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Abstract The Teleparallel Theory is equivalent to General
Relativity, but whereas in the latter gravity has to do with
curvature, in the former gravity is described by torsion. As is
well known, there is in the literature a host of alternative the-
ories of gravity, among them the so called extended theories,
in which additional terms are added to the action, such as
for example in the f (R) and f (T ) gravities, where R is the
Ricci scalar and T is the scalar torsion, respectively. One of
the ways to probe alternative gravity is via compact objects.
In fact, there is in the literature a series of papers on compact
objects in f (R) and f (T ) gravity. In particular, there are sev-
eral papers that consider f (T ) = T + ξT 2, where ξ is a real
constant. In this paper, we generalise such extension consid-
ering compact stars in f (T ) = T + ξT β gravity, where ξ

and β are real constants and looking out for the implications
in their maximum masses and compactness in comparison
to the General Relativity. Also, we are led to constrain the
β parameter to positive integers which is a restriction not
imposed by cosmology.

1 Introduction

As is well known, General Relativity (GR) is a well-tested
theory of gravity over a large range of different energies and
its predictions have been confirmed even today. Neverthe-
less, there are some theoretical impasses such as the cosmo-
logical constant problem [1] and the unexplained accelerated
expansion of the Universe [2], which have urged the search
for alternative models that could overcome them, describing
gravitation on cosmological scales and, in addition, repro-
ducing in certain limits the results of GR [3–8].

In order to reproduce the known results and go beyond,
one of the simplest modifications to GR would be the so-
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called f (R) models [9] where we have a function of the
scalar of curvature R as Lagrangian density. Many applica-
tions of f (R) were considered recently in different scenar-
ios, whether presenting cosmological solutions or modelling
astrophysical objects such as compact stars. See [10–20] for
some recent references.

Additionally, one can have alternative descriptions of
gravity, such as the named Teleparallel theory of Gravity
[21–23] which is equivalent to GR, with the basic difference
of having in its formulation the torsion scalar T instead of
the curvature scalar R. The torsion is formed from products
of first derivatives of the tetrad, with no second derivatives
appearing in the torsion tensor. In the same way as the GR can
be extended through the f (R) models which has attracted
much attention in recent years as a way to explain accelera-
tion of the universe [24], the natural extension for the Telepar-
allel theory of gravity is the f (T ) models [25,26] with the
advantage of keeping its field equations second order, unlike
the fourth order equations of f (R) theory. The study of
these models in which the gravity is described by the torsion
T instead the curvature R is growing more and more. There
is a host of papers which consider, for example, f (T ) gravity
on cosmology and compact object models [27–40].

One of the possible consequences in considering differ-
ent gravity f (T ) models is to determine the maximum mass
allowed for the star for a given equation of state which could,
in principle, lead us to different maximum masses, see [41].
This would be important, for example, to explain the sec-
ondary components in the event GW190814 [42] as a candi-
date to a relatively high-mass neutron star. As is well known,
in GR there is the so-called Buchdahl limit [43,44] for the
compactness of a compact star where M/R ≤ 4/9. Thus, a
natural question to ask would be whether a less restrictive
compactness can be achieved from an alternative theoretical
description.

We have been dealing with this issue lately and gathering
some results in a series of papers [33–36], where a novel
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approach to obtain the Generalized Tolman-Oppenheimer-
Volkoff (TOV) equations [45] is presented, which are derived
from a particular f (T ) gravity and can be used to model the
structure of a spherically symmetrical object that is in hydro-
static equilibrium. Then, these generalized TOV equations
are used for modelling neutron stars and applied to poly-
tropic and realistic equations of state.

Once gravity is modified, a fundamental issue arises. In
alternative descriptions of gravity, it is not guaranteed that the
mass of a compact object can be calculated in the same way as
in GR. We have properly discussed this problem of mass def-
inition in theories with torsion in [36]. In summary, whereas
the mass of compact objects in GR is unambiguously given,
this is not necessarily the case in some alternative theories
of gravity [46]. The Schwarzschild metric is not assumed as
a exterior solution in our approach. So, it was necessary to
investigate different ways to calculate mass of compact stars
in f (T ) gravity and identify among them the most appropri-
ated, which seems to be the mass measured by an observer
at infinity.

In all those works, the model taken into account was
f (T ) = T + ξ T 2 where ξ is an arbitrary real constant
[30,34,35,40,47,48]. The results have validated the idea that
greater maximum masses and less restrictive compactness
can be achieved from alternative models. The most common
extension of the teleparallel gravity in the literature is pre-
cisely the addition of a quadratic term, either for the simplic-
ity or for the inspiration of the Starobinsky model in f (R).
In this sense, it is natural to perform the same analysis for
more general models such as f (T ) = T + ξ T β where now
β is also an arbitrary real constant, which is our main pur-
pose here. There are several works in the literature which

considers a power-law approach for f (T ) extension in dif-
ferent scenarios, such as, the study of the detailed dynamics
of the cosmological evolution [23], the accelerated expansion
without dark energy but driven by torsion [49] and also the
power-law model can leads to an asymptotic future de Sitter
state for the universe in the study of the cosmic acceleration
[26]. Thus, some studies in cosmology already have taken
into account this functional form with β �= 2. Therefore, it
does make sense to extend this analysis for modelling com-
pact objects which will lead us to constrain this parameter,
as will be seen further.

In Sect. 2, we present the main equations for modelling
spherically symmetric distributions from f (T ) gravity, more
specifically, f (T ) = T + ξ T β . Also, the set of differential
equations derived from the extended action is presented. In
Sect. 3, we explain how is the guideline to perform the analy-
sis for a compact star using the equations from previous sec-
tion and how it can be done using Python programming. The
issue regarding the most appropriate mass definition for f (T )

gravity is also discussed. In Sect. 4, the numerical results for
a given polytropic equation of state by considering different
values for ξ and β and also sequences of models representing
the mass M as a function of the radius R and central energy
density ρc are present and their implication on the ξ and β

parameters are discussed. Finally, in Sect. 5, the main results
are summed up.

2 The basic equations of f(T) gravity for spherically
symmetric metric

Since our interest here is modelling spherical stars where
rotation is not taken into account, let us consider the spheri-
cally symmetric metric [31,46,47,50,51]:

ds2 = eA(r) dt2 − eB(r) dr2 − r2 dθ2 − r2 sin2 θ dφ2. (1)

As is well known, the dynamical variable for torsion models
is the tetrad haμ which is related to the metric via gμν =
haμhbν ηab, where ηab is the mostly minus Minkowski met-
ric. The choice of the tetrad can be a delicate issue which
we have discussed in [33]. For the calculations here, we are
going to adopt the following tetrad [52]:

hμ
a =

⎛
⎜⎜⎝

eA/2 0 0 0
0 eB/2 sin θ cos φ eB/2 sin θ sin φ eB/2 cos θ

0 r cos θ cos φ r cos θ sin φ −r sin θ

0 −r sin θ sin φ r sin θ cos φ 0

⎞
⎟⎟⎠ . (2)

It is worth noting that although we are not using the covariant
formulation [53] here, Ref. [52] has showed that the choice
of nondiagonal (rotated) tetrads, like the one above, permit us
to recover spherically symmetric solutions in vacuum, using
the equations presented here derived from the original for-
mulation. In short, the tetrad above generates the same set of
equations in both the original and covariant formulations.

As mentioned in the introduction, the f (T ) model to be
considered in this work is the following:

f (T ) = T + ξ T β , (3)

where ξ and β are arbitrary real numbers.
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The expression for the scalar torsion T is well known and
can be obtained from the antissymmetric part of the connec-
tion, which leads to:

T (r) = 2 e−B

r2

[
1 + eB − 2 eB/2 + r A′ (1 − eB/2

)]
. (4)

The equations of motion can be obtained from the varia-
tion of the action for the f (T ) model

S =
∫ (

f (T )

16π
+ Lm

)
det(hμ

a) d4x (5)

with respect to the Vierbein components hμ
a(r), where Lm

is the Lagrangian density of matter fields. By doing so, one
obtains a non-trivial system of equations involving A′, B, B ′,
ξ , β, P and ρ. The pressure P and mass density ρ arise due
the momentum-energy tensor and an equation of state (EOS)
relates P and ρ. For more details, see [33] where we have
considered the case β = 2.

From the above action, we then obtain a set of equations,
whose manipulation leads us to the following set of equations
to be numerically solved:

P = e−B

16πr2

[
2

(
1 − eB + r A′) (

1 + ξβT β−1
)

+(β − 1)r2eBξT β
]
, (6)

B ′ = e−B

2r3

{
1 + βξT β−1

[
2β + (2β − 1)βξT β−1

] }−1

·
{

2r2e2B
[
8πρr2

(
1 + ξβT β−1

)
+ e−B − 1

]

+ 32πρr2ξβ(1 − β)T β−2eB(e1/2 B − 1)

(r A′ − 2e1/2 B + 2)

+ r4ξ(β − 1)T βe2B
(

1 + ξβT β−1
)

+ 4ξβ(1 − β) (1 + ξβ) T 2β−3(eB/2 − 1)2

×
[
6(eB − 1) − r A′(eB/2 + 5) + r2A′2]

+ 4r2ξβT β−1eB(eB/2 − 1)
(

2β − 3 − eB/2
)

+ 2β(ξr)2eB(eB/2 − 1)T 2β−2

·
[
2(eB/2 − 1) − r A′(β − 1)2 + 2β2(eB/2 + 1)

−β(5eB/2 + 1)
] }

(7)

A′ = −2
P ′

P + ρ
, (8)

where (8) is the well-known conservation equation [31].

3 Compact stars on f (T )

To model spherical stars on f (T ) one can follow, e.g., the
prescription provided by Ref. [33], with one exception: in
[33], in which f (T ) = T + ξT 2, A′ is obtained with an
expression without needing to perform a numerical integra-
tion of a differential equation. Here, it is not necessary to
integrate a differential equation for A′ as well, but one needs
to solve numerically a system formed by the two nonlinear
Eqs. (4) and (6) to obtain it. For given ξ , β, P , B and r , the
numerical solution of the referred system provides A′ and T
at r . It is worth noting that the system does not depend on A,
but only on A′, which offers some advantage in the numerical
integration of the system of equations above.

We have written a numerical code in Python to solve the
system of equations shown in previous section for a given
EOS. To do so, it is necessary to provide the following bound-
ary conditions

P = Pc at r = 0, (9)

from which one obtains P(r) and ρ(r), i.e., the structure of
the star. The radius of the star, R, is the value of r for which
P(r) = 0. In short, one starts the integration at r = 0 and
continues it till the value of r for which P(r) = 0 at the star’s
surface.

Here, unlike General Relativity, there is a differential
equation for B(r). Thus, a central boundary condition for
B must be given. In this sense, regularity at r = 0 implies
that Bc = 0. Since our system does not depend explicitly on
A, it is not necessary to set a condition for A(r = 0).

In General Relativity, to model compact stars such as neu-
tron stars, the equation commonly considered for the calcu-
lation of mass interior to radius r , namely m(r), is

dm

dr
= 4πρr2. (10)

However, when we are dealing with alternative description
of gravity, one must address this issue carefully.

The problem is that unlike the GR where the mass is unam-
biguously given, in f (T ) models this is considered an open
question. The internal energy and the gravitational potential
energy enter in the calculation of mass in (10). Since gravity
is now modified, there is no guarantee that (10) accounts for
the mass of a compact object in f (T )gravity. This can be seen
from equation for B ′ in (7) which holds inside and outside
the star, since ρ goes to zero smoothly. Then, the behaviour
of B outside the star, for example, is affected by the par-
ticular f (T ) considered. We do not impose any functional
form for B(r), as some authors do. This function is always
obtained via the numerical integration of equation for B ′ in
our calculations. Consequently, the Schwarzschild metric is
not assumed as a exterior solution in our approach. So, it is
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necessary to consider different and consistent ways to mea-
sure the mass in f (T ) and we have discussed this question
in details in [36]. In particular, we argue that the asymptotic
mass may be the most appropriate way to calculate mass in
this theory.

In summary, while the mass of compact objects in GR is
a well-defined quantity, in f (T ) there may be ambiguity in
its definition [46]. However, the most appropriated way to
calculate mass in f (T ) gravity seems to consider the mass
measured by an observer at infinity:

M∞ = lim
r→∞

1

2
r B(r) . (11)

Also, as is well known, in the Teleparallel theory of Grav-
ity, the Ricci scalar outside (vacuum) of any matter distribu-
tion is zero. One would think of that the torsion would be
also null. However, having a look, for example, at Eq. (4),
one can easily conclude that T is not null outside a spheri-
cally symmetrical distribution which affects the calculation
of mass. Thus, an observer near to the star feels the contribu-
tion of M∞ and additional terms that come from the T β term.
A deeper discussion regarding the case of f (T ) = T + ξT 2

can be found in [33].
Another interesting quantity to be calculated, although not

an observable, is the total rest mass M0, namely

dM0

dr
= 4πρ0 e

B/2 r2 (12)

where ρ0 is the rest mass density. Starting from a given EOS
and a central density, different theories lead to different M0

which allows us to compare them.
All this is due to the fact that, in f (T ) gravity, the space-

time exterior to a non-rotating and spherically symmetric
object is not available in closed form as in GR. Thus, the
vacuum space-time is not given by the Schwarzschild metric.
In the literature, we can find only a perturbative expression
in the weak gravity regime and also an approach with non-
Schwarzschild vacuum.

4 Numerical results

In this section, some numerical calculations for different val-
ues of ξ and β are shown. For this purpose, we first choose
an equation of state and, using the appropriate numerical
integrator in Python, we solve the set of differential equa-
tions seeking for the values of M∞ and R, given a central
energy density ρc. From that, we can also build the so-called
sequences of models representing the mass M∞ as a function
of the radius R and central energy density ρc and compare
them. To begin with, we adopt a polytropic EOS [54], which
is very useful in comparing models with different values of
ξ and β.

Recall that the polytropic is given by

P = k ρ0
γ , (13)

where ρ0 is the rest-mass density, k is the polytropic gas
constant and γ is the adiabatic index, which is related to
the polytropic index n via γ ≡ 1 + 1/n. The mass-energy
density, ρ, namely, ρ = ρ0 + n P is obtained (see, e.g.,
[55]) from the first law of thermodynamics. In particular, we
consider n = 1, which corresponds to γ = 2, in all models
studied here. As in Refs. [33,34], we set all quantities in
dimensionless form.1 In practice, this is equivalent to set
k = G = c = 1.

Before proceeding, it is worth considering what values the
β parameter can have. First, β cannot be negative, otherwise
f (T ) could have extremely large values and even diverge.
Second, since the torsion is negative (see, e.g., Ref. [33]) and
observing the way the torsion appears in equations (6) and
(7), one concludes that β must be a positive integer. Then, we
shall consider in particular integer values of β ranging from
two to six, which give us a good idea of how different values
of β modify the M vs R sequences. It is worth noting that,
regarding the parameter ξ , there is no restriction as long as
it is a real number.

In Fig. 1, “Mass × Radius” and “Mass × ρc” sequences
for ξ = 0.05 and integer values of β in the range [2, 6] are
shown, where ρc is the central density.

An obvious fact is that even and odd values of β have very
different behaviours. Whereas even β’s generate sequences
bellow the GR sequence and present maximum masses, odd
β’s generate sequences above that of GR and do not have
maximum masses.

As discussed, for example, in Ref. [33], the torsion is
related to the intensity of the gravitational interaction. The
more negative the torsion, the more intense the gravitational
interaction. Thus, for ξ > 0 the torsion is more negative
for odd β’s. As a result, the gravitational interaction is more
intense. Consequently, the objects can be more massive.

Also note that the objects modelled with the odd β’s stud-
ied here can be much more compact than those predicted by
GR. This can be seen by looking at the curves above that
from GR in Fig. 1. Within the same value of R, for example,
R = 0.8, there is more mass when we have odd β’s, i.e.,
more compactness.

The models for crescent values of even β’s also present
interesting results. For example, the sequences are closer to
that predicted by GR, although with lower maximum masses
and central densities ρc.

1 In [55] it is shown that, in geometrized units, kn/2 has units of
length. Therefore, one can define nondimensional quantities, namely,
r̄ = k−n/2r , P̄ = kn P , ρ̄ = knρ, M̄ = k−n/2M and T̄ = knT . To
simplify the notation, we then omit the bars in our equations.
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Fig. 1 Sequences of mass M as
a function of the radius R (left
panel) and the central energy
density ρc (right panel) for
ξ = 0.05 and different values of
β

Fig. 2 The same as in Fig. 1
now for ξ = −0.05

In Fig. 2 we have the same as in Fig. 1 now for ξ = −0.05.
In general, the conclusions are similar to those for ξ = 0.05,
but the roles of odd and even β’s are reversed.

Now we consider a set of sequences for β = 3 and 4 for
different values of ξ . First, in Fig. 3, sequences for β = 3
and different values of ξ are shown. Note that the sequences
are similar in form to those of the well studied case of β = 2,
although now the objects can well be much more compact.

Finally, in Fig. 4, sequences for β = 4 are shown. Our
calculations show that the objects are even more compact
than predicted for β = 3. Moreover, the calculations are
even more sensitive to ξ .

A brief qualitative summary about the behaviour of the
models for different β and ξ are displayed in Table 1.

5 Final remarks

As is well known, if f (T ) = T , one has the Teleparallel
theory which is completely equivalent to General Relativity.
Additional terms such as ξ T β provide a simple way to obtain
an extended Teleparallel theory, as well as what happens with
f (R) for extended curvature models.

There is in the literature a series of papers modelling
spherical stars in f (T ) gravity [27–32,50]. Notice, how-
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Fig. 3 Sequences of mass M as
a function of the radius R (left
panel) and the central energy
density ρc (right panel) for
β = 3 and different values of ξ

Fig. 4 The same as in Fig. 3
now for β = 4

ever, that many authors consider a very restrict functional
form for f (T ), namely, f (T ) = T + ξT 2, which is indeed
the most natural first extension of the Teleparallel gravity
for its simplicity and motivated by the Starobinsky model in
f (R). A relevant question is what would be the influence of
the power of T and, therefore, consider different functional
forms for f (T ) in order to study how the results and con-
clusions depend on the particular form adopted. Here, we
take into account such issue, considering f (T ) = T + ξT β ,
where ξ and β are real constants.

As already discussed, due to the fact that in f (T ) grav-
ity the spacetime exterior to a non-rotating and spherically

Table 1 Some features of the models according to the β and ξ values

β Even (odd) Odd (even)

Sequences below GR Sequences above GR

ξ > 0 Maximum mass No maximum mass

(ξ < 0) Less negative torsion More negative torsion

Less compactness More compactness

symmetric object is not given by Schwarzschild metric, the
mass definition is ambiguous. So, for all the calculations per-
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formed here, we have considered the mass measured by an
observer at inifinity, M∞ [36].

Regarding to the numerical results, we argue that β must
be an integer constant in order to be possible to solve the set
of differential equations used to model spherical stars. On
the other hand, ξ can assume any real number. Notice that
we are led to constrain the β parameter, which is a restriction
that does not occur in cosmology.

Considering models for ξ > 0 (ξ < 0) and crescent odd
(even) values for β, which provide ξT β < 0, the resulting
stars are increasingly compact, as can be inferred from Figs. 1
and 2. Also, for the values of ξ studied, there is no maximum
mass if ξT β < 0.

On the other hand, models for ξT β > 0 generate
sequences bellow those of General Relativity. These
sequences, unlike those for ξT β < 0, present maximum
masses, although lower than that of General Relativity.

Those results show that, indeed, the functional form of
f (T ) in power-law of T can change significantly the limits
of mass and compactness of the star. An interesting next step
is to consider, for example, f (T ) = T + αT 2 + σT 3 or
other combinations of power laws which may perhaps bring
up some different behaviour for the modelling of compact
objects. We shall consider such an issue in another paper to
appear elsewhere.
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