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Abstract In modern cosmology, the curiosity of ultimately
understanding the nature of the dark energy controlling the
recent acceleration of the Universe motivates us to explore
its properties by using some novel approaches. In this work,
to explore the properties of dark energy we adopt the mod-
ified f (Q) gravity theory, where the non-metricity scalar
Q, emerging from Weyl geometry, plays the dynamical
role. For the function f (Q) we adopt the functional form
f (Q) = Q + 6γ H2

0 (Q/Q0)
n , where n, γ, H0 and Q0

are constants. Then, we test our constructed model against
the various observational datasets, such as the Hubble, and
the Pantheon+SHOES samples, and their combined sample,
through the Markov Chain Monte Carlo (MCMC) statistical
analysis. We also employ the parameter estimation technique
to constrain the free parameters of the model. In addition,
we use the constrained values of the model parameters to
explore a few implications of the cosmological model. A
detailed comparison of the predictions of our model with the
�CDM model is also performed. In particular, we discuss in
detail some cosmographic parameters, like the deceleration,
the jerk, and the snap parameters, as well as the behavior
of the dark energy and matter energy densities to see the
evolution of various energy/matter profiles. The Om diag-
nostics is also presented to test the dark energy nature of our
model, as compared to the standard �CDM paradigm. Our
findings show that the considered version of the non-metric
f (Q) type modified gravity theory, despite some differences
with respect to the �CDM paradigm, can still explain the
current observational results on the cosmological parame-
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ters, and provide a convincing and consistent account for the
accelerating expansion of the Universe.
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1 Introduction

In present day cosmology, one of the primary objective is to
explain the accelerating expansion of our Universe, an effect
whose existence was extensively proven, and investigated,
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over the past two decades [1,2]. To understand the accelerat-
ing phase of the Universe, one must either modify Einstein’s
General Relativity, or add a new exotic component, called
dark energy (DE) to the universe’s energy budget. DE is an
exotic fluid type component, having a negative pressure that
causes gravity to behave in a repulsive manner at large cos-
mological scales [3]. The equation-of-state parameter ω(z),
defined as the ratio of the fluid’s pressure to its energy density,
is usually employed to characterize the dynamical features
of DE. The most straightforward hypothesis to explain the
cosmological observations is to assume that dark energy is
a cosmological constant, with the parameter of the equation
of state given by the redshift independent ω = −1. The
cosmological constant, together with the assumption of the
existence on the Universe of a called dark matter compo-
nent are the conceptual basis of the �CDM cosmological
paradigm. Alternative cosmological models that depart from
the conventional �CDM model, but still predict an accel-
erating expanding Universe include braneworld models [4],
K-essence, quintessence, and non-minimally coupled scalar
fields [5–9], modified gravity [10–20], anisotropic universes
[21–23], interacting dark energy [24–26], and many others
[27–34].

Based on the equivalence principle, the view of the gravi-
tational force as a manifestation of the curvature of the space-
time became the dominant paradigm for the understanding
of the gravitational force. This assumption implies that the
gravitational interaction, and the geometry of the space-time,
are completely determined by the nature of the matter fields.
The Ricci scalar curvature plays a vital role in the curved
space-time geometry. The Ricci scalar curvature R is the
basic quantity from which the standard Einstein’s general
relativity has been built initially in a Riemannian geometry,
where the torsion and the non-metricity do vanish. Although
it is well known that Einstein’s general relativity provides an
outstanding description of the local gravitational phenomena,
at the level of the Solar System, the theory has been theoret-
ically challenged by specific observational evidence coming
from the realization that the Universe is accelerating, and
from the galactic phenomenology that is usually explained
by postulating the existence of dark matter. These observa-
tions suggest that for explaining the gravitational dynamics
and galactic and extra-galactic scales one should go beyond
the standard formalism of general relativity.

The simplest way to construct extensions of general rel-
ativity is to include either an additional component in the
Einstein–Hilbert Lagrangian, or to modify the structure of the
Einstein–Hilbert gravitational Lagrangian (the Ricci scalar)
itself. These approaches have led to many important exten-
sions of general relativity, including f (R) gravity [35], f (G)

gravity [36], f (P) gravity [37], Horndeski scalar-tensor the-
ories [38] etc. However, from a general differential geomet-
ric perspective, by taking into account the affine properties

of a manifold, the curvature is not the only geometric object
that may be used within a geometrical framework to con-
struct gravitational theories. Torsion and nonmetricity are
two other essential geometric objects connected to a metric
space, along with the curvature. They can be used to obtain
the f (T ) and the f (Q) gravity theories, respectively.

In the current paper, we are going to describe the cur-
rent accelerated expansion of the Universe, and the obser-
vational data, through a specific modified gravity theory,
the symmetric teleparallel gravitation theory, alternatively
called f (Q) gravity. The f (Q) gravity was first proposed
by Nester and Yo [39], and later extended by Jimenez et al.
[40]. In f (Q) gravity the non-metricity Q, originating from
the Weyl geometric background, describes the gravitational
interaction in a flat geometry, in which the curvature van-
ishes. f (Q) gravity was extensively used to investigate the
cosmological evolution of the Universe. By considering the
f (Q) Lagrangian of the theory as polynomial function in the
redshift z, Lazkoz et al. [41] obtained an important number
of restrictions on f (Q) gravity. This investigation demon-
strated that viable f (Q)models have coefficients comparable
to those of the GR model, specifically the �CDM model. In
the work [42], researchers proposed a new model in which
they showed their model immediately passes BBN restric-
tions since it does not show early dark energy features, and
the change of the effective Newton’s constant lies within
the bounds of observation. Another new cosmological model
has been studied by the same research group [43] related to
BBN formalism in order to extract the constraints on vari-
ous classes of f (Q) models. To investigate if this new for-
malism offers any workable alternatives to explain the Uni-
verse’s late-time acceleration, the validity of various models
at the background level was investigated. Several observa-
tional probes for the analysis have been employed, including
the expansion rates of the early-type galaxies, Type Ia super-
novae, Quasars, Gamma Ray Bursts, Baryon Acoustic Oscil-
lations, and Cosmic Microwave Background distance priors.
It turns out that the novel approach proposed in f (Q) grav-
ity offers a different perspective on constructing modified,
observationally reliable cosmological models.

The exploration of stellar models in the f (Q) modified
gravity theory has been performed in [44], in which observa-
tional restrictions in the context of f (Q) gravity are obtained
from the study of compact general relativistic objects. Focus-
ing on a particular model in f (Q) gravity, Frusciante [45]
found that while it is identical to the �CDM model at the
background level, it exhibits novel and measurably different
signatures at the level of linear perturbations. By examin-
ing the external and internal solutions for compact stars, Lin
and Zhai [46] investigated the application of f (Q) gravity
to the static spherically symmetric configurations and illus-
trated the consequences of the f (Q) gravity theory. Mandal
et al. [47,48] explored the dark energy parameters for the non-
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linear and power-law f (Q) models that depict the observable
behavior of the cosmos. Jimenez et al. [49] investigated the
modified gravity theories based on nonlinear extensions of
the nonmetricity scalar, and they examined several interest-
ing baseline cosmologies (including accelerating solutions
related to inflation and dark energy), and assessed how cos-
mic perturbations behaved. Harko et al. [50] considered an
extension of f (Q) gravity, by considered the effects of a
non-minimal coupling between geometry and matter. Sev-
eral cosmological applications of the theory were consid-
ered, by obtaining the generalized Friedmann equations (the
cosmological evolution equations), and by imposing specific
functional forms of the function f (Q), such as power-law
and exponential dependence of the nonminimal couplings.
A full theory in which nonmetricity couples to matter, called
f (Q, T ) gravity, where T is the trace of the matter energy-
momentum tensor, was introduced and developed in [51] and
[52]. Some astrophysical implications of the f (Q, T ) theory
were investigated in [53]. The inclusion of the torsion in the
formalism of theories with geometry-matter coupling was
considered in [54]. In addition, for studying various types
of energy restrictions for the investigation of the logarithmic
and polynomial functions in the f (Q) gravity, Mandal et al.
[55] used cosmographic quantities to reconstruct the proper
structure of the f (Q) function. The evolution of matter per-
turbations in the modified f (Q) gravity was investigated by
Khyllep et al. [56], who also considered the power-law struc-
ture of the cosmic perturbations.

It is the goal of the present paper to consider a detailed
investigation, in the framework of f (Q) gravity, of a spe-
cific cosmological model, obtained by assuming a simple
power law form of the f (Q) function, f (Q) = Q +
γ 6H2

0 (Q/Q0)
n , where n, γ and Q0 = 6H2

0 are constants.
After writing down the generalized Friedmann equations, an
effective dark energy model can be constructed. As for the
parameter of the equation of state of the dark energy we
assume a specific, redshift dependent form. In order to test
the predictions of the model we have adopted several numer-
ical techniques, including the MCMC fitting, which allow
us to study the observational implications of this modified
f (Q) gravity model, which gives us the possibility of con-
straining the cosmological model parameters, using various
observational datasets.

This manuscript is organized in the following manner. We
start with the presentation of the basic formulation of the
f (Q)gravity in Sect. 2. We present the basic assumptions and
ideas of a specific f (Q) type cosmological model in Sect. 3.
Thereafter, in Sect. 4, we present the different observational
samples, the numerical methods, and we present the data
analysis outputs. Moreover, we discuss the obtained results
in detail. In addition, in Sect. 5, we explore the behavior in
our model of various cosmological quantities, like the decel-
eration parameter, jerk and snap parameters, and the dark

energy and dark matter densities, respectively. Finally, we
discuss and conclude our results in Sect. 6.

2 Brief review of the f (Q) gravity theory

The basic idea of the f (Q) theory is that gravitational phe-
nomena can be fully described in the Weyl geometry [39], in
which the metric conditions is not anymore satisfied, and the
covariant divergence of the metric tensor is given by

∇λgμν = Qλμν, (1)

where Qλμν is called the nonmetricity. The scalar non-
metricity, given by

Q ≡ −gμν
(
Lα

βνL
β
να − Lα

βαL
β
μν

)
, (2)

plays a fundamental role in the theory, where Lλ
μν is defined

as,

Lλ
μν = −1

2
gλγ

(
Qμγ ν + Qνγμ − Qγμν

)
. (3)

Now, we introduce the action for the f (Q) gravity theory,
given by [40],

S =
∫ [

1

2
f (Q) + Lm

] √−gd4x, (4)

where f (Q) is a general function of the non-metricity scalar
Q, g represents the determinant of the metric gμν , and Lm

is the matter Lagrangian density. The non-metricity tensor is
given as,

Qαμν = ∇αgμν = −Lρ
αμgρν − Lρ

ανgρμ. (5)

The following two equations give the expressions of the non-
metricity tensor’s two independent traces

Qα = Q β
α β, Q̃α = Qβ

αβ, (6)

while the deformation term is given by

Lα
μν = 1

2
Qα

μν − Q α
(μν). (7)

Moreover, the nonmetricity scalar Q is obtained as,

Q = −gμν(Lα
βνL

β
μα − Lβ

αβL
α
μν) = −Pαβγ Qαβγ . (8)

Here, Pαβγ is the non-metricity conjugate, and is defined as

Pα
μν = 1

4

[
−Qα

μν + 2Qα
(μν) − Qαgμν − Q̃αgμν − δα

(μQν)
]
.

(9)

The field equation of the f (Q) gravity theory is obtained
by varying (4) with respect to gμν , and it takes the following
form:

− 2√−g
∇a(

√−g fQ Pα
μν) + 1

2gμν f (10)
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+ fQ(Pαβ
ν Qμαβ − 2Pαβ

μQαβν) = κTμν, (11)

where fQ = ∂ f
∂Q , and the energy-momentum tensor Tμν is

given by

Tμν = − 2√−g

δ
√−gLm

δ
√
gμν

, (12)

By varying the action with respect to the affine connection,
the following equation can be obtained:

∇μ∇ν(
√−g fQ Pμν

α) = 0. (13)

Within the framework of f (Q) gravity, the field equations
guarantee the conservation of the energy-momentum tensor,
and given the choice of f (Q) = Q, the Einstein equations
are retrieved.

3 The cosmological model

The standard Friedmann-Lemaitre-Robertson-Walker line
element, which describes our flat, homogeneous, and isotropic
Universe, is given by,

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2). (14)

Here t is the cosmic time, and x, y, z denote the Cartesian
co-ordinates. Moreover, a(t) is the cosmic scale factor. The
Hubble parameter H(t) is defined by H(t) = ȧ

a , where ȧ
denotes the derivative of a with respect to the cosmic time t .
Moreover, we introduce the cosmological redshift z defined
as 1 + z = 1/a.

3.1 The generalized Friedmann equations

For the FLRW geometry we get the non-metricity scalar as
Q = 6H2. We consider the matter content of the Universe
as consisting of a perfect and isotropic fluid, with energy-
momentum tensor given by

Tμν = (p + ρ)uμuν + pgμν, (15)

where p and ρ are the pressure and the energy density of the
fluid, uμ is the four velocity vector normalized according to
uμuμ = −1.

Now we are considering the splitting of f (Q) as f (Q) =
Q + F(Q). By considering the FLRW metric, we get two
Friedmann equations as [57,58]

3H2 = ρ + F

2
− QFQ, (16)

(2QFQQ + FQ + 1)Ḣ + 1

4
(Q + 2QFQ − F) = −2p

(17)

where FQ = dF
dQ and FQQ = d2F

dQ2 .

In the above equation (16), the energy density (ρ) can be
written as ρ = ρm +ρr where ρm, ρr are the energy density
for dark matter and radiation, respectively. Similarly, we can
write p = pr + pm . The standard matter distribution satisfies
the conservation equation given by,

dρ

dt
+ 3H(1 + ω)ρ = 0. (18)

In Eq. (18), the equation of state parameter (EoS) for mat-
ter, ω, takes different values for different matter sources, like
baryonic matter, and radiation. As for the expression of Q,
and its time derivative, they are related to the Hubble param-
eter by the important relations

Q = 6H2, Q̇ = 12H Ḣ . (19)

3.2 The equation of state of the dark energy

On the other hand, to describe the features of dark energy,
due to the lack of precision of the current data, and our lack of
theoretical understanding of dark energy, extracting the value
of EoS of dark energy from observational data is particularly
difficult. Under these circumstances, one must parameter-
ize ωde empirically, usually using two or more free param-
eters, to probe the dynamical evolution of dark energy. The
Chevallier–Polarski–Linder (CPL) model [59] is the most
popular and thoroughly studied among all the parametriza-
tion forms of dark energy EoS. The simplest form of the CPL
model can be written as,

ωde(z) = ω0 + ωa
z

1 + z
. (20)

In the above expression, z is the redshift, ω0 denotes
the present-day value of EoS ω(z), and ωa characterizes
its dynamics. The main reason for considering such a
parametrization form is to resolve the divergence property
of the linear form ω(z) = ω0 + ωaz at high redshifts.

In addition, the CPL parametrization has a number of
advantages, as mentioned by Linder [60], including a man-
ageable two-dimensional phase space, well-behaved and
bounded behavior for high redshifts, high accuracy in recon-
structing numerous scalar field equations of state, a straight-
forward physical interpretation, etc.

Though it has the above mentioned benefits, there are some
drawbacks to the CPL model. The CPL model only properly
describes the past expansion history, but cannot describe the
future evolution, since |ωde(z)| increases and finally diverges
as z approaches −1. The EoS is bound between ω0 +ωa and
ω0 from the infinite past to the present.

123



Eur. Phys. J. C (2023) 83 :1141 Page 5 of 18 1141

3.3 The generalized Friedmann equations in the redshift
space

In general, for isotropic and homogeneous spatially flat
FLRW cosmologies in the presence of radiation, non-
relativistic matter, and an exotic fluid with an equation of
state pde = ωde ρde, the Friedmann equations (16), (17)
becomes

3H2 = ρr + ρm + ρde, (21)

2Ḣ + 3H2 = −ρr

3
− pm − pde, (22)

where ρr , ρm , and pm are the energy densities of the radiation
and matter components, pm is the matter pressure, while ρde
and pde are the DE’s density and pressure contribution due
to the geometry, given by

ρde = F

2
− Q FQ, (23)

pde = 2Ḣ(2QFQQ + FQ) − ρde. (24)

In the following we assume that the matter pressure, be it
baryonic, or dark matter, can be neglected. From Eqs. (21)
and (22) we obtain immediately the global conservation
equation

d

dt
(ρr + ρm + ρde) + 3H

(
4ρr

3
+ ρm + ρde + pde

)
=0.

(25)

When there are no interactions between the three fluids,
the energy densities satisfy the following differential equa-
tions

ρ̇r + 4Hρr = 0, (26)

ρ̇m + 3Hρm = 0, (27)

ρ̇de + 3H(1 + ωde)ρde = 0. (28)

The dark energy equation of state ωde can be written as
the function of F(Q) and its derivatives as

ωde = pde
ρde

= −1 + 4Ḣ(2QFQQ + FQ)

F − 2QFQ
. (29)

From Eqs. (26) and (27), one can quickly get the evolution of
the pressureless matter and of radiation, namely, ρm ∝ 1

a(t)3

and ρr ∝ 1
a(t)4 .

Moreover, by using the relationship between redshift (z)
and the universe scale factor a(t)

[
a(t) = 1

1+z

]
, we can

represent the relationship between the redshift and the cosmic
time as,

d

dt
= dz

dt

d

dz
= −(1 + z)H(z)

d

dz
. (30)

Now, for the present cosmological study of the f (Q) grav-
ity, we are considering one particular form of F(Q), with

F(Q) = 6γ H2
0

(
Q

Q0

)n

, (31)

where H0, γ , n and Q0 are constants. The motivation for
choosing this form is that the Friedmann equations represent
a system of ordinary differential equations, and we can find
power-law and exponential types of solutions for these types
of equations. Therefore, we have considered the power-law
form in our study. With the adopted functional form of f (Q)

we obtain first

ρde = F

2
− Q FQ = αQn

2
− QnαQn−1 = α

(
1

2
− n

)
Qn

= 6γ H2
0

(
1

2
− n

) (
Q

Q0

)n
= 6γ H2

0

(
1

2
− n

) (
H

H0

)2n
,

(32)

where we have denoted α = 6γ H2
0 /Qn

0, and Q0 = 6H2
0 .

Then for the derivative of the dark energy we obtain the
expression

ρ̇de = n α Qn−1
(

1

2
− n

)
Q̇

= 12nγ H2
0

(
1

2
− n

) (
H

H0

)2n Ḣ

H
. (33)

We substitute now the expressions of the dark energy, and
of its derivative, into the conservation equation (28), together
with the CPL parametrization of the parameter of the dark
energy equation of state. Hence, by also taking into account
the relation between H and Q, we obtain

2n
Ḣ

H
+ 3H (1 + ωde) = 0, (34)

leading, in the redshift space, to the first order differential
equation

− 2n (1 + z)
dH

dz
+ 3H

(
1 + ω0 + ωa

z

1 + z

)
= 0, (35)

or

− n(1 + z)
d

dz
H2 + 3

(
1 + ω0 + ωa

z

1 + z

)
H2 = 0, (36)

with the general solution given by

H2(z) = C2
1 (1 + z)

3(1+ωo+ωa )
n e

3ωa
n(1+z) , (37)

where C1 is an arbitrary constant of integration, which we
determine so that H2(0) = H2

0 , giving C2
1 = H2

0 e
−3ωa/n .

Hence we obtain

H2(z) = H2
0 (1 + z)

3(1+ωo+ωa )
n e− 3ωa z

n(1+z) . (38)
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Now using (37) in (32), we obtain for the dark energy
density ρde the expression

ρde(z) = 3γ (1 − 2n)H2
0 (1 + z)3(1+ωo+ωa)e

−3ωa z
(1+z) . (39)

Alternatively, we can obtain the same result by using the
considered equation of state, which gives first

ωde = Pde
ρde

= 2Ḣ(2QFQQ + FQ) − ρde
F
2 − QFQ

= −1 + 4Ḣ(2QFQQ + FQ)

F − 2QFQ
. (40)

With the help of the CPL parametrization we successively
obtain

− 1 − 4Ḣn

Q
= ω0 + ωa

z

1 + z
, (41)

and

− 2

3
n(1 + z)

dH

dz

1

H
= −

[
1 + ω0 + ωa

z

1 + z

]
, (42)

respectively, with the solution of the above differential equa-
tion given again by Eq. (37).

Additionally, the matter density (ρm) and radiation density
(ρr ) can be written in terms of redshift function z as,

ρm ∝ (1 + z)3 ; ρr ∝ (1 + z)4 (43)

Consequently, the Friedmann equation (21) reads,

3H2(z) = ρr0(1 + z)4 + ρm0(1 + z)3

+3γ (1 − 2n)H2
0 (1 + z)3(1+ωo+ωa)e

−3ωa z
(1+z) ,

H2(z)

H2
0

= 
r0(1 + z)4 + 
m0(1 + z)3

+γ (1 − 2n)(1 + z)3(1+ωo+ωa)e
−3ωa z
(1+z) . (44)

In the Eq. (44), the suffix 0 represents the present day value
of the corresponding quantity. H0 is the current Hubble value
(at z = 0) of our present Universe.

Finally, we are going to introduce the energy density
parameters, defined as


m = ρm

3H2 , 
r = ρr

3H2 , 
de = ρde

3H2 (45)

4 Observational data

In this section we discuss the methodology, and the var-
ious observational samples used to constrain the parame-
ters H0, 
m0, ω0, ωa, n, γ of the considered cosmological
model. In particular, we use a Markov Chain Monte Carlo
(MCMC) method to do the statistical analysis, and to obtain
the posterior distributions of the parameters. The data anal-
ysis part is done by using the emcee package in Python. The

Table 1 Priors for the parameter space H0, 
m0, ω0, ωa, n, γ

Parameter Prior

H0 (60, 80)


m0 (0, 1)

ω0 (− 2, 2)

ωa (− 2, 2)

n (− 1, 1)

γ (− 1, 1)

best fits of the parameters are maximized by using the prob-
ability function

L ∝ exp(−χ2/2), (46)

where χ2 is the pseudo chi-squared function [61]. More
details about the χ2 function for various date samples are
discussed in the following subsections.

4.1 Cosmic chronometer (CC) sample

For the cosmic chronometer (CC) sample, we used 31 points
of Hubble samples, collected from the differential age (DA)
approach in the redshift range 0.07 < z < 2.42. The com-
plete list of this sample is collectively presented in [62]. The
chi-square function for the Hubble sample is defined as

χ2
CC =

31∑
i=1

[Hth
i (θs, zi ) − Hobs

i (zi )]2

σ 2
CC (zi )

(47)

where Hobs
i denotes the observed value, Hth

i denotes the
Hubble’s theoretical value, σzi denotes the standard error in
the observed value, and θs = (H0,
m0, ω0, ωa, n, γ ) is the
cosmological background parameter space. In addition, we
use the following priors to our analysis, which we present in
Table 1.

In our MCMC analysis, we used 100 walkers and 1000
steps to find out the fitting results. The 1 − σ and 2 − σ

CL contour plot are presented in Fig. 1, and the numerical
results are presented, for the CC sample, in Table 2. With the
mean constrain value of the free parameters, we present the
Hubble parameter profile for the CC sample, together with
the �CDM behavior, in Fig. 2.

4.2 Type Ia supernovae sample

Supernovae samples are a powerful indicator for exploring
the background geometry and properties of the Universe. In
this analysis, we adopt the largest SNe Ia sample published
to date, the Pantheon+SHOES sample, which consists of
1701 light curves of 1550 spectroscopically confirmed SNe
Ia across 18 different surveys [63]. The Pantheon+SHOES
sample significantly increases the number of observations
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Fig. 1 The marginalized constraints on the parameters
H0, 
m0, ω0, ωa, n, γ of our model using the Hubble sample.
The dark orange shaded regions presents the 1 − σ confidence level

(CL), and the light orange shaded regions present the 2 − σ confidence
level. The constraint values for the parameters are presented at the
1 − σ CL

relative to the Pantheon data at low redshifts, and covers the
redshift range z ∈ [0.00122, 2.26137]. It is the successor of
Pantheon sample [64]. The chi-square function is defined as,

χ2
SN =

1701∑
i, j=1

�μi

(
C−1
SN

)
i j

� μ j . (48)

Here CSN is the covariance matrix [63], and

�μi = μth(zi , θ) − μobs
i .

is the difference between the observed value of distance mod-
ulus, extracted from the cosmic observations, and its theoret-
ical values, calculated from the model, with the given param-

eter space θ . μth
i and μobs

i are the theoretical and observed
distance modulus, respectively.

The theoretical distance modulus μth
i is defined as

μth
i (z) = m − M = 5 log Dl(z) + 25, (49)

where m and M are apparent and the absolute magnitudes
of a standard candle, respectively. The luminosity distance
Dl(z) is defined as

Dl(z) = (1 + z)
∫ z

0

dz∗

H(z∗)
. (50)

To run the MCMC code, we used the same priors, number
of walkers, and steps, which have been used in the CC sample.
The 1 − σ and 2 − σ CL contour plot is presented in Fig. 3,
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Table 2 Marginalized constrained data of the parameters H0, 
m0, ω0, ωa, γ and n for different data samples with 68% and 95% confidence
level

Model H0 
m0 ω0 ωa n γ

68% limits

CC sample

�CDM 68.80 ± 0.94 0.318 ± 0.034 – – – –

Power-law 71.59 ± 0.54 0.292 ± 0.020 −1.005 ± 0.090 −0.00996 ± 0.0010 −0.3612 ± 0.0010 0.369 ± 0.046

Pantheon+SHOES sample

�CDM 72.33 ± 0.28 0.383 ± 0.022 – – – –

Power-law 71.733+0.085
−0.068 0.1899 ± 0.0069 −1.005 ± 0.010 −0.0100+0.0010

−0.0011 −0.3616 ± 0.0010 0.4627 ± 0.0063

CC+Pantheon+SHOES sample

�CDM 72.66 ± 0.26 0.342 ± 0.019 – – – –

Power-law 71.54+0.11
−0.093 0.1971 ± 0.0068 −1.0284 ± 0.0096 −0.0181+0.011

−0.0082 −0.343 ± 0.010 0.4871 ± 0.0098

95% limits

CC sample

�CDM 68.8+1.9
−1.8 0.318+0.068

−0.063 – – – –

Power-law 71.6+1.0
−1.0 0.292+0.040

−0.040 −1.00+0.18
−0.18 −0.00996+0.0020

−0.0020 −0.3612+0.0020
−0.0020 0.369+0.094

−0.089

Pantheon+SHOES sample

�CDM 72.33+0.55
−0.54 0.383+0.044

−0.044 – – – –

Power-law 71.73+0.16
−0.19 0.190+0.013

−0.013 −1.005+0.020
−0.019 −0.0100+0.0022

−0.0021 −0.3616+0.0020
−0.0019 0.463+0.012

−0.012

CC+Pantheon+SHOES sample

�CDM 72.66+0.50
−0.53 0.342+0.038

−0.036 – – – –

Power-law 71.54+0.19
−0.22 0.197+0.014

−0.014 −1.028+0.020
−0.018 −0.018+0.017

−0.018 −0.343+0.019
−0.020 0.487+0.020

−0.020

Fig. 2 The red line represents the Hubble parameter profile of
the power-law model f (Q) model with the constraint values of
H0, 
m0, ω0, ωa, n, γ . The blue dots with the green bars represent the

CC sample, and the black dotted line represents the Hubble parameter
profile of the �CDM model

and the numerical results for the Pantheon+Shoes sample are
presented in Table 2. With the mean constraint value of the
free parameters, we present the distance modulus parameter
profile with the Pantheon+SHOES sample and the �CDM
model in Fig. 4.

4.3 CC + Type Ia supernovae sample

To perform both the CC and Type Ia supernovae samples
together, we use the following Chi-square function

χ2
CC+SN = χ2

CC + χ2
SN . (51)
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Fig. 3 The marginalized constraints on the parameters H0, 
m0, ω0,

ωa, n, γ of our model using Pantheon+Shoes sample. The dark blue
shaded regions present the 1 − σ confidence level (CL), and light blue

shaded regions present the 2−σ confidence level. The constraint values
for the parameters are presented at the 1 − σ CL

The marginalized constraints on the parameters included in
the parameter space θ are presented in Fig. 5. The numerical
results are presented in Table 2.

4.4 Information criteria and model selection analysis

This subsection will discuss the various statistical informa-
tion criteria and the model selection procedures. For this pur-
pose, we use the Akaike information criterion (AIC) [65], and
the Bayesian information criterion (BIC) [66] to compare a
set of models with their observational prediction given by
dataset(s).

On the basis of information theory, the AIC addresses the
problem of model adequacy. It is a Kullback–Leibler infor-

mation estimator with the property of asymptotic unbiased-
ness. The AIC estimator is given under the standard assump-
tion of Gaussian errors, by [67,68]

AIC = −2 ln (Lmax ) + 2k + 2k (k + 1)

Ntot − k − 1
, (52)

where k is the number of free parameters in the pro-
posed model, Lmax is the maximum likelihood value of the
dataset(s) considered for analysis, and Ntot is the number
of data points. For a large number of data points, the above
formula reduces to AIC ≡ −2Lmax + 2k, which is a mod-
ified form of AIC. Therefore, the modified AIC criteria is
convenient for all the cases [69].
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Fig. 4 The blue line represents the distance modulus profile of the power-law f (Q) model with the constraint values of H0, 
m0, ω0, ωa, n, γ .
The blue dots with the green bars represent the Pantheon+SHOES sample, and the black dotted line represents the distance modulus profile of the
�CDM model

The BIC is a Bayesian evidence estimator, given by [68–
70],

BIC = −2 ln (Lmax ) + k log(Ntot ). (53)

For a given set of comparable models, we aim to rank
them according to their fitting qualities with respect to the
observational dataset. We use the previously studied method,
in particular, the relative difference between the IC value of
the given models,

�ICmodel = ICmodel − ICmin, (54)

where ICmin is the minimum value of IC of the set of com-
peting models. The �IC value measures the compatibility
and tension between the models. According to Jeffrey’s scale
[71], the condition �IC ≤ 2 confirms the statistical compat-
ibility of the two models, and the model most favored by the
data. The condition 2 < �IC < 6 indicates a mild tension
between the two models, while the condition �IC ≥ 10 sug-
gests a strong tension. The outputs of these tests are presented
in Table 3.

4.5 Numerical results

In Tables 2 and 3, we have presented the numerical limits
of the parameters H0, 
m0, ω0, ωa , n, and of some cosmo-
logical parameters with the 68% and 95% confidence lev-
els. The constraint values on the present Hubble parameter
are 71.59 ± 0.54, 71.733+0.085

−0.068, 71.54+0.11
−0.093 with 68% CL

for CC, Pantheon+SHOES, CC+Pantheon+SHOES sample
respectively.

These results are consistent with recent studies (one can
see the detailed discussion on H0 in the reference herein
[72]). Furthermore, the parameters ω0, ωa play an impor-

tant role in identifying the nature of the CPL equation of
state parameter/dark energy equation of state (EoS). This
EoS reduces to ω0 at z = 0, and the constraint values on
it are −1.005+0.090

−0.090, −1.005+0.010
−0.010, −1.0284+0.0096

−0.0096 for the
respective date samples. These values are very close to the
�CDM model.

On the other hand ωCPL(z) shows the phantom type
behaviour with the constraint values on ω0, ωa for all
datasets, i.e., ωCPL(z) < 1 always. From all these outputs,
one can see that our findings confirm the existence of the
present accelerated expansion of the Universe. In addition to
this, we have presented the χ2

mim , the reduced χ2
mim , the AIC,

BIC, �AIC and �BIC values in Table 3. From these results,
we can estimate that the power law f (Q) type model is a good
fit to the observational datasets, as compared with the �CDM
model. However, it shows a mild tension between models as
per the information criteria analysis. Our model shows mild
tension compared to �CDM because the modified gravity
model has more degrees of freedom in the parameter spaces
than �CDM. And, the IC values depend on the number of
model parameters. These tensions may allow us to open a new
path to solving the H0 tension in the near future. Further, It
is well-known that these types of studies in modified gravity
are giving us extra degrees of freedom, which could allow us
to deal with the Hubble tension precisely in the near future,
and before that we have to deal with many discrepancies for
example, different statistical significance, ideal number free
parameters in a model. From our analysis, we can see that
the H0 values are a little less than �CDM in the case of Pan-
theon and CC+ pantheon samples, whereas in the case of CC,
it is the opposite. As per the literature review, we have seen
that H0 tension is large between CMB and SNIa data analysis
(for example) [72,73]. But in our case, we can see that the H0
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Fig. 5 The marginalized constraints on the parameters
H0, 
m0, ω0, ωa, n, γ of our model using the Hubble+Pantheon
sample. The dark-shaded regions present the 1 − σ confidence level

(CL), and the light-shaded regions present the 2 − σ confidence level.
The constraint values for the parameters are presented at the 1 − σ CL

Table 3 The corresponding χ2
min of the models for each sample and the information criteria AIC, BIC for the examined cosmological models,

along with the corresponding differences �ICmodel = ICmodel − ICmin

Model χ2
min red. χ2 AIC � AIC BIC � BIC

CC

�CDM 16.07 0.64 20.07 0 22.93 0

Power-law 16.06 0.64 28.06 7.98 36.66 13.72

Pantheon+SHOES

�CDM 1696.84 1.0 1700.84 0 1719.15 0

Power-law 1683.20 0.99 1695.20 5.63 1727.83 8.6

CC+Pantheon+SHOES

�CDM 1712.9 1.0 1716.90 0 1735.28 0

Power-law 1699.33 0.99 1711.33 5.5 1744.07 8.79
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value decreases in the case of SNIa and increases in the case
of CC compared to �CDM. These results suggest that our
model is able to reduce to H0 tensions between observational
samples. Moreover, we need to explore our model with other
datasets to have a complete view on H0 tension and its solu-
tion. In particular, we could expect that we will get a higher
value H0 for our model compared to �CDM for CMB data
as per our previous data analysis. Also, the combined data
analysis with observational samples may help us to reduce
the H0 tensions. In the near future, we hope to explore these
studies. To explore more about our model, we discuss some
cosmological applications in the following section.

5 Cosmological applications

In this section, we shall discuss some cosmological appli-
cations of our theoretical f (Q) model, and we examine its
current dynamical status. In this respect, we investigate the
basic Cosmographic Parameters, the matter distribution pro-
files, and the dark energy types profiles, respectively.

5.1 Cosmographic parameters

The Cosmographic parameters are simply a Mathematical
tool that considers the cosmic scale factor, and its derivatives.
Using these parameters’ behavior, one can investigate the
present, low redshift behavior, and predict the future of the
cosmological models. Therefore, we consider the profiles of
the Hubble, deceleration, jerk and snap parameters to present
the dynamic status of our model. Furthermore, we can write
down the mathematical expressions for those parameters as
follows;

q(z) = 
r + 1

2

m(z) + 1 + 3ωde

2

de(z), (55)

j (z) = q(z)(2q(z) + 1) + (1 + z)q ′(z), (56)

s(z) = −(1 + z) j ′(z) − 2 j (z) − 3 j (z)q(z). (57)

Here, (′) represents one time derivative with respect to z.

5.1.1 The Hubble parameter

In the previous section, we have presented the evolution
profile of the Hubble parameter with the constraint val-
ues of the free parameters. Here, we consider the ratio of
HQ(z)/H�CDM (z) in order to check the difference between
both models. In Fig. 6 we plot the redshift dependence of
this ratio. For low redshifts, like, for example, for z = 0.2,
the difference between the two models is of the order of
0.0003, 7.06, and 5.58%, respectively, for the CC, Pan-
theon+SHOES, and CC+Pantheon+SHOES samples.

Fig. 6 Evolution of the ratio HQ(z)/H�CDM (z) as a function of the
redshift variable z for the constraint values of H0, 
m0, ω0, ωa, n, γ

for the CC, Pantheon+SHOES, and the CC+Pantheon+SHOES samples

Fig. 7 Evolution of the deceleration parameter as functions of the red-
shift variable z for the constraint values of H0, 
m0, ω0, ωa, n γ for
CC, Pantheon+SHOES, CC+Pantheon+SHOES samples

The differences between the models increase for high
redshift, so that for z = 2.0, the differences are of the
order of 0.003, 27.21, and 22.98%, respectively, for the
CC, Pantheon+SHOES, and CC+Pantheon+SHOES sam-
ples, respectively.

5.1.2 The deceleration, jerk and snap parameters

Furthermore, we have depicted the profiles of the decelera-
tion, jerk, and snap parameters with the constraint values of
the free parameters for the various observational datasets in
Figs. 7, 8, and 9, respectively.
(a) The deceleration parameter. From the redshift pro-
file of the deceleration parameter one can see clearly
that our model’s evolution started from the decelerated
phase, and it is currently in an accelerating stage, after
going through the matter-dominated era. In addition, we
have found that the present values of the deceleration
parameter q0 = −0.532, −0.717, −0.744 for CC, Pan-
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Fig. 8 Evolution of jerk parameter j as a function of the redshift vari-
able z for the constraint values of H0, 
m0, ω0, ωa, n γ for the CC, Pan-
theon+SHOES, and CC+Pantheon+SHOES samples. (Here the profile
of the jerk parameter for CC and Pantheon+SHOES samples overlaps
each other)

Fig. 9 Evolution of the snap parameter s as a function of the redshift
variable z for the constraint values of H0, 
m0, ω0, ωa, n γ for the CC,
Pantheon+SHOES, and CC+Pantheon+SHOES samples

theon+SHOES, CC+Pantheon+SHOES, respectively, are
aligned with the recent observational results [74–76].
(b.) Jerk and snap parameters. The evolution of the jerk and
snap parameters are presented for the present model in Figs. 8
and 9, respectively. We have also obtained the parametric plot
q − j for the redshift range z ∈ [−1, 2.5] in Fig. 10. In addi-
tion, we have presented 1 − σ CL values of the deceleration,
jerk, and snap parameters in Table 4. The present-day value
of the jerk parameter for all the observational samples is close
to the �CDM value.

5.1.3 Dimensionless density parameters

The energy density sources of our universe evolve in time,
and play a major role in characterizing its past, present, and
future. Here, we have presented the evolution profiles of the
dark energy density and of the matter density in Figs. 11
and 12, respectively. From those Figures, one can observe

Fig. 10 Parametric plot of q = q( j) in the redshift range z ∈ [−1, 2.5]
with the constraint values of H0, 
m0, ω0, ωa, n γ for the CC, Pan-
theon+SHOES, and the CC+Pantheon+SHOES samples. The orange,
blue, and cyan color points represents the present value of the pair
( j0, q0) for respective samples

that the matter energy dominated our Universe in the early
time, whereas the dark-energy density dominates in the cur-
rent phase. Dark energy is also responsible for the present
acceleration of the Universe. The present-day values of
the dark energy density are 0.685+0.010

−0.013, 0.8076+0.0037
−0.0036, and

0.8064+0.0024
−0.0023 with 1−σ error for the CC, Pantheon+SHOES,

and CC+Pantheon+SHOES, respectively. We also present the
constraint values of the matter density and of the dark energy
density in Tables 2 and 4, for the 68 and 95% confidence
levels. In addition, the energy densities satisfy the relation

m + 
de � 1 for the entire period of their evolution. The
dynamical profiles of the two fluids also suggests that dark
energy will continue to dominate our Universe in the near
future.

5.1.4 Om diagnostics

The Om diagnostic is used to analyze the difference between
standard �CDM and other dark energy models. Om is more
convenient than the state-finder diagnosis [77] as it uses only
the first-order temporal derivative of the cosmic scale factor.
This is because it only involves the Hubble parameter, and
the Hubble parameter depends on a single time derivative of
a(t). For the spatially flat Universe, it is defined as

Om(x) = H(x)2 − 1

(1 + z)3 − 1
, x = 1 + z,H(x) = H(x)/H0,

(58)

where z is the redshift, and H0 is the present-day value of
the Hubble parameter. For the dark energy model with the
constant equation of state ω,

H(x) = 
m0x
3 + (1 − 
m0)x

δ, δ = 3(1 + ω). (59)
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Table 4 Present-day values of the cosmological parameters q0, j0, s0 and 
de0 as predicted by the power law f (Q) model for different data
samples with 68% confidence level

Model q0 j0 s0 
de0

CC sample

�CDM −0.523 ± 0.0345 1 ± (< O(10−16)) −0.431 ± 0.1035 0.682 ± 0.034

Power-law −0.532+0.077
−0.070 1.001+0.298

−0.258 −0.439+0.469
−0.278 0.685+0.010

−0.013

Pantheon+SHOES sample

�CDM −0.4255 ± 0.033 1 ± (< O(10−16)) −0.7235 ± 0.099 0.617 ± 0.022

Power-law −0.717+0.017
−0.017 1.006+0.035

−0.035 0.108+0.075
−0.071 0.8076+0.0037

−0.0036

CC+Pantheon+SHOES sample

�CDM −0.487 ± 0.0285 1 ± (< O(10−16)) −0.539 ± 0.0855 0.658 ± 0.019

Power-law −0.744+0.015
−0.015 1.06+0.023

−0.038 0.198+0.011
−0.413 0.8064+0.0024

−0.0023

Fig. 11 Profiles of the parameter of the dark energy density

de as functions the redshift variable z for the constraint val-
ues of H0, 
m0, ω0, ωa, n, γ for the CC, Pantheon+SHOES, and
CC+Pantheon+SHOES samples

Now, we can rewrite Om(x) as

Om(x) = 
m0 + (1 − 
m0)
xδ − 1

x3 − 1
. (60)

For the �CDM model, we find

Om(x) = 
m0, (61)

whereas Om(x) < 
m0 in phantom cosmology with δ < 0,
while Om(x) > 
m0 in the quintessence models with δ > 0.
These results show that: Om(x) − 
m0 = 0, if dark energy
is a cosmological constant [77].

In another way, we can say that the Om diagnostic gives us
a null test of the cosmological constant. As a consequence,
H(x)2 provides a straight line against x3 with a constant
slope 
m0 for �CDM, a result which can be verified by
using equation (59). For other dark energy models Om(x) is
curved, because

dH2(x)

dx
= constant. (62)

Fig. 12 Profiles of the matter-energy density parameter 
m as
a function of the redshift variable z for the constraint val-
ues of H0, 
m0, ω0, ωa, n, γ for the CC, Pantheon+SHOES, and
CC+Pantheon+SHOES samples

Furthermore, for x1 < x2, Om(x1, x2) ≡ Om(x1) −
Om(x2) = 0 in �CDM, whereas Om(x1, x2) ≡ Om(x1) −
Om(x2) < 0 in phantom models, and Om(x1, x2) ≡
Om(x1) − Om(x2) > 0 in quintessence cosmology. This
test helps us with the interpretation of the observational mea-
surements, and also, provides us a null test for the �CDM
model. In addition to this, one can check that Om(x) → 0 as
z → −1 for quintessence, Om(x) diverges at z < 0, suggest-
ing the ‘big rip’ future singularity for phantom cosmology,
and �CDM approached towards the de Sitter spacetime at
the late times.

We have examined the Om diagnostic profiles for our
f (Q) model with the constraint values of the parameters. We
have presented our results in Fig. 13. One can observe that at
z = 0, Om(x1, x2) < 0, which means that the dark energy
candidate of our model shows phantom-type behavior. But,
in the late time, Om(x) → 0 when z → −1 the model has
quintessence-like properties.
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Fig. 13 Profiles of the Om diagnostic parameter as a function of 1+ z
for the constraint values of H0, 
m0, ω0, ωa, n, γ for the CC, Pan-
theon+SHOES, and CC+Pantheon+SHOES samples

6 Conclusion

In the present paper, we have investigated in detail the cosmo-
logical properties of a particular f (Q) gravity model, with
the function f (Q) given by f (Q) = Q + 6γ H2

0 (Q/Q0)
n .

The f (Q) theory is an interesting, and fundamental approach
to the description of the gravitational phenomena, in which
the gravitational interaction is fully characterized by the non-
metricity of the space-time Q, defined a general functional
framework. f (Q) gravity is one important component of the
“geometric trinity of gravity”, and offers a full and convinc-
ing alternative to the curvature description the gravitational
interaction, which is used in standard general relativity, and
which was so successful in the description of the gravita-
tional interaction. From a geometric and mathematical point
of view, f (Q) gravity uses the Weylian extension of Riemann
geometry, in which one of the fundamental prescription of
this geometry, the metricity condition, is not valid anymore.
The breaking of the metricity condition is thus the source of
the gravitational phenomena, with the non-metricity scalar Q
playing an analogous role to the one played by the Ricci scalar
in general relativity. In an action formulation, for f (Q) = Q,
we exactly recover standard general relativity. In our study
we have restricted our analysis to a specific form of the func-
tion f (Q), in which the deviations from standard general
relativity are described by a power-law function in the non-
metricity Q. After writing down the field equations of the
f (Q) theory in a general form, we have considered a spe-
cific dark energy model, in which the effective dark energy
density, and its effective pressure, which are both geomet-
ric in their origin, are related by a linear, barotropic type
equation of state, with a redshift dependent parameter of the
EOS, ωde = ωde(z). For ωde we have adopted the first order
CPL parameterizations, which can be extensively used for
the observational testing of cosmological models. Moreover,

we have restricted our basic model by imposing the energy
conservation of each of the considered components of the
Universe, radiation, matter, and dark energy, respectively.
This procedure allows the determination of the expression
of the Hubble function in terms of the three f (Q) model
parameters H0, γ , and n, respectively. However, for a full
comparison with the observational data, one must extend the
parameter space by including the two parameters of the CPL
equation of state of the dark energy.

To confront the power-law f (Q) model with observa-
tions, several datasets containing cosmological data have
been used. In particular, we have analyzed the model with
respect to the cosmic chronometer (CC) dataset, as well as
with the Pantheon+SHOES database. As a firs step in our
investigation we have performed an MCMC analysis of the
model, and obtained the optimal values of the model param-
eters. Then, by using these values, we have considered the
general cosmological properties of this particular f (Q) type
theory. Generally, the MCMC analysis of all three combi-
nations of data sets indicate a value of n which is of the
order of n ≈ −0.36, or, approximately, n = −1/3. Hence,
the dependence of the function F(Q) on Q is of the form
F(Q) ∝ Q−1/3, that is, F decreases with the increase of
the nonmetricity. This interesting result may raise the prob-
lem of the explanation of this particular value of n = −1/3,
obtained phenomenologically in the present work, by a more
detailed theoretical approach.

The deviations from standard general relativity are described
by the parameter γ , which turn out to be important, with γ

having values of the order γ ≈ 0.45. This indicate a large
departure from the Riemannian geometry based general rela-
tivity (in the absence of a cosmological constant), but clearly
indicates the possibility of the description of the dark energy
in this f (Q) type model. The comparison with the obser-
vational data on the Hubble parameter indicates a very good
concordance between the f (Q) model, �CDM and observa-
tions up to a redshift of z ≈ 1, with some deviations appear-
ing at higher redshifts. The AIC analysis also confirms the
existence of a mild tension between the present model and
the �CDM predictions, but to obtain a definite answer to this
question more observational data spreading on a larger red-
shift range are necessary. The values of two free parameters
ω0 and ωa of the CPL type equation of state parameter of
the dark energy indicate that ω0 ≈ −1, and hence at least
at small redshifts the present model mimics a cosmological
constant. The correction term ωa , giving the higher order red-
shift corrections is very small, of the order of ωa ≈ −0.01,
indicating that an effective cosmological constant, obtained
from the Weyl geometric structure of the theory, gives the
best description of the observational data.

We have also performed a detailed investigation of sev-
eral other cosmological parameters by using the optimal val-
ues of the f (Q) model parameters. Our analysis indicate
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the presence of several important differences with respect
to the �CDM model, differences whose relevance may be
addressed once the precision and the number of observa-
tional data will significantly increase. For a comparison with
f (T ) power-law model, one can see the reference [78]. The
authors examined three efficient f (T ) models with the recent
observational data in their study. The most well-fitting grav-
ity model is the power law f (T ) model, which favors a minor
but non-zero deviation from �CDM cosmology. A Bayesian
framework is used to study f (T ) gravity, considering both
background and perturbation behavior simultaneously [79].
The authors analyzed three viable f (T ) gravity models and
showed that those f (T ) models can appropriately describe
the f σ8 data. In the above studies in f (T ) gravity, authors
have tested various f (T ) models againt the observational
data and then compared with the �CDM. Whereas in our
study, we have not only confronted our model against the
observational datasets but also used the outputs to explore the
various cosmological applications starting from the cosmo-
graphics parameters, energy densities to the dark energy pro-
file of our model. Further, we have explored the dark energy
equation of state (ωde) precisely comparing with �CDM
model.

The f (Q) theory of gravity can also be extended to
include, together with the ordinary matter, scalar or other
physical fields in the action. The present power-law f (Q)

model may have some other possible applications, like, for
example, to consider inflation in the presence of both scalar
fields and nonmetricity, an approach that may lead to the
formulation of a new view on the gravitational, geometrical
and cosmological processes that did shape and influence the
dynamics of the very early Universe. Another major topic
of research would be the investigation of structure formation
in the power-law f (Q) theory which could be done with
the use of a background cosmological metric, obtained by
solving exactly or approximately the cosmological evolution
equations. In this case the BAO, SNIa, and CMB shift param-
eter data could be investigated to obtain important physical
and cosmological constraints for the power law f (Q) model.
This approach may lead to a detailed investigation and anal-
ysis of the cosmic structure formation processes, by provid-
ing a new perspective on these processes, and on the role of
Weyl non-metricity. Another direction of research would be
to obtain the Newtonian and the post-Newtonian approxima-
tions of the present power-law f (Q) gravity, and to find out
what constraints the local classic Solar System tests impose
on the free parameters of the theory, and if these constraints
are consistent with the cosmological observations. The New-
tonian and the post-Newtonian limits may also prove to be
extremely useful in obtaining physical constraints from a
large body of astrophysical observations.

To conclude, in our work we have developed a particular
version of the f (Q) theory, with the functional form of f

given by a simple power law function, and we have proven
its consistency with the cosmological observations, and as
an important theoretical tool for the understanding of the
accelerating expansion of the Universe. The obtained results
also suggests the necessity of the study of further exten-
sions and generalizations of this simple f (Q) type model.
Our results have shown that the present poser-law model
may represent an interesting geometric alternatives to dark
energy, going below the Riemannian mathematical structure
of general relativity, and in which the non-metric proper-
ties of the space-time may offer the clue for a deeper under-
standing of the gravitational interaction. In the present study
we have proposed some basic theoretical tools, and observa-
tional/statistical procedures for the investigation of the basic
geometric aspects of gravity, from a different perspective than
the Riemannian one, and of their cosmological applications.
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