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Abstract We argue that the recently discovered bilinear
superintegrability http://arxiv.org/2206.02045 generalizes,
in a non-trivial way, to monomial matrix models in pure
phase. The structure is much richer: for the trivial core Schur
functions required modifications are minor, and the only
new ingredient is a certain (contour-dependent) permutation
matrix; for non-trivial-core Schur functions, in both bi-linear
and tri-linear averages the deformation is more complicated:
averages acquire extra N-dependent factors and selection rule
is less straightforward to imply.

1 Introduction

We continue to implement the large program of concrete
approach to quantum field theories. This program consists
in the simple-to-complex study of ever complicating QFT
setups, but each time in full generality with focus on non-
perturbative phenomena and finite (neither infinitesimal not
infinite) coupling constants regime. The hope is that arising
essential complications are this way untangled and can be
dealt with one by one.

Our main focus is the bilinear superintegrability structure
[1] – a generalization of usual, linear, superintegrability. The
linear superintegrability itself was recently realized to be con-
venient language of non-perturbative, finite N , description of
wide range of matrix models, in different regimes (phases)
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[2]. And the bilinear superintegrability, perhaps, even more
importantly, sheds light on the previously obscure origins of
the celebrated Nekrasov calculus [3]: the most fruitful con-
crete approach to non-perturbative physics of supersymmet-
ric gauge theories [4].

Specifically, we explain that bilinear superintegrability
is not restricted to just Gaussian and logarithmic (Penner-
like) models, but instead is more universal and, in particu-
lar, straightforwardly generalizes to the wide class of mono-
mial matrix models in pure phase [2]. This is a wide class
of models indeed, as any polynomial model observable can
be expanded near suitable monomial point in convergent
power series; as opposed to usual asymptotic power series
of perturbation theory near Gaussian (quadratic) point. The
main statements are presented in Sect. 2. The central role is
played by the relevant monomial deformation of the box-
factor-inserting operator O (see (6)), which gradually seems
to become one of the key objects in modern MM frame-
work [5–9], which is being developed as the adequate lan-
guage for understanding the recently proposed WLZZ mod-
els [10,11] and their various natural generalizations. These
concrete observations about the structure of bilinear super-
integrable averages in monomial matrix models’ pure phase
constitute the main result of the present paper.

The bilinear superintegrability most famously appears in
(generalized) Kadell integrals (see eqns.(5.1)–(5.3) in [2]),
where the bilinear average of two Schur functions, one of
them of shifted argument, in Dotsenko–Fateev (DF) type log-
arithmic model is equal to manifest factorized expression.
However, the de-log ( v → ∞, log(1 − vXr ) ∼ −Xr ) limit
of this formula, which restores the usual monomial potential,
destroys the bilinearity of the correlator – the shift becomes
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infinite. So, naively, the bilinear superintegrability formula
in non-logarithmic monomial matrix models does not exist.
However, if one believes that structures persist when taking
simplification limits (and de-log is a certain simplification)
then bilinear superintegrability should exist in this case.

From this point-of-view, our formula (8) is the long
awaited answer to this apparent puzzle: in the limit the
“shifted” Schur polynomial becomes the “associated” K�

polynomial (whose explicit formula (5) features a kind of
shift operator in time-variables) and non-trivial (anomaly-
like) permutation operation π(�) appears.

Further, the simple form of single- and double-K� aver-
ages (9) and (10) is reminiscent of the structure of the CFT
correlators. Therefore, in Sect. 5 we study the structure of
triple-K averages. It turns out to be more complicated than
the naive expectation from CFT analogy, so the naive motto

Monomial MM in K� basis ≡ some CFT (1)

is wrong. Still, the appearing non-factorizability seems tame
enough (at most quadratic factors appear in studied exam-
ples) to deserve further intensive investigation.

Finally, in Sect. 6 we summarize our proof attempts. It
turns out that, while the single-average formula (9) and impli-
cation (8) → (10) are quite straightforward, equally concise
explanation for (8) itself is so far missing. This, of course,
makes the existence of (8) even more valuable and non-trivial.

In this paper, as becomes customary for the papers about
monomial matrix models, we freely use the language related
to quotient division of partition by an integer r : r -cores, r -
quotients, r -signatures, rim-hooks and so on. We refer the
reader to Appendix A of [2], as well as to the original Mac-
donald book [12].

2 Main statements

Monomial matrix model in pure phase can be defined directly
through its normalized Schur polynomial average

〈SR〉 = SR{δk,r } · �R
r,a(N ), (2)

where SR{δk,r } is the Schur polynomial evaluated at special
point pk = δk,r ,

�R
r,a(N ) is a peculiar product over boxes of the diagram

R

�R
r,a(N ) =

∏

(i, j)∈R

[[N − i + j]]r,0 [[N − i + j]]r,a , with (3)

[[ f (i, j)]]r,x = f (i, j) if f (i, j) − x mod r = 0 else 0,

that will frequently reappear in our presentation; r is an inte-
ger ≥ 2 and parameter a runs from 0 to r − 1. The emergent
additional parameter b = N mod r can be equal to 0 or a.1

Indeed, given (2), normalized correlator of any other sym-
metric polynomial can be calculated as a linear combination
of these, basis, ones.

Motivated by the numerous papers on WLZZ models [5–
9], we also frequently use the shorthand notation

ξR := �R
r,a(N ), (4)

keeping in mind that in our case the ξ -factor depends on N ,
r , a (and b).

For the relation to the usual matrix model definition,
through repeated integration see [2]2 and a more recent devel-
opment [13].

Now consider auxiliary (associated) polynomials K�,
which are related to Schur polynomials by manifest trian-
gular change of variables

K� = O−1 exp

(
(−1)

∂

∂pr

)
OS�, (5)

where O-operator (resp. O−1-operator) is the operator that
multiplies (resp. divides) each Schur function by the corre-
sponding box-product (3)

OSR = �R
r,a(N ) · SR (6)

and differential operator r ∂
∂pr

acts in Schur basis in manifest
way

r
∂

∂pr
SR = (−1)r

∑

R′=R−rim hook

σr (R)

σr (R′)
SR′ , (7)

at least when R has trivial r -core. Here σr (R) is the r -
signature of the diagram R.

With these definitions, one can check that a number of
notable properties holds:

• Average of K� with Schur function SR is equal to

〈K�SR〉 = (−1)πr,a,b(�)SR/πr,a,b(�){δk,r } · �R
r,a(N )

(8)

1 The case of genericb (the exotic pure phase, see [13]) is, for simplicity,
left out of the present text’s scope and deserves separate study.
2 One should keep in mind different possible normalizations of the
monomial potential – tr Xr vs. 1

r tr Xr , that result in r -factors appearing
in the Schur average formula (2). Here we choose such convention that
the average (2) looks the simplest.
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Here SR/Q is the skew Schur polynomial, which we
again evaluate at special point pk = δk,r .3 The permuta-
tion operation πr,a,b(�) is a certain permutation on the
space of partitions, that is somehow important to the story
(it appears in several places, see below), and which we
describe in detail in Sect. 3. The (−1)πr,a,b(�) is the certain
sign related to permutation πr,a,b which we also describe
in Sect. 3.

• As an elementary corollary of the previous property,
the single-average of K -polynomial is trivial unless this
polynomial corresponds to empty partition

〈K�〉 ≡ 〈K�S∅〉 = δ�,∅ (9)

• The double-average of two K -polynomials K�1 and K�2

is equally concise and manifest

〈
K�1K�2

〉 = δ�1,πr,a,b(�2) · (−1)πr,a,b(�2) · ��1
r,a (10)

in case both �1 and �2 have trivial r -cores. The permu-
tation operation πr,a,b(�) is such that �

�1
r,a = �

�2
r,a so

it does not matter which one to use. In particular, when
number of boxes is not equal, |�1| �= |�2|, the bilinear
K -average is always zero – the feature that we originally
used to calculate K� polynomials recursively, before we
understood the simple general formula (5).

In case only one of r -cores is non-trivial the average is
zero.

On the other hand, when both r -cores are non-trivial,
there is also a non-trivial interaction structure, that even
relaxes the selection rule |�1| = |�2|. For instance, for
r = 3 partitions [2, 2, 1, 1] and [3, 2, 2, 1, 1] both are
their own non-trivial r -cores. At the same time, for a = 1
b = 0 we have

〈
K[3,2,2,1,1]K[2,2,1,1]

〉 �= 0 (11)

We present more examples of this non-trivial interaction
in Sect. 4, but the general picture is, so far, missing.

3 Permutation operation πr,a,b

The permutation operation πr,a,b is manifestly given by the
following construction.

For any partition � with trivial r -core, consider its r -
quotients �i , i = 0 . . . r − 1. πr,a,b rearranges r -quotients

3 The appearance of skew Schur polynomials makes the story similar
both to exotic sector of monomial MMs [13] and to recently discovered
large WLZZ family of MMs [6].

�i according to the rule

�i −→ �r−1−i+a−2b mod r (12)

and then partition �
′ = πr,a,b(�) is reassembled from the

shuffled parts.
For instance, for r = 5, a = 1 b = 0 then par-

tition [2, 2, 2, 2, 2] has 5-quotients: (∅,∅,∅, [1], [1]). The
reshuffling of quotients according to prescription (12) yields
(∅, [1],∅,∅, [1]) while is 5-quotient representation for par-
tition [4, 2, 2, 1, 1]. Therefore, under π5,1,0 we have

[2, 2, 2, 2, 2] ←→ [4, 2, 2, 1, 1] (13)

In the Gaussian case r = 2 the effect of πr,a,b operation
is not observed, since, for every r ,a,b one of �i ’s always
stays on its place, and so for r = 2 does the only other.

The sign of the operation (−1)πr,a,b(�) is, actually, nothing
but the product of corresponding r -signatures.

(−1)πr,a,b(�) = σr (�)σr (πr,a,b(�)) (14)

Note that, while this formula is a conjecture, as we will see
in Sect. 6, the respective signs in formulas (8) and (10) should
coincide (so the same (−1)πr,a,b(�) enters both formulas).

4 Double-K average in case of non-trivial cores

The formula (5) can be equally well applied when � has
trivial or non-trivial r -core. When partition is its own r -core
(denote it �oc), the corresponding Schur polynomial does
not depend on pr , and therefore K -polynomial is equal to
Schur polynomial

K�oc = S�oc (15)

The structure of pair correlators of such partitions is much
less obvious than simple formula (10): here we list some
more-or-less astonishing examples:

• Some polynomials are “vanishing” vectors – orthogonal
to every partition with same number of boxes, including
itself. For instance, for r = 3, a = 1, b = 0:

〈
K[2,2,1,1]K[2,2,1,1]

〉 = 0
〈
K[2,2,1,1]KR

〉 = 0, for |R| = 6
(16)

• At the same time, the average between partitions with
different r -cores and different number of boxes is non-
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vanishing

〈
K[2,2,1,1]K[3,2,2,1,1]

〉 = N 2(N + 1)(N − 2)(N − 3)

(17)

Note that the N -dependent factor is equal to �
[2,2,1,1]
3,0

(N ) = �
[3,2,2,1,1]
3,0 (N ), that is, it looks like

Non-trivial are the pair correlators between

K -polynomials that have coincident �-factors. (18)

Whether this is actually true or not, remains to be seen in
a separate thorough study.

• Furthermore, the non-vanishing correlators get even
more complicated. For instance, both quadratic (i.e. same
�)

〈
K[7,2]K[7,2]

〉 = (−1)

9

(
N 2 + 10N + 33

)
�

[7,2]
3,0 (N )

〈
K[4,2,2,1]K[4,2,2,1]

〉 = (−1)

9
(N − 3)(N − 2)�

[4,2,2,1]
3,0 (N )

(19)

and bilinear correlators

〈
K[4,2,2,1]K[4,2,1,1,1]

〉 = 1

9

(
N 2 − 5N + 15

)
�

[4,2,2,1]
3,0 (N )

(20)

can have extra, often non-factorizable, factors (in addi-
tion to being divisible by the usual �-factor).

It remains to be seen, whether these extra (non-factorizable)
factors can be amended by some clever redefinition of K -
polynomials in case of non-trivial cores; or, perhaps, some
more general clever formula can be invented that will take
into account these more compilcated cases as is.

5 Triple-K averages

The single- and double-K averages are reminiscent to the
averages in conformal field theory, where, for the primary
operators one has

〈O(x)〉 ∼ δ�,0

〈O1(x)O2(y)〉 ∼ δ�1,�2

(x − y)�1+�2
, (21)

where, �
�1,2
r,a (N ) in (10) can be, perhaps, thought of as “dis-

crete” analog of (x − y)−�1−�2 .

In this logic, the simple form of the three-point average in
conformal field theory

〈O1(x)O2(y)O3(z)〉
= C�1,�2,�3

(x − y)�1+�2−�3(y − z)�2+�3−�1(z − x)�3+�1−�2

(22)

should imply, on our matrix model side, comparably simple
fully-factorized triple-K average, where N -dependence is
made from peculiar combinations of �

�1,2,3
r,a (N )-factors.

This naive hope, is, however, overoptimistic. While for
some small digrams the average, indeed, is factorizable and
simple. For instance, for r = 3, a = 1, b = 0

〈
K[3]K[3]K[3]

〉 = (−2)N (N + 1)(N + 2). (23)

For other diagrams the average stops being factorizable

〈
K[6]K[6]K[5,1]

〉 = (−2)N (N + 1)(N + 4)(N + 3)

(N 2 + 16N + 57) (24)

The non-factorization, however, seems at the moment to
be mild: in the examples we analyzed at most quadratic non-
factorized polynomial was observed. Therefore, it can yet
turn out that three-point K -average is always a sum of at
most two fully-factorized expressions. For instance, with the
above example the plausible “split” could look like

〈
K[6]K[6]K[5,1]

〉 = (−2)N 2(N + 1)(N + 4)(N + 3)2

+ (2 · 19)(N − 3)N (N + 1)(N + 4)(N + 3), (25)

where one now needs to explain the origin of the two sum-
mands.

Further intensive studies are needed to discern between
several alternatives, which are equally probable at the
moment:

• the non-factorizability of triple K -polynomial average is,
indeed, at most quadratic. Some hidden structure (per-
haps, an analog of KZ-equation or similar) is controlling
this simplification;

• the proper matrix model analog of primary operators are
not just K� polynomials with trivial-core �, but K�’s
with some additional condition/requirement. The triple
averages of such, “truly primary”, K�’s are factorizable,
while averages of “descendent” K�, in general, do not
factorize;

• the triple K -polynomial averages are fully non-factorizable
and generic, and no hidden structure exists.
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6 Towards proofs

The experimentally observed bilinear superintegrability for-
mulas (8), (9) and (10) are crisp and concise. One may, there-
fore, be tempted to think that their proof is equally crisp and
simple, and follows from ready generalizations of certain
MM/representation-theoretic constructions to the monomial
case.

At least at the moment this does not seem to be the case:
several attempts (listed below) to find such auxiliary gener-
alized structures that would help in the proof, fail. This, of
course, makes the bilinear superintegrability formulas (8),
(9) and (10) all the more interesting and valuable: true exam-
ples of emergent structure, which cannot be naively reduced
to/explained by more fundamental observations.

6.1 The first encouraging successes

• The single K-average (9) is, quite naturally, simpler than
bilinear (8) and (10), so one may hope to prove it first.
And indeed, utilizing the formula for expansion of Schur
polynomial with shifted arguments with help of skew
Schur functions [12]

∑

�∈R

SR/�(p)S�(g) = SR(p + g) (26)

we can write (with help of formulas (5)–(7), (2) and also

keeping in mind that exp
(
(−1) ∂

∂pr

)
is nothing but the

shift operator pk → pk − δk,r

〈K�〉 =
〈
O−1 exp

(
(−1)

∂

∂pr

)
OS�

〉

=
(5),(6)

〈
O−1ξ�S�{pk − δk,r }

〉

=
(26),(2)

∑

∇∈�

1

ξ∇
ξ�S�/∇{−δk,r } · ξ∇ S∇{δk,r } =

(26)

S�{pk = 0} = δ�,∅ (27)

• Similarly, the implication (8) → (10) is easy to prove.
Indeed, expanding the definition we obtain

〈
K�K

�
′
〉 =

∑

∇∈�
′
S
�

′
/∇{−δk,r }ξ�

′

ξ∇
〈K�S∇〉

=
(8)

ξ
�

′

⎡

⎣
∑

∇∈�
′
S
�

′
/∇{−δk,r } 1

ξ∇
· ξ∇ · (−1)π(�)

S∇/π(�){δk,r }
⎤

⎦ . (28)

Immediately one can see that the sum in brackets is inde-
pendent of N , and N -dependence of the whole formula (10)
is correctly reproduced by the ξ

�
′ -factor.

The sign and selection rule require a bit more care. First,
skew Schur functions are non-zero when (keep in mind that
|π(�)| = |�|)

|�| ≤ |∇| ≤ |�′ | (29)

But because of symmetry w.r.t interchange � ↔ �
′
we actu-

ally have

|�| = |∇| = |�′ |, (30)

therefore, we should have ∇ = �
′ = π(�) and the ∇-sum

trivializes to give the desired sign (−1)π (�).
Writing down the bilinear average in a similar manner

〈K�SR〉 = ξR

⎛

⎜⎜⎝
∑

∇∈�
P

S�/∇{−δk,r } · N P∇R · ξ�ξP

ξ∇ξR
· SP {δk,r }

⎞

⎟⎟⎠ ,

(31)

where N P∇R are the Littlewood–Richardson coefficients, we
see that the goal is, firstly, to prove that the sum in brackets
is N -independent and, secondly, that the peculiar permuta-
tion operator πr,a,b emerges. How to do this, however, at the
moment is not at all obvious: for illustration we present here
a couple of proof ideas that fail (i.e. the emergent structure
(8) is not decomposable into/explained by these, simpler,
putative sub-structures).

6.2 No Cauchy-like summation

From the expansion formula for Schur functions with shifted
arguments (26) the hope could be, that if one considers the
generating function for Eq. (8), summed with auxiliary Schur
functions, its l.h.s sum

Pr,a,b(R) :=
∑

�∈R

Kπr,a,b(�)(p) · (−1)πr,a,b(�) · S�(g) (32)

actually evaluates to something nice and concise.
This, however, turns out not to be the case as first few

examples

P3,1,0([3]) = 1

54

(−3p3
1 − N 2 − N + 3p3

)
g3

1

− 1

18
g2

(
3p3

1 + N 2 + N − 3p3
)
g1 − 1

27
g3N

2

− 1

27
g3N + 1 + 1

54

(−6p3
1 + 6p3

)
g3

P3,1,0([2, 1]) = 1

54

(−3p3
1 + 2N 2 − 9p1 p2 + 2N − 6p3

)
g3

1
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+ 1 + 1

54

(
3p3

1 − 2N 2 + 9p1 p2 − 2N + 6p3
)
g3

P3,1,0([1, 1, 1]) = 1

108

(
3p3

1 − 2N 2 − 9p1 p2 + 4N + 6p3
)
g3

1

+ 1

18

(
−3

2
p3

1 + N 2 + 9

2
p1 p2 − 2N − 3p3

)
g2g1

+ 1

18
g3 p

3
1 − 1

27
g3N

2 − 1

6
g3 p1 p2 + 2

27
g3N

+ 1

9
g3 p3 + 1 (33)

reveal no apparent structure.

6.3 No Littlewood–Richardson structure

Another approach would be to go via the orbifoldization con-
struction of [2, eqn. (4.33)]. From that point of view the single
Schur average turns out to be the product over the r -quotients.

〈SR〉N ∼
r−1∏

i=0

〈
SR(i)

〉
ni ,ui

, (34)

where R(i) are the r -quotients of R and the correlators on the
l.h.s. are evaluated in the simpler logarithmic model.

For the proof along these lines to go through two crucial
things need to happen. First, the expression for K� poly-
nomial should be reasonably simple in this language of r -
quotients.

Secondly, Schur polynomial multiplication (i.e.
Littlewood-Richardson coefficients), at least in the trivial r -
core case, should be “consistent” with r -quotient language:
the result should be expressed through individual r -quotients
in a reasonable way.

The first crucial thing is, indeed, true. On one hand, the
O-operator eigenvalue ξR is (analogously to orbifoldiza-
tion construction) expressed through Schur functions for the
respective r -quotients. On the other hand, the shift operator
exp((−r)∂/∂r) acts by removing r -rim-hooks in all possible
ways, which in the language of r -quotients is nothing but
removing all boxes in all possible ways (with suitable signs).

However, the second crucial thing seems not to be the case.
For instance, multiplying two partitions [3] and [2, 1], which,
in the language of r = 3-quotients are equal to ([1],∅,∅) and
(∅, [1],∅) one gets

[3] ⊗ [2, 1] = [5, 1] + [4, 2] + [4, 1, 1] + [3, 2, 1]
([1],∅, ∅) ⊗ (∅, [1],∅) = (∅, [2],∅) + (∅,∅, ∅)[4,2]

+ (∅, ∅, [2]) + ([1],∅, [1]), (35)

i.e. (even omitting the appearance of non-trivial r -core dia-
grams, which vanish later in the correlator) boxes are merged

and shuffled in obscure ways. This gets even more compli-
cated for bigger partitions.

Other plausible, but equally barren, proof strategies (for
instance the study of interplay between O-operator and
the Littlewood-Richardson coefficients) are possible but we
don’t list them here. In any case, desired is not the techni-
cal proof, but rather the conceptual explanation of why the
bilinear superintegrability formula (8) is true.

7 Conclusion

In this paper we studied, to what extent the recently proposed
bilinear superintegrability [1] persists in the case of matrix
models in pure phase [2,13].

We found, that in the case of trivial r -cores, it generalizes
simply and naturally, according to formula (8). Moreover, the
associated K� polynomials are obtained with help of triangu-
lar change of variables (5), where the central ingredient (the
O-operator) is, as well, a natural monomial generalization
with respect to the Gaussian case.

The key prominent feature of bilinear superintegrability in
the monomial case is the appearance of non-trivial permuta-
tion operation πr,a,b (see Sect. 3), which trivializes in Gaus-
sian case but generally is expressed in the language of Young
diagram r -quotients. This non-trivial permutation operation,
arguably, is the reason why the bilinear superintegrability
formula for monomial non-(q,t)-deformed models was not
found during the earlier attempts [2,14–16].

Finally, the explicit and simple form of bilinear super-
integrability in the language of K� polynomials allowed
us, in Sect. 5 to pose some questions about general anal-
ogy between matrix models and conformal field theories,
beyond the well-known AGT conjecture, and in the spirit of
recent attempt to generalize Nekrasov calculus beyond AGT
[3]. We performed just a few naive comparison attempts and
they show that this matrix model conformaliztion program
is not straightforward and immediate, yet, it is not immedi-
ately ruled out. We hope to study the situation in detail in the
future.

Few immediate concrete questions seem natural in the
context of the present paper:

• What is the manifest expression of the operatorO in terms
of time variables pk? Naive symbolic experiments show
that O(p) likely is of infinite degree w.r.t derivatives in
pk .

• How does the story generalize to exotic sector? Both in
the “strong” sense of [13], where the role of normalization
constant is played not by partition function Z = 〈1〉,
and in the “weak” sense of Sect. 4 where non-vanishing
core partitions interact on the trivial core “background”
of the basis Schur correlators. Is there any similarity at
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all between descriptions of these “strong” and “weak”
exotic sectors?

• What is the proper q− and β− deformation of the asso-
ciated K -polynomials and what shape does their bilinear
superintegrability take? How does it relate to the long-
known formula for double-Schur/Jack correlator in these
models (which does not seem to have q → 1, β → 1
limit)?

• Is the appearance of at most quadratic non-factorizable
polynomials a general feature of multiple-K averages in
monomial matrix models, or is it just an artifact of the
partitions with small number of boxes?

All these intriguing questions will hopefull be studied in
the future.
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