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Abstract We investigate whether the Strong Cosmic Cen-
sorship (SCC) Conjecture can be reinstated at the classical
level in Reissner–Nordström–de Sitter (RNdS) black holes
by introducing non-minimal couplings between the elec-
tromagnetic and scalar fields in Einstein–Maxwell-scalar
(EMS) theory. By conducting numerical calculations, we
find that the SCC can be restored within a specific range
of the coupling constant. Notably, for a given value of the
cosmological constant, there exists a critical coupling con-
stant above which the EMS theory satisfies the SCC. These
findings suggest that the non-minimal couplings between the
electromagnetic and scalar fields may play a crucial role in
the restoration of the SCC in RNdS spacetime. Addition-
ally, under negative coupling constants, the low-lying modes
of nearly extremal black holes exhibit β > 1, enabling C2

extensions beyond the Cauchy horizon and intensifying the
violation of the SCC.

1 Introduction

The Strong Cosmic Censorship Conjecture (SCC) represents
a critical and fascinating issue in classical general relativ-
ity (GR). First proposed by Roger Penrose in 1969 [1], the
conjecture asserts that the Cauchy horizon (CH) of a black
hole must be singular and, consequently, inextendible into
the future. Based on the principle of determinism in classi-
cal GR, the SCC contends that our universe’s future is dic-
tated by initial conditions specified on a Cauchy surface.
A non-singular CH would result in an undetermined future
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and a non-deterministic spacetime, which is why the SCC is
regarded as a foundational principle in classical GR.

Though there are multiple formulations of the SCC, the
most contemporary version was introduced by Demetrios
Christodoulou in 2008 [2]. This formulation posits that the
spacetime metric cannot extend beyond the CH in the form
of weak solutions to the field equations. In essence, the CH
must be a mass-inflation singularity, signifying that field per-
turbations must evolve to become divergent on the CH. As a
highly complex issue, proving or disproving the SCC remains
one of the most vital and demanding challenges in the realm
of GR.

The validity of the SCC has been confirmed in specific
black hole solutions, including asymptotically flat Reissner–
Nordström and Kerr black holes [3–5]. However, recent find-
ings have identified violations of the SCC in the nearly
extremal region of the Reissner–Nordström–de Sitter (RNdS)
black hole [6]. These violations are attributed to the presence
of cosmological horizons, which can suppress the blueshift
effect responsible for the mass inflation singularity at the
Cauchy horizon (CH) [7–10]. Following this, further viola-
tions have been discovered in the RNdS and Kerr–Newman–
dS background by massless charged scalar fields, mass-
less Dirac fields, and others [11–21]. Hollands et al. [22]
have made significant progress in understanding the SCC in
RNdS black holes in the context of the quantum effects in
curved spacetime, establishing that non-singular initial quan-
tum field data, known as Hadamard states, always lead to sin-
gular Cauchy horizons within RNdS spacetimes, thus restor-
ing the SCC. Their work highlights the inherent instability
near the inner horizons caused by universal quantum effects.
A comprehensive discussion on the current status of energy
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conditions in GR and quantum field theory is presented in
the review [23].

Although the quantum effects of quantum fields in curved
spacetime may rescue the SCC, it is still a valuable research
question to explore whether the SCC can be preserved at
the classical level in GR, as a classical theory that lacks a
complete theory of quantum gravity. Investigations into the
validity of the SCC for the RNdS black hole under classi-
cal perturbations of non-minimally coupled scalar fields in
certain modified gravitational theories have been conducted
[24,25]. Within the framework of the Einstein–Maxwell-
Scalar-Gauss–Bonnet (EMSG) theory, Ref. [26] has demon-
strated that the SCC can be restored for RNdS black holes
under specific parameter ranges when incorporating non-
minimally coupled scalar field perturbations. This finding
offers a fresh perspective for studying the SCC at the classi-
cal level in modified gravitational theories. The understand-
ing of the SCC continues to be an active research area, bear-
ing significant implications for the fundamental principles of
classical GR and the ultimate fate of our universe.

The Einstein–Maxwell-Scalar (EMS) theory has attracted
significant interest due to its non-minimal couplings between
the electromagnetic and scalar fields and the resulting black
hole solutions. These couplings have long been considered in
the context of theories such as Kaluza–Klein and supergrav-
ity [27,28], and more recently, in the context of black hole
spontaneous scalarization, a strong gravity phase transition
[29,30]. EMS models use a non-minimal coupling between
the scalar field and Maxwell invariant to induce scalariza-
tion, requiring the presence of electric or magnetic charge.
Studying the EMS models has led to the discovery that spon-
taneous scalarization of charged black holes occurs dynami-
cally, resulting in scalarized, perturbatively stable black holes
[30–34].

Given the similarities between EMS and ESGB, it is worth
exploring whether SCC can also be restored in EMS at the
classical level. Studying SCC in EMS is highly significant
as it can provide valuable insights into the interplay between
non-minimal couplings, spontaneous scalarization, and the
fundamental principles of classical GR [6,7]. Understanding
whether SCC can be restored in EMS may ultimately deepen
our knowledge of black holes and the underlying principles
of gravitational theories [15,16].

The structure of this paper is outlined as follows. Sec-
tion 2 presents the field equation of the scalar perturbation
in the EMS theory, reviews the violation condition of the
SCC, and discusses the non-minimal couplings between the
electromagnetic and scalar fields. In Sect. 3, we describe
the numerical methods we used to compute the quasinormal
modes (QNMs) frequency, and we present the correspond-
ing results. Finally, we summarize and discuss our findings
in Sect. 4, which includes the identification of a critical cou-

pling constant above which the SCC is reinstated for all black
holes in RNdS spacetime.

2 Strong cosmic censorship and quasinormal mode in
Einstein–Maxwell-scalar theory

In this paper, we investigate the Einstein–Maxwell-Scalar
(EMS) theory, which involves a non-minimal coupling
between a massless scalar field � and a Maxwell invariant
term. The full action of this theory, given by

S = 1

16π

∫
d4x

√−g
[
R − 2�

− 2∇a�∇a� − f (�)FabF
ab

]
, (1)

includes the cosmological constant �, the Ricci scalar R, and
the electromagnetic tensor Fab. The coupling function f (�)

determines the strength of the non-minimal coupling of � to
the Maxwell term. To study the scalar field perturbation under
first-order approximation, we require f ′(0) = 0, which can
be achieved using a quadratic coupling function 1 + α�2,

an exponential coupling function eα�2
, or other forms that

satisfy

f (0) = 1 and f ′′(0) = 2α, (2)

where α is the coupling constant. For the sake of simplicity
in following discussions, we define

f (�) = 1 + χ(�). (3)

Subsequently, f (�)F2 can be separated into the purely elec-
tromagnetic field component and the coupling term between
the electromagnetic and scalar fields.

The equations of motion is given by

Gab + �gab = T sc
ab + T EM

ab ,

∇2� − f ′(�)

4
FabF

ab = 0,

∇a[ f (�)Fab] = 0, (4)

which are obtained by varying the action and consist of the
Einstein equation, the scalar field equation, and the electro-
magnetic field equation. The energy–momentum tensor of
the scalar field and the electromagnetic field are denoted by
T sc
ab and T EM

ab , respectively, and are defined by

T sc
ab = 2∇a�∇b� − gab∇c�∇c�,

T EM
ab = 2 f (�)Fa

cFbc − f (�)

2
Fcd F

cdgab. (5)

Due to the non-minimal coupling between the scalar and
electromagnetic fields, various types of black hole solutions
exist within EMS theory. One such family includes the RNdS
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Table 1 The lowest-lying QNMs β = −Im(ω)/κ− with different l calculated by different numerical methods for �M2 = 0.06, α = 0.1 and
Q/Qext = 0.9

l = 0 l = 1 l = 2 l = 10 l = 20

Pseudospectral method 0.07967913 0.06393574 0.06182984 0.06075811 0.06071149

Direct integration method 0.07967913 0.06393574 0.06182984 0.06075811 0.06071149

WKB approximation 0.06073984 0.06070675

Table 2 The lowest-lying QNMs β = −Im(ω)/κ− with different l calculated by different numerical methods for �M2 = 0.06, α = 0.1 and
Q/Qext = 0.99

l = 0 l = 1 l = 2 l = 10 l = 20

Pseudospectral method 0.57893700 0.45043291 0.43826722 0.43203320 0.43124841

Direct integration method 0.57893700 0.45043291 0.43826723 0.43203451 0.43176229

WKB approximation 0.43209053 0.43177729

solutions, characterized by a vanishing scalar field. Further-
more, EMS theory encompasses numerous black hole solu-
tions with scalar hair, notably the spontaneously scalarized
black holes. However, recent literatures [35,36] have demon-
strated that any electrodynamic black holes with scalar hair
lack a Cauchy horizon, consequently automatically satisfy-
ing the requirements of the SCC. Thus, the investigation of
the SCC in EMS theory is only necessary within the RNdS
family. The RNdS solution is given by

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2d
2,

Aa = −Q

r
(dt)a, (6)

with the blackening factor

f (r) = 1 − 2M

r
+ Q2

r2 − �r2

3
, (7)

describes a special solution of the EMS theory with vanishing
scalar field.

Assuming rc, r+ and r− are the cosmological horizon,
event horizon and Cauchy horizon respectively, we can
rewrite the blackening factor as:

f (r) = �

3r2 (rc − r)(r − r+)(r − r−)(r − ro), (8)

where ro is the minimum root of f (r) = 0 and can be found
to be ro = −rc−r+−r−. The surface gravity of each horizon
can be defined as:

κi = 1

2
| f ′(ri )| with i = c,+,−, o. (9)

In this case, the scalar field can be treated as a perturbation to
the background spacetime, thereby preventing the manifes-
tation of its nonlinear terms during this linear perturbation’s
dynamical evolution. Then, we can expand the coupled scalar
field �(t, r, θ, φ) on the RNdS background spacetime as a

perturbation [37–39], i.e., we have

∇2� − α

2
FabF

ab� = 0. (10)

Using the symmetries of the spacetime, we can express
the scalar field in terms of spherical harmonics as

�(t, r, θ, φ) =
∑
lm

e−iωt Ylm(θ, φ)
ψ(r)

r
, (11)

where Ylm(θ, φ) is the spherical harmonics. By substituting
Eqs. (6) and (11) into the equation of motion (4) satisfied by
the scalar field, we obtain a one-dimensional Schrödinger-
like equation

d2ψ(r)

dr2∗
+ [ω2 − V (r)]ψ(r) = 0, (12)

where the effective potential is given by

V (r) = f (r)

r2

[
l(l + 1) + r f ′(r) − αQ2

r2

]
, (13)

with the tortoise coordinate

dr∗ = dr

f (r)
. (14)

In the physical region between the event horizon r+ and
cosmological horizon rc, the tortoise coordinate r∗ can be
expressed as a sum of logarithmic terms involving the sur-
face gravity of each horizon i, i.e.,

r∗ = − 1

2κc
ln

(
1 − r

rc

)
+ 1

2κ+
ln

(
r

r+
− 1

)

− 1

2κ−
ln

(
r

r−
− 1

)
+ 1

2κo
ln

(
1 − r

ro

)
. (15)

Notably, the effective potential (13) vanishes on every hori-
zon, implying that the asymptotic solution of the Schrödinger-
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like equation (12) near each horizon i takes the form:

ψ ∼ e±iωr∗ , r → ri , (16)

where eiωr∗ represents the outgoing wave and the other one
represents the ingoing wave. Physical considerations [39]
dictate that there is only an ingoing wave near the event hori-
zon r+ and only an outgoing wave near the cosmological
horizon rc, which can be expressed as the following bound-
ary conditions:

ψ ∼ e−iωr∗ , r → r+,

ψ ∼ eiωr∗ , r → rc. (17)

Next, we consider the conditions under which weak solu-
tions of the Einstein equation can be extended at the Cauchy
horizon [6,24,26,40]. Specifically, we multiply both sides of
the Einstein equation Gab + �gab = Tab by a smooth, com-
pactly supported test function � and require that its integral
over a small neighborhoodV ⊂ M remains bounded. There-
fore, for weak solutions at the Cauchy horizon, we need to
ensure the finiteness of the following expression:
∫
V
d4x

√−g(Gμν + �gμν − 8πTμν)� = 0. (18)

For the first two terms of Eq. (18), we have
∫
V
d4x

√−g(Gμν + �gμν)� ∼
∫
V
d4x

√−g(∂�)�

+
∫
V
d4x

√−g�2� + �

∫
V
d4x

√−ggμν�, (19)

where Gμν ∼ �2 + ∂�, denoting the Christoffel symbols.
To ensure the boundedness of Eq. (19), it’s necessary for
� ∈ L2

loc, belonging to the space of locally square integrable
functions within V [24].

The contribution arising from the stress–energy momen-
tum tensor of the scalar field, T sc

μν, is expressed as:
∫
V
d4x

√−gT sc
μν� ∼

∫
V
d4x

√−g(∂�)2�. (20)

Hence, the condition for a weak solution demands the scalar
field � being locally square integrable with its derivative,
i.e., � ∈ H1

loc, where H p
loc is a space known as the Sobolev

space, whose derivatives up to order p in a weak sense are
also in L2

loc.

The field equation (10) yields an asymptotic solution near
the Cauchy horizon,

� ∼ A1e
−iω(t−r∗) + A2e

−iω(t+r∗). (21)

However, the crucial aspect for meeting regularity criteria,
as discussed in Refs. [24,26], resides in the segment:

� ∼ e
i ω

κ− ln |r−r−| ∝ |r − r−|β, (22)

where we define:

β ≡ − Im(ω)

κ−
. (23)

Consequently, the condition for the scalar field is local square
integrable derivative demands that:

β > 1/2. (24)

Next, we delve into the electromagnetic component:∫
V
d4x

√−gT EM
μν � ∼

∫
V
d4x

√−g[F2 + χ(�)F2]�. (25)

The first term suggests that F comprises locally square inte-
grable functions in V, denoted as F ∈ L2

loc. Assuming

F ∝ |r − r−|α1

in the vicinity of the Cauchy horizon, this condition implies
α1 > −1/2. Assuming f (�) is analytic and considering �

as an infinitesimal quantity near the Cauchy horizon due to
β > 1/2, we can express χ(�) as a series. Then, it becomes
apparent that

�n F2 ∝ |r − r−|2α1+nβ (26)

for any positive integer n, remaining locally integrable since
2α1 + nβ > n/2 − 1 > −1. Therefore, χ(�)F2 is
also locally integrable, and the electromagnetic component
doesn’t impose any additional conditions for extending the
weak solution beyond the Cauchy horizon. In essence, as
long as there exists at least one quasinormal mode where

β ≤ 1/2, (27)

the Cauchy horizon remains unextendable, preserving the
validity of the SCC [6,40]. Hence, examining the validity of
the SCC entails a focus solely on the lowest-lying QNM.

3 Numerical methods and results

In this section, we will present two novel numerical tech-
niques to accurately determine the QNM frequencies.

While several numerical approaches have been developed
for computing QNM frequencies with high precision [39],
in this study, we will introduce a pseudospectral method
[41,42] for calculating the QNM frequencies. To ensure the
accuracy of our results, we will also validate them with
the direct integration method [43,44]. Additionally, we will
adopt the WKB approximation [45] to calculate the photo-
sphere modes, which correspond to the QNMs in the large-l
limit.

We notice that the scalar field ψ(r) oscillates significantly
near the two horizons, namely the event horizon and the cos-
mological horizon, as given in Eq. (17). To apply the pseu-
dospectral method to the field equation (12), we introduce a
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Fig. 1 When �M2 = 0.06, the lowest-lying QNMs with the frequency β = −Im(ω)/κ− are depicted for various coupling constants α as a
function of the black hole charge ratio Q/Qext, for a given l. The SCC critical value of the charge ratio is indicated by the horizontal dashed line
at β = 1/2

new variable y(x) defined by

ψ(r) = (x + 1)
iω

2κ+ (x − 1)
− iω

2κc y(x), (28)

to transform the field equation into a regular form in the
interval [−1, 1]. In particular, the variable x is defined as a
function of r using the relationship between r and x given in
the equation below,

r = rc − r+
2

x + rc + r+
2

. (29)

After this transformation, the field equation (12) can be writ-
ten as

a0(ω, x)y(x) + a1(ω, x)y′(x) + a2(ω, x)y′′(x) = 0, (30)

which is a second-order differential equation with variable
coefficients.

To apply the pseudospectral method, we first expand the
field equation and variable y(x) by the cardinal function
Ci (x), which satisfies Ci (x j ) = δi j , where x j denotes the
j-th Gauss–Lobatto point. Substituting this expansion into
Eq. (30) and multiplying each term by Ck(x), we obtain a set

of algebraic equations. By imposing the boundary conditions
given in Eq. (17), we can obtain a matrix equation of the form
(M0+ωM1)Y = 0, where M0 and M1 are matrices andY is a
vector containing the coefficients of the expansion. Then, the
QNM frequency can be obtained by solving the eigenvalue
problem of the matrix (−M−1

1 M0). This method allows us
to calculate the QNM frequencies for scalar perturbations on
the RNdS black hole background with high precision.

Tables 1 and 2 display the QNM frequencies obtained
from both the pseudospectral method and the direct integra-
tion method. For the direct integration method, we used the
series expansion of y(x) near x = ±1 as the boundary con-
dition and solved Eq. (30) in the intervals (−1, 0] and [0, 1).

This was done for a given ω using Mathematica, and the
acceptable frequency ω was determined by ensuring the two
solutions were smooth at x = 0.

We have utilized both the pseudospectral method and
direct integration method to calculate the lowest-lying QNMs
β = −Im(ω)/κ− for different l and various black hole
parameters. The results are presented in Tables 1 and 2, which
demonstrate the reliability of our numerical computations.
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Fig. 2 When �M2 = 0.01, the lowest-lying QNMs with the frequency β = −Im(ω)/κ− are depicted for various coupling constants α as a
function of the black hole charge ratio Q/Qext, for a given l. The SCC critical value of the charge ratio is indicated by the horizontal dashed line
at β = 1/2

Here, Qext represents the electric charge of the extremal
black hole solution, which can be derived from the condi-
tion r+ = r−. Furthermore, we have employed the WKB
approximation to evaluate the large-l lowest-lying modes,
and our results are consistent with other methods. There-
fore, the lowest-lying modes for large l are determined by
the WKB approximation in our study. It has been previously
established that the SCC is hardly violated for the RNdS
black holes that are not near extremal. Our results for the
EMS theory are consistent with previous research. Hence,
we only present the QNMs results in the nearly extremal
region in this paper.

Figures 1 and 2 illustrate the lowest-lying QNMs with fre-
quency β = −Im(ω)/κ− for �M2 = 0.01 and 0.06, consid-
ering various coupling constants α, plotted against the black
hole charge ratio Q/Qext at a specific l value. The graphs
reveal that, for most coupling constants, there is a range of
charge parameters near the black hole’s extremal limit where
all QNMs violate the SCC by having β > 1/2. We can
determine the violation region of the SCC by identifying the

intersection point of the β = 1/2 curve and the curve of all
lowest-lying modes for all possible values of l. However, at
specific values of the coupling constant, such as α = 0.5, all
black holes satisfy the SCC, meaning that all lowest-lying
QNMs for all l are less than 1/2. Moreover, the lowest-lying
QNMs with l = 0 (nearly extremal modes) contribute the
most to the preservation of the SCC. The plots reveal that the
lowest-lying modes correspond to either l = 0 or large l. The
top three plots represent cases where the coupling constant
is negative: α = −0.1, α = −0.2, and α = −0.3. As the
coupling constant becomes more negative, the lowest-lying
QNMs with l = 0 increase, indicating that restoring the SCC
in these cases requires increasing the coupling constant in the
positive direction. This is expected because a larger coupling
constant α leads to a smaller effective potential, which can
even become negative and destabilize the spacetime under
scalar perturbations. Additionally, we can easily observe that
for the positive coupling constant α, the l = 0 family always
satisfies β < 1. However, for the case of a negative coupling
constant, the low-lying modes of nearly extremal black holes
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Fig. 3 The red shaded region
in the α − Q/Qext diagram
represents the region where the
SCC is violated for
�M2 = 0.01, �M2 = 0.02,

�M2 = 0.06 and �M2 = 0.14,

respectively. The critical value
of α = αcrit, represented by the
black dot-dashed vertical line,
indicates the point where all
black holes satisfy the SCC for
EMS theory with a coupling
constant α > αcrit

exhibit not only β > 1/2, but even surpassing 1, see Figs. 1
and 2, which admits C2 extensions beyond the Cauchy hori-
zon which are not weak anymore but rather continuously
twice differentiable and signifies a more severe violation of
the SCC.

Finally, we investigate the impact of the non-minimal cou-
pling constant α on the validity of the SCC by plotting the
violation region of the SCC in the α − Q/Qext diagram (see
Fig. 3) for some various values of �M2: 0.01, 0.02, 0.06
and 0.14. We exclude the region where α is negative since it
extends to minus infinity and can be inferred from the positive
α region. Our analysis demonstrates that for small positive
coupling constants α, the SCC is violated as the black hole
approaches the extremal limit. However, as α increases, the
SCC can be partially or fully restored, depending on the value
of α. We identify a critical value αcrit of the coupling con-
stant, above which the SCC is reinstated for all black holes
in RNdS spacetime, regardless of their charge-to-mass ratio.
In other words, the validity of the SCC no longer depends on
the charge-to-mass ratio of the black hole in these situations.
Thus, we can say that this theory satisfies the SCC. Our results
provide valuable insights into the restoration of the SCC in
RNdS spacetime and suggest that the non-minimal couplings
between the electromagnetic and scalar fields may have an
important role in the process.

4 Conclusion and discussion

In this paper, we have investigated the validity of the SCC
in the context of RNdS black holes within the framework
of the EMS theory at the classical level. We have examined

the impact of scalar field perturbations on the SCC in RNdS
spacetime with non-minimal couplings between the electro-
magnetic and scalar fields.

Our numerical analysis of the quasinormal mode (QNM)
frequencies of the non-minimally coupled scalar field reveals
that the SCC can be reinstated within a specific range of the
coupling constant α. By plotting the violation region of the
SCC in the α − Q/Qext diagram for two different values of
�M2, we have identified a critical coupling constant αcrit,

which enables the EMS theory with α > αcrit to satisfy the
SCC. Our results provide new insights into the restoration of
the SCC in RNdS spacetime and suggest that non-minimal
couplings between the electromagnetic and scalar fields may
play an important role in the restoration of the SCC at the
classical level.

Additionally, our findings reveal that under a positive
coupling constant α, the lowest-lying modes consistently
exhibit β < 1. However, in scenarios involving a negative
coupling constant, the low-lying modes of nearly extremal
black holes demonstrate not only β > 1/2, but even exceed
1. This notable discovery allows for C2 extensions beyond
the Cauchy horizon, leading to a more severe violation of
the SCC with a negative coupling constant. Similar findings
have also been observed in the Ref. [46], where they explore
coupled gravitational and electromagnetic perturbations in
RNdS of GR, revealing a more severe violation of the SCC
for the near-extremal black holes.

It’s worth noting that while non-minimal couplings may
be seen as a surrogate for quantum effects, our work primar-
ily focuses on the validity of the SCC at the classical level.
Despite the findings of Hollands et al., which suggest a possi-
ble restoration of the SCC in the quantum realm, the question
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of whether the SCC can also be reinstated at the classical level
still remains of significant importance. This emphasizes the
significance of a deep understanding of classical gravity the-
ories for our comprehensive knowledge of gravitation, espe-
cially when a complete quantum gravity theory has yet to be
discovered.

Our findings have important implications for other modi-
fied gravitational theories, and it would be valuable to explore
whether similar restoration of the SCC can be achieved in
those theories. Additionally, our analysis has focused on the
linear level of the EMS theory, and it would be worthwhile to
extend our investigation to the non-linear regime. The inves-
tigation of nonlinear effects on the SCC for a scalar field in
Einstein-Maxwell gravity has been documented in Ref. [47].
Finally, it would be interesting to explore the physical impli-
cations of the restoration of the SCC in the context of astro-
physical black holes and the evolution of the universe.
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