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Abstract The η(′)-mesons in the quark-flavor basis are
mixtures of two mesonic states |ηq〉 = |ūu + d̄d〉/√2 and
|ηs〉 = |s̄s〉. In previous work, we have made a detailed study
on the ηs leading-twist distribution amplitude by using the
D+
s meson semileptonic decays. As a sequential work, in the

present paper, we fix the ηq leading-twist distribution ampli-
tude by using the light-cone harmonic oscillator model for
its wave function and by using the QCD sum rules within the
QCD background field to calculate its moments. The input
parameters of ηq leading-twist distribution amplitude φ2;ηq
at the initial scale μ0 ∼ 1 GeV are fixed by using those
moments. The QCD sum rules for the 0th-order moment can
also be used to fix the magnitude of ηq decay constant, giving
fηq = 0.141 ± 0.005 GeV. As an application of φ2;ηq , we
calculate the transition form factors B(D)+ → η(′) by using
the QCD light-cone sum rules up to twist-4 accuracy and
by including the next-to-leading order QCD corrections to
the leading-twist part, and then fix the related CKM matrix
element and the decay width for the semi-leptonic decays
B(D)+ → η(′)�+ν�.

1 Introduction

The mixing of η and η′ mesons is essential to disentangle the
standard model (SM) hadronic uncertainties with the new
physics beyond the SM. It involves the dynamics and struc-
ture of the pseudoscalar mesons that has two mixing modes
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η−η′ and η−η′−G, both of which have important theoretical
significance. These mixings are caused by the QCD anoma-
lies and are related to the breaking of chiral symmetry. How-
ever, since the matrix element of the exception operator is
mainly non-perturbative, it still has not been calculated reli-
ably. One may turn to phenomenological studies to obtain
useful information on the non-perturbative QCD theory [1–
3]. At present, the η−η′−G mixing mode has been studied
in detail in Refs. [4–10]. As for the η−η′ mixing model, one
can investigate it by using two distinct schemes, namely the
singlet-octet (SO) scheme and the quark-flavor (QF) scheme.
These two schemes reflect different understandings of the
essential physics and they are related with a proper rotation
of an ideal mixing angle [3]. Practically, a dramatic simplifi-
cation can be achieved by adopting the QF scheme [11–14],
especially, the decay constants in the quark-flavor basis sim-
ply follow the same pattern of the state mixing due to the
OZI-rule. In the present paper, we shall adopt the QF scheme
to do our analysis and to achieve a better understanding of
the mixing mechanism between η and η′.

The heavy-to-light B(D) → η(′) transitions are impor-
tant, since they involve b → u and c → d transitions and
are sensitive to the Cabibbo–Kobayashi–Maskawa (CKM)
matrix elements |Vub| and |Vcd|. A more precise determina-
tion of |Vub| and |Vcd| would improve the stringency of unitar-
ity constraints on the CKM matrix elements and provides an
improved test of SM. Many measurements on |Vub| and |Vcd|
have been done according to various decay channels of B(D)-
mesons [15–24]. Compared with the non-leptonic B(D)-
meson decays, the semi-leptonic decays D+ → η(′)�+ν�

[25–28] and B+ → η(′)�+ν� [15,29–32] are much simpler
with less non-perturbative effects and can serve as helpful
platforms for exploring the differences among various mech-
anisms.
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As key components of B(D) → η(′) semileptonic decays,
the B(D) → η(′) transition form factors (TFFs) need to be
precisely calculated, whose main contribution comes from
the |ηq〉-component (the |ηs〉-component gives negligible
contribution here, but will have sizable contribution for Bs

(Ds) decays [23]). By further assuming the SUF(3) sym-

metry, the TFFs f B(D)→η(′)
+ in the QF scheme satisfy the

relations [23,33]

f B(D)→η
+ = cos φ f

B(D)→ηq
+ , (1)

f B(D)→η′
+ = sin φ f

B(D)→ηq
+ , (2)

where φ is the mixing angle between the |ηq〉-component and
the |ηs〉-component.

The TFFs of the heavy-to-light transitions at large and
intermediate momentum transfers are among the most
important applications of the light-cone sum rules (LCSR)
approach. Using the LCSR approach, a two-point correlation
function (correlator) will be introduced and expanded near
the light cone x2 → 0, whose transition matrix elements are
then parameterized as the light meson’s light-cone distribu-
tion amplitudes (LCDAs) of increasing twists [34–37]. It is
thus important to know the properties of the LCDAs.

In present paper, we adopt the light cone harmonic oscilla-
tor (LCHO) model for the ηq leading-twist LCDA φ2;ηq . The
LCHO model is based on the well-known Brodsky–Huang–
Lepage (BHL) prescription [38,39]1 for the light-cone wave-
function (LCWF), which is composed of the spin-space
LCWF and the spatial one. The LCDA can be obtained by
integrating over the transverse momentum from the LCWF.
The parameters of φ2;ηq at an initial scale will be fixed
by using the derived moments of the LCDA, which will
then be run to any scale region via proper evolution equa-
tion. Its moments will be calculated by using the QCD sum
rules within the framework of the background field theory
(BFTSR) [40,41]. The QCD sum rules approach suggests
to use the non-vanishing vacuum condensates to represent
the non-perturbative effects [42]. The QCD background field
approach provides a simple physical picture for those vac-
uum condensates from the viewpoint of field theory [43–46].
It assumes that the quark and gluon fields are composed of
background fields and the quantum fluctuations around them.
And the vacuum expectation values of the background fields
describe the non-perturbative effects, while the quantum fluc-
tuations represent the calculable perturbative effects. As a
combination, the BFTSR approach provides a clean physical
picture for separating the perturbative and non-perturbative
properties of the QCD theory and provides a systematic way

1 The BHL-prescription is obtained via the way of connecting the equal-
time wavefunction in the rest frame and the wavefunction in the infinite
momentum frame, which indicates that the LCWF is a function of the
meson’s off-shell energy.

to derive the QCD sum rules for hadron phenomenology,
which greatly simplifies the calculation due to its capability
of adopting different gauges for quantum fluctuations and
background fields. Till now, the BFTSR approach has been
applied for dealing with the LCDAs of various mesons, some
recent examples can be found in Refs. [47–51].

The remaining parts of the paper are organized as follows.
In Sect. 2, we give the calculation technology for deriving
the moments of ηq leading-twist LCDA φ2;ηq by using the
BFTSR approach, give a brief introduction of the LCHO
model of φ2;ηq , and then give the LCSRs for the TFFs of
the semi-leptonic decay B(D)+ → ηq�

+ν�. In Sect. 3, we
first determine the parameters of φ2;ηq , and then the TFFs,
the decay width and the CKM matrix element of the semi-
leptonic decay B(D)+ → η(′)�+ν� will be discussed. We
will also compare our results with the experimental data and
other theoretical predictions. Section 4 is reserved for a sum-
mary.

2 Calculation technology

2.1 Determination of the moments 〈ξn2;ηq 〉 of the ηq

leading-twist LCDA using the BFTSR

For the QF scheme, the physical meson states |η〉 and |η′〉 are
related to the QF basis |ηq〉 = |ūu+ d̄d〉/√2 and |ηs〉 = |s̄s〉
by an orthogonal transformation [14],
( |η〉

|η′〉
)

=
(

cos φ − sin φ

sin φ cos φ

)(|ηq〉
|ηs〉

)
, (3)

where φ is the mixing angle. For the QF basis, one has two
independent types of axial vector currents Jqμ5 (q = u, d)

and J sμ5, e.g.

Jqμ5 = 1√
2
(ūγμγ5u + d̄γμγ5d), J sμ5 = s̄γμγ5s. (4)

Their corresponding decay constants are

〈0|J j
μ5|η(′)(p)〉 = i f

η
(′)
j
pμ, j = (q, s) (5)

where p is the momentum of η(′). By extending the matrix
elements (5) as the non-local operators over the light cone,
one can achieve the definition of the corresponding LCDA.
The LCDA of the valence quark momentum fraction distri-
bution of η(′) meson can be defined similarly as those of other
mesons by spreading out the non-local operators on the light
cone via a way with increasing twists. In Ref. [52], the J sμ5
has been adopted to study the properties of ηs, and at present,
we will focus on Jqμ5 to study the properties of ηq .
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To determine the properties of LCDA, one can firstly cal-
culate its moments. The η(′) meson leading-twist LCDA are
defined as [9,10]

〈0|�̄(z)C j [z,−z]γμγ5�(−z)|η(′)(p)〉

= i f
η

(′)
j
pμ

1∫
0

dxei(xz·p−x̄ z·p)φ
2;η(′)

j
(x), (6)

where � = (u, d, s) represents the triplet of light-quark
fields in flavour space, zμ stands for the light-like vec-
tor, [z,−z] is the path-ordered gauge connection which
ensures the gauge invariance of the operator, and φ

2;η(′)
j
(x)

are leading-twist LCDAs of η(′) mesons with respect to the
current whose flavour content is given by C j with j = (q, s),
respectively. We have Cq = (

√
2C1 + C8)/

√
3 and Cs =

(C1 − √
2C8)/

√
3 with C1 = 1/

√
3 and C8 = λ8/

√
2 which

are derived in SO scheme [9], where λ8 is the standard Gell-
Mann matrix and 1 is 3 × 3 unit matrix.

By doing the series expansion near z2 → 0 on both sides
of Eq. (6), one will get

〈0|�̄(0)C j/zγ5(i z · ↔
D)n�(0)|η(′)(p)〉

= i(z · p)n+1 f
η

(′)
j

1∫
0

dx(2x − 1)nφ
2;η(′)

j
(x), (7)

= i(z · p)n+1 f
η

(′)
j
〈ξn

2;η(′)
j

〉, (8)

where the nth-order moment of η(′) leading-twist LCDA
φ

2;η(′)
j
(x) has been defined as

〈ξn
2;η(′)

j

〉 =
1∫

0

dx(2x − 1)nφ
2;η(′)

j
(x). (9)

As mentioned above, the η(′) meson has two distinct com-
ponents, |ηq〉 and |ηs〉. The |ηs〉-component has been stud-
ied by using Bs(Ds) → η(′) semi-leptonic decays. Sim-
ilarly, the |ηq〉-component can also be studied by using
B(D) → η(′) semi-leptonic decays. Equations (1, 2) indi-

cate that to calculate the TFFs f B(D)→η(′)
+ , we need to cal-

culate the TFFs f
B(D)→ηq
+ . By further comparing theoreti-

cal predictions with the possible data on the B(D) → η(′)
semi-leptonic decays, we can inversely achieve useful infor-
mation on the ηq leading-twist LCDA. We will calculate the
moments of the ηq leading-twist LCDA φ2;ηq (x), which have
been defined in Eq. (9), within the framework of the BFTSR
approach.

A recent mini-review of the basic idea and formulas for the
background field theory can be found in Ref. [52]. Following

the standard procedures of the BFTSR approach, to derive the
moments of the ηq leading-twist LCDA, we first construct
the following correlator



(n,0)
2;ηq (z, q) = i

∫
d4xeiq·x 〈0|T {Jn(x), J †

0 (0)}|0〉
= (z · q)n+2


(n,0)
2;ηq (q2), (10)

where the currents Jn(x) = Cq√
2
[ū(x)/zγ5(i z · ↔

D)nu(x) +
d̄(x)/zγ5(i z · ↔

D)nd(x)] and J †
0 (0) = Cq√

2
[ū(0)/zγ5u(0) +

d̄(0)/zγ5d(0)] with z2 = 0. Only the even moments are
non-zero due to the G-parity, which indicate that n =
(0, 2, 4, . . .), respectively.

Secondly, one can apply the operator product expansion
(OPE) to deal with the correlator in the deep Euclidean
region. In deep Euclidean region q2 	 0, after applying
the OPE, the correlator (10) becomes



(n,0)
2;ηq (z, q) = i

∫
d4xeiq·x 1

2
Tr[CqCq ]

× { − 2Tr〈0|SuF (0, x)/zγ5(i z · ↔
D)n SdF (x, 0)/zγ5|0〉

+ 2Tr〈0|ū(x)u(0)/zγ5(i z · ↔
D)n SdF (x, 0)/zγ5|0〉

+ 2Tr〈0|SuF (0, x)/zγ5(i z · ↔
D)nd̄(0)d(x)/zγ5|0〉

− Tr〈0|SuF (0, x)/zγ5(i z · ↔
D)n SuF (x, 0)/zγ5|0〉

+ Tr〈0|ū(x)u(0)/zγ5(i z · ↔
D)n SuF (x, 0)/zγ5|0〉

+ Tr〈0|SuF (0, x)/zγ5(i z · ↔
D)nū(0)u(x)/zγ5|0〉

− Tr〈0|SdF (0, x)/zγ5(i z · ↔
D)n SdF (x, 0)/zγ5|0〉

+ Tr〈0|d̄(x)d(0)/zγ5(i z · ↔
D)n SdF (x, 0)/zγ5|0〉

+ Tr〈0|SdF (0, x)/zγ5(i z · ↔
D)nd̄(0)d(x)/zγ5|0〉

+ · · · }, (11)

in which Tr[CqCq ] = 1, (i z · ↔
D)n stands for the vertex

operators, Su(d)
F (0, x) and Su(d)

F (x, 0) represent the u- and
d-quark propagators move from 0 → x and x → 0, respec-
tively. The right-hand side of the correlator is perturbatively
calculable within the framework of BFTSR. Following the
standard procedures and by using the MS scheme to deal with
the infrared divergences, the correlator can be expressed as
a expansion series over the basic vacuum condensates with
increasing dimensions. Since the current quark masses of u
and d quarks are quite small, contributions from the u- and
d-quark mass terms can be safely neglected in the calcula-
tion.

Thirdly, the correlator can also be calculated by inserting a
complete set of the intermediate hadronic states in the phys-
ical region. By using the conventional quark-hadron duality
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[42], the hadronic expression of the correlator can be written
as

ImI (n,0)
2;ηq ,Had(q

2) = πδ(q2 − m̃2
ηq

) f 2
ηq

〈ξn2;ηq 〉|μ〈ξ0
2;ηq 〉|μ

+ π
3

4π2(n + 1)(n + 3)
θ(q2 − sηq ),

(12)

where μ represents the initial scale at which the ηq leading-
twist LCDAs have been defined. Because of the SU (3)F
flavour symmetry, here m̃ηq represents the ηq effective mass
[53], fηq is the decay constant of ηq and sηq stands for the
continuum threshold.

By matching the hadronic expression with the OPE results
with the help of the dispersion relation, one then obtains the
required sum rules. Applying the Borel transformation on
both sides, we can further suppress the uncertainties caused
by the unwanted contributions from both the higher-order
dimensional vacuum condensates and the continuum states,
and our final sum rules for the moments of ηq leading-twist
LCDA becomes

〈ξn2;ηq 〉|μ〈ξ0
2;ηq 〉|μ

= M2

f 2
ηq

em̃
2
ηq /M2

{
3

4π2(n + 1)(n + 3)
(1 − e−sηq /M2

)

+ (mu + md)〈q̄q〉
M4 + 〈αsG2〉

12πM4

1 + nθ(n − 2)

n + 1

− (mu + md)〈gsq̄σTGq〉
M6

8n + 1

18

+ 〈gsq̄q〉2

M6

4(2n + 1)

18

− 〈g3
s f G

3〉
M6

nθ(n − 2)

48π2 + 〈g2
s q̄q〉2

M6

2 + κ2

486π2

×
{

− 2 (51n + 25)

(
− ln

M2

μ2

)
+ 3 (17n + 35)

+ θ(n − 2)

[
2n

(
− ln

M2

μ2

)
+ 49n2 + 100n + 56

n

− 25(2n + 1)

[
ψ

(
n + 1

2

)
− ψ

(
n

2

)
+ ln 4

]]}}
,

(13)

where the parameter κ = 〈ss̄〉/〈qq̄〉, which comes from
the use of relation g2

s
∑〈gsψ̄ψ〉2 = (2 + κ2)〈g2

s q̄q〉2 with
(ψ = u, d, s) in the OPE expansion. It has been shown that
due to the anomalous dimension of the nth-order moment
grows with the increment of n, contributions from the much
higher moments at the large momentum transfer will be
highly suppressed [54]. Calculating the first few moments
is sufficient, thus avoiding the need for further calculations.
Specifically, the sum rules of the 0th-order moment gives

(〈ξ0
2;ηq 〉|μ)2 = M2

f 2
ηq

em̃
2
ηq /M2

{
1

4π2

(
1 − e−sηq /M2

)

+ (mu + md)〈q̄q〉
M4 − (mu + md)〈gsq̄σTGq〉

18M6

+ 〈αsG2〉
12πM4 + 4〈gsq̄q〉2

18M6 + 〈g2
s q̄q〉2

M6

2 + κ2

486π2

×
[

− 50

(
− ln

M2

μ2

)
+ 105

]}
. (14)

The effective mass m̃ηq is taken as ∼ 370 MeV [53]. To
be self-consistent, we will adopt the relation 〈ξn2;ηq 〉|μ =
〈ξn2;ηq 〉|μ〈ξ0

2;ηq 〉|μ/
√

(〈ξ0
2;ηq 〉|μ)2 to calculate the nth-order

moment [55]. The decay constant is an important input for the
B(D) → η(′) TFFs, which has been calculated under differ-
ent methods such as the LCSR [56], the QCD sum rules (QCD
SR) [57,58], the light-front quark model (LFQM) [59–62],
the lattice QCD (LQCD) [63–66], the Bethe–Salpeter (BS)
model [67–69], the relativistic quark model (RQM) [70–72],
the non-relativistic quark model (NRQM) [73], and etc. As
for the decay constant fηq , those studies show fηq is within a
broader range [0.130, 0.168] GeV. At present, the sum rules
of the ηq decay constant can be inversely obtained by using
Eq. (14). The 〈ξ0

2;ηq 〉|μ should be normalized in a suitable
Borel window, which will be treated as an important criteria
for determining the ηq decay constant.

2.2 The LCHO model for ηq leading-twist LCDA

The meson’s LCDA can be derived from its light-cone wave-
function (LCWF) by integrating its transverse components.
It is helpful to first construct the ηq leading-twist LCWF and
then get its LCDA [74,75]. Practically, the ηq LCWF can be
constructed by using the BHL prescription [38,39], and the
LCHO model takes the following form [55]:

ψ2;ηq (x,k⊥) = χ2;ηq (x,k⊥)ψ R
2;η(x,k⊥), (15)

where k⊥ is the ηq transverse momentum, χ2;ηq (x,k⊥)

stands for the spin-space WF that comes from the Wigner–
Melosh rotation and the spatial WF ψ R

2;ηq (x,k⊥) comes from
the approximate bound-state solution in the quark model for
ηq . Some more explanation on the LCWF construction can be
found in Ref. [55]. Using the following relationship between
the LCDA and LCWF,

φ2;ηq (x, μ) = 2
√

6

fηq

∫ |k⊥|2≤μ2

0

d2k⊥
16π3 ψ2;ηq (x,k⊥), (16)

and by integrating over the transverse momentum k⊥, one
then obtains the leading-twist LCDA φ2;ηq (x, μ), i.e.

123
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φ2;ηq (x, μ) =
√

3A2;ηqmqβ2;ηq
2
√

2π3/2 fηq

√
x x̄ϕ2;ηq (x)

×
⎧⎨
⎩Erf

⎡
⎣
√√√√m2

q + μ2

8β2
2;ηq x x̄

⎤
⎦ − Erf

⎡
⎣
√√√√ m2

q

8β2
2;ηq x x̄

⎤
⎦
⎫⎬
⎭ .

(17)

where mq = mu = md is the constituent light-quark mass,
which is around one third of the proton mass and some typical
choices are 250 MeV [76], 330 GeV [77,78] and 300 MeV
[79,80], respectively.

The overall parameter A2;ηq and the transverse parameter
β2;ηq that dominates the LCWF’s transverse behavior, can
be fixed according to the following two constraints. One is
the normalization condition, which is the same as the pionic
case, e.g.

∫ 1

0
dx

∫
d2k⊥
16π3 ψ2;ηq (x,k⊥) = fηq

2
√

6
. (18)

Another is the probability of finding the qq̄ Fock state in a
meson should be not larger than 1,

Pηq =
∫ 1

0
dx

∫
d2k⊥
16π3 |ψ2;ηq (x,k⊥)|2

=
A2

2;ηqm
2
q

32π2 [ϕ2;ηq (x)]2�

[
0,

m2
q

4β2
2;ηq x x̄

]
. (19)

We adopt Pηq ≈ 0.3 to carry out the following calculation,
which is the same as that of pion LCWF [75]. Equivalently,
one can replace the constraint (19) by the quark transverse
momentum 〈k2⊥〉ηq , which is measurable and defined as [75]

〈k2⊥〉ηq =
∫ 1

0
dx

∫
d2k⊥
16π3 |k2⊥|ψ R

2;ηq (x,k⊥)2/Pηq

=
∫ 1

0
dx

4 exp

[
− m2

q

4x x̄β2
2;ηq

]
x x̄β2

2;ηq

�

[
0,

m2
q

4x x̄β2
2;ηq

] − m2
q (20)

where the gamma function �[s, x] = ∫ x
0 t (s−1)e−t dt.

The function ϕ2;ηq (x) determines the dominant longitu-
dinal behavior of φ2;ηq , which can be expanded as a Gegen-
bauer series as

ϕ2;ηq (x) =
[

1 +
∑
n

Bn × C3/2
n (2x − 1)

]
. (21)

For self-consistency, the parameters Bn have been observed
to closely approximate their corresponding Gegenbauer

moments, i.e. Bn ∼ an, especially for the first few ones
[80–82]. The ηq meson Gegenbauer moments at the scale μ

can be calculated by the following way

an2;ηq (μ) =
∫ 1

0 dxφ2;ηq (x, μ)C3/2
n (2x − 1)∫ 1

0 dx6x(1 − x)[C3/2
n (2x − 1)]2

. (22)

Then the Gegenbauer moments an2;ηq (μ) and the moments

〈ξn2;ηq 〉|μ satisfy the following relations,

〈ξ2
2;ηq 〉|μ = 1

5
+ 12

35
a2

2;ηq (μ)

〈ξ4
2;ηq 〉|μ = 3

35
+ 8

35
a2

2;ηq (μ) + 8

77
a4

2;ηq (μ)

· · · . (23)

Using the sum rules (13) of 〈ξn2;ηq 〉|μ, one can determine

the values of an2;ηq (μ), which will be used to fix Bn . In the
following we will adopt the given two Gegenbauer moments
a2,4

2;ηq to fix the parameters B2,4.

2.3 The B(D)+ → ηq�
+ν� TFFs using the LCSR

The LCSR approach is an effective tool in determining the
non-perturbative properties of hadronic states. Here and after,
we use the symbol “H” to indicate the B(D)-meson for con-
venience.

Following the LCSR approach, one should first construct
a correlator with the weak current and a current with the
quantum numbers of H that are sandwiched between the
vacuum and ηq state. More explicitly, for H → ηq , we need
to calculate the correlator


μ(p, q) = i
∫

d4xeiq·x 〈ηq(p)|T {ū(x)γμQ(x), jH (0)}|0〉
= 
[q2, (p + q)2]pμ + 
̃[q2, (p + q)2]qμ,

(24)

where the current jH = (mQ Q̄iγ5d) with Q = (b, c)-quark
for (B, D) meson, respectively. The LCSR calculation for
the B(D)+ → ηq TFFs is similar to the case of Bs(Ds) →
ηs, which has been done in Ref. [52]. In the following, we
will give the main procedures for self-consistency, and the
interesting reader may turn to Ref. [52] for more detail.

The dual property of the correlator (24) is used to con-
nect the two different representations in different momen-
tum transfer regions. In the time-like region, one can insert a
complete set of the intermediate hadronic states in the corre-
lator and obtain its hadronic representation by isolating out
the pole term of the lowest meson state, i.e.
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had
μ (p, q)

= 〈ηq (p)|ūγμQ|H(p + q)〉〈H(p + q)|Q̄iγ5q|0〉
m2

H − (p + q)2

+
∑
H

〈ηq (p)|ūγμQ|HH(p + q)〉〈HH(p + q)|Q̄iγ5q|0〉
m2

HH − (p + q)2

= 
had[q2, (p + q)2]pμ + 
̃had[q2, (p + q)2]qμ, (25)

where the superscript “had” and “H” stand for the hadronic
expression of the correlator and the continuum states of
heavy meson, respectively. Here, the decay constant of
B(D)-meson is defined via the equation, 〈H |Q̄iγ5q|0〉 =
m2

H fH/mQ, and by using the hadronic dispersion relations
in the virtuality (p+ q)2 of the current in the B(D) channel,
we can relate the correlator to the H → ηq matrix element
[9]

〈ηq(p)|ūγμQ|H(p + q)〉 = 2pμ f
H→ηq
+ (q2)

+ qμ

(
f
H→ηq
+ (q2) + f

H→ηq
− (q2)

)
. (26)

Due to chiral suppression, only the first term contributes to
the semileptonic decay of H → ηq with massless leptons in
the final state. Then, the hadronic expression for the invariant
amplitude can be written as


[q2, (p + q)2] = 2m2
H fH f

H→ηq
+ (q2)

[m2
H − (p + q)2] pμ

+
∫ ∞

s0

ds
ρH(q2, s)

s − (p + q)2 , (27)

where s0 is the continuum threshold parameter, ρH is the
hadronic spectral density.

In the space-like region, the correlator can be calculated
by using the operator production expansion (OPE). The OPE
near the light cone x2 ≈ 0 leads to a convolution of pertur-
batively calculable hard-scattering amplitudes and univer-
sal soft LCDAs. The contributions of the three-particle part
being negligible [52], we solely focus on calculating the two-
particle part here, and the corresponding matrix element is
[83]

〈ηq(p)|ūiα(x)d j
β(0)|0〉

= iδi j

12
fηq

1∫
0

dueiup·x
{
[/pγ5]βαφ2;ηq (u)

− [γ5]βαμηqφ
p
3;ηq (u) + 1

6
[σντ γ5]βα pνxτμηqφ

σ
3;ηq (u)

+ 1

16
[/pγ5]βαx

2φ4;ηq (u) − i

2
[/xγ5]βα

u∫
0

ψ4;ηq (v)dv

}
.

(28)

The light-cone expansion for q2, (p+q)2 	 m2
b (or m2

c),
the correlator 
OPE can be written in the general form


OPE[q2, (p + q)2] = F0(q
2, (p + q)2)

+ αsCF

4π
F1(q

2, (p + q)2). (29)

In the above equation, the first term is the leading-order (LO)
for all the LCDAs’ contributions, and the second term stands
for the gluon radiative corrections to the dominant leading-
twist parts.

After an analytic continuation of the light-cone expansion
to physical momenta using the dispersion relation, one can
equate the above two representations by the assumption of
quark-hadron duality. To improve the precision of the LCSR,
we also apply the Borel transformation, which results in

f
H→ηq
+ (q2) = em

2
H /M2

2m2
H fH

[
F0(q

2, M2, s0)

+ αsCF

4π
F1(q

2, M2, s0)

]
, (30)

where F0 (F1) represents the leading-order (LO) or the next-
to-leading order (NLO) contributions, respectively. Our final
LCSR for the H → ηq TFF is

f
H→ηq
+ (q2)

= m2
Q fηq

2m2
H fH

em
2
H /M2

∫ 1

u0

due−s(u)/M2
{

φ2;ηq (u)

u

+ μηq

mQ

[
φ
p
3;ηq (u) + 1

6

(
2
φσ

3;ηq (u)

u
− m2

Q + q2 − u2m2
η

m2
Q − q2 + u2m2

η

× d

du
φσ

3;ηq (u)+ 4um2
ηm

2
Q

(m2
Q−q2+ u2m2

η)
2
φσ

3;ηq (u)

)]

+ 1

m2
Q − q2 + u2m2

η

[
uψ4;ηq (u)

+
(

1 − 2u2m2
η

m2
Q − q2 + u2m2

η

)

×
∫ u

0
dv ψ4;ηq (v) − m2

Q

4

u

m2
Q − q2 + u2m2

η

×
(

d2

du2 − 6um2
η

m2
Q − q2 + u2m2

η

d

du

+ 12um4
η

(m2
Q − q2 + u2m2

η)
2

)
φ4;ηq (u)

]
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+ αsCFem
2
H /M2

8πm2
H fH

F1(q
2, M2, s0), (31)

where ū = (1 − u), μηq = m2
η/(mu + md), s(u) =

(m2
Q − ūq2 + uūm2

η)/u and u0 = (
q2 − s0 + m2

η +√
(q2 − s0 + m2

η)
2 − 4m2

η(q
2 − m2

Q)
)
/2m2

η. The NLO

invariant amplitude F1(q2, M2, s0) can be found in Ref. [52],
which is given as a factorized form of the convolutions. As
will be shown below, the high-twist terms will be power
suppressed and have quite small contributions to compare
with those of the leading-twist terms, thus we will not dis-
cuss the uncertainties caused by the different choices of the
high-twist LCDAs. For convenience, we take the ηq twist-3
LCDAs φ

p
3;ηq (u), φσ

3;ηq (u), and the twist-4 LCDAs ψ4;ηq (u),

φ4;ηq (u), together with their parameters, as those of Ref. [10].
Using the resultant B(D) → η(′) TFFs, one can further

extract the CKM matrix element |Vcd| or |Vub| by comparing
with the predictions with the experimental data, i.e. via the
following Eq. [84]

B(H → η(′)�ν�)

τ (H)
=
∫ q2

max

0

d�

dq2 (H → η(′)�ν�), (32)

where τ(H) is H -meson lifetime, and the maximum of
squared momentum transfer q2

max = (mH − mη(′) )2.

3 Numerical analysis

3.1 Input parameters

The numerical calculation is performed using the follow-
ing parameters. According to the Particle Data Group (PDG)
[24], we take the charm-quark mass mc(m̄c) = 1.27 ±
0.02 GeV, the b-quark mass mb(m̄b) = 4.18+0.03

−0.02 GeV; the
η, η′, D and B-meson masses are mη = 0.5478 GeV,mη′ =
0.9578 GeV, mD+ = 1.870 GeV and mB+ = 5.279 GeV,

respectively; the lifetimes of D+ and B+ mesons are
τ(B+) = 1.638 ± 0.004 ps and τ(D+) = 1.033 ± 0.005 ps,
respectively; the current-quark-masses for the light u and d-
quarks are mu = 2.16+0.49

−0.26 MeV and md = 4.67+0.48
−0.17 MeV

at the scale μ = 2 GeV. As for the decay constants fB
and fD, we take fB = 0.215+0.007

−0.007 GeV [10] and fD =
0.142 ± 0.006 GeV [84]. The renormalization scale is set as

the typical momentum flow μB =
√
m2

B − m̄2
b ≈ 3 GeV for

B-meson decay or μD ≈ 1.4 GeV for D-meson decay. We
also need to know the values of the non-perturbative vacuum
condensates up to dimension-six, which include the double-
quark condensates 〈qq̄〉 and 〈gsq̄q〉2, the quark-gluon con-
densate 〈gsq̄σTGq〉, the four-quark condensate 〈g2

s q̄q〉2,

the double-gluon condensate 〈αsG2〉 and the triple-gluon

condensate 〈g3
s f G

3〉, and etc. We take their values from
Refs. [85–87],

〈qq̄〉 = (−2.417+0.227
−0.114) × 10−2 GeV3,

〈gsq̄q〉2 = (2.082+0.734
−0.697) × 10−3 GeV6,

〈gsq̄σTGq〉 = (−1.934+0.188
−0.103) × 10−2 GeV5,

〈g2
s q̄q〉2 = (7.420+2.614

−2.483) × 10−3 GeV6,

〈αsG
2〉 = 0.038 ± 0.011 GeV4,

〈g3
s f G

3〉 ≈ 0.045 GeV6. (33)

The ratio κ = 〈ss̄〉/〈qq̄〉 = 0.74±0.03 is given in Ref. [86].
When doing the numerical calculation, each vacuum conden-
sates and current quark masses should be run from their initial
values at an initial scale (μ0 = 1 GeV) to the required scale
by applying the renormalization group equations (RGEs)
[55].

3.2 The ηq decay constant and the moments 〈ξn2;ηq 〉

The continuum threshold parameter (s0) and the Borel
parameter M2 are two important parameters for the sum rules
analysis. When calculating the decay constant fηq , one may
set its continuum threshold to be close to the squared mass of
the η′ meson, i.e. s0 = 0.95 ± 0.1 GeV2 [57]. To determine
the allowable M2 range, e.g. the Borel window, for the ηq
decay constant, we adopt the following criteria,

• The continuum contribution is less than 30%;
• The contributions of the six-dimensional condensates are

no more than 5%;
• The value of fηq is stable in the Borel window;
• The 〈ξ0

2;ηq 〉|μ0 at the initial scale μ0 = 1 GeV is normal-

ized to 1, e.g. 〈ξ0
2;ηq 〉|μ0 = 1.

We put the decay constant fηq versus the Borel parameter
M2 in Fig. 1, where the shaded band indicates the uncertain-
ties from the errors of all the mentioned input parameters.
The decay constant is flat in the allowable Borel window,
which confirms the third criterion. Using the above four cri-
teria and the chosen continuum threshold parameter, we put
the numerical results of fηq in Table 1. As a comparison, we
also present the predictions using the QCDSR and LQCD
approaches. Our predictions are in good agreement with the
QCDSR 2000 [57] and the LQCD 2021 predictions within
errors [66]. The reason why we are slightly different from
QCDSR 2000 is that their calculation only includes the con-
tributions up to five dimensional operators, and our present
one includes the dimension-6 vacuum condensation terms.
Using the determined fηq , we then determine the moments
of the leading-twist LCDA. Similarly, several important con-
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Fig. 1 The ηq decay constant fηq versus the Borel parameter M2,

where the shaded band indicates the uncertainties from the input param-
eters

Table 1 The decay constant fηq using the BFTSR approach. As a com-
parison, typical results derived from QCDSR and LQCD approaches
have also been presented

References fηq [GeV]

This work (BFTSR) 0.141+0.005
−0.005

QCDSR 2000 [57] 0.144+0.004
−0.004

QCDSR 1998 [58] 0.168

LQCD 2021 [66] 0.149+0.034
−0.023

ditions need to be satisfied before the moments of ηq LCDA
can be determined [52].

The Borel window is one of the important parameters to
determine the moments. When determining the Borel win-
dow, it is necessary to ensure that the contributions of both
the continuum state and the dimension-six condensates con-
tributions are sufficiently small. The lower limit of the Borel
window is typically defined by the dimension-six conden-
sates contributions, while the upper limit is determined by
the contribution of the continuum state. To find suitable Borel
window for the moments, we adopt the dimension-six con-
densates’ contributions to be no more than 5% and the contin-
uum contribution to be no more than 40%. More explicitly,
to fix the Borel window for the first two LCDA moments
〈ξn2;ηq 〉 with n = (2, 4), we set the continuum contribu-
tions to be less than 35% and 40%, respectively. We find that
the allowable Borel windows for the two moments 〈ξ2,4

2;ηq 〉|μ
are M2 ∈ [1.782, 2.232] and M2 ∈ [2.740, 3.258], respec-
tively. Then the first two moments 〈ξ2,4

2;ηq 〉 at the initial scale

μ0 = 1 GeV are

〈ξ2
2;ηq 〉|μ0 = 0.253 ± 0.014, (34)

〈ξ4
2;ηq 〉|μ0 = 0.127 ± 0.010. (35)

3.3 The LCDA φ2;ηq

Combining the normalization condition (18), the probabil-
ity formula for qq̄ Fock state Pηq ≈ 0.3, and the moments

〈ξ (2,4)
2;ηq 〉|μ0 given in Eqs. (34, 35), the determined LCDA

parameters are shown in Table 2 and their corresponding
LCDA φ2;ηq is given in Fig. 2. Its behavior of one peak with
two humps is caused by a2

2;ηq (μ0) = 0.156 ± 0.042 and

a4
2;ηq (μ0) = 0.055 ± 0.005, which is given by using their

relations (22) to the moments 〈ξn2;ηq 〉 that can be calculated
by using the sum rules (13). In this paper, we take mq =
300 MeV to do the following calculation and use �mq =
±50 MeV to estimate its uncertainty. Table 2 shows that
the parameters B2 and B4 and the quark transverse momen-
tum 〈k2⊥〉ηq increase with the increment of constituent quark
mass, but the harmonious parameter β2;ηq decreases gradu-
ally. Experimentally the average quark transverse momentum
of pion, 〈k2⊥〉π , is of the order (300 MeV)2 [88]. It is reason-

able to require that
√

〈k2⊥〉ηq have the value of about a few
hundreds MeV [75]. For the case of mq = 300 ± 50 MeV,

we numerically obtain 〈k2⊥〉ηq ≈ (351+4
−3 MeV)2, which

is reasonable and in some sense indicates the inner con-
sistency of all the LCHO model parameters. Moreover, by
using the RGE, one can get the φ2;ηq (x, μ) at any scale
μ [55]. Figure 3 shows the LCDA φ2;ηq at several typical
scales with mq = 300 MeV. At low scale, it shows dou-
ble humped behavior and when the scale μ increases, the
shape of φ2;ηq becomes narrower; and when μ → ∞, it
will tends to single-peak asymptotic behavior for the light
mesons, φas

ηq
(x, μ)|μ→∞ = 6x(1 − x).

We make a comparison of the properties of the LCHO
model of the leading-twist LCDA φ2;ηq with other theo-
retical predictions in Fig. 4. Figure 4 gives the results for
μ = μ0 = 1 GeV, where the asymptotic form [89], the
CZ form [90] and the behaviors given by the LCSR 2007
[9] and LCSR 2015 [10] are presented. For the LCSR 2007
result, its double peaked behavior is caused by the keeping
its Gegenbauer expansion only with the first term together
with the approximation a2

2;ηq (μ0) = a2
2;η′

q
(μ0) = 0.25 [9].

For the LCDA used in LCSR 2015 [10], its behavior is close
to our present one. It is obtained by using the approximation
that the leading-twist LCDA φ2;ηq has the same behavior as
that of the pion leading-twist LCDA φ2;π , e.g. a2

2;ηq (μ0) =
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Table 2 The parameters A2;ηq , β2;ηq , B2, B4 and the quark transverse momentum 〈k2⊥〉ηq by taking the constituent quark mass mq to be
(250, 300, 350) MeV, respectively

mq (MeV) A2;ηq (GeV−1) β2;ηq (GeV) B2 B4 〈k2⊥〉ηq (GeV)

250 39.909 0.589 0.100 0.073 0.121

300 40.606 0.564 0.155 0.108 0.123

350 42.921 0.549 0.219 0.149 0.126

Fig. 2 The LCHO model for the ηq leading-twist LCDA φ2;ηq at
the scale μ0 = 1 GeV with the constituent quark mass mq =
(250, 300, 350) MeV, respectively

Fig. 3 The LCHO model for the ηq leading-twist LCDA φ2;ηq (x, μ)

at several typical scales with mq = 300 MeV

a2
2;π (μ0) = 0.17 and a4

2;ηq (μ0) = a4
2;π (μ0) = 0.06, which

are consistent with our Gegenbauer moments within errors.2

2 Since the leading-twist parts dominant the TFFs, this consistency also
explains why our following LCSR predictions for the TFFs are close in
shape with those of Ref. [10].

Fig. 4 The ηq meson leading-twist LCDA φ2;ηq (x, μ0). As a compar-
ison, the asymptotic and CZ forms [89,90] and the one derived using
the LCSR approach [9,10] are also presented

3.4 The TFFs and observable for the semileptonic decay
B(D)+ → η(′)�+ν�

One of the most important applications of the ηq -meson
LCDAs is the semileptonic decay H+ → η(′)�+ν�, whose
main contribution in the QF scheme comes from the |ηq〉-
component. Here H+ stands for B+ or D+, respectively.
And to derive the required H+ → η(′) TFFs, we take the
mixing angle φ = (41.2+0.05

−0.06)
◦ [52].

The continuum threshold sH→η(′)
0 and Borel parameters

M2 are two important parameters for the LCSR of the TFFs.
As usual choice of treating the heavy-to-light TFFs, we set
the continuum threshold as the one near the squared mass
of the first excited state of D or B-meson, accordingly. And
to fix the Borel window for the TFFs, we require the con-
tribution of the continuum states to be less than 30%. The
determined values agree with Refs. [10,91], and we will take
the following values to do our discussion

sD→η
0 = 7.0 ± 0.5 GeV2, M2

D→η = 3.0 ± 0.5 GeV.

sD→η′
0 = 7.0 ± 0.5 GeV2, M2

D→η′ = 3.0 ± 0.5 GeV.

sB→η
0 = 37.0 ± 1.0 GeV2, M2

B→η = 18.0 ± 2.0 GeV.
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Fig. 5 LCSR predictions on the TFFs f H→η(′)
+ (q2) with H = B+ or D+ in the allowable q2 range, where the contributions from the twist-2,

twist-3, twist-4 LCDAs are given separately. The twist-2 terms are given up to NLO QCD corrections

sB→η′
0 = 37.0 ± 1.0 GeV2, M2

B→η′ = 18.0 ± 2.0 GeV.

Using Eqs. (1, 2) together with the LCSR (31) for the

TFF f
H→ηq
+ (q2), we then get the results for f H→η(′)

+ (q2),

where H represents B or D, respectively. Figure 5 shows

how the total TFFs f H→η(′)
+ (q2) change with the increment

of q2, in which the twist-2 up to NLO QCD corrections,
the twist-3 and the twist-4 contributions have been pre-
sented separately. The non-local operator matrix elements
in LCSR can factorization into the universal hadron dis-
tribution amplitude, the latter term is suppressed by pow-
ers of the parameter 1/M2 as compared with the previous
term after applying the Borel transformation, thereby sup-
pressing the contributions from higher-order twist. Figure 5
shows that the twist-2 terms dominant the TFFs. We also
find that the NLO QCD corrections to the twist-2 terms are
sizable and should be taken into consideration for a sound
prediction. For examples, at the large recoil point, the twist-
2 NLO terms give about 15.8% (17.6%) and 6.4% (7.2%)

contributions to the total TFFs f D→η(′)
+ (0) and f B→η(′)

+ (0),

respectively. Table 3 gives our present LCSR predictions for

the TFFs f D→η(′)
+ (0) and f B→η(′)

+ (0). As a comparison, we
have also presented the results derived from various theo-
retical approaches and experimental data in Table 3, includ-
ing the LCSR approach [9,10,92], the pQCD approach [93],
the covariant light front (CLF) approach [94], the light front
quark model (LFQM) approach [95], the covariant confining
quark mode (CCQM) approach [96], and the BES-III Col-

laboration [28]. The uncertainties of the TFFs f H→η(′)
+ (0)

caused by different input parameters are listed as follows,

f B→η
+ (0) = 0.145(+0.004

−0.004)s0(
+0.002
−0.002)M2(

+0.007
−0.007)mb fB

(+0.005
−0.005) fηq (+0.0001

−0.0001)φ

= 0.145+0.009
−0.010, (36)

f B→η′
+ (0) = 0.128(+0.003

−0.003)s0(
+0.002
−0.002)M2(

+0.006
−0.006)mb fB

(+0.005
−0.005) fηq (+0.0002

−0.0001)φ

= 0.128+0.008
−0.009, (37)

f D→η
+ (0) = 0.329(+0.003

−0.004)s0(
+0.009
−0.005)M2(

+0.016
−0.009)mc fD

(+0.010
−0.010) fηq (+0.0002

−0.0003)φ

= 0.329+0.021
−0.015, (38)

f D→η′
+ (0) = 0.294(+0.003

−0.004)s0(
+0.009
−0.005)M2(

+0.017
−0.011)mc fD

(+0.009
−0.009) fηq (+0.0002

−0.0003)φ

= 0.294+0.021
−0.015. (39)

Here the second equations show the squared averages of the
errors from all the mentioned error sources. The errors are
mainly caused by fηq and mQ fH , and error caused by the
mixing angle φ is quite small. As a common limitation of
phenomenological quark models, accurately quantifying the
theoretical uncertainty of predictions in LCSR is challenging.
The net errors of these parameters are about 10−20%.

The physically allowable ranges of the above four heavy-
to-light TFFs are m2

� ≤ q2 ≤ (mD+ − mη)
2 ≈ 1.75 GeV2,

m2
� � 0 ≤ q2 ≤ (mD+ − mη′)2 ≈ 0.84 GeV2, m2

� ≤
q2 ≤ (mB+ − mη)

2 ≈ 22.40 GeV2 and m2
� ≤ q2 ≤

(mB+ − mη′)2 ≈ 18.67 GeV2, respectively. For light lep-
tons, we have m2

� � 0. The LCSR approach is applica-
ble in low and intermediate q2 region, which however can
be extended to whole q2 region via proper extrapolation
approaches. In the present paper, we adopt the converging
simplified series expansion (SSE) proposed in Refs. [97,98]
to do the extrapolation, which suggest a simple parameteri-
zation for the heavy-to-light TFF, e.g.

f H→η(′)
+ (q2) = 1

1 − q2/m2
R∗

∑
k

bkz
k(t, t0) (40)

where mR∗ = mB∗ = 5.325 GeV (mD∗ = 2.010 GeV) [10]
are vector meson resonances, z(t, t0) is a function

z(t, t0) =
√
t+ − t − √

t+ − t0√
t+ − t + √

t+ − t0
. (41)
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Table 3 Typical theoretical
predictions on the TFFs

f H→η(′)
+ (0) at the large recoil

point q2 = 0

f B→η
+ (0) f B→η′

+ (0)

This work (LCSR) 0.145+0.009
−0.010 0.128+0.008

−0.009

LCSR 2007 [9] 0.229 ± 0.035 0.188 ± 0.028

LCSR 2015 [10] 0.168+0.041
−0.047 0.130+0.036

−0.032

pQCD [93] 0.147 0.121

CLF [94] 0.220 ± 0.018 0.180 ± 0.016

LCSR 2013 [92] 0.238 ± 0.046 0.198 ± 0.039

f D→η
+ (0) f D→η′

+ (0)

This work (LCSR) 0.329+0.021
−0.015 0.294+0.021

−0.015

LCSR 2015 [10] 0.429+0.165
−0.141 0.292+0.113

−0.104

BES-III 2020 [28] 0.39 ± 0.04 ± 0.01 -

LFQM [95] 0.39 0.32

CCQM [96] 0.36(5) 0.36(5)

LCSR 2013 [92] 0.552(51) 0.458(105)

Table 4 Fitting parameters b1 and b2 for the TFFs f H→η(′)
+ (q2), where all input parameters are set to be their central values. � is the measure of

the quality of extrapolation

f D→η
+ (q2) f D→η′

+ (q2) f B→η
+ (q2) f B→η′

+ (q2)

b1 −0.033 −0.680 −0.392 −0.397

b2 37.901 23.961 −0.108 −0.308

� 0.761% 0.026% 0.341% 0.062%

Fig. 6 The central value of the TFFs f H→η(′)
+ (q2) is obtained using different parameterizations throughout the entire q2-region

Here t± = (mH+ ± mη(′) )2 and t0 = t+(1 − √
1 − t−/t+)

is a free parameter. The free parameter bk can be fixed by
requiring � < 1%, where the parameter � is used to measure
the quality of extrapolation and it is defined as

� =
∑

t |Fi (t) − Ffit
i (t)|∑

t |Fi (t)|
× 100, (42)

where t ∈ [0, 1
40 , . . . , 40

40 ] × 13.0(1.0) GeV for the case of
η-meson, t ∈ [0, 1

40 , . . . , 40
40 ]×11.2(0.5) GeV for the case of

η′-meson. The two coefficients b1,2 with all input parameters
are set as their central values are listed in Table 4. The quali-
ties of extrapolation parameter � are less than ∼ 0.8%. It is
noted that the fitting parameters b1 and b2 were obtained by

rigorous fitting LCSR data. In the decay of B-meson, the dif-
ference between b1 and b2 is small, whereas in the decay of
D-meson, there exists a significant disparity between the two.

Except for the fact that the TFFs f B→η
+ (q2) and f B→η′

+ (q2)

are closer in shape than the case of f D→η(′)
+ (q2), there are

other two reasons for this discrepancy, e.g.

(1) The whole physical region q2 corresponding to them is
quite different. The larger interval can be fitted with two
similar parameters, whereas the smaller interval cannot
be fitted by two similar parameters.

(2) According to the SSE method employed, if two similar
parameters, namely b1 ≈ b2, are utilized in the decay
process of D-meson, the curve fitted exhibits significant
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disparities compared to the outcomes derived from our
LCSR calculation. And the larger the disparity between
b1 and b2 within the same q2 region, the greater the value
of �, resulting in a more pronounced steepness of the
fitted curve.

In addition to extrapolating with the SSE, there are other
fitting methods, which have also been suggested in the liter-
ature, e.g.

(1) In early studies of beauty and charm semileptonic decays,
the form of TFFs were commonly assumed to adhere to
the simple pole model (also referred to as nearest pole
dominance) [99].

f H→η(′)
+ (q2) = f H→η(′)

+ (0)

1 − q2/m2
H∗

. (43)

Here mH and mH∗ represent the B(D)-meson mass and
the corresponding vector meson resonance, respectively.
This model oversimplifies the actual dynamics, and the

two free parameters ( f H→η(′)
+ (0) and mH∗) do not fit the

experimental data well when q2 range is large.
(2) Becirevic–Kaidalov (BK) parameterization [100]:

f H→η(′)
+ (q2) = f H→η(′)

+ (0)

(1 − q2/m2
H∗)(1 − αBKq2/m2

H )
. (44)

where αBK is a free parameter. This parameterization
of TFFs for heavy-to-light decay conforms to the heavy
quark scaling law and avoids the introduction of explicit
“dipole” forms, which has been used in the analyses of
systematically lattice data and experimental studies of
the semileptonic TFFs.

(3) Ball–Zwicky (BZ) parameterization, commonly referred
to as the double-pole parameterization [101].

f H→η(′)
+ (q2) = f H→η(′)

+ (0)

1 − α(q2/m2
H ) + β(q2/m2

H )2
. (45)

This parameterization is valid in the entire kinemati-
cal range of semileptonic decays and is consistent with
vector-meson dominance at large momentum transfer.
Besides, the parameters α and β are rather sensitive to
the chosen range for q2 in the actual calculation.

(4) The Boyd–Grinstein–Lebed (BGL) parametrization is
based on the dispersion relation to describe the heavy
mesons semileptonic decay form factors, independent of
heavy quark symmetry [102].

f H→η(′)
+ (q2) = 1

P(t)φ(t)

∞∑
k=0

ak[z(t, t0)]k, (46)

where P(t) is Blaschke factor that depends on the masses
of the sub-threshold resonances. The coefficients ak are
unknown constants constrained to obey

∑∞
k=0 |ak |2 ≤ 1.

The BGL parameterization is often referred to as the
series expansion (SE), whose starting point is to extend
the TFFs defined in the physical range (from q2 = 0
to (mH − m

η(′) )2) to analytic functions throughout the

complex t = q2 plane. By selecting an appropriate nor-
malization function φ(t), a simple dispersion bounds for
SE coefficients can be obtained [98].

All the aforementioned parameterization methods can be
utilized for the extrapolation of the TFFs, each with their
own advantages and disadvantages [103,104]. The central

value of the TFFs f H→η(′)
+ (q2) are obtained through various

parameterization methods is illustrated in Fig. 6. The TFFs

f H→η′
+ (q2) obtained by different parameterization methods

exhibit consistency in across the entire q2 region, but show
discrepancy in f H→η

+ (q2) at the larger q2 region. Particu-

larly for f D→η
+ (q2), the behaviors derived from the four fit-

ting methods differ significantly, while the trends of SSE and
SE are relatively similar. The simple pole model is deemed
overly simplistic, thus this portion of the graph is omitted.

Opting for SSE parameterization have a significant advan-
tage as it effectively translates the near-threshold behavior of
the TFFs into a constraining condition on the expansion coef-
ficient. The extrapolated TFFs in whole q2-region are given
in Fig. 7, where some typical theoretical and experimental
results are presented as a comparison, such as CCQM [96],
LFQM [95], LCSR 2015 [10], pQCD [93] and BESIII 2020
[28]. The solid lines in Fig. 7 denote the center values of
the LCSR predictions, where the shaded areas are theoreti-
cal uncertainties from all the mentioned error sources. The
thicker shaded bands represent the LCSR predictions, which
have been extrapolated to physically allowable q2-region.
Fig. 7 indicates that: (1) Our present LCSR prediction of

f D→η
+ (q2) is in good agreement with BESIII data [28]; (2)

Our present LCSR prediction of f D→η′
+ (q2) is consistent

with the LFQM prediction [95] and the LCSR 2015 [10]
predictions within errors; (3) Our present LCSR predictions

of f B→η(′)
+ (q2) are close to the LCSR 2015 prediction [10],

and their values at q2 = 0 are consistent with the pQCD
prediction [93] within errors. In Fig. 7, the upward trend for
the f D→η

+ (q2) TFF exhibits a significant difference in the
large q2 region with other theoretical results and experimen-
tal data, which there are two reasons for this difference, the
main reason is because we get a smaller f D→η

+ (q2) TFF at
q2 = 0. In order to obtain a smooth fitting curve, there is
an overall upward trend in the large q2 region. And the sec-
ondary reason is the utilization of distinct methods for extrap-
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Fig. 7 The TFFs f H→η(′)
+ (q2) in whole q2-region, where the solid line

is the central value and the shaded band shows its uncertainty. The darker
part of the shaded band is the LCSR prediction, and the remaining part
is the extrapolated result. As a comparison, predictions using different

theoretical approaches and the experimental data, such as CCQM [96],
LFQM [95], LCSR [10], pQCD [93] and BESIII collaboration [28], are
also presented

Fig. 8 Differential decay widthes for B(D)+ → η(′)�+ν� in whole
q2-region, where the solid line is the central value and the shaded band
shows its uncertainty. As a comparison, the predictions using differ-

ent theoretical approaches and the experimental data, such as CCQM
[96], LFQM [95], LCSR [10] and BESIII collaboration [27,28], are also
presented

olation. The other theoretical groups in Fig. 7 employed the
double-pole fitting method to obtain the form factor across
the entire physical region, whereas we opted for the simpler
SSE approach.

Figure 8 presents the differential decay widthes for
B(D)+ → η(′)�+ν� without CKM matrix elements. As
a comparison, the predictions using different theoretical
approaches and the experimental data, such as CCQM
[96], LFQM [95], LCSR [10] and BESIII collaboration
[27,28], are also presented. The differential decay width
d�/|Vcd|dq2(D+ → η�+ν�) agrees with the BESIII 2018
[27] and BESIII 2020 [28] within errors.

By matching the branching fractions and the decay life-
times given by the PDG with the decay widthes predicted
by Eq. (32), one may derive the CKM matrix elements |Vub|
and |Vcd |. We put our results in Table 5, where the errors
are caused by all the mentioned error sources and the PDG
errors for the branching fractions and the decay lifetimes.
Some typical measured values of |Vub| and |Vcd | are also
given in Table 5. The predicted |Vcd | is within the error
range of experimental result BESIII 2020. Using the fixed
CKM matrix elements, our final predictions of the branch-
ing function are: B(D → ηeνe) = (1.11 ± 0.07) × 10−3,

B(D → ημνμ) = (1.04 ± 0.11) × 10−3, B(D → η′eνe) =

(2.0 ± 0.4) × 10−4, B(B → η�ν�) = (3.9 ± 0.5) × 10−5,

B(B → η′�ν�) = (2.3 ± 0.8) × 10−5, respectively.

4 Summary

In this paper, we have suggested the LCHO model (17) for the
ηq -meson leading-twist LCDA φ2;ηq (x, μ), whose moments
have been calculated by using the QCD sum rules based
on the QCD background field. To compare with the con-
ventional Gegenbauer expansion for the LCDA, the LCHO
model usually has better end-point behavior due to the BHL-
prescription, which will be helpful to suppress the end-point
singularity for the heavy-to-light meson decays. The QCD
sum rules for the 0th-order moment has been used to fix the
ηq decay constant, and we obtain fηq = 0.141 ± 0.005 GeV,
which is slightly larger than the conventional value of the pion
decay constant fπ � 0.130 GeV [24]. As an explicit appli-
cation of φ2;ηq , we have calculated the TFFs B(D)+ → η(′)
under the QF scheme for the η − η′ mixing and by using
the QCD light-cone sum rules up to twist-4 accuracy and by
including the next-to-leading order QCD corrections to the
dominant leading-twist part. Our LCSR prediction of TFFs
are consistent with most of theoretical predictions and the
recent BESIII data within errors. By applying those TFFs,
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Table 5 CKM matrix elements
|Vcd | and |Vub| are obtained by
different experimental groups
according to different decay
processes

Mode Channels |Vcd |

This work D+ → ηe+νe 0.236+0.017
−0.017

This work D+ → ημ+νμ 0.228+0.017
−0.017

This work D+ → η′e+νe 0.253+0.028
−0.032

BESIII 2020 [28] D+ → ημ+νμ 0.242 ± 0.028 ± 0.033

BESIII 2013 [16] D+ → μ+νμ 0.221 ± 0.006 ± 0.005

BaBar 2014 [17] D0 → π−e+νe 0.206 ± 0.007 ± 0.009

CLEO 2009 [18] D → πe+νe 0.234 ± 0.009 ± 0.025

HFLAV [19] D → π�ν� 0.225 ± 0.003 ± 0.006

LQCD 2019 [20] D → π�ν 0.233 ± 0.137

PDG [24] D → π�ν 0.233 ± 0.003 ± 0.013

Channels |Vub| × 10−3

This work B+ → η�+ν� 3.752+0.373
−0.351

This work B+ → η′�+ν� 3.888+0.688
−0.787

CLEO 2007 [15] B0 → π−�+ν 3.60 ± 0.4 ± 0.2

HFLAV [19] B → π�ν� 3.70 ± 0.10 ± 0.12

BaBar 2011 [21] B̄ → Xu�ν̄ 4.33 ± 0.24 ± 0.15

Belle [22] B → Xu�ν 4.09 ± 0.39 ± 0.18

PDG [24] B → π�ν̄ 3.82 ± 0.20

PDG [24] B → Xu�ν̄ 4.13 ± 0.12 ± 0.18

LQCD 2015 [105] B → π�ν 3.72 ± 0.16

we get the decay widths of B(D)+ → η(′)�+ν�. The magni-
tudes of the CKM matrix elements |Vub| and |Vcd| have also
been discussed by inversely using the PDG values for the
branching fractions and the decay lifetimes. The future more
precise data at the high luminosity Belle II experiment [106]
and super tau-charm factory [107] shall be helpful to test all
those results.
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