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Abstract In this study, we focus on a static spherically sym-
metric f (R) black hole spacetime characterized by a linear
dark matter-related parameter. Our investigation delves into
understanding the influence of different assumed values of
this parameter on the observable characteristics of the black
hole. To fulfill this task, we investigate the light deflection
angles, which are inferred from direct analytical calculations
of null geodesics. To examine the black hole’s properties fur-
ther, we assume an optically thin accretion disk and explore
various emission profiles. Additionally, we investigate the
shadow cast by the illuminated black hole when affected
by the disk. Furthermore, we simulate the brightness of an
infalling spherical accretion in the context of silhouette imag-
ing for the black hole. Our findings indicate that, except for
some specific cases, the observed brightness of the accretion
disk predominantly arises from direct emission, rather than
lensing and photon rings. Moreover, we reveal that the linear
dark parameter of the black hole significantly influences the
shadow size and brightness. Our discussion covers both ana-
lytical and numerical approaches, and we utilize ray-tracing
methods to produce accurate visualizations.

1 Introduction and motivation

Since the foundational concepts of black holes were estab-
lished by Schwarzschild [1] and Finkelstein [2], the search for
identifying these enigmatic objects has been on an exhilarat-
ing journey. From the initial observational evidence gathered
for Cygnus X-1 in 1971 [3,4] to the recent shadow images of
M87* [5] and Sgr A* [6] captured by the Event Horizon Tele-
scope (EHT), the pursuit of understanding black holes has
relentlessly advanced. By comparing theoretical predictions
with observed shadows, valuable insights into the behavior
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of light in extremely gravitating systems can be obtained.
The EHT results also unveiled the presence of a magnetic
field around M87*, possibly connected to the formation of
jets emanating from the black hole [7–9]. Shadow images
can provide information about the geometric structure near
the black hole’s horizon [10] and its physical characteristics
[11]. However, despite these compelling evidences that sup-
port the general theory of relativity, there are limitations in
the cosmological context where general relativity falls short.
These limitations include issues with flat galactic rotation
curves, anti-lensing, the accelerated expansion of the uni-
verse, observed anisotropies in the cosmic microwave back-
ground radiation, and the coincidence problem [12–17].

Many scientists believe that the phenomena described
above are attributed to the dark side of the universe, which
remains inadequately explained. For instance, introducing
the cosmological constant term to Einstein’s field equations
as a nonzero vacuum energy can account for the acceleration
of the universe. However, the reason behind the small value of
the cosmological constant remains elusive. To address unre-
solved cosmological problems, such as the late-time accel-
eration of the universe, some researchers turn to modified
theories of gravity to mimic the effects of dark matter and
dark energy and provide an effective time-varying equation
of state. In these models, the Einstein–Hilbert action is gen-
eralized or extended to explain the dynamics of the universe
on cosmic, galactic, or astrophysical scales. One of the most
intuitive extensions of general relativity is the f (R) theory,
where the Einstein–Hilbert action is replaced with a generic
function f (R) [18–20]. As a result, f (R) theories of grav-
ity have garnered significant interest and have been thor-
oughly scrutinized for their consistency [21–27] (see also the
reviews in Refs. [28,29]). Within the context of f (R) grav-
ity, researchers are also interested in black hole solutions.
One primary solution derived from the Palatini formalism
of f (R) theory is the Schwarzschild–(anti-)de Sitter metric,
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which includes an effective cosmological constant. However,
this solution faces incompatibilities with primary general rel-
ativistic tests since the cosmological constant appears to have
no significant role in solar system scales [30]. Nonetheless,
this problem can be circumvented by appropriately manipu-
lating the action, rendering the cosmological constant effec-
tive on cosmological scales while negligible on solar sys-
tem scales [31,32]. To address these issues properly, a suit-
able f (R) action model has been proposed in Refs. [33–
35], which is consistent with both galactic and cosmological
scales. In Ref. [36], this model was further elaborated using a
generic function in the gravitational action to ensure its com-
patibility with solar system tests, galactic rotation curves,
and the late-time acceleration of the universe. In this con-
text, the authors also propose a static spherically symmetric
black hole solution, which is of interest in this paper, partic-
ularly concerning light propagation in its geometry and its
shadow.

Indeed, the theoretical constraining of black hole shad-
ows based on observational data has been a subject of special
interest to scientists, leading to numerous publications dedi-
cated to this area (see, for example, Refs. [37–72]). However,
the recent silhouette imaging by the EHT has added even
greater importance to the need for reliable methods to visu-
alize black holes with accretion disks as their illumination
sources. This interest was initially ignited by Luminet in 1979
when he calculated the radiation emitted from a thin accretion
disk surrounding a Schwarzschild black hole and proposed
a ray-traced image of the disk [73]. Generally, this type of
accretion is based on the Shakura–Sunyaev [74], Novikov–
Thorne [75], and Page–Thorne [76] models, where the disk
is assumed to be thin, geometrically and optically. These
assumptions, along with the growing interest in black hole
imaging, led to the development of a new method for simulat-
ing higher-order light rings for black holes with thin accretion
disks, proposed in Ref. [77]. Since then, this method has been
applied in various publications (e.g., Refs. [78–88]), and it
also plays a significant role in our paper.

We structure our discussion as follows: In Sect. 2, we
provide a concise overview of the f (R) black hole solution
and introduce its cosmological parameters. Moving on to
Sect. 3, we initiate our investigation by studying the causal
structure of the spacetime. We then apply a Lagrangian for-
malism to derive the equations of motion for massless parti-
cles (light rays). By calculating the critical impact parame-
ter of photon trajectories, we determine the points at which
the orbits become unstable. As a result, we are able to cal-
culate the theoretical size of the black hole shadow, which
directly correlates with the critical impact parameter. In the
same section, we proceed to find the turning points of light
ray trajectories as they approach the black hole. We obtain
exact analytical solutions for the angular equation of motion
for deflecting and critical trajectories. In fact, gravitational

lensing serves as a remarkable tool in examining black hole
solutions in the strong-field regime [89–99]. Additionally,
weak lensing is of great importance to astrophysicists and
cosmologists, allowing them to estimate matter distribution
profiles within galaxies and other observable regions of the
universe [100–104], thus providing insights into dark matter
and dark energy properties. Hence, we use the above analyt-
ical solutions as instruments in finding the lens equation and
the deflection angles, which we calculate analytically using
the Weierstrassian elliptic function. In Sect. 4, we construct a
thin accretion disk for the black hole based on the Novikov–
Thorne model. We calculate the dynamical characteristics of
accreting particles in stable orbits and derive the radial pro-
files of the disk’s radiation flux and temperature. Applying
the method from Ref. [77], we visualize the light rings and
accretion disk of the f (R) black hole for three different disk
emission profiles. Additionally, we calculate the thickness
of the rings, which is inferred from the observed effective
intensity profiles. Finally, we assume a spherically symmet-
ric infalling accretion for the black hole and calculate the
observed disk emission, concluding this section by simulat-
ing the black hole shadow under this condition. Our paper
concludes with Sect. 5, where we summarize our findings
and discuss their implications. Throughout this work, we use
the signature convention (−+++), and primes on functions
denote differentiation with respect to the radial coordinate.
We apply the geometrized unit system, where G = c = 1.

2 A particular model of f (R) gravity and its black hole
solution

The gravitational action of the theory can be written in its
most generic form as

S = 1

2κ

∫
dx4√−g f (R) + Sm, (1)

in which, κ is a coupling constant, f (R) is a function of
the Ricci scalar of the spacetime with the metric determinant
g, and Sm is a matter field action. Accordingly, the field
equations are derived as

F(R)Rμν − 1

2
gμν f (R) − (∇μ∇ν − gμν�

)
F(R)

= κTμν, (2)

by varying the action S with respect to the metric, where
F(R) = d f (R)

dR , � = ∇λ∇λ and Tμν is the energy-
momentum tensor. Adopting a generic spherically symmetric
line element

ds2 = −B(r)dt2 + A(r)dr2 + r2
(

dθ2 + sin2 θdφ2
)

, (3)
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in the usual Schwarzschild coordinates xμ = (t, r, θ, φ), the
field equation (2) can be recast as [36]

2F(r)
X ′(r)
X (r)

+ r F ′(r) X
′(r)

X (r)
− 2r F ′′(r) = 0, (4)

B ′′(r) +
[
F ′(r)
F(r)

− 1

2

X ′(r)
X (r)

]
B ′(r)

−2

r

[
F ′(r)
F(r)

− 1

2

X ′(r)
X (r)

]
B(r) − 2

r2 B(r) + 2

r2 X (r) = 0,

(5)

for the vacuum space (i.e. Tμν = 0), in which X (r) =
B(r)A(r), and based on the r -dependence of the Ricci scalar,
we have taken into account F = F(R) ≡ F(r). Obviously,
general relativity is recovered for F(R) = 1, for which
Eq. (4) results in X (r) = 1 (or B(r) = A(r)−1), and from
Eq. (5), the Schwarzschild solution is obtained. We adopt the
ansatz F(r) = (1 + r/d)−α [36], where α and d are the free
parameters of the action. Here α is dimensionless whereas
[d] = m and is of galactic size. Applying this ansatz, Eq. (4)
results in the solution

X (r) = X0

(
1 + r

d

)−2(1+α)
(

1 + 2 − α

2

r

d

)4(1+α)/(2−α)

,

(6)

where X0 represents an integration constant. When α = 0,
we obtain X0 = 1, which corresponds to the Schwarzschild
solution. Solving Eq. (5) allows us to determine B(r). By
substituting the expression from Eq. (6) into Eq. (5), and
considering terms up to the first-order of the free parameters,
the lapse function can be obtained as [36]

B(r) = 1 − 2M

r
+ βr − 1

3
	r2, (7)

in which β = α/d. Here, 	 represents the cosmological con-
stant having the value |	| ≤ 10−52 m−2 [105].1 It is worth
noting that the above expression resembles the Mannheim–
Kazanas vacuum solution in fourth-order Weyl conformal
gravity [106]. In that solution, the linear term βr acts as
an additional potential that compensates for the flat galac-
tic rotation curves. Similarly, the model presented in Eq. (7)
suggests that small values of α can yield flat galactic rotation
curves for galaxies in a similar manner. The same solution
has been further explored in various aspects, including inves-
tigations on the quasinormal modes [107,108], dynamics of
the accretion disk [109], thermodynamic geometry [110], and
particle collision in the black hole’s exterior [111]. The lapse
function (7) can be seen as a linear combination of solutions
from two distinct f (R) gravity models, each pertinent to a

1 Unless otherwise specified, this value of 	 is assumed throughout the
subsequent sections of the paper.

different length scale. In the solar system scale (r � d), the
model is derived as [36]

f (R) = R + R0 ln
R

Rc
, (8)

where R0 = 6α2/d2, and Rc is an integration constant. The
solution to the above model covers the first three terms in the
lapse function (7). On the other hand, in the galactic scales
(r > d), the f (R) theory is based on the model [36]

f (R) = R−α/2
c (R + 	)1+α/2 . (9)

For cosmological scales (α � 1), this model reduces to
f (R) = R + 	, which is equivalent to the Einstein–Hilbert
action with a cosmological constant. Therefore, in the context
of the exact solution, this model contributes the final term in
the lapse function (7). It is worth noting that in Ref. [36], the
generic model

f (R) = R + 	 + R + 	

R/R0 + 2/α
ln

R + 	

Rc
, (10)

has been proposed, which aligns with both of the above mod-
els under different scale criteria. In the regime of strong cur-
vature, characterized by R � 	 and R/R0 � 2/α, we
obtain the model (8). Conversely, in cosmological scales,
where R 	 R0 	 	 and α � 1, it simplifies to f (R) =
R+	. Consequently, the small-valued parameter β in Eq. (7)
can effectively capture both large and small-scale phenom-
ena in the universe. In the following section, we will assign
presumed values to this model parameter within a favorable
range. These values will serve as the basis for our subsequent
analysis and simulations in the discussion.

We begin by studying the black hole exterior geometry and
its causal structure. For the sake of convenience in the calcu-
lations and demonstrations, we adimensionalize the param-
eters by introducing the quantities

r̃ → r

M
, β̃ → βM, 	̃ → 1

3
	M2. (11)

In the forthcoming sections, however, we remove the “tilde”
overscript from the dimensionless parameters in Eq. (11),
which is equivalent to letting M = 1.

3 Propagation of light and unstable photon orbits

The spacetime’s causal structure, characterized by the lapse
function (7), can be understood by studying the hypersurfaces
where B(r) = 0, corresponding to the black hole horizons,
resulting in a cubic equation with the solutions

r1 = β

3	
− 4

	

√
g2

3
cos

(
1

3
arccos

(
3g3

g2

√
3

g2

)
− 4π

3

)
,

(12)
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r2 = β

3	
− 4

	

√
g2

3
cos

(
1

3
arccos

(
3g3

g2

√
3

g2

)
− 2π

3

)
,

(13)

r3 = β

3	
− 4

	

√
g2

3
cos

(
1

3
arccos

(
3g3

g2

√
3

g2

))
,

(14)

where

g2 = 1

12

(
β2 + 3	

)
, (15a)

g3 = − 1

16

(
2β3

27
+ β	

3
− 2	2

)
. (15b)

The existence of real values for the above radii, however,
depends on the sign of the polynomial’s discriminant, i.e.
� = g3

2 − 27g2
3 = 	2

256 [β2(1 + 8β) + 4(1 + 9β) − 108	2],
which is always of positive values for β,	 � 1. So, we
infer that all the solutions (12)–(14) are real-valued. It is
straightforward to verify that r1 > r2 > 0 and r3 < 0. Hence
we identify r++ = r1, as the cosmological horizon of the
black hole where the infinite blueshift happens, and r+ = r2,
as its event horizon, where the infinite redshift happens. This
way, the lapse function can be rewritten as

B(r) = 	

r
(r++ − r) (r − r+) (r − r3) . (16)

3.1 Motion of mass-less particles

The motion of test particles can be described by the
Lagrangian

2L = gμν ẋ
μ ẋν

= −B(r)ṫ2 + ṙ2

B(r)
+ r2θ̇2 + r2 sin2 θφ̇2, (17)

where “dot” stands for differentiation with respect to the
affine parameter τ of the geodesic curves. Enjoying the spher-
ical symmetry of the spacetime, we confine the motion of
particles to the equatorial plane (i.e. θ = π/2) without loss
of generality. One can then define the conjugate momenta

μ = ∂L

∂ ẋμ
, (18)

which provides the two constants of motion

t = −B(r)ṫ = −E, (19a)

φ = r2φ̇ = L , (19b)

in accordance with the Killing symmetries of the spacetime,
and we name them, respectively, as the energy and the angular
momentum of the test particles. These two quantities allow

us to define the impact parameter b ≡ L/E . This parame-
ter corresponds to the vertical distance between the tangent
to the geodesic curves and the line passing the black hole
singularity and is of importance in the identification of pos-
sible photon trajectories. In fact, the motion of photons can
be described by the equation L = 0 which characterizes the
null geodesics. Thus, by means of Eq. (17), the equations of
motion are obtained as

ṙ2 = E2 − V (r), (20)(
dr

dφ

)2

= r4

b2

[
1 − V (r)

E2

]
, (21)

in which

V (r) = L2 B(r)

r2 , (22)

represents the effective potential for photons. Then, the turn-
ing points rt in the orbits correspond to ṙ = 0, which is
encountered when V (rt ) = E2. This potential has a maxi-
mum at

rp = β0 − 1

β
, (23)

given that β0 = √
1 + 6β, which is where the photon orbits

become unstable. Hence, this maximum corresponds to the
radius of the photon sphere. As it is observed, this radius is
independent of 	, and decreases as β increases. One can also
verify that

lim
β→0

rp = 3, (24)

which is the radius of unstable photon orbits for a
Schwarzschild–de Sitter black hole. It is straightforward to
calculate the critical value of the impact parameter which is
obtained as

bp =
√

3 (β0 − 1)√
β2 (2β0 − 1) − 18β	 + 6 (β0 − 1) 	

, (25)

which is crucial in determining the size of the black hole’s
apparent shape in the observer’s sky. Historically, various
definitions have been proposed in the literature to describe the
visual appearance of black holes. These include the escape
cone by Synge [112], and the cone of gravitational radi-
ation capture by Zel’dovich and Novikov [113]. Bardeen,
Chandrasekhar, and Luminet popularized the terms optical
appearance of black holes and black hole image to describe
the visual characteristics of black holes [73,114–116]. These
terms are widely used in the field. In addition, it is worth not-
ing that the term “black hole shadow,” which is also utilized
in this study, was introduced by Falcke et al. [117]. This term
refers to the dark region observed within the apparent bound-
ary of the black hole. The apparent boundary is occasionally
referred to as the photon ring [118,119], although in this

123



Eur. Phys. J. C (2023) 83 :1160 Page 5 of 25 1160

Fig. 1 The diagrams show a the β-profile of d theo
sh and b the observed shadow diameters dsh for M87* (green region) and Sgr A* (red region), each

with 1σ uncertainties. The shaded region in panel a represents the assumed range for the β-parameter, limiting it within the domain 0 ≤ β < 0.05

study, the term holds a broader significance (see Ref. [120]
for further historical insights on this matter). In this context,
the shadow of black holes is created by the presence of light
rings, which represent the lensed images of their luminous
background. The radius of these rings can be determined by
the critical impact parameter (i.e. Rsh = bp). Specifically,
for the f (R) black hole being examined, the expression for
Rsh is given by Eq. (25). This way, the theoretical shadow
diameter for this black hole is given by d theo

sh = 2Rsh = 2bp.
In Fig. 1a, the β-profile of this theoretical diameter has been
plotted. It is worth noting that one can calculate the diameter
of the observed shadows in the recent EHT images of M87*
and Sgr A*. To do so, let us consider the relation [121]

dsh = Dθ∗
γ

, (26)

which calculates the shadow diameter as observed by an
observer positioned at a distance D (in parsecs) from the
black hole, where γ is the mass ratio of the black hole and
the Sun, which is γ = (6.5 ± 0.90) × 109 for M87* at the
distance D = 16.8 Mpc [5], and is γ = (4.3 ± 0.013) × 106

for Sgr A* at D = 8.127 kpc [6]. In Eq. (26), θ∗ is the
angular diameter of the shadow, which has been measured
as θ∗ = 42 ± 3µas for M87*, and θ∗ = 48.7 ± 7µas for
Sgr A*. This way, one can calculate the shadow diameters

as dM87∗
sh = 11 ± 1.5 and dSgrA∗

sh = 9.5 ± 1.4. In Fig. 1b,
these values are displayed within the 1σ uncertainties for both
black holes. However, these observed diameters do not corre-
spond to the calculated theoretical shadow diameters d theo

sh in
the same physical sense. The theoretical diameter relates to
the photon ring and, in general, the photon ring’s brightness
is predominantly influenced by the disk’s direct emission
(further elaborated in Sect. 4.1). Additionally, uncertainties
stemming from the physical characteristics of the accretion
disk and its emission profiles introduce further complexities.
Consequently, attempting to constrain black hole parameters
by comparing the theoretical shadow diameter to observa-
tions from the EHT is not viable. Therefore, such analysis

does not offer a means to constrain the model parameter β

for the f (R) black hole.
Instead, for the numerical studies in the rest of the paper,

we consider the values of the β-parameter within a specific
range, marked in the shaded region of the β-profile of the the-
oretical shadow diameter (as seen in Fig. 1a). This segment
confines the parameter within the range 0 ≤ β < 0.05, which
we adhere to in the subsequent discussions in this paper.

Hence, it is now possible to visualize the behavior of the
effective potential (22), which is shown in Fig. 2.

In the left panel, five radial profiles of the effective poten-
tial have been plotted which correspond to different values of
the β-parameter within the assumed range. As it is inferred
from the diagram, the potential possesses one maximum, at
which, unstable orbits can occur. This is shown in more detail
in the right panel of Fig. 2, where the orbits are categorized in
accordance with the values of the impact parameter b. When
b > bp, the photons may approach from either of the turn-
ing points rd (where they are recessively deflected by the
black hole) or r f (where they are deflected towards the event
horizon). In fact, the turning points can be obtained analyt-
ically for the spacetime of the f (R) black hole, by solving
the equation (dr/dφ)2 = 0. Applying the Eqs. (21) and (22),
this results in

(
dr

dφ

)2

= P4(r) ≡ r

(
r3

λ2 − βr2 − r + 2

)
= 0, (27)

which beside the trivial solution at r = 0, has one negative
root and the two positive roots rd = x−1

d and r f = x−1
f ,

where

x f = 1

6
− 2

√
ḡ2

3
sin

(
1

3
arcsin

(
3ḡ3

ḡ2

√
3

ḡ2

)
− 2π

3

)
,

(28)

xd = 1

6
− 2

√
ḡ2

3
sin

(
1

3
arcsin

(
3ḡ3

ḡ2

√
3

ḡ2

))
, (29)
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Fig. 2 In panel a, the radial profile of the effective potential is shown for various values of β, within the assumed range. In panel b, by adopting
β = 0.022, a typical effective potential has been shown together with the turning points and their corresponding impact parameters

Table 1 The turning points of photonic trajectories together with their
corresponding values of bp

β 0.0 0.011 0.022 0.031 0.041

r+ 2.0001 1.9563 1.9196 1.8880 1.8583

rp 3.0000 2.9503 2.9077 2.8704 2.8350

bp 5.1968 4.9468 4.7445 4.5762 4.4228

rd 6.3692 6.8091 7.2156 7.5957 7.9813

r f 2.1797 2.1076 2.0544 2.0103 1.9699

with λ−2 = b−2 + 	, and

ḡ2 = 1

4

(
1

3
+ 2β

)
, (30a)

ḡ3 = −1

4

(
1

λ2 − β

6
− 1

54

)
. (30b)

For the case of b = bp, the photons encounter the turning
point rp (see the right panel of Fig. 2), which has been deter-
mined in Eq. (23). At this stage, the photons travel on unsta-
ble (or critical) orbits, which form the black hole shadow.
In Table 1, the turning points have been given for different
values of β.

As it is inferred from the table, increase in the β-parameter
leads to a smaller black hole (decrease in r+), a wider effec-
tive potential (increase in the distance between rd and r f ),
and a lower potential maximum. So unstable orbits are less
likely to happen for larger β (decrease in bp), and the black
hole shadow decreases in size. In such cases, the light rays
detected by a distant observer are mostly dominated by the
direct emission, which is a simply lensed image of the black
hole’s emitting disk or its luminous background. This will be
discussed in more details in the forthcoming sections.

Now that the turning points have been obtained and ana-
lyzed, we proceed with the determination of the exact solu-
tions for the aforementioned possible photon orbits around
the f (R) black hole. In fact, the null geodesics for this
black hole have been studied in their most general form in
Ref. [122]. In what follows, however, we base our exact solu-
tions on the analytically known turning points, which helps us
investigate, separately, the deflecting and critical trajectories
that are of importance for the purpose of this paper.

3.1.1 Deflecting trajectories

As mentioned above, photonic trajectories become deflected
at the turning points rd and r f which leads to different fates
for the photons. Accordingly, the possible deflecting trajec-
tories can be ramified as the orbit of the first kind (OFK) at
rd , and the orbit of the second kind (OSK) at r f . Since both of
these turning points have been identified analytically, hence,
by applying the change of variable z

.= ri/r (ri = rd , r f ),
one can rewrite the differential equation (27) as
(

dz

dφ

)2

= P3(z) ≡ 2

ri
z3 − z2 − riβz + r2

i

λ2 . (31)

A further change of variable u
.= 1

2 (z/ri − 1/6) provides us
with the Weierstrassian differential equation
(

du

dφ

)2

= P̃3(u) ≡ 4u3 − g̃2u − g̃3, (32)

in which

g̃2 = 1

12
(1 + 6β), (33a)

g̃3 = − 1

216

(
54

λ2 − 9β − 1

)
, (33b)
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are known as the Weierstrass invariants. This leads to the
integrals

φ − φ0 =
∫ u

ud

du′√
P̃3(u′)

(with ud < u), (34)

φ − φ0 =
∫ u f

u

du′√
P̃3(u′)

(with u f > u), (35)

respectively, for the OFK and OSK, in which φ0 is the initial
azimuth angle, and ui = 1

2 (1/ri − 1/6). Taking into account
the applied changes of variables, the above integrals yield

r(φ) = 6

1 + 12℘ (ωd − (φ − φ0))
, (36)

for the OFK and

r(φ) = 6

1 + 12℘
(
ω f + (φ − φ0)

) , (37)

for the OSK, where ℘(x) ≡ ℘(x; g̃2, g̃3) is the ℘-
Weierstrassian elliptic function [123], and we have defined

ωi = ℘−1
(

1

2ri
− 1

12

)
. (38)

3.1.2 Deflection angle

The OFK is in fact related to the gravitational lensing that is
caused by the black hole and is, in part, responsible for the
formation of the black hole shadow. Hence, by having at hand
the integral equation (34), one can calculate the deflection
angle �̂ that an observer O at the radial position rO from the
black hole (the lens) measures. Accordingly, we have [124]

�̂ = 2�φ − π

= 2
∫ ud

uO

du′√
P̃3(u)

− π = 2
[
℘−1(uO) − ℘−1(ud)

]
− π,

(39)

with the Weierstrass invariants given in Eq. (33). Using the
analytical expression for rd , we have plotted the behavior of
�̂ in terms of the impact parameter b in Fig. 3.

As it can be inferred from the diagram, there is no signifi-
cant sensitivity in the behavior of the deflection angle, given
the small changes in the β-parameter. However, in general, �̂
decreases for a given b, when the β-parameter increases from
0 to its maximum value. In this sense, the Schwarzschild–de
Sitter spacetime causes the highest deflection angle. Natu-
rally, by approaching the black hole (smaller b) the deflection
angle increases until it diverges at bp for each of the cases.
So, strong lensing occurs in the near-horizon regions whereas
by receding the black hole, the light deflection process will
correspond to weak lensing.

Fig. 3 The plot of the deflection angle �̂ (in µas) versus the changes
in the impact parameter b, plotted for the different values of the β-
parameter, and rO = 105

3.1.3 Critical trajectories

Similar to the deflecting trajectories, unstable orbits can also
lead to different fates, which we name after as the critical
orbits of the first kind (COFK) which happen when photons
approach rp from an initial distance rp < rin < r++, and
the critical orbits of the second kind (COSK) which corre-
spond to photons approaching rp from r+ < rin < rp. When
λ−2 → λ−2

p = b−2
p + 	, the point r = rp is a double root

of P4(r) in Eq. (27). The differential equation of motion can
then be factorized as

dr

dφ
≡ P p

4 (r)

= ∣∣r − rp
∣∣
√√√√ r2

λ2
p

+
(
rp
λ2
p

+ χ1

)
r + r2

p

λ2
p

+ χ1rp + χ0,

(40)

by means of the method of synthetic division, in which

χ0 = rp

(
rp
λ2
p

− β

)
− 1, (41a)

χ1 = rp
λ2
p

− β. (41b)

One can therefore obtain the exact solutions to Eq. (40), by
means of direct integration and applying the inversion. This
yields the two solutions rI(φ) for the COFK and rII(φ) for
the COSK, which are given as

r I
II
(φ) = 1

A2 + 8r2
p + (A2 − 4B) cosh �

×
[
2rp

(
A2 − 4B

)
cosh2 � ± [

rp(rp + A) + B
]

×
√

(A2 − 4B) sech2 � tanh2 �
(

cosh(2�) ∓ 2A
)]

,

(42)
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Fig. 4 Examples of a OFK, b OSK, c COFK and d COSK, plotted for β = 0.022. In panels a and b, the red circle at the center denotes r+, while
the blue and purple dashed circles correspond to r f and rd . In panels c and d, the exterior dashed circles indicate rp

where � = λ−1
p (φ − φ0)

√
rp(A + rp) + B, and

A = rp + χ1λ
2
p, (43a)

B = r2
p + λ2

p

(
χ0 + χ1rp

)
. (43b)

In Fig. 4, some examples of the possible photon orbits have
been shown.

As can be inferred from the diagrams, the boundary of
the black hole shadow is based on these four types of orbits.
Together, these photon orbits are able to produce the bright
ring surrounding the dark shadow in the observer’s sky, which
is produced as a result of the strong gravitational lensing in
the near-horizon regions.

As previously mentioned, the lensing phenomenon and
the existence of critical photon orbits play a crucial role in

shaping the black hole shadow and forming the light rings.
However, the formation of these features is highly dependent
on how the black hole is illuminated. In the case of astrophys-
ical black holes, illumination is often provided by an accre-
tion disk, which is also taken into account in this study. In
the following section, we begin by developing a thin accre-
tion model and subsequently delve into both analytical and
numerical examinations of the emission process from this
disk, which contributes to the formation of the rings.

4 Thin accretion disk model and emission from the
black hole

In this section, we study the observational signatures of the
black hole in the case of the existence of a thin accretion
disk. We assume that the accretion process is explained by
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Fig. 5 a The radial profile of the effective potential V(r) plotted for
different values of the β-parameter andL = 10. bThe position of ISCO
(shown by a point on each of the curves) for the same values of β. From

bottom to top, the corresponding values of the angular momentum are
L = 3.46, 3.64, 3.74, 3.81 and 3.86

a generalized version of the well-known Shakura–Sunyaev
model [74], proposed by Novikov and Thorne in Ref. [75].
To proceed with applying this model, let us return to the
Lagrangian (17), which is now specified as 2L = −1, for
massive particles of energy E and angular momentum L that
constitute the accretion disk. This way, one can rewrite the
equations of motion (20) and (21) as

ṙ = E2 − V(r), (44)(
dr

dφ

)2

= P6(r)

L2 , (45)

in which P6(r) = r
[
	r5 − βr4 − (1 − E2 − L2	)r3

+(2 − L2β)r2 − L2r − 2L2
]
, and

V(r) = B(r)

(
1 + L2

r2

)
, (46)

is the effective potential for massive particles orbiting the
black hole in the equatorial plan. The left panel of Fig. 5
shows a typical radial profile of V(r) which has been plotted
for the adopted values of β.

According to the diagram, the effective potential possesses
a minimum which allows for stable circular orbits for the par-
ticles. The latter is a necessary condition for the formation
of accretion disks in the context of the innermost stable cir-
cular orbit (ISCO), whose corresponding radius, rc, can be
obtained by the conditions P6(r) = 0 = P ′

6(r). Note that,
although this system of equations cannot be solved by means
of common radicals, however, the ISCO radius obeys the fol-
lowing relation [125]

rc = 3B(rc)B ′(rc)
2B ′(rc)2 − B(rc)B ′′(rc)

, (47)

in the spacetime geometry of the f (R) black hole. This radius
corresponds to the inner edge of the accretion disk and as we
move away from the black hole, particles appear to mov-
ing on Keplerian bound orbits. In the right panel of Fig. 5,

the position of the ISCO has been indicated for each of the
cases. As it can be inferred, an increase in the β-parameter
decreases rc, and hence, affects the structure of the accretion
disk. Furthermore, the above conditions make it possible to
obtain the analytical expressions

Ec(r)
= B(r)√

B(r) − r2�c(r)2

=
√

2	(r++ − r)(r − r+)(r − r3)

r
√

3r++r+r3
r + r(r++ + r+ + r3) − 2

[
r++(r+ + r3) + r+r3

] ,

(48)
Lc(r)

= r2�c(r)√
B(r) − r2�c(r)2

=
r

3
2

√(
− r++r+r3

r2 − 2r + r++ + r+ + r3

)
√

3r++r+r3
r + r(r++ + r+ + r3) − 2

[
r++(r+ + r3) + r+r3

] ,

(49)

for the energy and angular momentum of particles residing
in the ISCO, in which

�c(r) = dφ

dt
=
√

B ′(r)
2r

=
√

	

2

(
r++ + r+ + r3

r
− r++r+r3

r3 − 2

) 1
2

, (50)

is the angular velocity of orbiting particles, and we have used
the expression given in Eq. (16). In Fig. 6, the radial profile
of the above quantities has been plotted for given values of
the β-parameter. It is observed that by increasing β, all the
quantities increase which is a consequence of the relevant
changes in the effective potential.

Note that, on the ISCO, one can recast the characteristic
polynomial as P6(r) = 	r(r − rc)3(r − r4)(r − r5), where
r4 > 0 and r5 < 0 are the remaining two real roots of the

123



1160 Page 10 of 25 Eur. Phys. J. C (2023) 83 :1160

Fig. 6 Radial profiles of a Ec, b Lc and c �c, for the adopted values of the β-parameter and the same color-coding as in Fig. 5

characteristic polynomial, which can be expressed in terms
of rc by means of the method of synthetic division.

For an accretion disk to be thin, its radius must be large
compared to its thickness. In addition, the disk is consid-
ered to be in local hydrodynamical equilibrium at each point,
which implies low pressure and vertical gradients within the
disk. We assume that the cooling process in the disk is fast
enough to prevent heat buildup due to particle friction. To
ensure the stability of the disk, we assume that the accretion
rate along the radial axis, A r , is constant all the time, in the
way that

A r = −2π
√−g� Ur = const., (51)

in which
√−g = r2, � is the surface density of the disk,

and Ur = ṙ is the radial component of the four-velocity of
the accreting particles. From the conservation of energy and
angular momentum, one can obtain the differential of the
luminosity as [76,126]

d�

d ln r
= 4πr

√−g Ec(r)F(r), (52)

where F(r) is the flux of the radiated energy from the disk,
and is given by

F(r) = − A r

4π
√−g

� ′
c(r)[

Ec(r) − �c(r)Lc(r)
]2

×
∫ r

rc

[
Ec(r) − �c(r)Lc(r)

]
L′
c(r) dr. (53)

By considering the fact that E ′
c(r) = �c(r)L′

c(r), one can
write [76]∫ r

rc

[
Ec(r) − �c(r)Lc(r)

]
L′
c(r) dr

= Ec(r)Lc(r) − Ec(rc)Lc(rc) − 2
∫ r

rc
Lc(r)E ′

c(r) dr.

(54)

Now taking the expressions in Eqs. (48), (49) and (50) up to
the first-order in 	, and employing them in the integrand of
the above relation, one can obtain the analytical solution

F(r) = − A r

4π
√−g

� ′
c(r)[

Ec(r) − �c(r)Lc(r)
]2

×
[
Ec(r)Lc(r) − Ec(rc)Lc(rc) − 2J (r) + 2J (rc)

]
,

(55)

for the flux, for which J (r) has been given in Appendix A.
Since the disk is thin, we can assume that the emission follows
the radiation of a black body whose temperature profile is
given by

T (r)4 = F(r)

σ
, (56)

in which, σ is the Stefan–Boltzmann constant. In Fig. 7, the
above relations have been employed to plot the radial pro-
files of the flux, temperature, and differential luminosity for
different values of the β-parameter. It can be observed that
by increasing β, all of the above quantities will increase,
which implies that the more the black hole differs from the
Schwarzschild–de Sitter solution, the more intense the radi-
ation of the accretion disk is, and the disk’s temperature
becomes higher.

4.1 Shadow and rings of the black hole with thin accretion

To a distant observer, a real black hole appears as a dark
shaded region surrounded by an illuminated area. This illu-
minated area is formed by light rays originating from various
parts of the accretion disk, which have the potential to escape
from the black hole. As discussed in Sect. 3.1, certain pho-
tons with specific impact parameters can escape the black
hole either through direct deflection or by following critical
orbits (OFK and COFK) as shown in diagrams (a) and (c)
of Fig. 4. Consequently, incoming photons from the accre-
tion disk may undergo different numbers of orbits around the
black hole before exiting, giving rise to several light rings that
confine the shadow.
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Fig. 7 Radial profiles of a flux, b differential luminosity, and c temperature, for the same values of the β-parameter and color-coding as in Fig. 5

4.1.1 Direct emission, lensing rings and photon rings

Here, we follow the method introduced in Ref. [77], to char-
acterize the light rings in the observer’s sky, where the num-
ber of orbits is defined as

n = φ

2π
, (57)

in which, φ represents the final azimuth angle of photons
just before they escape the black hole. The parameter n cor-
responds to the number of times that the light ray geodesics
cross the plane of the accretion disk. In Ref. [77], these rays
were classified into three cases: 0.25 < n < 0.75, where
the light rays intersect the accretion disk only once, forming
the direct emission; 0.75 < n < 1.25, in which the rays
cross the accretion disk twice, generating the lensed (lens-
ing) ring; and n > 1.25, corresponding to the formation of
the photon ring, where the rays intersect the accretion disk
more than twice. Figure 8 illustrates the behavior of n with
respect to the impact parameter b for different values of the
β-parameter, with distinct colors indicating the domains of
direct emissions, lensing rings, and photon rings.

In this diagram, a large number of geodesics have been
simulated for each case, including the OFK, OSK, COFK,
and COSK. Notably, for the remainder of this section, we
assume the value of 	 = 10−8, which does not significantly
alter the photon orbit properties or the characteristic distances
of the spacetime but is essential for proper functioning of our
ray-tracing codes. As seen from the diagrams, increasing b
leads to an increase in the total number of orbits within the
domain b < bp until it reaches a narrow peak, after which
it decreases within the domain b > bp. On the other hand,
for larger values of the β-parameter, the width of the lensing
rings and photon rings shrinks. In Table 2, this has also been
shown numerically by writing down the range of b for the
direct, lensing ring, and photon ring emissions, for different
values of β. According to the data presented in this table, it
can be checked that by an increase in the β-parameter, the
range of b for all emission types is shrunk. Therefore, the
thickness of the photon and lensing rings is decreased in this
sense. Accordingly, the angular size of the shadow is also

decreased for larger β, and hence, the contribution to the
brightness of the rings is reduced.

We continue by studying the observed emission intensity
from the thin accretion disk in the framework of the f (R)

black hole model.

4.1.2 Transfer functions and the observed intensities

The radiation of the accretion disk is supposed to be isotropic
in its rest frame. By Ie(r), we denote the specific intensity
of an emitted radiation of frequency νe from the disk. From
Liouville’s theorem, we know that the quantity Ie(r)/ν3

e is
conserved along the entire path of light propagation. Hence,
the observed intensity Io of frequency νo are related in terms
of the relation Ie(r)/ν3

e = Io(r)/ν3
o [127]. Accordingly, we

have

Io(r) = h3 Ie(r), (58)

which in our model h = √
B(r). Now by integrating over

the range of all the observed frequencies, the total observed
specific intensity is obtained as

I to(r) =
∫

Io(r) dνo = h4 Iemit(r), (59)

in which, the total emission intensity is given by Iemit(r) =∫
Ie(r)dνe. Note that, since each intersection of the light rays

with the accretion disk generates an additional brightness, the
reliable total observed intensity of the direct emission and the
rings is given by

Iobs(r) =
∑
m

I to(r)|r=rm (b), (60)

where rm(b) is the transfer function that relates the impact
parameter of the light ray trajectories with the radial coor-
dinate of the mth intersection of light rays with the accre-
tion disk.2 Hence, the slope of the transfer function indicates
its (de)magnification scale [77,128]. Therefore, this slope is
called the (de)magnification factor. In Fig. 9, we have demon-

2 The number of intersections m and the number of orbits n, are related
as n = m/2 − 1/4 [82].

123



1160 Page 12 of 25 Eur. Phys. J. C (2023) 83 :1160

Fig. 8 The b-profile of the total number of photon orbits n, together
with the behavior of the null geodesics in the near-horizon regions. In
these diagrams, the direct, lensing ring and photon ring emissions have
been color-coded appropriately. The black disk indicates the event hori-

zon of the black hole whereas the green dashed circle denotes the radius
of unstable (critical) orbits, rp . The diagrams correspond to the cases
of (a, d) β = 0, (b, e) β = 0.011, (c, f) β = 0.022, (g, i) β = 0.031,
and (h, j) β = 0.041

strated the b-profile of the transfer function for different val-
ues of β.

In these diagrams, the black line with an approximately
constant slope corresponds to the case of m = 1 and repre-
sents direct emission. The nearly unit slope indicates a red-
shifted source. For the lensing ring with m = 2, the impact
parameter bp is approached, but the slope increases signifi-
cantly from one, indicating demagnification of the back side

image of the accretion disk. In the case of m = 3 and the for-
mation of the photon ring, the slope tends to infinity, demon-
strating an extreme demagnification of the front side image
of the accretion disk. Based on these observations, one can
infer that the contribution of the lensing ring and photon ring
in the observed intensity is negligible compared to direct
emission. It is noteworthy that higher-order rings with n ≥ 4
(black hole subrings) do not possess significant observational

123



Eur. Phys. J. C (2023) 83 :1160 Page 13 of 25 1160

Table 2 The impact parameter domains corresponding to the direct emission, lensing rings and photon rings of the black hole given for different
values of the β-parameter

β Direct emission (0.25 > n > 0.75) Lensing ring (0.75 < n < 1.25) Photon ring (n > 1.25)

0.0 b < 5.01685; b > 6.14685 5.01685 < b < bp; 5.23685 < b < 6.14685 bp < b < 5.23685

0.011 b < 4.80681; b > 5.71683 4.80681 < b < bp; 4.98682 < b < 5.71683 bp < b < 4.98682

0.022 b < 4.62449; b > 5.38449 4.62449 < b < bp; 4.78449 < b < 5.38449 bp < b < 4.78449

0.031 b < 4.47621; b > 5.13621 4.47621 < b < bp; 4.61621 < b < 5.13621 bp < b < 4.61621

0.041 b < 4.33281; b > 4.91281 4.33281 < b < bp; 4.46281 < b < 4.91281 bp < b < 4.46281

Fig. 9 The transfer function rm(b) plotted for different values of β. The panels a–e correspond respectively to the cases of β = 0.011, 0.022, 0.031
and 0.041. The color coding is the same as that in Fig. 8

features, although they have been found to produce certain
interferometric signatures [119].

4.1.3 Observational signatures of emissions from the
accretion disk

In this part of the paper, we employ a ray-tracing procedure to
generate the black hole shadow along with its accretion disk
image. We adopt a face-on view, which provides greater gen-
erality and informative insights into the silhouette imaging
of black holes.

From the perspective of a distant observer, the accretion
disk serves as the primary light source that illuminates the
black hole. The brightness of this source solely depends on
the radial coordinate r , and as discussed earlier, it can be
represented in terms of the emitted intensity Iemit. To explore
the observational features of the f (R) black hole further, we
consider three toy models for the intensity profile of the thin
accretion disk, as described below:

• Model 1: In this model, the emission comes from the
ISCO, and the intensity profile is given by the decaying
function

Iemit(r) =
{

[r − (rc − 1)]−2 for r > rc
0 for r ≤ rc

. (61)

• Model 2: We assume that the radiation is originated from
the photon sphere of the radius rp , and the emission inten-
sity profile is expressed as

Iemit(r) =
{[

r − (rp − 1)
]−3 for r > rp

0 for r ≤ rp
. (62)

• Model 3: For the case that the emission starts from the
event horizon radius r+, we consider an emission profile
in which, the decay is more moderate compared with the
last two models, and is given by
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Table 3 The radii of the origins for the radiation emission models,
provided for various values of the β-parameter

β r+ rc rp

0.0 2.00008 6.01981 3.00000

0.011 1.95638 5.31895 2.95031

0.022 1.91959 5.01730 2.90767

0.031 1.88795 4.82752 2.87042

0.041 1.85826 4.68106 2.83497

Iemit(r) =

⎧⎪⎨
⎪⎩

[
π
2 − arctan (r − [rc − 1])]

× [π
2 − arctan(rp)

]−1 for r > r+
0 for r ≤ r+

.

(63)

Table 3 presents the radii of the event horizon, the ISCO,
and the photon sphere, serving as the origins for the afore-
mentioned emission models, based on different values of the
β-parameter considered thus far.

Note that, the above models have their own specific prop-
erties respecting the black hole shadow, and the second model
emission profile shows the largest decay. These models,
despite being rather idealized, however, can provide useful
insights into the light propagation in the exterior of black
holes. In Figs. 10, 11, 12, 13 and 14, the observational appear-
ance of the accretion disk around the f (R) black hole has
been shown for each of the above models, together with the
plots of the emitted and observed intensities for each of the
cases.

The figures in each row represent, respectively, the emit-
ted and observed intensity, and the shadow of the f (R) black
hole for models 1, 2, and 3. In model 1, the emitted inten-
sity shows an asymptotic behavior near bp, decreasing as the
radial distance increases and approaching zero. Here, spheri-
cal photon orbits occur inside the disk’s emission region. The
observed intensity exhibits two independent peaks within the
lensing ring and photon ring domains. For all values of the
β-parameter, except β = 0.031, the photon ring intensity
is smaller than the direct emission, while the lensing ring
intensity is always larger.3 Both peaks have remarkably nar-
row observational ranges, indicating that, at long distances
where the observer is located, the contribution of the lensing
and photon rings to the observed intensity is dominated by
direct emission. Thus, the observed emission from the black
hole in this model is mainly direct emission, as evident from
the shadow images. Furthermore, comparing the diagrams for

3 In the two-dimensional ray-traced shadow images, zooming in reveals
the photon ring as a thin circle inside the thicker lensing ring.

different β values reveals that the shadow size decreases with
an increase in this parameter, making the Schwarzschild–de
Sitter black hole have the largest shadow for this model. In
model 2, the emitted intensity peaks at rp and then sharply
drops with increasing radial distance. The observed intensity
has two peaks, with the first corresponding to direct emis-
sion and the second to a combination of lensing and photon
rings. In some cases of β, both peaks have significant ranges
and approximately equal intensities. For most cases of β, the
direct emission dominates the observed intensity, while the
rings are strongly demagnified. However, in the exceptional
case of β = 0.031, both direct emission and the rings con-
tribute relatively equally to the observed intensity, as evident
from the corresponding shadow image. In model 3, the emit-
ted intensity peaks at the event horizon r+ and decreases
with radial distance. In this case, direct emission, lensing
ring, and photon ring merge and occupy a significant range
in the observational domain. Outside the event horizon, there
is a smooth uplift in the observed intensity profiles, where
direct emission dominates, followed by an intense peak cor-
responding to the lensing and photon rings. In the case of
β = 0 (the Schwarzschild–de Sitter black hole), the observed
intensity exhibits a narrow but intense peak for the photon
ring, followed by a smaller peak where both rings contribute,
forming a wide and bright ring. This bright ring is observed
in the intensity profiles and shadow images for all cases of
the β-parameter. Additionally, the brightness of the accretion
disk increases with an increase in the β-parameter. Notably,
a thin accretion disk significantly influences the size of the
observed black hole shadow. For instance, in Fig. 15, we
have applied a Gaussian filter to simulate the angular reso-
lution generated by the EHT on the shadow image presented
in Fig. 12a as a reference. Calculating the maximums of the
observed emission in Eq. (60) for this case yields an esti-
mated radius of 5.69 for the direct emission peak, which is
significantly larger than the theoretical value (bp = 4.7445
for β = 0.022). This difference arises from changes in both
the β-parameter and the disk’s emission profile. Therefore,
directly inferring the value of bp from the black hole shadow
size makes it challenging to test general relativity using the
EHT results.

4.1.4 Observational signatures of infalling spherical
accretion

Here, we investigate the shadow cast of the f (R) black hole
while it accretes spherically the radiative gas, constituting its
thin emission disk [129]. In this model, the observed intensity
is expressed as

Iobs =
∫

γ

R3J (νe) dIprop, (64)
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Fig. 10 The observational characteristics of the accretion disk around
the f (R) black hole, depicted for the case of β = 0 (the Schwarzschild–
de Sitter black hole). The panels, from top to bottom, correspond to a
model 1, b model 2, and c model 3 emission profiles. The left and mid-

dle panels in each row display the b-profiles of the emitted and observed
intensities, respectively. The right panels present two-dimensional face-
on ray-traced shadow images for each of the models

over the null geodesic congruence γ , in which R is the red-
shift factor, νe is the frequency of emitted photons from the
accretion disk, dIprop is the infinitesimal proper length, and

J (νe) ∝ δ(νe − νf)

r2 , (65)

is the permittivity per unit volume in the emitter’s rest frame,
in which νf is the monochromatic rest-frame emission fre-
quency, and δ is the delta function. In this construction, the
redshift factor is given by

R = μu
μ
o

νuν
e

, (66)

where uo and ue are, respectively, the four-velocities associ-
ated with a distant static observer, and the infalling accreting

matter. Accordingly, uμ
o = (1, 0, 0, 0), and in the spacetime

of the f (R) black hole we can write

uμ
e =

(
1

B(r)
,−√1 − B(r), 0, 0

)
. (67)

The � covector in Eq. (66) is the four-momentum of the
emitted photons from the accretion disk and has the same
definition as in Eq. (18). Since the accretion is supposed to be
only in the radial direction, it is then sufficient to recalculate
the fraction of the temporal and radial components of �,
which yields [129]

r

t
= ± 1

B(r)

√
1 − B(r)

b2

r2 , (68)
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Fig. 11 The case of β = 0.011

in which the ± signs correspond, respectively, to whether
the photons approach or recede from the black hole. One can
therefore recast the redshift factor as

R =
(
ute + r

t
ure

)−1

=
⎡
⎣ 1

B(r)
±
√(

1

B(r)
− 1

)(
1

B(r)
− b2

r2

)⎤
⎦

−1

, (69)

and from here, the infinitesimal proper length is obtained as

dIprop = μu
μ
e dτ = t

R|r |dr. (70)

Accordingly, Eq. (64) takes the form

Iobs ∝
∫

γ

R3

r2

t

|r |dr, (71)

and the observed intensity is, therefore, obtained by doing
the above integration over all the frequencies. Using this
method, we can study the brightness of infalling accretion
and the shadow of the f (R) black hole. As shown in Fig. 16,
for all cases of the β-parameter, by the increase in the impact
parameter and by moving away from the origin, the specific
observed intensity increases until it reaches a peak around bp ,
and falls of remarkably in the region b > bp and goes to zero.
On the other hand, by altering the β-parameter from zero, the
peak becomes slightly higher and the bottom line of the pro-
file is lifted by the same value, whereas its width is decreased
relevantly. This means that for larger β, the accretion disk
appears brighter to the observer, and the silhouette becomes
less dark but smaller in size. Hence, to a distant observer,
the Schwarzschild–de Sitter black hole has the darkest and
the largest silhouette, and the least bright accretion disk. In
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Fig. 12 The case of β = 0.022

Fig. 17, these effects have been visualized for the f (R) black
hole.

4.2 Discussion

As mentioned in Sect. 2, the first and second-order linear
terms present in the lapse function (7) can be interpreted as
mimicking the flat galactic rotation curves and the acceler-
ated expansion of the universe, and hence, they can be asso-
ciated with the dark matter and dark energy components of
the f (R) black hole spacetime. In recent years, similar inves-
tigations to the one presented in this paper have been con-
ducted on spherically symmetric black holes with linear or
nonlinear extra terms, aiming to account for the properties
of the dark side of the universe. Notably, the lapse function
(7) exhibits similarities with quintessential dark fields, which
have also been explored in Refs. [128,130] concerning the

shadow and observational signatures of infalling spherical
accretions. When quintessential dark energy is employed in
a black hole spacetime model, the lapse function takes on the
form

B̄(r) = 1 − 2M

r
− q

r3w+1 , (72)

where the quintessential and state parameters, are denoted
by q and w, respectively. For w = −1, the resulting lapse
function resembles the Schwarzschild–de Sitter black hole
spacetime, which has not been addressed in the previously
mentioned references. However, in this paper, we consider
this case as a baseline to facilitate reliable comparisons
between the impacts of different values for the f (R) black
hole parameters (see Figs. 10 and 17). When w = −1/3, the
lapse function becomes B̄(r) = 1 − q − 2M/r , correspond-
ing to a Schwarzschild black hole associated with cloud of
strings [131]. Therefore, the quintessential dark energy field

123



1160 Page 18 of 25 Eur. Phys. J. C (2023) 83 :1160

Fig. 13 The case of β = 0.031

is obtained within the range −1 < w < −1/3. Another
important case is achieved by setting w = −2/3, resulting
in B̄(r) = 1 − qr − 2M/r , comparable to the lapse func-
tion (7) for 	 = 0. This specific case has been studied in
Ref. [128], where only the quintessential dark energy affects
the spacetime, and in Ref. [130], when the cloud of strings
is also present. However, the resultant spacetimes for these
cases cannot compensate for the flat rotation curves in galac-
tic scales, as this requires a positive contribution of the linear
term (i.e., forq < 0 in B̄(r)), which has not been addressed in
the aforementioned references. On the other hand, this aspect
is fully considered in our paper, as all studied examples for
the f (R) black hole involve a positive β-parameter. Simi-
lar considerations have been explored in Ref. [132], where
a global monopole black hole in f (R) gravity exhibits a
lapse function similar to the Schwarzschild black hole asso-

ciated with quintessence and cloud of strings, as discussed in
Refs. [130,133]. However, the aforementioned f (R) black
hole contains a negative linear term, and thus cannot com-
pensate for dark matter effects in galactic scales. In contrast,
our study benefits from the positive first-order term, allowing
for compensation at both large and galactic scales. Further-
more, our investigation also accounts for gravitational effects
at large distances, based on the existence of the square term
	r2 in the lapse function. Therefore, this investigation offers
some important new features that are potentially interesting
regarding current astrophysical observations.

Having studied the analytical structure of light propaga-
tion around the f (R) black hole and demonstrated its obser-
vational features across various criteria, we can now summa-
rize our results in the next section.
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Fig. 14 The case of β = 0.041

Fig. 15 Blurring the shadow in
Fig. 12a for β = 0.022 using a
Gaussian filter, to emulate the
EHT nominal resolutions for the
images of M87* and Sgr A*. In
the left panel, the starting radius
of the direct emission has been
shown to be about 5.69, which
forms the boundary of the
shadow. After applying the
Gaussian filter, the lensing and
photon rings disappear in the
right panel, and hence, the
radius of the black hole shadow
is estimated as 5.69. This value
is much larger than the radius of
the photon ring, which is
bp = 4.74 for the case of
β = 0.022
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Fig. 16 a The b-profiles of the observed intensity of the infalling spherical accretion, which from bottom to top correspond to the cases of
β = 0, 0.011, 0.022, 0.031 and 0.041. b The same as panel a, but showing only a part of the b domain within the positive values

Fig. 17 The images of the disk and the silhouette of the black hole with infalling spherical accretion, given for a β = 0, b β = 0.011, c β = 0.022,
d β = 0.031 and e β = 0.041

5 Summary and conclusion

The theoretical study of black holes with accretion disks pro-
vides a more realistic framework for making reliable com-
parisons with observational effects. In this work, we focused
on a static spherically symmetric black hole derived from
a special f (R) theory of gravity, which is compatible with
both small and large-scale structure tests. This black hole fea-

tures a linear first-order term with a coefficient β, along with
a cosmological constant. While the cosmological constant
is meant to compensate for vacuum energy and the acceler-
ated expansion of the universe, the β-parameter is responsi-
ble for mimicking flat galactic rotation curves. We initially
derived the theoretical diameter of the black hole’s photon
ring and demonstrated its behavior concerning variations in
the parameter β. However, we clarified that this parameter
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cannot be constrained by comparing the above theoretical
diameter with the observed shadow diameters of M87* and
Sgr A* since the photon ring is not observed in the images
generated by the EHT. Consequently, for the numerical com-
putations throughout the paper, we adopted a specific range
for the parameter, setting it between 0 and 0.05. This range
allows us to incorporate the Schwarzschild–de Sitter black
hole scenario and funds a more realistic investigation. Next,
we delved into solving the angular equations of motion for
deflecting and critical trajectories, providing exact analytical
solutions for each case. These types of orbits play a crucial
role in shaping the shadow of black holes when illuminated
by an accretion disk. By employing the obtained analytical
solutions for deflecting trajectories, we derived the lens equa-
tion and calculated the deflection angle, which turned out to
be around 10 µas for the assumed values of the β-parameter.
In the latter part of our investigation, we constructed a geo-
metrically and optically thin accretion disk around the black
hole using the Novikov–Thorne model and computed the
disk’s characteristics. We then applied the method introduced
in Ref. [77] to classify the light rings and different types
of accretion emission profiles. Based on the number of half
orbits n completed by light rays around the black hole, the
rings were categorized into lensing rings and photon rings,
both of which experienced demagnification due to extreme
gravitational lensing. We also determined the impact param-
eter ranges for each ring, providing their respective thick-
nesses. By considering three types of disk emission profiles,
we observed that an increase in the β-parameter leads to a
decrease in the size of the shadow compared to that of the
Schwarzschild–de Sitter black hole. Additionally, the bright-
ness of the rings may vary depending on the value of β and the
radial position of the direct emission. Furthermore, the accre-
tion disk’s brightness is enhanced with an increase in the β-
parameter. Moreover, we applied a Gaussian filter to a partic-
ular case for simulating EHT images, further demonstrating
that inferring the black hole size directly from observations
remains inconclusive, as we have detailed earlier. Lastly, we
explored a spherically asymmetric infalling accretion sce-

nario for the black hole and obtained the observed intensity
profiles for different β values. Our analysis demonstrated
that as the β-parameter increases, the black hole becomes
brighter in terms of the accretion disk, while the silhou-
ette gradually shrinks. These findings were visually con-
firmed through appropriate ray-tracing methods. An inter-
esting topic for future exploration could involve examining
a plasmic medium characterized by a specific index profile
encircling the black hole. This approach allows us to delve
into how plasma components might impact the observable
characteristics of black holes, serving as more reliable con-
stituents within the accretion disks.
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Appendix A: The full expression of J (r)

Direct integration of the integral in Eq. (54) results in
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where F(ϕ|m), E(ϕ|m) and �(n;ϕ|m) are, respectively, the
incomplete elliptic integrals of the first, second, and third
kind of argument ϕ, modulus m and characteristic n [123].
Note that the above expression does not cover the case of
β = 0, so the corresponding profile has to be obtained by
doing numerical integration of Eq. (54).
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