailored to quasinormal mode cal-
culations. It also serves to introduce the Bernstein method to
the general relativity community. Aside from methods specif-
ically tied to the Bernstein basis, SpectralBP also imple-
ments a novel algorithm for efficiently tackling transcenden-
tal and polynomial eigenvalue problems that we shall discuss
in detail in a future paper [36].

This paper is organized in two parts. We first establish how
the Bernstein polynomial basis may be used in ODE eigen-
value problems with boundary conditions. In Sect. 2, we fix
our notation and enumerate the properties of the Bernstein
basis relevant to the method. In Sect. 3, we explain how the
Bernstein basis is appropriate in handling boundary condi-
tions. In Sect. 4, we review standard methods for translating
(4) into a generalized eigenvalue problem using a collocation
method. We then enumerate various positives and negatives
the Bernstein polynomial basis has compared to other bases
like Fourier or Chebyschev in Sect. 5.

The rest of the paper involves the implementation and
application of SpectralBP. Section 6 introduces the
SpectralBP package and its general features. We then
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show in detail howSpectralBP can be used in Sects. 7 and
8, introducing functionalities of the package by working out
some model problems in quantum mechanics and calculat-
ing quasinormal modes respectively. In Sect. 9, we look at the
algebraically special modes of the Regge–Wheeler equation.
In the final section, we show miscellaneous details imple-
mented in SpectralBP: closed-form expressions of the
spectral matrices, matrix inversion, and eigenfunction calcu-
lation and manipulation.

2 Bernstein polynomials

We review some of the key properties of Bernstein poly-
nomials. We shall not be exhaustive and select only those
properties useful to the development of SpectralBP. This
section shall also fix our notation for the rest of the paper.
A useful reference can be found in [12], which describes all
of the properties listed here using a Bernstein basis over the
interval [0, 1]. The generalization to a Bernstein basis over
an arbitrary interval [a, b] is straightforward.

The Bernstein basis of degree N defined over the interval
u ∈ [a, b] is a set of N + 1 polynomials, {BN

k (u)}, given by

BN
k (u) =

(
N
k

)
(u − a)k(b − u)N−k

(b − a)N
,

k = 0, 1, . . . , N ,

(
N
k

)
= N !

(k)!(N − k)! .
(7)

For convenience, we also set BN
k (u) = 0 and

(
N
k

)
= 0

when either k < 0 or k > N .
The Bernstein basis of degree 10 is shown in Fig. 1. It is

clear that at the boundaries u = a and u = b, Bernstein
polynomials satisfy

BN
k (a) = δk,0, BN

k (b) = δk,N . (8)

Fig. 1 Bernstein polynomials of degree 10

The derivative of a Bernstein polynomial of degree N can be
expressed in terms of Bernstein polynomials of degree N−1,
satisfying the following recurrence relation,

dBN
k

du
= N

b − a

(
BN−1
k−1 (u) − BN−1

k (u)
)

. (9)

Repeated differentiation also gives

dmBN
k

dum
= 1

(b − a)m

N !
(N − m)!

×
m∑

l=0

(−1)l
(
m
l

)
BN−m
k+l−m(u). (10)

A Bernstein polynomial of degree N can be expressed as a
sum of Bernstein polynomials of a higher degree [37],

BN
k (u) =

m∑

j=0

(
N
k

) (
m
j

)

(
N + m
k + j

) BN+m
k+ j (u). (11)

The integral of each basis polynomial in a Bernstein basis of
degree N over [a, b] are equal,

∫ b

a
BN
k (u)du = b − a

N + 1
. (12)

Finally, the product between two Bernstein polynomials can
be expressed as single Bernstein polynomial of higher degree,

BN
j (u)BM

k (u) =

(
N
j

) (
M
k

)

(
N + M
j + k

) BN+M
j+k (u). (13)

3 Boundary conditions

When using the Bernstein basis in mixed-type boundary-
value problems, we shall see that the boundary conditions act
only on a subset of the Bernstein basis. This lets us indepen-
dently solve the boundary conditions separately, making the
Bernstein basis particularly useful in mixed-type boundary-
value problems. For the particular boundary-value problem
described in Sect. 1, the Bernstein method reduces to a form
in which each basis function satisfies the boundary condi-
tions.

We begin by approximating the solution φ(u) as a
weighted sum of Bernstein polynomials,

φ(u) ≈
N∑

k=0

Ck B
N
k (u). (14)
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Let there be q boundary conditions on u = a and r boundary
conditions on u = b of the following form,

φ(a) = a0,
dφ(a)

du
= a1, . . . ,

dq−1φ(a)

duq−1 = aq−1,

φ(b) = b0,
dφ(b)

du
= b1, . . . ,

dr−1φ(b)

dur−1 = br−1.

(15)

These constants may be interrelated. A common example
would be a two-point boundary value problem of a second-
order differential equation subject to mixed linear boundary
conditions,

c1,kφ(a) + c2,kφ
′(a) + c3,kφ(b) + c4,kφ

′(b) = c5,k,

(k = 1, 2, 3, 4),
(16)

which fixes a0, a1, b0, and b1.
Combining (10) and (14), the mth derivative of φ(u) is

given by

dmφ

dum
=

N∑

k=0

m∑

l=0

Ck

(b − a)m

N !
(N − m)! (−1)l

(
m
l

)
BN−m
k+l−m(u).

(17)

We use (8) to simplify evaluating φ(u) at the boundaries. At
u = a and u = b, we get

dmφ

dum

∣∣∣∣
a

= 1

(b − a)m

N !
(N − m)!

m∑

l=0

Cm−l(−1)l
(
m
l

)
(18)

and

dmφ

dum

∣∣∣∣
b

= 1

(b − a)m

N !
(N − m)!

m∑

l=0

CN−l(−1)l
(
m
l

)
. (19)

Thus, the boundary conditions act only first q and last r of
the Bernstein basis, whose expansion coefficients are fixed
via the matrix equations

AC = a, BC̃ = b, (20)

where

Al,m = 1

(b − a)l

N !
(N − l)! (−1)l−m

(
l

l − m

)
,

Cm = Cm, al = al ,
m, l ∈ {0, 1, . . . , q − 1},

(21)

and

Bl,m = 1

(b − a)l

N !
(N − l)! (−1)m

(
l
m

)
,

C̃m = CN−m, bl = bl ,
m, l ∈ {0, 1, . . . , r − 1}.

(22)

When the differential operator is linear, the modified ODE
eigenvalue problem

L̂(u, ω)ψ(u) = g(u, ω), ψ(u) =
N−r∑

k=q

Ck B
N
k (u) (23)

determines the rest of the expansion coefficients, where the
residual function g(u, ω) is given by

g(u, ω) = −L̂(u, ω)

⎛

⎝
q−1∑

k=0

Ck B
N
k (u)+

N∑

k=N−r+1

Ck B
N
k (u)

⎞

⎠ .

(24)

We consider the case where g(u, ω) vanishes, or equivalently

lim
u→a

φ(u) ∼ (u − a)q , lim
u→b

φ(u) ∼ (b − u)r . (25)

We arrive at an ODE eigenvalue problem identical to the one
we started with, but over a smaller set of basis functions

L̂(u, ω)ψ(u) = 0, ψ(u) =
N−r∑

k=q

Ck B
N
k (u). (26)

It should be noted that for more standard basis functions,
imposing the boundary conditions considered in (15) would
involve the entire basis set. To determine the expansion coef-
ficients, the differential equations and the boundary condi-
tions must be solved simultaneously. In the Bernstein basis,
the boundary conditions act only on the first q and last r
basis polynomials, and we get their corresponding expan-
sion coefficients for free even before considering the ODE.
Though we do not prove that this advantage is unique to the
Bernstein basis, we believe that any other basis must behave
like Bernstein polynomials to enjoy it. That is, the nth basis
function of a basis of size N must asymptote to (u − a)n

towards the lower boundary and to (b − u)N−n towards the
upper boundary.

We express a similar sentiment for other basis functions
where the condition (25) would make the residual func-
tion vanish. In the Bernstein basis, the problem is simplified
since each basis polynomial satisfies the boundary conditions
exactly.

Finally, we note that when the differential operator is not
dependent onω, Eq. (23) serves as a general recipe for solving
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boundary value problems using Bernstein polynomials. One
may modify the many methods found in Sect. 1 to solve for
the remaining undetermined coefficients.

4 Pseudospectral method

In this section, we review how one starts with the ODE eigen-
value problem in (4) and end up with the generalized eigen-
value problem in (6). We derive a general recipe for mapping
a differential operator and function pair to a matrix and vec-
tor pair (M̃(ω), C̃) via a collocation method in the Bernstein
basis, whose closed form can be found in the last section. In
the context of Chebyschev basis polynomials and Fourier
basis functions, the standard reference is [38].

We start with a linear eigenvalue ODE, then show how it
can be extended to polynomial eigenvalue ODEs. We extend
this to include problems involving a set of dependent func-
tions. We elaborate on special cases in A, used to convert the
polynomial generalized eigenvalue problem to an eigenvalue
problem.

4.1 Linear eigenvalue problem

Consider the ODE eigenvalue problem in (26), specifically
of the form

L̂(u, ω)ψ(u) = ( f̂0(u) + ω f̂1(u))ψ(u) = 0. (27)

To arrive at a spectral matrix of size N + 1, we expand the
basis degree to Nmax = N + q + r .

ψ(u) ≈
N∑

k=0

Ck+q B
Nmax
k+q (u). (28)

A straightforward implementation of the collocation
method would be to define a grid of N + 1 points in the
interval [a, b]. Since the first q or last r Bernstein basis func-
tions dominate the behaviour of the solution near the bound-
aries, we propose instead to select collocating points in the
region dominated by the basis functions whose weights are
still unknown.

As an illustrative example, consider the case when N =
10, q = 30 and r = 30. One can imagine rescaling a solution
φ(u) finite at both boundaries via the transformation,

φ(u) = φ̃(u)

(u − a)30(b − u)30 . (29)

The basis of φ(u) is in Fig. 1 while the basis of φ̃(u) is in
Fig. 2. Its derivatives are similarly localized. We construct
our collocating grid by considering a Chebyschev or equally

Fig. 2 The set of 11 Bernstein basis polynomials appropriate when
q = 30 and r = 30, and their derivatives. The basis functions are
localized around the center of [a, b], as are their derivatives

spaced grid of Nmax + 1 points over [a, b],

{u0, u1, . . . , uNmax}, u0 = a, uNmax = b, (30)
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and then select grid points q through N + q + 1.
Let us now endeavour to convert the differential operator

and function pair ( f̂ (u), ψ(u)) into a matrix and vector pair
(M,C). Suppose f̂ (u) is of the form,

f̂ (u) =
nmax∑

n=0

fn(u)
dn

dun
. (31)

A generic term in the f̂ (u)ψ(u) is of the form fn(u)
dnψ

dun
.

Combining (10) and (28), we get

fn(u)
dnψ(u)

dun
= f (u)

(b − a)n

(Nmax)!
(Nmax − n)!

×
N∑

k=0

n∑

l=0

(−1)l
(
n
l

)
BNmax−n
k+q+l−n(u)Ck+q .

(32)

We may assign a vector to each term in f̂ (u)ψ(u) with the
condition that the differential operator is satisfied at each
collocation point,

fn(u)
dnψ(u)

dun
→ T (n)C, (33)

where Ck = Ck+q and the matrix components of T (n) are
given by

T (n)
j,k = fn(u j+q)

(b − a)n

(Nmax)!
(Nmax − n)!

×
n∑

l=0

(−1)l
(
n
l

)
BNmax−n
k+q+l−n(u j+q), (34)

for j, k ∈ {0, 1, . . . , N }.
To use (34), each Bernstein basis polynomial of degree

Nmax−n through Nmax must be evaluated at each collocation
point. Since in many applications, nmax 	 N , it would be
numerically cost efficient to use (11) and rewrite (34) in terms
of a single Bernstein basis degree, as in

T (n)
j,k = fn(u j+q)

(b − a)n

(Nmax)!
(Nmax − n)!

n∑

l=0

(−1)l
(
n
l

)

×
n∑

m=0

(
n
m

) (
Nmax − n

k + q + l − n

)

(
Nmax

k + q + l + m − n

) BNmax
k+q+l+m−n(u j+q).

(35)

By choosing this degree to be Nmax, only a subset of the
Bernstein basis needs to be evaluated at each collocation
point-specifically those indexed in the range [q−min(nmax, q),

N + q + min(nmax, r)]. Thus,

( f̂ (u), ψ(u)) → (M,C), M =
nmax∑

n=0

T (n). (36)

The ODE linear eigenvalue problem in (27) may be written
as a generalized eigenvalue problem,

M(ω)C = (M0 + ωM1)C = 0. (37)

4.2 Polynomial eigenvalue problem

Consider a polynomial eigenvalue problem of order m.,

( f̂0(u)+ω f̂1(u)+ω2 f̂2(u)+· · ·+ωm f̂m(u))ψ(u) = 0. (38)

Using the recipe discussed in the previous section, this corre-
sponds to an eigenvalue problem of a matrix pencil of order
m,

(M0 + ωM1 + ω2M2 + · · · + ωmMm)C = 0. (39)

We linearize the matrix pencil by defining the following
matrices,

M′ =

⎛

⎜⎜⎜⎝

M0 M1 . . . Mm−1

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎞

⎟⎟⎟⎠ , (40)

M′′ =

⎛

⎜⎜⎜⎝

0 . . . 0 Mm

−1 . . . 0 0
...

. . .
...

...

0 . . . −1 0

⎞

⎟⎟⎟⎠ , (41)

and the vector,

C =

⎛

⎜⎜⎜⎝

C
ωC
...

ωm−1C

⎞

⎟⎟⎟⎠ . (42)

This transforms the matrix pencil (39) to another GEP,

M(ω)C = (M′ + ωM′′)C = 0. (43)

For clarity, we typeset matrices and vectors generated from
linearizing a matrix pencil by a calligraphic typeface.

Generalized eigenvalue problems are more difficult to
solve than regular eigenvalue problems. We describe a
method to transform the above GEP to an EP in A.2 con-
tingent on the invertibility of either M0 or Mm , leading to a
modest improvement in speed.

123



Eur. Phys. J. C (2023) 83 :1170 Page 7 of 27 1170

4.3 Polynomial eigenvalue problem over several dependent
functions

Consider the full problem in Sect. 1. In matrix form, this
becomes the set of simultaneous equations,

M1,1(ω)C1 + · · · + M1,n(ω)Cn = 0,

M2,1(ω)C1 + · · · + M2,n(ω)Cn = 0,

...

Mn,1(ω)C1 + · · · + Mn,n(ω)Cn = 0, (44)

where each matrix M j,k(ω) is constructed by linearizing
the matrix pencil of the kth dependent function of the j th
equation, as in

M j,k(ω) = M′
j,k + ωM′′

j,k . (45)

The set of simultaneous equations can be written as a single
matrix equation by defining the following matrices,

M̃′ =

⎛

⎜⎜⎜⎝

M′
1,1 M′

1,2 . . . M′
1,n

M′
2,1 M′

2,2 . . . M′
2,n

...
...

. . .
...

M′
n,1 M′

n,2 . . . M′
n,n

⎞

⎟⎟⎟⎠ , (46)

M̃′′ =

⎛

⎜⎜⎜⎝

M′′
1,1 M′′

1,2 . . . M′′
1,n

M′′
2,1 M′′

2,2 . . . M′′
2,n

...
...

. . .
...

M′′
n,1 M′′

n,2 . . . M′′
n,n

⎞

⎟⎟⎟⎠ , (47)

and vector,

C̃ =

⎛

⎜⎜⎜⎝

C1

C2
...

Cn

⎞

⎟⎟⎟⎠ . (48)

We arrive at the GEP of the full problem introduced in Sect. 1,

M̃(ω)C̃ = (M̃′ + ωM̃′′
)C̃ = 0. (49)

The GEP of the full problem is much more complicated.
Unlike the GEP of the previous subsection, it can be shown
that M̃′

is always singular, as we show in A.2.

5 Advantages and disadvantages of the Bernstein basis

Having elaborated on how the Bernstein basis fits into solv-
ing a partial differential problem like (4), we discuss in this
section what these properties cost and afford us, and how

they compare to more standard basis functions. We also dis-
cuss some results that may be found in A.4. One may read
through that section first, and then return here.

1. Bernstein polynomials are not orthogonal. This follows
from (12) and (13). This complicates an extension of the
current method to partial differential equations, where
the weights may be made to vary in time.

2. The Bernstein basis polynomials depends on the basis
degree. We cannot naively apply derivatives without cost-
ing us additional numerical resources. We need to fold
in an application of (11) so that we remain in a single
common basis degree. There is no operation similar to
(11) for classical orthogonal polynomials, because those
basis functions do not depend on the size of the basis.

3. The zeros of the Bernstein basis, if they occur, are located
at the boundaries. There are no nodes we can take advan-
tage of in constructing a collocation grid, so the imple-
mented spectral matrices (103) and (104) are dense.

4. Many of the properties of the Bernstein basis have equiv-
alent forms for other basis functions. The boundary val-
ues, derivative recurrence relation and integral similar to
(8), (10) and (12) are well-known for classical orthogonal
polynomials and the Fourier basis. A simple product for-
mula like (13) exists for Chebyschev and Fourier basis.

5. The specific form of these properties gives the Bern-
stein basis an advantage over other basis functions when
dealing with mixed boundary value problems outlined in
Sect. 3. In the Bernstein basis, the boundary constraints
only act on a subset of the basis set, whose weights
can be fully determined independently of the differential
equation. Such a luxury is not enjoyed by more standard
basis functions. For classical orthogonal polynomials and
the Fourier basis, imposing the boundary conditions (15)
would involve the entire basis set. Solving the differen-
tial equations and the boundary conditions must be done
simultaneously.

6. The lack of a residual term in (26) and the lack of addi-
tional constraints on the expansion coefficients lets us
write down the algebraic equations these expansion coef-
ficients must satisfy as a generalized eigenvalue problem
in Sect. 4.

7. There are manipulations which can only be easily done
in the Bernstein basis, discussed in A.4. For example, a
tau method using Chebyschev polynomials can impose
the boundary condition limu→a ψ(u) ∼ (u − a) exactly.
However, one cannot naively divide out a (u−a) term-by-
term, since each Chebyschev polynomial is finite at the
lower boundary. Such a rescaling can be exactly carried
out in the Bernstein basis, as shown in A.4. This lets
us calculate the weighted L2-norm of a function in the
Bernstein basis in closed-form, even in cases where the
weight has a pole of integer degree at the boundaries. This
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is useful, for example, when normalizing wavefunctions
in a compactified coordinate system, as in Sect. 7.2.

8. The numerical convergence of the Bernstein basis has
been established in the context of other differential
problems. Interestingly, in some cases, the Bernstein
method would outperform other basis functions (includ-
ing Chebyshev and Fourier) in terms of numerical cost or
the accuracy of the solutions [15,17–19,21]. We do not
perform a similarly comprehensive analysis here, con-
centrating instead on general ideas on how the Bernstein
basis may be adapted to ODE eigenvalue problems and
introducing the package SpectralBP. Though we do
demonstrate numerical convergence for some of the cases
we tackle below.

6 The SpectralBP package

The SpectralBP package uses the properties of the Bern-
stein basis, written to streamline the calculation of the eigen-
values and eigenfunctions of (4). It is primarily distributed
as a Mathematica paclet and is publicly available [39].

SpectralBP commands are documented, and the pack-
age is bundled with two tutorial notebooks. After instal-
lation, the details and options of each command may
be explored by prefixing a command with a question
mark, as in ?GetModes, similar to built-in commands in
Mathematica.

There are three types of commands in SpectralBP:
Get commands, Compare commands and Print com-
mands. The basic work flow is as follows.

1. Begin with some ODE eigenvalue problem

L̂ ′(x, ω)� ′(x) = 0 (50)

which may not satisfy the 3 properties required in Sect. 1.
2. If the domain of the eigenfunctions ψ ′

i (x) is not compact,
define an invertible change of variables f (x) = u so that
the domain in u is compact.

3. If the resulting eigenfunctions are non-analytic, one may
rescale as in

ψ ′
i (u) = fi (u)ψi (u) (51)

so that the resulting eigenfunctions ψi (u) are analytic.
One also defines fi (u) so that all eigenfunctions ψi (u)

satisfies the same boundary conditions. The result should
be an eigenvalue problem described in Sect. 1.

4. Use Get commands to calculate eigenvalues and eigen-
functions at different BP orders.

5. Use Compare commands to filter out spurious eigenval-
ues and eigenfunctions.

6. Use Print commands to quickly glean off information
from the prior calculations.

We will discuss each command type in the following sub-
section before going into applications. Example notebooks
can be found in the next two sections.

6.1 Get commands

The first input of a Get command is a list of differential
equations. The command automatically identifies the depen-
dent functions, the independent variable and the eigenvari-
able. The command halts whenever it identifies more than
one independent variable or eigenvariable, or whenever the
number of dependent functions underdetermine or overde-
termine the problem.

There are three Get commands,

1. GetModes[eqn,N]: Calculates the eigenvalues of the
ODE eigenvalue problem stored in eqn using a basis
degree of N.

2. GetEigenfunctions[eqn,modes,N]: Calculates
the eigenvectors corresponding to each eigenvalue in the
list modes, using a basis degree of N. As discussed in
the Appendix, we advise that N be identical to be basis
degree the eigenvalues in modes were calculated.

3. GetAccurateModes[eqn,N1,N2]: Calculates the
eigenvalues using basis degrees of N1 and N2, then
applies a CompareModes command to filter the eigen-
values.

By replacing the basis degree inputs with a pair of num-
bers, which we call a basis tuple of the form {N,prec},
eigenvalues are calculated using a basis degree of N using
prec-precision numbers. That is, an alternative input scheme
for the above commands is given by,

GetModes[eqn,{N,prec}],

GetAccurateModes[eqn,{N1,prec1},

{N2,prec2}].

The default behavior of GetModes and GetAccurate
Modes are as follows

GetModes[eqn,N] = GetModes[eqn,{N,N/2}],

GetAccurateModes[eqn,N1,N2] =
GetAccurateModes[eqn,{N1,N1/2},{N2,N2/2}].

In calculating the eigenvalues and eigenvectors, Get
commands must be supplied with the correct domain and
boundary conditions. These are controlled by 4 options,

1. LowerBound and UpperBound: defines the domain
[a, b], which defaults to [0, 1].

123



Eur. Phys. J. C (2023) 83 :1170 Page 9 of 27 1170

2. LBPower and UBPower: defines the leading polyno-
mial powerq, r at each boundary, which defaults toq = 0
and r = 0.

The optionNormalization lets one choose how eigen-
functions are normalized. The option may have 4 values,

1. “UB”: the coefficient of the leading polynomial expan-
sion of the eigenfunctions at b to 1.

2. “LB”: the coefficient of the leading polynomial expan-
sion of the eigenfunctions at a to 1.

3. “L2Norm”: the L2-norm of the eigenfunctions to 1.
4. {“L2Norm”,{A,B,C}}: the L2-norm of the eigen-

functions to 1, with a weight function underneath the
integral of the form A(u − a)B(b − u)C .

The option FinalAsymptotics lets one change the
outputted eigenfunctions’ asymptotics, according to manip-
ulations detailed in A.4.

6.2 Compare commands

The spectrum calculated from a finite basis degree will be
filled with either eigenvalues that have not converged or spu-
rious eigenvalues. We have provided two ways to filter these
out. These are the two Compare commands,

1. CompareModes[modes1,modes2]: Checks
whether eigenvalues in the two spectra inputted share
common digits, then keeps only eigenvalues that share at
least 3 digits.

2. CompareEigenfunctions[eqn,{modes1,
modes2},{N1,N2}]: Calculates the eigenfunctions
of the eigenvalues approximately common to modes1
and modes2 using a basis degree of N1 and N2 respec-
tively. If the L2-norm of their difference is less than 10−3,
the eigenvalues are kept.

There are two relevant options,

1. Cutoff: controls the minimum number of common dig-
its for eigenvalues to be kept, which defaults to 3.

2. L2Cutoff: controls the maximum difference between
two eigenfunctions, of the form 10−n , for their corre-
sponding eigenvalues to be kept, which defaults to n = 3.

We call eigenvalues of different spectra that share a
Cutoff-number of common digits approximately common.

One may also input a list of spectra intoCompareModes,
as in

CompareModes[{modes1,modes2,…}].

6.3 Print commands

There are four Print commands,

1. PrintFrequencies[modes]: plots the eigenvalues
in modes on the complex plane.

2. PrintEigenfunctions[eqn,modes,N]: plots
the real and imaginary parts of the corresponding eigen-
functions.

3. PrintTable[convergedmodes]: generates a table
of eigenvalues, categorizing them into purely real, purely
imaginary, and complex eigenvalues. Groups together
eigenvalues satisfying ω∗ = ω and ω∗ = −ω. The
input must be a pair of lists of approximately com-
mon eigenvalues, usually coming from the output of a
CompareModes command.

4. PrintAll[eqn,convergedmodes,N]: a shortcut
to do the previous three commands in a single command.

There are three relevant options,

1. FreqName: specifies the symbol for the eigenvariable,
which defaults to ω.

2. NSpectrum: specifies how many eigenvalues would be
plotted, which defaults to plotting everything.

3. NEigenFunc: specifies how many eigenfunctions would
be plotted, which defaults to plotting everything.

The PrintTable command automatically only prints
out significant digits, defined to be the digits common to both
the spectra inputted. When the inputted spectra comes from
two adjacent basis degrees, say N and N + 1, the right-most
digits of the output may be incorrect. This occurs because
the absolute error of the two spectra overlap.

We recommend using basis degrees that are far apart in the
sense that the absolute error of the higher basis degree spec-
trum is much smaller than the absolute error of the lower basis
degree spectrum. Although the practice would be numeri-
cally more costly, in this way we increase our chances that
the right-most significant digit outputted is correct.

6.4 Summary of implementations

In Table 1, we summarize the different inputs needed to
solve the ODE eigenvalue problems that we shall look at
in the succeeding sections. Hopefully, in the examples con-
sidered in the proceeding sections, one is left with an impres-
sion of the general-purpose applicability and ease-of-use
of SpectralBP. As shall be demonstrated, three lines of
code can yield a wealth of information about the considered
ODE eigenvalue problem. The difference between the exam-
ples given is just swapping in and out of differential equa-
tions, applying certain change of variables in cases where
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Table 1 Input scheme for the various eigenvalue ODE problems dis-
cussed in Sects. 7, 8 and 9. The potential V ∗ was chosen to be (53) for
the base infinite square well problem, and (56) for the perturbed infinite
square well problem. The potential V † was chosen to be (58) for the
quantum harmonic oscillator problem. The potential V ‡ was chosen to

be (71) as the PT -symmetric anharmonic potential for specific values
of λ, and (72) as the quartic anharmonic potential for specific values of
β. The different variables used mark certain coordinate transformations
effected to compactify an infinite domain

Problem eqn LBPower UBPower

Infinite square well
1

2
φ′′(x) + (E − V ∗(x))φ(x) 1 1

Harmonic oscillator
1

2
v2

2(v2 − 1)2φ′′(v2) + 1

2
v2(v2 − 1)(2v2 − 1)φ′(v2) 1 1

+
(
E − V †

(
ln

[
v2

1 − v2

]))
φ(v2)

Anharmonic oscillator v2
2(v2 − 1)2φ′′(v2) + v2(v2 − 1)(2v2 − 1)φ′(v2) 1 1

+
(
E − V ‡

(
ln

[
v2

1 − v2

]))
φ(v2)

Schwarzschild QNMs (1 − u)u2φ′′(u) + (2λ + 2u − u2(3 + 4λ))φ′(u) 0 0

− (
l + l2 + 4λ2 + u((1 + 2λ)2 − s2)

)
φ(u)

Notebook 1 : A simple Mathematica notebook implementation of SpectralBP for the infinite square well problem.
1: TISE = Equation (52) with potential (53)
2: modes50 = GetModes[TISE, 50, LBPower→1, UBPower→1]
3: modes80 = GetModes[TISE, 80, LBPower→1, UBPower→1]
4: convergedmodes = CompareModes[modes50, modes80]

5: PrintFrequencies[
2

π2 modes50, NSpectrum→10, FreqName→‘
2

π2 E’] 
 Figure 3 (Top)

6: PrintEigenfunctions[TISE, modes[[1;;3]], 50, LBPower→1, UBPower→1, Normalization→‘L2Norm’] 
 Figure 3 (Middle)

7: PrintTable[
2

π2 convergedmodes[[;;,1;;10]], FreqName→‘
2

π2 E’] 
 Figure 3 (Bottom)

the domain is infinite, and specifying the necessary bound-
ary conditions.

7 Applications in quantum mechanics

We first illustrate how SpectralBP is used by working
through standard problems in quantum mechanics. We solve
for the eigenenergies and eigenfunctions of the infinite square
well and quantum harmonic potentials numerically in the
first two subsection. Calculations are compared with well-
known analytic results, as can be found in standard quantum
mechanics textbooks like [40].

For the last two subsections, we compute the eigenen-
ergies of the anharmonic potentials considered in [41] and
[42]. We compare ground state eigenenergies calculated with
SpectralBP to the results of the aforementioned papers,
which were both calculated perturbatively using a combi-
nation of Padé approximation and Stieltjes series. In [42],
Milne’s method [43] was used as an independent test.

7.1 Infinite square well

Consider the time-independent Schrödinger equation

1

2

d2

dx2 φ(x) + (E − V (x))φ(x) = 0. (52)

For the infinite square well, the potential is chosen to be

V (x) =
{

0 0 ≤ x ≤ 1
∞ otherwise.

(53)

Its eigenenergies are

En = π2n2

2
, n = 1, 2, 3, . . . . (54)

The domain of solutions is the interval [0, 1] with boundary
conditions,

lim
x→0

φ(x) ∼ x, lim
x→1

φ(x) ∼ (1 − x). (55)

7.1.1 SpectralBP-basic implementation

A simple implementation to solve the infinite square well
problem is schematically found in Notebook 1.

Lines 2 and 3 solves the ODE eigenvalue problem (52)
with potential (53) using basis degrees 50 and 80 respectively.

The boundary conditions (55) are set by the option values

LBPower → 1, UBPower → 1,
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which must be specified whenever eigenvalues and eigenvec-
tors are calculated.

Line 4 selects eigenvalues that are approximately common
to modes50 and modes80. As described in the Sect. 6.3,
this may serve as input for the PrintTable command in
line 7. We have chosen to rescale the eigenenergies in lines 5
and 7 so that the output would be the first 10 perfect squares.

Line 6 plots the eigenfunctions of the inputted spectrum
of the lowest three eigenvalues of modes50 using a basis
degree of 50. The Print commands found in the last 3 lines
output Fig. 3.

As described in Sect. 6.3, the command PrintTable
only prints out significant digits. As an illustrative exam-
ple, consider the lowest rescaled eigenenergies. The absolute
error for modes50 is 3.27 × 10−22 and the absolute error
for modes80 is 4.97×10−31. The PrintTable compares
the two eigenvalues and detects a difference of ∼ 10−22, and
prints out the eigenvalue up to the 21st decimal place.

7.1.2 SpectralBP-quick commands

Three commands can do the calculations in Notebook 1. We
have omitted the relevant options for boundary conditions
and printing for conciseness. Notebook 2 outputs the same
figures as in Notebook 1.

7.1.3 A note on machine precision

As described in Sect. 6.1, one may use arbitrary precision
numbers by inputting a basis tuple of the form {N,prec}.
This would calculate eigenvalues using a basis degree of N
with prec-precision numbers, as in Notebook 3.

The PrintTable command in line 3 outputs Fig. 4. The
number of common modes remain at 28 (not shown), but
there are more significant digits for the lowest eigenenergies.

This is because the error due to floating point arith-
metic at machine precision is generally small enough to
resolve approximately common eigenenergies between basis
degrees. When higher precision numbers are used, this error
is pushed down further and may reveal more significant dig-
its. The absolute error from approximating the solution space
in a finite polynomial basis eventually dominates, and may
only be corrected by using higher and higher basis degrees.

Briefly, increasing machine precision increases the sig-
nificant digits (up to a point) while increasing the Bernstein
basis degree used increases the number of converged modes
(up to a point).

7.1.4 Test on non-analytic solutions

For completeness, let us explore the case when the exact
solution is non-analytic. Suppose we perturb the potential by

Fig. 3 Output of Notebooks 1. Top: (PrintFrequencies) The first
10 eigenenergies calculated using a basis degree of 50, plotted on the
complex plane. Middle: (PrintEigenfunctions) The eigenfunc-
tions of the first 3 eigenenergies, calculated using a basis degree of
50, normalized according to their L2-norm. Bottom: (PrintTable)
Rescaled eigenvalues common to basis degrees of 50 and 80. There
are 28 eigenenergies that share a minimum of 3 significant digits (not
shown). We tabulate only the lowest 10. The spectrum calculated is in
excellent agreement with (54)

lifting half of the infinite square well,

V (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 0 ≤ x <
1

2
1

1

2
≤ x < 1

∞ otherwise.

(56)
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Notebook 2 : A shorter implementation of SpectralBP equivalent to Notebook 1
1: TISE = Equation (52) with potential (53)
2: quickmodes = GetAccurateModes[TISE, 50, 80, ...];
3: PrintAll[TISE,quickmodes,50, ...]

Notebook 3 : An implementation demonstrating the use of arbitrary precision numbers in SpectralBP.
1: TISE = Equation (52) with potential (53)
2: quickmodes = GetAccurateModes[TISE, {50,50}, {80,80}, ...];

3: PrintTable[
2

π2 quickmodes[[;;,1;;10]], FreqName→‘
2

π2 E’] 
 Figure 4

Fig. 4 Calculated eigenvalues common to basis tuples {50, 50} and
{80, 80} (described in Sect. 6.1). There are 28 eigenenergies that share
a minimum of 3 significant digits (not shown) – similar to Fig. 3 – while
the number of significant digits for the lower eigenvalues have increased

The exact solution can be derived by starting with a pair of
free particle solutions at 0 ≤ x ≤ 1/2 and 1/2 ≤ x ≤ 1, then
imposing the correct boundary conditions at the walls of the
infinite square well and continuity relations x = 1/2. One
then finds that for the boundary conditions and the continuity
relations to be satisfied, the eigenenergies must be solutions
to the transcendental equation,

√
2(E − 1) cot

(√
2(E − 1)

2

)
+ √

2E cot

√
2E

2
= 0.

(57)

Exact solutions are non-analytic since they are not twice dif-
ferentiable at x = 1/2.

On the other hand, one may simply swap in the poten-
tial (56) and use a GetAccurateModes to numerically
solve for these eigenenergies. We benchmark SpectralBP
against the Mathematica in-built function NSolve in
Table 2. NSolve is a zero-finding algorithm, which we use
to find solutions to (57). There is great agreement between
the two methods.

The non-analyticity of the solutions has adversely affected
how quickly the eigenenergies converge to the correct values,
which is expected from a spectral method. SpectralBP
was able to find all eigenenergies below 1000. On the other
hand, NSolve will not find the eigenenergies indicated by
*’s by default. These roots are sensitive since one must start
close to the them so that NSolve can find them. The eigenen-

Table 2 Comparison between NSolve (a zero-finding algorithm
in Mathematica 11.3) and SpectralBP, for eigenenergies in
the range 0 ≤ E ≤ 1000. Eigenenergies with *’s were found
by NSolve by sampling the range [0,1000] with a resolution of
0.01. Unmarked eigenenergies can be found by default. Eigenenergies
found by SpectralBP used basis tuples of {61, 61} and {101, 101}
(described in Sect. 6.1). There is excellent agreement between the
eigenenergies found by both methods

n E (NSolve) E (SpectralBP)

1 5.422146460 5.4221

2 20.24869744 20.2487

3 44.91181375 44.9118

4∗ 79.45920945 79.4592

5 123.8695486 123.8695

6∗ 178.1539346 178.1539

7 242.3050494 242.3050

8∗ 316.3279345 316.3279

9 400.2188219 400.2188

10∗ 493.9806000 493.9806

11 597.6109616 597.6110

12∗ 711.1117807 711.1118

13 834.4814970 834.4815

14∗ 967.7214252 967.7214

ergies indicated by *’s were found by sampling the range
[0,1000] with a resolution of 0.01.

We note that we have chosen odd basis tuples in the calcu-
lation so that the corresponding collocation grids avoids the
point x = 1/2. Choosing even basis tuples degrades the accu-
racy of odd-numbered eigenenergies, and one would need to
reach a basis degree of around 400 to determine the ground
state energy accurate to 3 digits.

7.2 Quantum harmonic oscillator

Consider the harmonic oscillator potential,

V (x) = 1

2
x2. (58)
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Its eigenenergies are,

En = n + 1

2
, n = 0, 1, 2, . . . (59)

The domain of the solutions is the entire real line (−∞,∞)

with boundary conditions

lim
x→−∞ φ(x) ∼ 0, lim

x→∞ φ(x) ∼ 0. (60)

7.2.1 Compactification and boundary conditions

One may swap in the harmonic oscillator potential in the
example notebooks we have presented to calculate eigenen-
ergies and eigenfunctions, except one must include an addi-
tional step of compactifying the domain. Let us compare the
spectrum calculated using two different ways of compacti-
fying the interval (−∞,∞). The first,

v1 = tanh(x), (61)

has a domain of [−1, 1]. As described in Sect. 6.1, one may
change the default domain of [0, 1] to [−1, 1] by setting the
option value of LowerBound to −1. The second,

v2 = 1

1 + exp(−x)
(62)

has a domain of [0, 1].
Some comments are in order. First, note that the exact solu-

tion in both compactified coordinates is flat at both bound-
aries. All derivatives vanish at either boundary. However, it
is sufficient to specify at least

lim
vk→ak

ψ(vk) ∼ (vk − ak), lim
vk→bk

ψ(vk) ∼ (bk − vk),

(63)

where ak, bk are the corresponding boundary locations for
k = 1, 2. Second, note that the potential is singular at the
boundaries in both compactified coordinates, with

V (v1) = 1

2

(
tanh−1(v1)

)2
, V (v2) = 1

2

(
ln

(
v2

1 − v2

))2

.

(64)

A consequence of using the collocation grid we proposed in
Sect. 4.1 is that we have avoided evaluating at these singu-
larities by expanding the Bernstein basis order and choosing
collocation points in the interior of the relevant domain.

Finally, we observe a dependence on the rate of conver-
gence of the method with respect to different coordinate
transformations, as can be seen in Table 3. We may attribute
this discrepancy on how features such as maxima and nodes

Table 3 Comparison between compactifying using (61) and (62), using
Bernstein tuples {50, 50} and {100, 100} (described in Sect. 6.1). For
conciseness we indicate eigenergies found using (61) with a dagger†,
and mark in square brackets the additional significant digits calculated
using (62). Compactifying using (62) performs better, which finds more
eigenvalues with more significant digits

n En

1† 0.500000[0000000]

2† 1.50000[00000000]

3† 2.500[0000000]

4 3.500000000

5 4.50000000

6 5.5000000

7 6.500000

8 7.50000

9 8.50000

10 9.5000

11 10.500

12 11.500

13 12.50

14 13.50

15 14.50

of higher energy eigenfunctions are distributed on the com-
pactified coordinates in relation to how the collocation points
are distributed on the compactified coordinates.

Consider the distance of the right-most maxima or node
relative to the upper bound of a high energy eigenfunction
for either transformation,

lim
x→∞ 1−v1(x) ∼ 2 exp(−2x),

lim
x→∞ 1 − v2(x) ∼ exp(−x). (65)

That is, in proportion to the length of the interval, these fea-
tures are closer to the upper bound of the interval with (61)
than in (62),

(61) → exp(−2x), (62) → exp(−x) (66)

The same is true for the lower bound.
Thus, a collocation grid defined on v1 is unable to resolve

higher energy eigenfunctions compared to v2 since the collo-
cation points are less densely located on where the maxima
and nodes are expected to appear – ie., closer to the edge in
proportion to the length of the interval for (61) than in (62)

We note that a transformation such as

v3 = 1

1 + exp(−x/2)
(67)

‘spreads’ these features further away from the upper bound
and lower bound. An identical calculation on v3 yields more
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accurate eigenenergies than on v2 as well as finding more
eigenenergies (upto 26).

7.2.2 Eigenfunctions – normalization and manipulation

Consider the eigenfunctions calculated from (61) and (62).
To properly normalize the eigenfunctions in the original coor-
dinates x , one must introduce a weight function underneath
the integral of their L2-norms in the compactified coordi-
nates, respectively of the form

w(v1) = (v1 + 1)−1(1 − v1)
−1 (68)

w(v2) = v−1
2 (1 − v2)

−1 (69)

As described in Sect. 6.1, the option value for Normaliza
tion should be {“L2Norm”,{1,-1,-1}} for both v1

and v2.
The eigenfunctions of the three lowest eigenenergies in

Table 3 may be calculated using theGetEigenfunctions
command. The output is a Bernstein polynomial in the com-
pactified variable v2, which may reverted to the original
uncompactified coordinates by a change of variables. The
eigenfunctions in x are plotted in Fig. 5 together with their
absolute error compared with the exact eigenfunctions. The
absolute error is bounded from above, with a maximum dif-
ference between 10−9 − 10−11.

7.3 Anharmonic potentials

We now benchmark SpectralBP against other numerical
methods, here in the context of anharmonic potentials. We
perform test calculations also done in [41] and [42], in which
the time-independent Schrödinger equation has been rescaled
such that,

φ′′(x) + (E − V (x))φ(x) = 0, (70)

and the anharmonic potentials,

V (x) = 1

4
x2 + iλx3, (71)

V (x) = x2 + βx4 (72)

were considered. In the papers cited, Padé approximation and
Milne’s method [43] were used to calculate the ground state
energies.

The potential (71) is interesting. Although the correspond-
ing Hamiltonian,

H = p2 + 1

4
x2 + iλx3, (73)

isn’t hermitian, its eigenenergies remain real and positive.
This is because of its underlyingPT symmetry [44], in which
combining parity, P : p → −p and x → −x , and time

Fig. 5 The calculated eigenfunctions φBP
n (x) in the uncompactified

coordinate system are plotted above, while the absolute difference
between φBP

n and the exact eigenfunctions φexact
n are plotted below.

The eigenfunctions were calculated with a basis degree of 100

reversal, T : p → −p, x → x, and i → −i , transforma-
tions leaves H invariant.

For both potentials, we compactify our domain via the
transformation in (62). To recreate Table II of [41], we set
λ = 1/7 and β = 40/49 and use basis tuples {250, 250} and
{300, 300} (described in 6.1). The spectra of both potentials
are found in Table 4. For a more direct comparison to Table
II of [41], we use Equations (8) and (9) of [41] to calcu-
late P(λ2) and P(β) for the ground state energy. Comparing
the two values coming from both basis tuples for significant
digits, and we arrive at the expressions

P(λ2) = 5.524167213060[22]
P(β) = 0.41924941603348[0802587964456...].

where the last expression goes on for 21 more digits. These
values are in excellent agreement with the values calculated
in [41]. The digits enclosed in square brackets are additional
significant digits calculated by SpectralBP.

The anharmonic potential (72) was used in [42], but for
different values of β. We calculated spectra using basis tuples
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Table 4 Spectra for anharmonic
potentials found in (71) and
(72), with λ = 1/7 and
β = 40/49, calculated using
basis tuples {250, 250} and
{300, 300} (described in
Sect. 6.1). Only common
eigenvalues with at least 5
significant digits were kept. For
(72), there are 79 such
eigenvalues. We have chosen to
show only the lowest 10
eigenvalues up to 40 digits,
rounded up

n En, V (x) = 1

4
x2 + i

7
x3 En, V (x) = x2 + 40

49
x4

1 0.6127381063889841 1.342244421251821063337113841770966554914

2 2.04730063616096 4.452375736716380532505970385912143312626

3 3.6798624029746 8.244544675014299218649219540133247124221

4 5.439569424420 12.49407778263995078092853450174005121828

5 7.2967453569 17.11263824817696165379262553962839173473

6 9.23400490 22.04540267622473136055899649692357072940

7 11.2397435 27.25459145550393471355991795806437315617

8 13.305592 32.71221322542317264941304638323745171222

9 15.42519 38.39651749713872030763192575022745155447

10 17.5935 44.2900140333829641035044762689148342848

Table 5 Ground state energies calculated using the anharmonic poten-
tial (72) for different values of β, using basis tuples {150, 150}
and {200, 200} (described in Sect. 6.1). For conciseness, we have
enclosed in square brackets additional significant digits calculated by
SpectralBP compared to an application of Milne’s method in [42]

β E1

0.1 1.065285509543717688857091628[8]

0.2 1.118292654367039153430813153[84]

1.0 1.392351641530291855657507876[60993418]

10 2.449174072118386918268793906[187730426220277999]

100 4.999417545137587829294632037[34965271862550738578]

of {150,150} and {200,200}, keeping only eigenvalues with
at least 5 significant digits. In Table 5, we show only the
ground state energies for a direct comparison of Table II and
Table IV of [42].

The results are in great agreement with the “Exact” val-
ues calculated in [42], which were calculated using Milne’s
method [43]. At the digits where they differ, which we have
indicated in square brackets, the difference is within the error
bars in both tables. The calculations took an average of 68 s
each, running in a single 2.50 GHz Intel i5 Core with 8.00GB
RAM.

With modest resources, we are able to calculate the ground
state energies to high precision. This is simultaneous with
an abundance of excited state energies; the calculation at
β = 1/10 yielded 47 eigenenergies with at least 5 signif-
icant digits, while the calculation at β = 100 yielded 69
eigenenergies with at least 5 significant digits.

8 Applications in quasinormal modes

In general relativity, spacetime itself is treated as a dynami-
cal entity, interacting with the matter that is placed within it.
Thus, black holes found in nature are always interacting with
complex distributions of matter and fields around them. In

active galactic nuclei, accretion disks transport matter inward
and transport angular momentum outward, heating the accre-
tion disk into a hot plasma and immersing the black hole in a
complex gravitational and electromagnetic system. Even in
the absence of matter and fields, the black hole interacts with
the vacuum around it, slowly evaporating due to Hawking
radiation.

The standard treatment is to decompose the spacetime as
in

gμν = g0
μν + δgμν, (74)

where the metric g0
μν is that of an unperturbed black hole,

such as the Schwarzschild or Kerr solution. In the linear
approximation δgμν 	 g0

μν (so called because the perturb-
ing metric δgμν does not back react with the background
metric), these small perturbations generically take the form
of damped oscillations known as quasinormal modes. When
g0
μν is spherically-symmetric, the equations for δgμν reduce

to one-dimensional wave equations in certain potentials.
These are the famous Regge–Wheeler and Zerilli equations
for odd- and even-parity perturbations, respectively.

Quasinormal modes arise as the characteristic ringing of
spacetime as it is perturbed by some external field. For a given
external field, these oscillations are independent of the initial
excitation, their vibrations and damping specified solely by
the mass, spin and charge of the black hole. As such, quasi-
normal modes are used as probes for the validity of general
relativity in the strong gravity regime.

From a more theoretical perspective, quasinormal modes
provides a test for the linear stability of more exotic space-
times (such as black branes, black rings, black string): when
all quasinormal modes are damped (Im(ω) ≤ 0), the space-
time is linearly stable. In the context of AdS/CFT duality,
the onset of instability of the AdS spacetime corresponds to
a thermodynamic phase transition in CFT.

Review articles on quasinormal modes in an astrophysical
setting – black holes, stars, and other such compact objects –
we cite [1] and [2]. An emphasis on higher dimensional black
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holes and their connection to strongly coupled quantum fields
is in [3], while [4] emphasizes on the various numerical and
analytical techniques that have been developed to calculate
quasinormal modes. The papers [5,6] focus on the applica-
tion of spectral and pseudospectral methods in gravity, of
which SpectralBP is an example of.

8.1 Regge–Wheeler equation

In Sect. 6, we described a general work flow starting from an
ODE eigenvalue problem. In this subsection we go through
the first 3 steps of this work flow, starting from a standard
ODE eigenvalue problem for quasinormal modes. We focus
on the Regge–Wheeler equation as an illustrative example;
a treatment of the Zerilli equation would proceed in a simi-
lar manner. The Regge–Wheeler equation describes axial or
odd-parity perturbations of the Schwarzschild metric of mass
M linearly coupled to a perturbing field of spin s and angular
momentum l,

∂2
t �(t, r∗) +

(
−∂2

r∗ + V (r2∗ )
)

�(t, r∗) = 0, (75)

V (r∗) =
(

1 − 1

r

) (
l(l + 1)

r2 + 1 − s2

r3

)
, (76)

where r∗ = r+rs ln(r/rs −1). We are interested in solutions
of the form �(t, r∗) = R(r) exp(−iεt). This then turns (76)
into the ODE eigenvalue problem of the form,

ε2r4 − l(l + 1)r2 + (l(l + 1) + s2 − 1)r + 1 − s2

r2(r − 1)2 R(r)

+ 1

r(r − 1)

dR

dr
+ d2R

dr2 = 0, (77)

with ε = 2Mω. The domain of the solutions relevant to us is
non-compact, stretching from the black hole horizon at r = 1
to spatial infinity at r = ∞. Note also that the solutions are
non-analytic. The coordinate singularity at r = 0 and the
black hole horizon at r = 1 are both regular singular points
of the ODE, while spatial infinity r = ∞ is an irregular
singular point of the ODE.

We may peel away the non-analytic parts by rescaling out
the asymptotic behaviour of R(r) at the black hole horizon
and at spatial infinity. The asymptotic behaviour of R(r) at
r = ∞ can be easily determined to be

Rout(r) ∼ r iω exp(iωr) Rin(r) ∼ r−iω exp(−iωr), (78)

where we have indicated in superscript which solution is out-
going or ingoing at spatial infinity when the time dependence
is restored.

Since the singularity at r = 1 is regular, we may write an
indicial equation f (x) = 0 at r = 1. This can be shown to

be simply

x2 + ω2 = 0 (79)

which defines two solutions around r = 1,

Rin(r) ∼ (r − 1)−iω Rout(r) ∼ (r − 1)iω, (80)

where we have indicated in subscript which solution is out-
going or ingoing at the black hole horizon when the time
dependence is restored.

We expect a perturbation to come from a finite location
outside the black hole. As this perturbation propagates, we
expect it to either fall into the black hole or out into spatial
infinity. This defines the behaviour of the causal solution, and
corresponds to the quasinormal mode boundary conditions

lim
r→1

R(r) ∼ Rin(r), lim
r→∞ R(r) ∼ Rout(r). (81)

An acausal solution would contain parts that are either prop-
agating out of the black hole, or propagating in from spatial
infinity. We rescale out the non-analytic parts of the desired
solution,

R(r) = r2iω(r − 1)−iω exp(iωr)φ(r), (82)

leaving us with a differential equation in φ(r). We note that
the additional factor of r iω is there to cancel out the asymp-
totic behavior of (r − 1)−iω around spatial infinity.

Explicitly, the rescaled solution at the boundaries have the
following behaviours:

φin(r) ∼ 1, φout(r) ∼ (r − 1)2iω, (83)

φout(r) ∼ 1, φin(r) ∼ r−2iω exp(−2iωr). (84)

For generic values of ω, these four solutions have very dis-
tinct behaviours. Consider the acausal solutions near their
corresponding limits,

lim
r→1

|φout(r)| =
{∞, Im ω > 0

0, Im ω < 0
(85)

lim
r→∞

∣∣∣φin(r)
∣∣∣ =

{∞, Im ω > 0
0, Im ω < 0.

(86)

When Im(ω) = 0, both solutions are highly oscillatory. Thus,
the boundary conditions,

lim
r→1

φ(r) ∼ 1, lim
r→∞ φ(r) ∼ 1 (87)

filters out both undesired acausal solutions, since these solu-
tions cannot be approximated in the Bernstein basis of finite
degree. Thus, with the boundary conditions in (87), we may
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Fig. 6 Benchmarking for performance using basis tuples {N , N }. The
blue line comes from (89), in which the coefficient functions are com-
plex. The orange line effects the replacement ω → iλ, solving (90)
in which the coefficient functions are real. Both are power laws of the
form T (N ) ∼ N 3.2, with the latter performing faster. Calculations were
done in a single 2.50 GHz Intel i5 Core with 8.00GB RAM

identify our solutions to correspond to quasinormal mode
eigenfunctions,

φ(r) = φout
in (r). (88)

Finally, we compactify the region [1,∞) to [0, 1] via the
change of variables r → 1/u, leaving us with
(
−l − l2 + 4ω2 + u(s2 + (i + 2ω)2)

)
φ(u)

+(−2iω + 2u + u2(−3 + 4iω))φ′(u)

−(u − 1)u2φ′′(u) = 0. (89)

This change of variables moves the regular singularity at
r = 0 to u = ∞ and the irregular singularity at r = ∞ to
u = 0.

We may use Eq. (89) as the ODE eigenvalue problem
we feed into SpectralBP. However, we may improve our
calculations with the transformation ω → iλ, which yields
an ODE eigenvalue problem whose coefficient functions are
all real,
(
−l − l2 − 4λ2 + u(s2 − (1 + 2λ)2)

)
φ(u)

+(2u − u2(3 + 4λ) + 2λ)φ′(u)

−(u − 1)u2φ′′(u) = 0, (90)

and boundary conditions

lim
u→0

φ(u) ∼ 1, lim
u→1

φ(r) ∼ 1 (91)

The spectral matrices constructed from (90) are strictly
real. This has two consequences. First, the calculation of the
spectra is quicker, which is demonstrated in Fig. 6. Solving a
generalized eigenvalue problem with matrices that are strictly
real is computationally cheaper compared when the matrices
involved are complex. Second, the calculated eigenvalues

Fig. 7 Calculated spectrum of a scalar field in a Schwarzschild space-
time for l = 3 using the basis tuple {50, 50} (described in Sect. 6.1),
many of which are spurious. There are eigenvalues distributed along
the negative-imaginary axis because of the existence of a continuum of
eigenvalues that is present there

come in only two flavours: real eigenvalues, or complex con-
jugate pairs. Their eigenvectors are similarly real, or come in
complex conjugate pairs.

When we return the imaginary number i , the eigenvalues
ω are expected to be strictly imaginary or come in pairs satis-
fying ω = −ω∗. In the proceeding subsections, we calculate
all eigenvalues and eigenfunctions using (90), and then mul-
tiplying the resulting spectra with i to retrieve the spectrum
of (89).

8.2 Scalar perturbations

We now calculate the quasinormal modes of a scalar pertur-
bation (s = 0) for l = 3. A simple Mathematica imple-
mentation is in Notebook 4.

The spectrum derived from using a basis tuple of {50, 50}
(described in Sect. 6.1) is plotted on the complex plane in
Fig. 7. Since the ODE eigenvalue problem is quadratic in ω,
there are 102 eigenvalues as follows from the discussion in
Sect. 4.2.

8.2.1 Filtering spurious modes

In Sect. 6.2, we described two ways to filter out spuri-
ous eigenvalues: the CompareModes command and the
CompareEigenfunctions command. In Sect. 7, the
CompareModes command on a pair of spectra was suf-
ficient to filter out all the spurious modes.

In the current case the CompareModes command at line
6 is not sufficient. Its output in Table 6 (a) includes purely
imaginary modes, which are well-known not to exist for
scalar perturbations given the boundary conditions we have
chosen [45].

Recall that Eq. (77) comes from choosing a stationary
ansatz for (76). It has been shown that the retarded Green
function of this wave equation possesses a branch cut on the
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Notebook 4 QNMS - Scalar perturbations
1: scalarode = Equation (90) with s = 0 and l = 3
2: modes50 = GetModes[scalarode, {50, 50}]
3: modes80 = GetModes[scalarode, {80, 80}]
4: modes100 = GetModes[scalarode, {100, 100}]
5: PrintFrequencies[i×modes50] 
 output in Figure 7
6: modes5080 = CompareModes[i×modes50, i×modes80]
7: PrintTable[modes5080] 
 output in Table 6 (a)
8: modes5080100 = CompareModes[{i×modes50, i×modes80, i×modes100}]
9: PrintTable[modes5080100[[1;;2]]] 
 output in Table 6 (b)
10: imagmodes = purely imaginary modes of modes5080

11: testedimagmodes = CompareEigenfunctions[scalarode,
imagmodes

i
, {50,80}]

Table 6 Result of a
CompareModes command on
2 and 3 basis tuples (discussed
in Sect. 6.1). (a) The filtered
spectrum for the duo basis
tuples include purely imaginary
modes, which we know to be
spurious. These modes may be
filtered out using a
CompareEigenfunctions
command. (b) The filtered
spectrum for the trio of basis
tuples do not include purely
imaginary modes. We have
printed here significant digits
shared by basis tuples {80,80}
and {100,100}

n Re ωn Im ωn

Imaginary modes

1 0 − 18.67

2 0 − 20.70

3 0 − 22.21

(a) {50, 50} and {80, 80}

Complex modes

1 ± 1.35073246507324 − 0.192999255468019

2 ± 1.32134299591192 − 0.58456957027682

3 ± 1.26725161539 − 0.992016460806

4 ± 1.19754651 − 1.42244241

5 ± 1.1232546 − 1.877186

6 ± 1.05310 − 2.35207

7 ± 0.9913 − 2.8408

8 ± 0.938 − 3.338

n Re ω Im ω

(b) {50, 50}, {80, 80} and {100, 100}

Complex modes

1 ± 1.35073246507324 − 0.192999255468019

2 ± 1.32134299591192 − 0.584569570276824

3 ± 1.26725161538865 − 0.992016460806254

4 ± 1.1975465055999 − 1.422442414743

5 ± 1.1232545798 − 1.8771856473

6 ± 1.05309960 − 2.35206873

7 ± 0.991268 − 2.840790

8 ± 0.93841 − 3.33793

negative-imaginary axis [46,47]. It is the ‘shadow’ of this
continuum of eigenvalues which SpectralBP feels, as can
be observed in Fig. 7.

To filter these modes out, we demonstrate two solutions
in the Notebook 4. These can be found in lines 8 and 11.

The first method is straightforward: calculate the spectrum
of a third basis tuple and select eigenvalues common to all
three spectra. We have chosen {100,100} as our third basis
tuple, and the corresponding output is in Table 6 (b). The
purely imaginary modes are successfully filtered out.

The second method would be to compare eigenfunc-
tions between two basis tuples. This is the purpose of the
CompareEigenfunctions command, whose output on
line 8 is an empty set. This confirms that these modes are
indeed spurious; their eigenfunctions are not approximately
equal. One is then justified to filter out the purely imaginary
modes in Table 6 (a).

The calculation of a third spectrum may be numerically
prohibitive, especially when only a small subset of eigenval-
ues are suspected to be spurious. This consideration would
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Fig. 8 The absolute difference between eigenfunctions of approxi-
mately equal eigenvalues using Bernstein basis orders 50 and 80. φ1(u)

calculates the absolute difference for the eigenvalue ω = −18.67i ,
while φ2(u) calculates the absolute difference for the eigenvalue ω =
±1.3507 . . . −0.1930 . . . i . The former indicates that the eigenfunc-
tions does not converge to some non-singular function, while the latter
indicates convergence

favour one method over the other. In this case testing only
the eigenfunctions of the suspected spurious eigenvalues, as
filtered in line 10, should be favoured over the former method.

This second filter works because the rescaling in Eq. (82)
keeps other valid solutions of our ODE eigenvalue problem
non-analytic. In the case of the branch cut eigenvalues, their
corresponding eigenfunctions remains singular at the cos-
mologcal horizon after rescaling [48]. Thus, the approxima-
tion of these eigenfunctions in a Bernstein basis would fail to
converge near the cosmological horizon. This idea is explored
further in Sect. 8.2.2.

This failure to converge is shown explicitly in Fig. 8,
where we compare the eigenfunctions of the spurious eigen-
value −18.67i and the non-spurious eigenvalue ±1.3507 . . .

−0.1930 . . . i .
Using a GetEigenfunctions command, we plot-

ted the absolute difference between the eigenfunctions of
approximately common eigenvalues for two spectral basis
orders. The maximum error for the spurious eigenvalue is
indicative of the presence of a singularity in the eigenfunc-
tion,

||φ80
1 (u) − φ50

1 (u)||∞ ∼ 1014,

||φ80
2 (u) − φ50

2 (u)||∞ ∼ 10−17.

8.2.2 On the discrete spectrum condition

We echo an idea from [35]. One must be careful in rescaling
so that boundary conditions are still capable of the undesired
solutions. For example, there are instances when peeling off
an extra (r − 1)−1 term so that φ(r) ∼ (r − 1) is desirable.
This boundary condition would fail to filter out the acausal
solution at the black hole horizon, since both the acausal and

Fig. 9 Spectrum calculated when φ(r) is rescaled so that
limr→1 φ(r) ∼ (1 − r), for basis tuples {50, 50} (blue circles)
and {80, 80} (red squares). The problem has become ill-posed since
the rescaling no longer imposes the correct boundary conditions
corresponding to a discrete spectrum

causal solutions vanish at r = 1. The spectral method would
then try to solve for solutions of the form,

φ(r) = Aφout
in (r) + Bφout

out (r), (92)

which generally is a mixture of causal and acausal parts at
the black hole horizon. The ultimate consequence is that the
boundary-value problem no longer has a discrete spectrum
of eigenvalues. Continuing to calculate the spectrum using
{50, 50} and {80, 80} would result in Fig. 9. As expected,
SpectralBP is unable to find the desired discrete spec-
trum.

9 Algebraically special modes

It is well-known that the standing wave equation for odd-
and even-parity gravitational perturbations (s = 2) has an
exact solution at what is called by Chandresekhar as the alge-
braically special mode. It is a purely imaginary frequency
which appears to separate two different branches of the quasi-
normal mode spectrum: a lower branch that spirals towards
the imaginary axis and an upper branch corresponding to an
asymptotic high-damping regime.

It is a curious mode, whose frequencies can be shown
analytically [49–51] to be

Mωl = −i
(l − 1)l(l + 1)(l + 2)

12
, (93)

and whose corresponding eigenfunctions, with singularities
properly scaled out, can be expressed analytically as a trun-
cated polynomial. For example, for l = 2,

φ2(u) = 1 + 115

7
(u − 1) + 860

7
(u − 1)2 + 11572

21
(u − 1)3
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+34486

21
(u − 1)4 + 356662

105
(u − 1)5 + 44372

9
(u − 1)6

+44372

9
(u − 1)7 + 77651

27
(u − 1)8 + 11093

9
(u − 1)9

(94)

Various numerical investigations [23,24] are hard-pressed to
converge towards this exact result. It has been argued [50]
that the discrepancy can be traced to two explanations: (1)
the algebraically special mode is sensitive to the exact form
of the gravitational potential (affecting WKB and Pöschl–
Teller potential fitting) and (2) the sensitivity of a method
to a properly defined mode number (affecting the continued
fraction methods by Leaver).

In fact, numerical methods that are able to find eigenval-
ues on the complex plane do not generally work when those
eigenvalues are located exactly on the imaginary axis. For
example, the continued fraction method is not convergent for
modes on the imaginary axis [24,52,53]. This disputes previ-
ous analytic and numerical results concerning Kerr QNMs on
the negative-imaginary axis. One can, however, deduce the
existence of these modes by finding ‘mode sequences’ that
arbitrarily get close to the negative-imaginary axis, includ-
ing the special algebraic mode [52,54]. How these modes
move around the negative-imaginary axis is not accessible to
Leaver’s method.

With respect to this, spectral methods enjoy a signifi-
cant advantage over Leaver’s method: an algorithm such
as SpectralBP is capable of finding eigenvalues on the
imaginary axis. Unlike Leaver’s method, which is based on
a local power series expansion at one of the horizons, spec-
tral methods find solutions globally. This has been reported
before in [35], where the spectral algorithm QNMspectral
finds a novel infinite set of purely imaginary modes for
massless scalar perturbations in a Schwarzschild-de Sit-
ter background. Because the spectral method is able to
find these overdamped modes, one is able to observe com-
plex bifurcation events in which quasinormal modes sink
into, move along and emerge out of the negative imagi-
nary axis where two QNMs collide. We have also used
SpectralBP to uncover an interesting scenario that occurs
in a Schwarzschild AdS background [27].

9.1 Algebraically special eigenvalues

We now solve (90) for s = 2 and for l = 2, 3, 4, 5, and
reverse the transformation ω → iλ to retrieve the eigenval-
ues of (89). We have used basis tuples of {350,350} and
{400,400} (described is Sect. 6.1) for all calculations, and
we have filtered out spurious eigenvalues on the negative-
imaginary axis using CompareEigenfunctions. The
resulting spectra can be seen in Tables 7 and 8. We show only
the 10 lowest damping eigenvalues, using Mathematica’s

notation for significant digits for the purely imaginary eigen-
values.

The coincidence of the calculated numerically purely
imaginary mode ω′

l with the algebraically special mode ωl is
very strong. The coincidence when calculating ω′

2 ≈ ω2 =
−4i is within 295 significant digits, ω′

3 ≈ ω3 = −20i to
within 227 significant digits, ω′

4 ≈ ω4 = −60i to within
137 significant digits and ω′

5 ≈ ω5 = −140i to within 115
significant digits. This is expected, since we are using a poly-
nomial basis to numerically find a solution whose exact form
is a truncated polynomial.

As a additional check, we have verified that the eigen-
function solved by SpectralBP using a basis tuple of
{400,400} and l = 2 is found consistent with (94) to within
and error of 10−250. The eigenfunctions for l = 3, 4 are
also truncated polynomials, of expected degrees 41 and 121
respectively. One might need the use of higher precision num-
bers to confirm that the degree of the l = 5 eigenfunction is
of degree 281.

As we have described in Sect. 8.1, the eigenvalues of (90)
are either purely real or come in complex conjugate pairs. As
a consequence of this, when we transform back to ω from λ

the calculated purely imaginary eigenvalues have exactly no
real part. This avoids a criticism on numerical calculations
which finds a single mode near the ASM with a finite real
part whose symmetric pair ω = −ω∗ is unexpectedly not
found.

The main lesson here is that SpectralBP manages
exceptionally well to find eigenvalues on the negative-
imaginary axis while filtering out spurious overdamped
modes, as would other spectral or pseudospectral methods.
This is in contrast with continued fraction methods, which
cannot converge when the real part of the eigenvalue van-
ishes.

As a final note, and to illustrate the resources required to
calculate one of the tables in this section, a single spectrum
calculation for a basis tuple of {400, 400} takes around 1 h
each, running in a single 2.50 GHz Intel i5 Core with 8.00GB
RAM.

9.2 Boundary behavior of the eigenfunctions

For completeness, we give warning when labelling solutions
found by spectral methods as bonafide quasinormal modes
whenever the eigenvalues calculated imply that the indicial
equation (79) at one or more of the singularities are non-
generic. This may affect whether or not the solution found
satisfies the quasinormal mode boundary conditions.

For example, the finiteness of the eigenfunctions of the
special algebraic modes at the boundaries can be folded
back into (82), seemingly then implying that the quasinor-
mal mode boundary conditions are satisfied and that these
imaginary frequencies correspond to quasinormal modes.
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Table 7 Gravitational
perturbations with l = 2 and
l = 3, calculated using basis
tuples {350, 350} and {400,
400}. The special algebraic
modes have 295 and 227
significant digits respectively. In
units where the horizon is at
r = 1, we have M = 1/2, so
that ω2 = −4i and ω3 = −20i
according to (93). Our
numerical results show
agreement up to 295 and 227
significant digits, respectively

n Re ωn Im ωn

Schwarzschild: s = 2, l = 2

Damped modes

0 ± 0.747343368836084 − 0.177924631377871

1 ± 0.693421993758327 − 0.547829750582470

2 ± 0.602106909224733 − 0.956553966446144

3 ± 0.503009924371181 − 1.41029640486699

4 ± 0.415029159626 − 1.8936897817327

5 ± 0.33859881 − 2.39121611

6 ± 0.2665046 − 2.895821

7 ± 0.1856 − 3.4077

8 ± 0.1268 − 4.606

9 ± 0.174 − 6.64

Algebraically special mode

0 0 − 4.̀295

Schwarzschild: s = 2, l = 3

Damped modes

0 ± 1.19888657687498 − 0.185406095889895

1 ± 1.16528760606660 − 0.562596226870088

2 ± 1.10336980155690 − 0.958185501933924

3 ± 1.02392382211667 − 1.38067419193848

4 ± 0.94034801163031 − 1.83129878501019

5 ± 0.86277295728431 − 2.30430272428181

6 ± 0.79531904835151 − 2.79182448544518

7 ± 0.73798455177946 − 3.28768905671353

8 ± 0.689236637190 − 3.78806560839

9 ± 0.6473662632 − 4.2907978995

Algebraically special mode

0 0 − 20.̀227

The indicial equation (79) is said to be generic when its
two solutions, ±iω, do not differ by an integer. This is man-
ifestly true for general complex values of ω. In this case, the
power series expansion at u = 1 of the rescaled function φ(r)
in (82) converges, whether dominant or subdominant. At the
algebraically special mode, however, the indicial equation is
non-generic. From (93) and M = 1/2, the solution of the
indicial equation are both integers,

±iωl = (l − 1)l(l + 1)(l + 2)

6
. (95)

In this case, only one power series expansion of φ(r) is
assured to converge, corresponding to the dominant solu-
tion. For the subdominant, say φ̃(r), two things may happen.
First, the subdominant solution may diverge logarithmically,
of the form

φ̃(u) ∼ c0φ(u) ln(u − 1) + a0(u − 1)8 + a1(u − 1)9 + · · ·
(96)

However, amiraculous cancellation may occur [55], in which
case the logarithmic term vanishes. Thus, both solutions may
be expressed as a power series expansion at r = 1. It is this
latter case that occurs at the algebraically special mode for
the Regge–Wheeler equation. This means that the dominant
and subdominant solutions, corresponding to ingoing and
outgoing modes at the black hole horizon respectively, may
be rescaled to have the form,

φin(u) ∼ b0 + b1(u − 1) + · · ·
φout(u) ∼ a0(u − 1)8 + a1(u − 1)9 + · · · (97)

For the specific case of the ASM, the following two
statements are then not mutually exclusive: (1) the ASM
eigenfunction, properly rescaled, has a regular, well-behaved
Frobenius expansion in powers of (u−1) and (2) it is an inex-
tricable mixture of the two linearly independent solutions
at the black hole horizon, corresponding to a causal ingo-
ing mode and an acausal outgoing mode. The reconciliation
between the analytic and numerical results is thus simple but
subtle; there is no contradiction. While SpectralBP has
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Table 8 Gravitational
perturbations with l = 4 and
l = 5, calculated using basis
tuples {350, 350} and {400,
400}. The special algebraic
modes have 137 and 115
significant digits respectively. In
units where the horizon is at
r = 1, we have M = 1/2, so
that ω4 = −60i and
ω5 = −140i according to (93).
Our numerical results show
agreement up to 137 and 115
significant digits, respectively

n Re ωn Im ωn

Schwarzschild: s = 2, l = 4

Damped modes

0 ± 1.61835675506448 − 0.188327921977846

1 ± 1.59326306406901 − 0.568668698809681

2 ± 1.54541906521342 − 0.959816350242326

3 ± 1.47967346001108 − 1.36784863803576

4 ± 1.40303101850333 − 1.79647794351833

5 ± 1.32314499871400 − 2.24595350702581

6 ± 1.24621774933184 − 2.71337253668641

7 ± 1.17581765005953 − 3.19434136122692

8 ± 1.11314953294602 − 3.68463526728615

9 ± 1.05799479590004 − 4.18098245812595

Algebraically Special Mode

0 0 − 60.̀137

Schwarzschild: s = 2, l = 5

Damped modes

0 ± 2.02459062427070 − 0.189741032163219

1 ± 2.00444205578112 − 0.571634763544526

2 ± 1.96539152161688 − 0.960656912028150

3 ± 1.91000801223541 − 1.36111381729921

4 ± 1.84216368773741 − 1.77639518477683

5 ± 1.76667152139505 − 2.20836492793496

6 ± 1.68849633364143 − 2.65699396530772

7 ± 1.61183056559873 − 3.12056171442603

8 ± 1.53951216802968 − 3.59636155142390

9 ± 1.47299341464745 − 4.08149414445982

Algebraically special mode

0 0 − 140.̀115

indeed found an eigenvalue-eigenfunction pair of the Regge–
Wheeler equation, this solution is an inseperable mixture of
both ingoing and outgoing solutions at the black hole hori-
zon, and therefore is not a quasinormal mode.

In summary,SpectralBP picks up the special algebraic
frequency to an incredible degree of accuracy, but because of
the peculiar nature of the special algebraic mode, the corre-
sponding eigenfunction is one that does not satisfy quasinor-
mal mode boundary conditions, as would be expected from
[55].

10 Conclusion

This work makes a case for the use of Bernstein polynomials
as a basis for spectral and pseudospectral methods applied to
ordinary differential eigenvalue problems. A prime example
of these problems is the calculation of quasinormal modes
in black hole spacetimes. The Bernstein polynomials consti-

tute a non-orthogonal spectral basis, which may explain why
they are much less utilized compared to Chebyshev or Fourier
basis functions. In contrast to its more popular counterparts
though, a Bernstein basis allows one to decouple some of
the spectral weights relevant to boundary conditions of ordi-
nary differential eigenvalue problems. More specifically, the
weights for the first q and last the r basis polynomials for
free without recourse to the differential equations. For some
applications, this proves to be a significant advantage.

We developed a user-friendly Mathematica package,
SpectralBP, as a general spectral solver for eigenvalue
problems. This package fully utilizes the properties of Bern-
stein polynomials and several other algorithmic enhance-
ments (such as a novel inverse iteration method) that we shall
describe in a later paper. As far as we know, SpectralBP
is unique among existing spectral codes in its use of a Bern-
stein basis. We described its key functionalities and show-
cased several examples for its use. In particular, to serve
both as tutorial and benchmarks, we featured applications
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of SpectralBP to a number of model eigenvalue prob-
lems in quantum mechanics. Most importantly, we have also
applied SpectralBP to quasinormal mode problems in
the Schwarzshild geometry. In all of our example cases,
SpectralBP succeeded in providing very accurate results.
Remarkably, with only modest resources, we are able calcu-
late the algebraically special modes of Schwarzschild grav-
itational perturbations. Purely imaginary modes are notori-
ously difficult to calculate with more conventional numer-
ical methods even when the solution is straightforward to
calculate analytically, as in the case for the Schwarzschild
ASM. To the best of our knowledge, ours is the most accurate
numerical calculation of these algebraically special modes in
the extant literature, agreeing with the analytical prediction
to a staggering (294!) number of significant digits. We have
supplemented our calculations with a discussion on the sub-
tleties of the boundary conditions of the algebraically special
mode. Moving forward, spectral methods should be a very
useful tool in finding quasinormal modes on the negative
imaginary axis.

Encouraged by these successes, we believe that
SpectralBP may serve as a useful tool for the black-hole
physics community or just about anyone seeking to solve a
differential eigenvalue problem. Future work will look into
applications of SpectralBP to the Kerr spacetime, as well
as several algorithmic enhancements (such as a novel inverse
iteration method) that we shall describe in a later paper. We
have also used SpectralBP to discover new interesting
properties of the quasinormal modes of Schwarzschild-anti-
de Sitter spacetime, which will also be discussed in a later
paper.
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A Appendix

In this section, we go into further detail of the implementa-
tion of Bernstein polynomials into SpectralBP. Standard
references for numerical linear algebra include [56] and [57].

A.1 Closed-form matries

In Sect. 4, we derived closed form expressions for convert-
ing an operator-function pair ( f̂ (u), φ(u)) into a matrix–
vector pair (T j,k,Ck) and arrived at Eq. (35) for some generic
grid. In SpectralBP, we have implemented using equally
spaced and Chebyschev grids.

We insert the definition of Bernstein polynomials in (7),
and simplify factorials containing Nmax using the Poccham-
mer symbol with

(Nmax)!
(Nmax − n)!

(
Nmax − n

k + q + l − n

)

=
(

Nmax

k + q + l

)
(k + q + l + 1 − n)n . (98)

In the interest in keeping expressions concise, we define
I (n)( j, k, l,m) as the part of our expression that is indepen-
dent of the grid chosen,

I (n)( j, k, l,m) = (−1)l
(
n
l

) (
n
m

)

×
(

Nmax

k + q + l

)
(k + q + l + 1 − n)n

(99)

These manipulations give us

T (n)
j,k = f (u j+q)

(b − a)Nmax+n

n∑

l=0

n∑

m=0

I (n)( j, k, l,m)

×(u j+q − a)k+q+l+m−n

×(b − u j+q)
N+r+n−k−l−m . (100)

We may now plug-in the following equally spaced and
Chebyschev grids,

uequal
j+q = a + (b − a)

j + q

Nmax
, (101)

uCheb
j+q = a + (b − a)

2

[
1 − cos

(
j + q

Nmax
π

)]
. (102)
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The corresponding matrices simplify to

T equal
j,k = f (u j+q)

(b − a)n

n∑

l=0

n∑

m=0

I (n)( j, k, l,m)

×( j + q)k+q+l+m−n(N + r − j)N+r+n−k−l−m,

(103)

TCheb
j,k = f (u j+q)

(b − a)n

n∑

l=0

n∑

m=0

I (n)( j, k, l,m)

×
[

1 − cos

(
j + q

Nmax
π

)]k+q+l+m−n

×
[

1 + cos

(
j + q

Nmax
π

)]N+r+n−k−l−m

. (104)

A.2 From GEP to EP

Compared to GEPs, the methods for solving eigenvalue prob-
lems of the standard form (EPs) are more diverse and more
studied. Iterative algorithms to solve either the entire set of
eigenvalues and eigenvectors or its subsets are widely avail-
able for a general class of complex-valued matrices. Criti-
cally, EPs are numerically cheaper to solve than GEPs.

Consider the polynomial eigenvalue ODE found in Sect. 4.2.
If one of the matrices in the GEP is non-singular, then the
GEP can be converted into an EP. This is apparently depen-
dent on whether the lowest or highest matrix, M0 and Mm ,
in the matrix pencil (39) are invertible.

The corresponding eigenvalue problems follows,

M1C = ω−1C, M2C = ωC, (105)

where

M1 =

⎛

⎜⎜⎜⎝

−M−1
0 M1 . . . −M−1

0 Mm−1 −M−1
0 Mm

1 . . . 0 0
...

. . .
...

...

0 . . . 1 0

⎞

⎟⎟⎟⎠ ,

(106)

and

M2 =

⎛

⎜⎜⎜⎝

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

−M−1
m M0 −M−1

m M1 . . . −M−1
m Mm−1

⎞

⎟⎟⎟⎠ .

(107)

As for the full GEP that arises in Sect. 4.3, a similar anal-
ysis leads to complications. First, it can be shown that M̃′

is
always singular. To show this, let us assume that there exists

some M′
j,k that is invertible. This is to say that, with respect

to the matrix pencil from which M′
j,k was constructed

(M j,k,0 + ωM j,k,1 + ω2M j,k,2 + · · · + ωmM j,k,m)Ck = 0

(108)

the matrix M j,k,0 is invertible. To illustrate thatM̃′
is always

singular, we rearrange our simultaneous set of ODE’s such
that M′

j,k is now indexed by M′
1,1, and then we decompose

M̃′
as

M̃′ =
(A′ B′
C′ D′

)
(109)

where

A′ = M′
1,1, B′ = (M′

1,2 M′
1,3 . . . M′

1,n

)
,

C′ = (M′
2,1 M′

3,1 . . . M′
n,1

)T (110)

and

D′ =

⎛

⎜⎜⎜⎝

M′
2,2 M′

2,3 . . . M′
2,n

M′
3,2 M′

3,3 . . . M′
3,n

...
...

. . .
...

M′
n,2 M′

n,3 . . . M′
n,n

⎞

⎟⎟⎟⎠ . (111)

The inverse of A′ can be shown to be

A′−1 =

⎛

⎜⎜⎜⎝

M−1
0 −M−1

0 M1 . . . −M−1
0 Mm

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎞

⎟⎟⎟⎠ (112)

We note that each sub-block in A′,B′,C′,D′ is of the
form

A′,B′,C′,D′ ∼

⎛

⎜⎜⎜⎝

a1 a2 . . . am
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎞

⎟⎟⎟⎠ (113)

and that the product of any two matrices of this form is also
such a matrix.

For M̃′
to be invertible, the matrix D′ − C′A′−1B′

must not be singular. However, as we have shown, D′ and
C′A′−1B′ are both matrices whose sub-blocks are of the
form given in (113). Thus, the matrix formed by their differ-
ence would be singular, as all of the identity matrices cancel
out leaving all except n − 1 rows to vanish.

On the other hand, the inversion ofM̃′′
is a rather involved

calculation best left for computers.
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A.3 Eigenfunction calculation – inverse iteration

Here, we describe briefly the inverse iteration method imple-
mented in SpectralBP to calculate the eigenvectors of a
matrix pencil. It has the advantage of working on the matrix
pencil directly without the need of linearizing the polyno-
mial eigenvalue problem. For a problem involving n depen-
dent functions, a polynomial degree of m, and N collocation
points, the size of the matrices involved reduce from (nmN )2

to (nN )2.
Suppose μl is some eigenvalue numerically calculated

from the GEP in (49). That is, for some eigenvalue ωl that
exactly satisfies (49),

μl = ωl + ε, ε 	 1. (114)

The error ε is sourced from finite precision arithmetic, and
should be very small. By definition, ωl and its corresponding
eigenvector vl should also satisfy the polynomial eigenvalue
problem without linearization in Sect. 4.2,

A(ωl)vl = 0, (115)

where

A(ω) =

⎛

⎜⎜⎜⎝

A1,1(ω) A1,2(ω) . . . A1,n(ω)

A2,1(ω) A2,2(ω) . . . A2,n(ω)
...

...
. . .

...

An,1(ω) An,2(ω) . . . An,n(ω)

⎞

⎟⎟⎟⎠ . (116)

and A(ω) j,k comes from the corresponding matrix pencil of
the kth dependent function of the j th equation,

A j,k(ω) = M j,k,0 + ωM j,k,1 + · · · + ωmM j,k,m . (117)

The inverse iteration algorithm is described in Notebook
5.

Notebook 5 Inverse iteration
1: Calculate A(μ)−1

2: v(0) = a vector with ||v(0)||2 = 1 
 initialize v(0)

3: for k = 1, 2, 3, . . . , kmax do
4: w = A(μ)−1v(k−1)

5: v(k) = w

||w||∞ 
 normalize

6: if ||v(k) − v(k−1)||∞ ≤ δ then 
 check convergence
7: Exit for loop
8: end if
9: end for
10: Return v(final)

Its output can be shown to be of the form,

v(final) = vl

||vl ||∞ + O(ε) (118)

The eigenvector v can then be split apart into the n eigen-
functions in the Bernstein basis.

The algorithm here is part of a more general inverse itera-
tion algorithm that is useful in the calculation of eigenvalue-
eigenvector pairs in polynomial and transcendental eigen-
value problems, which will be the subject of a future work.

It is quite sufficient to calculate eigenfunctions at the same
BP order the input eigenvalues were derived from. The error
of the eigenfunctions is dominated by the use of a finite poly-
nomial basis and not by finite precision arithmetic, as should
be apparent in the examples discussed in Sects. 7 and 8.

A.4 Eigenfunction manipulations

Suppose we start with an eigenfunction of the form given in
(28). In the interest of brevity, we denote the expanded Bern-
stein basis order as Nmax = N + q + r . From the linearity of
the problem, eigenfunctions are determined up to a normal-
ization constant. We may choose a normalization constant A
so that function ψ̃(u), given by

ψ̃(u) = Aψ(u) = A
N∑

k=0

Ck+q B
Nmax
k+q (u), (119)

satisfies some desirable property. The simplest choice is to
either set the coefficient of the leading polynomial expansion
at either boundary to 1.

A−1 = Cq , → lim
u→a

ψ̃a(u) ≈ (u − a)q (120)

A−1 = CN−r , → lim
u→b

ψ̃b(u) ≈ (b − u)r . (121)

Consider the following weighted L2-norm,

∫ b

a
|ψ(u)|2w(u)du = |C |2, w(u) = Ã(u−a)n(b−u)m,

(122)

with the condition that n ≥ −2q and m ≥ −2r so that the
integral remains finite. Using properties (12) and (13) of the
Bernstein basis, the integral (122) can be evaluated to

|C | = Ã

√
∑N

k=0
∑N

k′=0
Ak,k′(b − a)m+n+1

2Nmax + m + n + 1
(123)

where

Ak,k′ =

(
Nmax

k

)(
Nmax

k′
)

(
2Nmax + m + n

n + k + k′
)Ck+qC

∗
k′+q (124)
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A third way to normalize would then be,

A−1 = |C |,
∫ b

a
|ψ̃c(u)|2w(u)du = 1 (125)

When w(u) = 1, the resulting function is normalized such
that its L2-norm in the interval [a, b] is unity. The weight
function may be utilized to calculate the L2-norm in another
set of coordinates. This typically arises when the eigenfunc-
tions are calculated in a compactified set of coordinates.

As an example, consider the the coordinate transformation
in (61) and (62) in solving the harmonic oscillator. To nor-
malize the eigenfunctions in the uncompactified coordinate
system, their respective weights are of the form

w1(u) = (v1 + 1)−1(1 − v1)−1, w2(u) = v−1
2 (1 − v2)−1

(126)

One may calculate the square difference between two
eigenfunctions in this way. Suppose two eigenfunctions
ψ1(u) and ψ2(u) calculated from a spectral basis of order
N1 and N2 respectively.

ψ1(u) =
N1−r∑

k=q

Ck B
N1
k (u), ψ2(u) =

N2−r∑

k=q

C ′
k B

N2
k (u)

(127)

Let us say that N2 ≥ N1. We may expand the BP basis
order of ψ1(u) using (11),

ψ1(u) =
N1−r∑

k=q

N2−N1∑

j=0

(
N1

k

) (
N2 − N1

j

)

(
N2

k + j

) Ck B
N2
k+ j (u).

(128)

Thus, we may write the difference between the two eigen-
functions as a new sum of BPs of order N2,

ψ2(u) − ψ1(u) =
N2−r∑

k=q

C̃k B
N2
k (u), (129)

where

C̃k = C ′
k −

N2−N1∑

j=0

(
N1

m − j

)(
N2 − N1

j

)

(
N2

m

) Cm− j . (130)

One may then calculate the L2-norm of (129) using (123).
With the Bernstein basis, it is also quite easy to rescale

our function as in

�(u) = Ã(u − a)n
′
(b − u)m

′
ψ(u), (131)

so that the resulting eigenfunction satisfies different asymp-
totics at the boundaries of the form

limu→a �(u) ∼ (u − a)q+n′
,

limu→b �(u) ∼ (b − u)r+m′
.

(132)

with the condition that n′ ≥ −q,m′ ≥ −r . This is so that
�(u) may still expressed in the Bernstein basis.

The resulting expression follows from the definition of
Bernstein polynomials (7), that is

�(u) = Ã(b − a)n
′+m′

N∑

k=0

C ′
k+q B

Nmax+n′+m′
k+q+n′ (u) (133)

where

C ′
k+q = Ck+q

(
Nmax

k + q

)

(
Nmax + n′ + m′
k + q + n′

) (134)
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