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Abstract We consider cosmology with an inflaton scalar
field with an additional quartic kinetic term. Such a theory can
be motivated by Palatini R+R2 modified gravity. Assuming a
runaway inflaton potential, we take the Universe to become
dominated by the kinetic energy density of the scalar field
after inflation. Initially, the leading kinetic term is quartic
and we call the corresponding period hyperkination. Subse-
quently, the usual quadratic kinetic term takes over and we
have regular kination, until reheating. We study, both analyt-
ically and numerically, the spectrum of primordial gravita-
tional waves generated during inflation and re-entering the
horizon during the subsequent eras. We demonstrate that the
spectrum is flat for modes re-entering during radiation dom-
ination and hyperkination and linear in frequency for modes
re-entering during kination: kinetic domination boosts the
spectrum, but hyperkination truncates its peak. As a result,
the effects of the kinetic period can be extended to observ-
able frequencies without generating excessive gravitational
waves, which could otherwise destabilise the process of Big
Bang Nucleosynthesis. We show that there is ample parame-
ter space for the primordial gravitational waves to be observ-
able in the near future. If observed, the amplitude and ‘knee’
of the spectrum will provide valuable insights into the back-
ground theory.

1 Introduction

The most compelling solution to the fine-tuning of the initial
conditions of the Big Bang model is the theory of Cosmic
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Inflation [1–7]. Inflation manages in a single shot to explain
away the horizon and flatness problems and also to provide
the primordial density perturbations necessary for the forma-
tion of the large-scale structure we observe in the Universe
[8–13], that is the distribution of galaxy clusters and super-
clusters. The primordial density perturbations reflect them-
selves onto the Cosmic Microwave Background (CMB) radi-
ation, through the Sachs–Wolfe effect [14]. Precision obser-
vations [15,16] of the acoustic peaks in the CMB primordial
temperature anisotropy have verified in spectacular detail the
predictions of Cosmic Inflation, such that the rival paradigm
for structure formation (that of cosmic strings) has collapsed
[17]. Consequently, Cosmic Inflation is considered a neces-
sary addition to the concordance model, ΛCDM, towards a
standard model of cosmology.

Another generic prediction of Cosmic Inflation is com-
ing within reach of observability in the near future. Indeed,
soon after its proposal, it was realised that Cosmic Inflation
gives rise to a stochastic background of primordial gravi-
tational waves [1,18–22]. These gravitational waves (GWs)
are tensor perturbations of the spacetime metric, generated
in much the same way as the scalar curvature perturbations
behind the primordial density perturbations, for which there
is overwhelming evidence in the CMB, as mentioned above.
Because of this, great interest has been developed in recent
years for the observability of the inflation-produced GWs
either indirectly, through the B-mode polarization of the
CMB [18], or directly from interferometers [19].

Gravitational waves were predicted by Einstein’s general
relativity at the beginning of the twentieth century. Almost
exactly a hundred years afterwards, GWs were directly
observed by LIGO (Laser Interferometer Gravitational-Wave
Observatory) and Virgo in 2015 [23,24]. This seminal obser-
vation heralded the birth of gravitational wave astronomy,
which enables the study of compact objects, such as astro-
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physical black holes, which are typically shrouded by opaque
accretion disks. It also allows, in principle, a glimpse of
the very early Universe, well beyond the last-scattering sur-
face, where the CMB was emitted. As such, there is hope to
detect the stochastic primordial GW background from Cos-
mic Inflation. Such observations will allow the study of infla-
tion at scales much different than the ones which correspond
to the CMB primordial anisotropy, opening up a new window
in the understanding of fundamental physics at extremely
high energies (comparable to the energy of grand unifica-
tion), which is behind the process of Cosmic Inflation and
remains a mystery to this day.

This has, in part, motivated a number of future GW detec-
tion missions. In the near future, Advanced LIGO (plus Virgo
and KAGRA) [25–29] (LVK) and the space interferome-
ter LISA (Laser Interferometer Space Antenna) [30–32] are
coming online; the launch date of LISA is in 2037. Another
space interferometer DECIGO (DECi-hertz Interferometer
Gravitational wave Observatory) [33–35] is also planned to
be launched in the 2030s. More are to follow, such as BBO
(Big Bang Observer) [36], a proposed successor to LISA. It
seems an ideal time to investigate GW production by inflation
and its potential observational signatures.

However, there is a challenge in the study of the inflation-
produced primordial GW background. The background sig-
nal is too weak for any currently operational GW detector to
observe, and it may be decades before an observation can be
made. Indeed, were the early Universe dominated by radia-
tion, as assumed by the concordance model, the primordial
GW spectrum would be flat, i.e. like white noise, where the
GW density parameter per logarithmic frequency interval
ΩGW( f ) is constant over the range of frequencies f corre-
sponding to the GW modes that re-enter the horizon during
the radiation dominated period (they have been pushed out
of the horizon during inflation). The constant value of the flat
spectrum is very low, and the hope of detecting in the near
future such inflation-generated primordial GWs is little [20].

Fortunately, this is not the end of our hopes for detect-
ing primordial GWs. While there is observational evidence
of the early Universe being radiation dominated, provided
by the delicate process of Big Bang Nucleosynthesis (BBN)
taking place a mere few seconds after the Big Bang itself,
what the state of affairs was before BBN is still unknown.
If the Universe’s history before BBN was not dominated by
radiation, then the primordial GW spectrum does not need
to be flat. This opens up the possibility of a boosted GW
spectrum, possible to detect even in the near future.

An early realisation of this possibility was provided by
modelling quintessential inflation [37] (see Refs. [38,39] for
recent reviews). Quintessential inflation aims to explain in a
unified way both Cosmic Inflation in the early Universe and
Dark Energy at present. Most quintessential inflation models
consider non-oscillatory inflation [40,41] driven by a scalar

field (the inflaton) with a runaway potential, which can play
the role of quintessence at late times and explain the accel-
erated expansion of the Universe at present [42–53]. In such
models, there is a period after the end of inflation but before
reheating (i.e. the onset of the radiation era) when the kinetic
energy density of the inflaton field dominates the Universe.
This period is called kination [54] (see also [55–57]), char-
acterised by a stiff equation of state with a barotropic param-
eter w = p/ρ = 1. For GW modes that re-enter the horizon
during kination, the spectrum is peaked with ΩGW( f ) ∝ f
[58–66]. Unfortunately, this peak corresponds to very high
frequencies, which will be unobservable in the near future.
Extending the period of kination does extend the peak to
lower, possibly observable frequencies, but then the peak
becomes too large and the resulting primordial GWs cannot
but affect and destabilise the BBN process [42,58,59,67].

After the direct detection of GWs, there has been much
interest in considering modifications of the history of the Uni-
verse, safely before BBN, to boost the primordial GW signal
at observable frequencies. In Ref. [68], it was shown that

ΩGW( f ) ∝ f −2( 1−3w
1+3w

), where w is the barotropic parameter
of the Universe (w = 1/3 for radiation domination). In Refs.
[69] and [70] models were considered where there is a period
of matter domination followed by kination, which would
create a mountain-like peak in ΩGW (see also Ref. [68]).
Another possibility is to consider a stiff period after infla-
tion that is not kination with w = 1, but has a milder value
of w ≈ 1/2 and can be extended down to observable fre-
quencies without destabilising the BBN because the peak is
not so steep as in usual kination [71]. A realisation of this
in hybrid inflation with a non-canonical waterfall field was
investigated in Refs. [72,73].

In this paper, we consider a different possibility, motivated
by Palatini modified gravity [74,75]. The cosmological con-
sequences of Palatini modified gravity with L ∝ R + R2

and a non-minimally coupled scalar field were first consid-
ered in [76,77] in the context of inflation and subsequently
in [78–82] in the context of quintessential inflation (see also
[83,84] for reviews). When switching to the Einstein frame,
the scalar field obtains an additional quartic kinetic term.1

In most cases considered, this term plays a negligible role
in the dynamics of the scalar field. However, there are mod-
els for which this is not the case. We investigate in detail
what happens when the scalar field dominating the Universe
is governed by the quartic kinetic term in a period we call
hyperkination. We show that the barotropic parameter of the
Universe during hyperkination is the same as that of radia-
tion domination, w = 1/3. As a result, in a realistic model
of non-oscillatory inflation with a runaway inflaton poten-

1 In Ref. [85] it was shown that the addition of the Holst and Holst2

terms in the usual Palatini quadratic action can generate a modification
of the higher-order kinetic term.
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tial, we consider a post-inflationary period of hyperkination,
followed by a period of regular kination, when the kinetic
energy of the inflaton is quadratic as usual. Kination is fol-
lowed by radiation domination after reheating. This evolution
results in a truncated peak in the GW spectrum, which can
be safely extended down to observable frequencies without
destabilising BBN. We calculate analytically the GW spec-
trum during all phases of hyperkination, kination and radia-
tion and we verify our findings numerically. We explore the
parameter space and show that we can obtain a boosted pri-
mordial GW signal with unique characteristics, which will be
well-detectable by forthcoming observations. If such a signal
is indeed detected, it will be a strong hint of non-canonical
kinetic terms for the inflaton field from Palatini modified
gravity or some other appropriate k-inflation or k-essence
model.

The paper is organized as follows. In Sect. 2, we dis-
cuss the Palatini R2 models, introduce hyperkination, and
embed it into the full expansion history of the Universe. In
Sect. 3, we consider the primordial GWs, including their ini-
tial conditions as fluctuations of the quantum vacuum. Sec-
tion 4 details our analytical computation of the GW evolu-
tion. We compare our GW spectra to observational bounds
in Sect. 5 and conclude in Sect. 6. Throughout the paper, we
use natural units with c = h̄ = 1 and 8πG = m−2

P , where
mP = 2.43 × 1018 GeV is the reduced Planck mass. The
signature of our metric is (−1,+1,+1,+1).

2 Hyperkination

2.1 Quartic kinetic terms from Palatini R2 inflation

We begin by considering a Jordan frame action in the Palatini
formulation of the form

S=
∫

d4x
√−g

[
1

2
h(ϕ)R+ α

2
R2− 1

2
gμν∂μϕ∂νϕ−V (ϕ)

]

+Sm[gμν, ψ], (1)

where ϕ is the inflation field and h(ϕ) is its non-minimal
coupling function, which usually assumes the form2 h(ϕ) =
m2

P +ξϕ2. The parameter α is assumed to be positive definite
and we leave the potential V (ϕ) unspecified. The symbol
ψ describes other matter components. This action was first
considered in [76,77] in the context of inflation and then in
[78–81] in the context of quintessential inflation (see also
[83,84] for reviews).

In the Palatini formulation of gravity, the connection Γ

and the metric gμν are independent variables. The Ricci ten-
sor Rμν(Γ ) only depends on the connection and the Ricci

2 Note that the non-minimal coupling ξ does not affect our considera-
tions in the following sections.

scalar is defined as R ≡ gμνRμν(Γ ). The connection Γ can
be determined by varying the action (1) but, due to the non-
minimal coupling function h(ϕ) and the αR2 term, it will
differ from the standard Levi-Civita form.

Following [76,77], we can eliminate the αR2 term by
introducing an auxiliary scalar field χ ≡ 2αR. Then, by per-
forming a Weyl transformation of the form ḡμν = Ω2gμν =
[χ + h(ϕ)]gμν we bring the action to the canonical form
with a minimally coupled scalar field. The resulting action
will depend on two scalar fields: ϕ and χ . However, in con-
trast to the usual metric formalism, the auxiliary field χ is
non-dynamical in the Palatini formalism. This means that
one can vary the action with respect to χ , solve the resulting
constraint equation, and then eliminate χ altogether from the
action.

After this procedure, the resulting action in the Einstein
frame reads [76,77]

S=
∫

d4x
√−ḡ

[
m2

P

2
R̄− 1

2
(∂̄φ)2+ α

4

h2+4αV

h2m4
P

(∂̄φ)4−U

]

+Sm[Ω−2 ḡμν, ψ], (2)

where

U ≡ Vm4
P

h2 + 4αV
, (3)

and we employed a field redefinition of the form

dφ

dϕ
=
√

h(ϕ)m2
P

h(ϕ)2 + 4αV (ϕ)
(4)

in order to render the quadratic kinetic term canonical, where
the bars indicate quantities in the Einstein frame. Note that
the process of transforming from the Jordan to the Einstein
frame has generated a quartic kinetic term3 and a modified
potential U which will in general display a plateau for grow-
ing V , approaching the asymptotic valuem4

P/(4α) [76]. Also,
importantly, in the present work, we concentrate on the early
era when the other matter components ψ are a perfect fluid
of radiation. In this limit, the coupling between the inflaton
and the matter action in the last term of Eq. (2) disappears
[80].

Neglecting the last term for the moment, we can rewrite
the action as

S =
∫

d4x
√−ḡ

[
m2

P

2
R̄ + P (φ, X)

]
, (5)

3 Note that, in the context of Palatini gravity, models that contain a
non-minimal derivative coupling term Gμν∂

μϕ∂νϕ [86] or R(μν)R(μν)

terms [87,88] in the Jordan frame, can lead to actions similar to (2)
in the Einstein frame after applying a disformal transformation of the
metric.
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with

P (φ, X) = X + L(φ)X2 −U, (6)

where

X ≡ − (∂̄φ)2

2
and L(φ) ≡ α

4

h2 + 4αV

h2m4
P

. (7)

The action in Eq. (5) belongs to the general class of k-inflation
[89] (where inflation is kinetically driven) or k-essence [90–
92] (where the non-canonical kinetic terms can behave as
quintessence).4

Varying the action in Eq. (2), we can obtain the equation
of motion for φ, which reads [76][

1+3α

(
1+ 4αV

h2

)
φ̇2

m4
P

]
φ̈ + 3

[
1+α

(
1+ 4αV

h2

)
φ̇2

m4
P

]

×H̄ φ̇ + 3α2 φ̇4

m4
P

d

dφ

(
V

h2

)
+ d

dφ
U = 0. (8)

Then, from the non-zero components of the energy
–momentum tensor we can obtain the energy density and
pressure of the field, which read [94]

ρ̄φ = 1

2

[
1 + 3

2
α

(
1 + 4αV

h2

)
φ̇2

m4
P

]
φ̇2 +U,

p̄φ = 1

2

[
1 + 1

2
α

(
1 + 4αV

h2

)
φ̇2

m4
P

]
φ̇2 −U.

(9)

To complete the equations of motion, the Hubble parameter
can be written as

3m2
P H̄

2 = ρ̄φ. (10)

Again, the above equations differ from those of a standard
canonical scalar field due to the higher-order kinetic terms. In
the limit α → 0 they reduce to the minimal case. The bars are
dropped in what follows to avoid clutter. Unless otherwise
stated we always work in the Einstein frame.

The plateau in U mentioned above is ideal for slow-roll
inflation, and can easily produce CMB observables compat-
ible with observations for simple forms of the potential V
[76,77]. However, it restricts the inflationary – and thus post-
inflationary – energy density to values lower than m4

P/(4α).
Unfortunately, this severely restricts the parameter space con-
sidered in the following sections. One way to overcome this
problem is to consider an α that experiences a drastic change
at the end of inflation but remains constant afterwards. This
is possible if α depends on a degree of freedom that changes
its value when inflation ends. A toy model discussing this
possibility is presented in Appendix A. Another example of
a model describing the full inflationary history may be the

4 In Ref. [93] it was shown that the Palatini R2 models share common
features with k-inflation models.

one studied in Ref. [79], as long as it is enhanded with the
hybrid mechanism discussed in Appendix A. Moreover, we
point out that the Palatini R2 models considered here act as
an inspiration for the extra quartic kinetic terms in the action,
but our analysis is more general, and we do not specify the
details of the inflationary part of the model.

2.2 Kinetic domination

While the quartic kinetic terms in Eq. (2) are negligible dur-
ing slow-roll inflation [76], they may play an important role
in the post-inflationary Universe. We consider next such a
scenario; a period of kinetic domination, where the potential
V is negligible and the field rolls forward freely. In this limit,
Eqs. (8) and (10) become(

1 + 3α
φ̇2

m4
P

)
φ̈ + 3

(
1 + α

φ̇2

m4
P

)
H φ̇ = 0,

3H2m2
P = ρφ, (11)

and

ρφ = 1

2

(
1 + 3

2
α

φ̇2

m4
P

)
φ̇2,

pφ = 1

2

(
1 + 1

2
α

φ̇2

m4
P

)
φ̇2. (12)

It is instructive to change the time variable to the number of
elapsing e-folds N = ln a, with dN = Hdt , and eliminate
H . We can assume φ̇ > 0 without loss of generality. The
field time derivatives are related as5

φ̇ = m2
P

√
2(6m2

P − φ′2)
3αφ′2 . (13)

Note that, due to the scaling with the heavily φ̇-dependent H ,
the limit φ̇ → 0 corresponds to φ′ → √

6mP, and φ̇ → ∞
corresponds to φ′ → 0. Equations (11) and (12) become

φ′′ = φ′(6m2
P − φ′2)(12m2

P + φ′2)
6m2

P(12m2
P − φ′2)

,

ρφ = 2m6
P

αφ′2

(
6m2

P

φ′2 − 1

)
,

pφ = 2m6
P

3αφ′2

(
6m2

P

φ′2 + 1

)
− 2m4

P

9α
,

wφ = 1

9

(
3 + φ′2

m2
P

)
, (14)

5 A prime denotes a derivative with respect to N in this section only. In
the rest of the paper, it denotes a derivative with respect to the conformal
time η, dη = dt/a. As an exception, φ′

0 in Eq. (17), which is used
throughout the paper, is always equal to φ′

0 = φ̇/H evaluated at the end
of inflation.
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where wφ ≡ pφ/ρφ is the barotropic parameter of the field.
Note that α dropped out of the equation of motion: changing
α rescales the time and energy density but leaves quantities
like φ, N , and wφ untouched.

If φ̇ is small – that is, 3
2αφ̇2 	 m4

P and φ′ ≈ √
6mP – the

quartic extra kinetic terms are small, and Eq. (14) give

φ′′ ≈ 6(
√

6mP − φ′) ⇒ φ′ ≈ √
6mP

(
1 − ce−6N

)
,

ρφ ∝ (6m2
P − φ′2) ∝ e−6N ∝ a−6, wφ ≈ 1, (15)

where c is an integration constant and we are concerned with
the large N limit. We see that φ′ = √

6mP is an attrac-
tor. It corresponds to standard kination [43,54,95–98] with
a quickly diluting energy density and wφ ≈ 1.

In the opposite limit of 3
2αφ̇2 � m4

P and φ′ ≈ 0, the
quartic kinetic terms dominate, and Eq. (14) gives

φ′′ ≈ φ′ ⇒ φ′ ≈ ceN ∝ a,

ρφ ∝ (φ′)−4 ∝ a−4, wφ ≈ 1

3
. (16)

We name this phase hyperkination. The extra kinetic terms
modify the dynamics so that the energy density dilutes only
as fast as radiation with wφ ≈ 1/3.

Hyperkination only lasts for a limited time. As spatial
expansion dilutes the field’s kinetically dominated energy
density, φ̇ decreases and φ′ grows. The quartic kinetic terms
are dilute faster than the quadratic ones, and eventually the
latter take over. Consequently, the field transitions into stan-
dard kination. We can use Eqs. (15) and (16) to approximate
the time evolution of φ′ as it approaches the kination attractor
as

φ′ ≈
{

φ′
0e

N N < ln(
√

6/φ′
0),√

6mP N > ln(
√

6/φ′
0),

(17)

where φ′
0 is the initial value of φ′ at N = 0, taken below to

be the end of inflation. Tuning φ′
0 lets us modify the length

of hyperkination, which we define as6

Nhyp ≡ ln(
√

6mP/φ′
0). (18)

Figure 1 compares Eq. (17) to a numerical solution of Eq. (14)
in an example case.

Due to the exponential growth of φ′, the transition from
hyperkination to kination is fast. Let us define the begin-
ning of standard kination Nkin as the moment when both
addends inside the parenthesis in the energy density in Eq.
(12) become equal. Using Eqs. (13) and (17), this condition

6 With the restriction ρφ < m4
P/(4α) discussed at the end of Sect. 2.1,

we would have φ′
0 > 2mP at N = 0, and Eq. (17) restricts hyperkination

to last less than 0.20 e-folds, a negligible amount. As mentioned, we
omit this restriction in this paper.

Fig. 1 N -derivative of the field obtained from the numerical simulation
(full blue line) and its initial approximation given in Eq. (17) (dashed
orange line) as functions of N . The dashed vertical line, labelled Nkin,
corresponds to the time at which kination starts in the numerical sim-
ulation, defined here as the moment at which both addends inside the
parenthesis in the energy density in Eq. (12) become equal, while the
dashed horizontal line corresponds to φ′ = √

6mP. In the legend, H
denotes the Hubble parameter at the end of inflation Hend

reads

1= 3αφ̇2

2m4
P

=e2(Nhyp−Nkin)−1 ⇔ Nkin =Nhyp − ln
√

2. (19)

Thus, Nhyp 
 Nkin and we conclude that it is a good approxi-
mation to assume an instantaneous transition between hyper-
kination and kination.

We end this section with a relation between α, the energy
density at the start of hyperkination (end of inflation) ρend,
and Nhyp. Equation (14) together with the definition of Nhyp

gives

αρend = m4
P(1 − e−2Nhyp)

3e−4Nhyp

 m4

Pe
4Nhyp

3
, (20)

where we have assumed a non-negligible duration for hyper-
kination O(Nhyp) ∼ 1 in the last step. Note that Nhyp = 0
corresponds to α = 0, as it should.

2.3 Full cosmic evolution

Let us now embed a period of kination into a full history of the
Universe. Initially, during cosmic inflation, the field energy
density is dominated by potential energy. Once inflation ends,
the potential drops to zero and the field’s velocity increases
as the potential energy is transformed into kinetic energy. In
typical models, the field is trapped into a potential minimum,
oscillating there and decaying into a thermal bath of particles,
reheating the Universe. In our models of interest, the post-
inflationary potential is of the runaway type – that is, flat
and low – and the field keeps rolling onward under kinetic
domination. If the quartic kinetic terms dominate, this phase
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Fig. 2 Left: Logarithm of the energy density of the Universe (full
black), the field (dashed orange) and the background radiation fluid
(dashed blue) as a function of the number of e-folds calculated from
the end of inflation, obtained by numerically solving the system. Right:

Barotropic parameter of the Universe from the same computation. The
vertical dashed lines correspond to the start of kination, reheating, and
the BBN. The parameters for both panels are Nhyp = 15, Ωend

r = 10−10

and H = 1013 GeV

starts with hyperkination, transitioning into standard kination
later, as described above.

To reheat the Universe, we assume a small amount of
radiation is produced at the end of inflation e.g. through
Ricci reheating [99–101]. During hyperkination, the radi-
ation energy density diluted as fast as that of the field,
ρr,φ ∝ a−4, so radiation stays subdominant. However, when
standard kination starts, the field energy density dilutes faster,
ρφ ∝ a−6, and the radiation fraction grows until it overtakes
the field. The Universe is reheated and radiation domination
starts. We assume this to take place at high energies, above the
BBN temperature TBBN ≈ 1 MeV; afterwards, the Universe
follows the standard ΛCDM expansion history.

The behaviour of the system can be solved from the Fried-
mann equations

3H2m2
P =ρr+ρφ, ρr =3(Hend)

2m2
P × Ωend

r

(
a

aend

)−4

,

(21)

combined with the first equations from Eqs. (11) and (12).
Here Ωend

r is the radiation energy density fraction (parame-
ter) at the end of inflation and aend and Hend are the scale
factor and Hubble parameter at the end of inflation. Fig-
ure 2 shows the behaviour of the energy densities solved
numerically; for details on the numerical implementation,
see Appendix B. It also shows the corresponding evolution
of the barotropic parameter w, defined as the ratio between
the total pressure and energy density of the Universe, taking
values from w = 1/3 (hyperkination) to w = 1 (standard
kination) back to w = 1/3 (radiation domination).

In summary, we assume a cosmological evolution where
inflation is followed by two phases: hyperkination and kina-
tion, in this order. Reheating, which takes places at tempera-
tures larger than TBBN, signals the end of these phases. After

reheating, the conventional cosmic evolution with radiation
and matter dominated eras follows.7

The non-standard expansion history opens the door for
new phenomenology. For one, it changes the matching
between scales in the early and late Universe. Indeed,
when inflation is followed by a stiff cosmological era with
barotropic parameter w, the number of inflationary e-folds is
increased by [48,57,78,103]

ΔN = 3w − 1

3(1 + w)
ln

(
V 1/4

end

Treh

)
. (22)

It follows that hyperkination, for which w = 1/3, has a
vanishing contribution. This is not the case for kination, with
w = 1. Thus, in our scenario we have

ΔN = 1

3
ln

(
ρ

1/4
kin

Treh

)
, (23)

where ρkin 	 Vend is the energy density at the end of hyper-
kination and the onset of kination proper. Typically, this
increases the remaining number of inflationary efolds after
the cosmological scales exit the horizon to at most N∗ 
 65,
which implies ΔN � 5, something that must be taken into
account when calculating the inflationary observables.8

7 Some authors (see Ref. [69] and the discussion on page 6 in Ref.
[102]) have considered that the stiff era takes place after BBN, but before
recombination. This would relax the lower bound for the temperature of
the stiff phase to T < 6 keV. However, this possibility is not considered
in the present work.
8 Such an increase has some effect on the inflationary observables,
but this effect is minimal. For example, in Starobinsky inflation [1] or
Higgs inflation [104] (or α-attractors [105]), the scalar spectral index
is ns 
 1 − 2

N∗ . With N∗ = 60 this results in ns = 0.966. If we have
N∗ = 65 instead, then ns = 0.969 which is still within the 1-σ contour
of the Planck satellite observations [106].
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All in all, the CMB scales exit the Hubble radius approx-
imately 60–65 e-folds before the end of inflation instead of
the standard 50–60, see e.g. [78,107]. This affects inflation-
ary model building, although the effects are mitigated with
respect to the standard kination scenario. In addition, the
spectrum of primordial GWs is altered in ways that are sen-
sitive to the duration of hyperkination.

3 Gravitational waves

3.1 Tensor perturbations

To study the behaviour of GWs, we write the metric ten-
sor as gμν = a2

(
ημν + hμν

)
, where ημν is the Minkowski

metric so that a2ημν ≡ ḡμν is the unperturbed FLRW met-
ric, and hμν is a small perturbation. We expand the action
in Eq. (2) to second order in hμν , keeping only the tensor
modes,9 which evolve independently of other perturbations
in linear perturbation theory. The result is (compare to, e.g.,
[108])

δ(2)S = −m2
P

8

∫
d4x
√−ḡḡαβ∂αh

μν∂βhμν (24)

= −
∑

s=⊕,⊗

m2
P

4

∫
d4x
√−ḡḡαβ∂αh

s∂βh
s (25)

=
∑

s=⊕,⊗

m2
P

4

∫
dη a2

∫
d3k

(
|hs�k ′|2 − k2|hs�k |2

)
,

(26)

where η is the conformal time related to the cosmic time t by
dt = a dη, and a prime denotes a derivative with respect to
η. Here s indexes the two gravitational wave polarisations,
and the polarization amplitudes hs are defined through the
Fourier decompositions

hs(�x) =
∫

d3k

(2π)3/2 hs�k e
i �k·�x , (27)

so that hs�k describes oscillations of a given polarization in

directions perpendicular to the wave vector �k.
The amplitudes hs behave as massless scalar fields, up to

normalization, following the Klein–Gordon equation

hs ′′ + 2Hhs ′ + ∇2hs = 0 (28)

with wave solutions. Here H ≡ a′/a and ∇2 ≡ ∂i∂i where
i is summed over the spatial indices. The corresponding
energy–momentum tensor is

TGW
μν = − 2√−ḡ

δ(δ(2)S)

δḡμν

9 The tensor perturbations obey ∂μhμν = 0 and hμ
μ = 0.

=
∑

s=⊕,⊗

m2
P

2

(
∂μh

s∂νh
s − 1

2
ḡμν ḡ

αβ∂αh
s∂βh

s
)

,

(29)

so that the GW energy density reads

ρGW = a−2TGW
00 =

∑
s=⊕,⊗

m2
P

4a2

[
(hs ′)2 + (∇hs)2

]
. (30)

3.2 Quantization

The primordial GWs originate as quantum vacuum fluctua-
tions during inflation. To quantize them, we first go to the
canonically normalized variables vs = mPahs/

√
2, so that

(after integration by parts) the action in Eq. (25) becomes

δ(2)S=
∑

s=⊕,⊗

1

2

∫
d3xdη

[
−ηαβ∂αvs∂βvs+ a′′

a
(vs)2

]
(31)

=
∑

s=⊕,⊗

1

2

∫
dη d3k

[
|vs�k ′|2−

(
k2 − a′′

a

)
|vs�k |2

]
.

(32)

This is the Minkowski space action for a free field with mass
a′′/a, quantized the standard way by writing

v̂s(η, �x)=
∫

d3k

(2π)3/2

[
vsk(η)âs�ke

i �k·�x+vs∗k (η)âs
†

�k e−i �k·�x] ,

(33)

where âs�k , âs
†

�k are the ladder operators following the canonical
commutation relations

[âs′�k′ , â
s†

�k ] = δs
′sδ(3)(�k′ − �k). (34)

Time evolution is delegated to the mode functions vsk ,
which follow the Mukhanov–Sasaki equations derived from
Eq. (32),

vsk
′′ +

(
k2 − a′′

a

)
vsk = 0. (35)

Note that, due to the ladder operators, the mode functions vsk
differ in normalization from the classical Fourier modes vs�k .
Abusing the notation slightly, we differentiate these by writ-
ing k instead of �k as the mode function index – in an FLRW
background, the quantum mode functions only depend on the
magnitude of the wave vector and not its direction. Analo-
gously, we define ĥs = √

2v̂s/(amP), hsk = √
2vsk/(amP).

Deep inside the Hubble radius, k � H, the GWs do not
feel the expansion of space, the mass term a′′/a is negligible,
and Eq. (35) has the standard vacuum solution

vsk = 1√
2k

e−ikη, vsk
′ = −ikvsk . (36)

When the mode functions follow Eq. (36), the state anni-
hilated by âsk is the Bunch–Davies vacuum [109]; we take
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the perturbations to start in this vacuum state during infla-
tion. Over their cosmic evolution, the modes stretch and exit
the Hubble radius, evolving beyond Eq. (36). After inflation,
they re-enter the Hubble radius, this time following the gen-
eral sub-Hubble form

vsk = 1√
2k

[
λ+(k)e−ikη + λ−(k)eikη

]
. (37)

We will solve the coefficients λ±(k) for a given cosmic
history in Sect. 4.2; since the Mukhanov–Sasaki equation
conserves the Wronskian of its solutions, we have |λ+|2 −
|λ−|2 = 1, set by the initial vacuum in Eq. (36). The coef-
ficient λ− contains the GW excitations, the part beyond the
vacuum solution in Eq. (36).

Let us next consider the energy density of the GWs
induced by the above process. The late-time GW energy den-
sity is dominated by high-k, sub-Hubble modes, for which
Eq. (37) applies. Using this result, we replace hs by ĥs in
the energy–momentum tensor in Eq. (29) and compute its
expectation value. The result is

〈ρ̂GW〉 =
∑

s=⊕,⊗

m2
P

2

∫
(d ln k) k3

4π2a2

(
|h′s

k |2 + k2|hsk |2
)

≈
∫

k=H

(d ln k)

2π2

k4

a4

(
|λ+|2 + |λ−|2

)

=
∫

k=H

(d ln k)

π2

k4

a4

(
|λ−|2 + 1

2

)
, (38)

where we used the Wronskian condition, and the fact that the
integration limit k > H restricts us to sub-Hubble modes. In
the last line, we have taken the polarization sum (starting
from the Bunch–Davies vacuum, λ± are identical for both
polarizations).

Note that, regardless of λ±, the final term of 1/2 makes
Eq. (38) diverge for large k – this is the usual energy density
vacuum divergence of quantum field theory. One can regu-
larize the result by normal ordering the ladder operators in
ρ̂GW. However, this has to be done with the late-time ladder
operators which annihilate the late-time Bunch–Davies vac-
uum. These are related to the original ladder operators âsk by
a Bogoliubov transformation; for a detailed discussion, see
e.g. Ref. [109]. The regularized energy density becomes

〈ρ̂GW〉 ≈
∫

k=H

(d ln k)

π2

k4

a4 |λ−|2. (39)

In practice, all of our modes of interest are highly excited
with |λ−| � 1, so that Eqs. (38) and (39) are approximately
equal. In this limit, the vacuum contribution is negligible and
the GWs are essentially classical.

3.3 Energy density scaling and the problem with kination

From Eq. (39), we see that the sub-Hubble GWs scale as radi-
ation, with ρGW ∝ a−4, as expected for massless degrees of
freedom. In cosmology with a standard expansion history,
only a small amount of GWs are generated during inflation,
and they always stay subdominant compared to the back-
ground radiation energy density. However, during kination,
the background dilutes faster than radiation, and the gravita-
tional wave fraction grows. The resulting gravitational wave
spectrum is peaked and tends to either clash with bounds on
the number of relativistic degrees of freedom during BBN or
be hard to observe in gravitational wave experiments [58–63].
In the following sections, we will demonstrate that adding a
period of hyperkination helps with this issue, opening a wider
parameter space for allowed GW spectra.

4 Analytical solution

4.1 Solving the background

Let us move on to solve the GW spectrum analytically. The
first step is to solve the background dynamics, in particular
the scale factor a, in the presence of radiation, as a function of
the conformal time η. This provides us with a′′/a, allowing
us to later solve the Mukhanov–Sasaki equation for the GW
mode functions.

The scale factor evolves through different epochs during
the cosmic history: inflation, hyperkination, kination, and
radiation domination. The transitions between the epochs,
assumed to be instantaneous, happen at conformal times ηend

(end of inflation and start of hyperkination), ηkin (end of
hyperkination and start of kination), and ηreh (end of kina-
tion and start of radiation domination, i.e., reheating), which
we will also solve in terms of the model parameters below.
We use the same indices to refer to various variables eval-
uated at these times. We require the continuity of a(η) and
its derivative at the transition times; between them, we solve
a(η) from

dη = dt

a
= da

a2H
= da

a2

√
3m2

P

ρ
. (40)

If we know how the Universe’s energy density ρ scales in a,
we can integrate and invert Eq. (40) to obtain a(η) epoch by
epoch. We will normalize the scale factor so that

a(ηend) = 1, (41)

and write a = eN , so that N counts the e-folds since the end
of inflation.

For inflation, we assume a generic slow-roll inflationary
phase, with the end of inflation ηend < 0 determined by the
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usual condition

ε ≡ − Ḣ

H2 = 1, (42)

where ε is the first Hubble slow-roll parameter. For the
reader’s benefit, we will express our GW mode functions
as a function of ε, approximated to be constant. In the exam-
ple spectra we consider in Sect. 5, we work in the pure de
Sitter limit ε = 0. To avoid clutter (and slightly abusing the
notation), we will use H , as for pure de Sitter, to refer to the
Hubble parameter at the end of inflation Hend.

For hyperkination, we get ρ(N ) from Eq. (14), where φ′
follows the first branch of Eq. (17) and we write the initial
field velocity φ′

0 in terms of Nhyp as explained below the
equation. For kination and radiation domination, we use the
standard results results ρ ∝ a−6 and ρ ∝ a−4. With these,
the full behaviour of the scale factor becomes

a =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
− 1

(1−ε)Hη

]1/(1−ε)

,

η ≤ ηend,

eNhyp sin
[
e−Nhyp(Hη + 1) + sin−1 e−Nhyp

]
,

ηend ≤ η ≤ ηkin,

akin
√

2Hkin(η − ηkin) + 1,

ηkin ≤ η ≤ ηreh,

areh[Hreh(η − ηreh) + 1],
ηreh ≤ η.

(43)

For the hyperkination expression, we used

ηend = − 1

(1 − ε)H

 − 1

H
, (44)

which follows from Eq. (41) and the first line in Eq. (43).
We also used Eq. (20) with 3H2m2

P = ρend to eliminate
α. For a long hyperkination period with Nhyp � 1, we can
approximate the expression as

a(η) 
 eNhyp sin
[
e−Nhyp(Hη + 2)

]

 Hη + 2, (45)

where the right-hand-side is exactly the scale factor for a
radiation-dominated universe, compare to the last line in
Eq. (43). Note that the last approximation stops being valid
at large times η ∼ eNhyp/H and one needs to use the middle
expression instead. This is the case below, when we obtain
an analytical estimate for ηkin.

For kination and radiation domination, the constants in
Eq. (43) are to be read off from the end values during the
previous phase. Using Eq. (45), we have

akin = eNhyp sin
[
e−Nhyp(Hηkin + 2)

]
,

areh = akin
√

2Hkin(ηreh − ηkin) + 1, (46)

and

Hkin = He−Nhyp

tan
[
e−Nhyp(Hηkin + 2)

] ,

Hreh = Hkin

2Hkin(ηreh − ηkin) + 1
. (47)

In practice, it is a good approximation to use

akin = Hηkin + 2, Hkin = H

Hηkin + 2
. (48)

Let us next estimate the conformal times for the rest of the
transition points. We do this by solving an equation where
a is expressed in two different ways, through Eq. (43) and
through a condition related to our model parameters.

As a reminder, we define the beginning of kination as
the time at which both addends inside the parenthesis in the
energy density in Eq. (12) become equal. Since this happens
at large times η ∼ eNhyp/H , we use the middle expression in
Eq. (45) together with Eq. (19) to obtain

akin = eNhyp sin
[
e−Nhyp(Hηkin + 2)

]
= eNkin = eNhyp

√
2

,

(49)

so that

ηkin =
π
4 e

Nhyp − 2

H

 πeNhyp

4H
. (50)

The time of reheating ηreh can be estimated by noting
that the total energy density during kination scales as ρ ∝
a−6, while that of the radiation scales as ρr ∝ a−4. Thus,
the density parameter of radiation during kination scales as
Ωr ∝ a2. By reheating, radiation is the dominant component,
that is,

1 ≈ Ω reh
r ≈ Ωkin

r

(
areh

akin

)2

= Ωend
r

2H2ηkinηreh

e2Nhyp/2
, (51)

so that

ηreh = eNhyp

πΩend
r H

, (52)

where we used Ωkin
r ≈ Ωend

r , since the field and radia-
tion redshift similarly during hyperkination, together with
the approximation |ηend| 	 ηkin 	 ηreh yielding areh ≈
H

√
2ηkinηreh from Eqs. (46) and (47). We also used Eq. (49)

for akin and Eq. (50) for ηkin.

4.2 The gravitational wave mode functions

The next step is to obtain expressions for the GW mode
functions. We proceed by matching the solutions and their
derivatives at the transitions between epochs. To simplify the
expressions, we do the matching in the super-Hubble limit,
which gives an excellent approximation except for modes
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Fig. 3 Comparison between the analytical solution (solid blue lines)
and its numerical counterpart (dashed orange) of the imaginary part of
the mode functions hsk as a function of the elapsing number of e-folds
when the mode enters the horizon during the hyperkination (top left),
kination (top right) and radiation domination (bottom left) periods. The
match is excellent, except when the wavenumber of the mode is com-

parable to the horizon size at a transition (bottom right). The vertical
dashed lines represent the time of horizon crossing k = aH and the
times at which kination starts Nkin and reheating happens Nreh. The
parameters for all panels are Nhyp = 15, Ωend

r = 10−10 and H = 1013

GeV

entering the horizon around the transitions. Our goal is to
obtain the coefficients λ−(k) from Eq. (37) for each mode so
that we can read off their asymptotic, sub-Hubble behaviour.
We report the details of the somewhat technical calculations
in Appendix C, while in the present section we simply give
the main results, as well as a comparison between the ana-
lytical and numerical solutions in Fig. 3 (for details on the
numerics see Appendix B).

We can summarize the scale factor time dependence from
the last section as

a =
(

η

ηc

)1/2−ν

, ν ≡ 3(w − 1)

2(1 + 3w)
, (53)

where w is the corresponding barotropic parameter of the
Universe, so that ν = 3/2 (w = −1) for de Sitter, ν =
3/2 + ε ≡ νI for a more realistic quasi-de Sitter inflation
[22], ν = 0 (w = 1) for kination and ν = −1/2 (w = 1/3)
for hyperkination and radiation domination. We then get

a′′

a
= −

(
1

4
− ν2

)
1

η2 . (54)

The constantsηc can be read from the previous section, giving

a′′

a
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2+3ε
η2 , η ≤ ηend,

0, ηend ≤ η ≤ ηkin,

− 1
4z2 , ηkin ≤ η ≤ ηreh,

0, ηreh ≤ η,

(55)

where we defined for kination

z ≡ η − ηkin

2
+ 1

H
. (56)

Note that a′′ = 0 during hyperkination. This feature is
shared with the period of radiation domination, during which
the spectrum is flat, a result that was originally derived in
Ref. [110]. Therefore we expect the peak from kination to be
truncated by a secondary plateau.

With this, we can proceed to solve the Mukhanov–Sasaki
equation (35). Making the change of variables x = kη (x =
−kη during inflation when η < 0) and redefining the mode
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functions as v = √
xg, it can be recast as a Bessel equation

x2 d2g

dx2 + x
dg

dx
+ (x2 − ν2)g = 0, (57)

the most general solution of which is given by

g(x) = c1H
(1)
ν (x) + c2H

(2)
ν (x), (58)

where H (1)
ν and H (2)

ν are Hankel functions of the first and sec-
ond kind respectively. Using the values of ν from above, the
solutions during inflation,hyperkination, kination, and radi-
ation domination become

vsk(η)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
π
4k

√−kηei
π
4 (1+2νI )H (1)

νI (−kη),

η ≤ ηend,
1√
2k

[
α+(k)e−ikη + α−(k)eikη

]
,

ηend ≤ η ≤ ηkin,√
π z
4

[
β+(k)e−iπ/4H (2)

0 (kz)+β−(k)eiπ/4H (1)
0 (kz)

]
,

ηkin ≤ η ≤ ηreh,
1√
2k

[
γ+(k)e−ikη + γ−(k)eikη

]
,

ηreh ≤ η,

(59)

where we fixed the coefficients c1,2 during inflation so that in
the initial sub-Hubble regime, −kη � 1, the mode functions
obey the Bunch–Davies vacuum conditions in Eq. (36). The
constants and phases in the other branches have been chosen
so that the coefficientsα±,β±, andγ± correspond to theλ± of
Eq. (37) in the late sub-Hubble limit kη � 1. Their values are
fixed by requiring the continuity of vsk and its derivative at the
transition times ηend, ηkin, and ηreh. Matching the branches
in the super-Hubble limit yields

α±(k) = ∓ f (ε)

2

(
H

k

)2+ε

, (60)

β±(k) = 2ie±iπ/4α−(k)

√
kηkin

π
, (61)

γ±(k) = ∓α−(k)

√
ηkin

2zreh
, (62)

where

f (ε) ≡ eiπε/2 Γ (3/2 + ε)

Γ (3/2)
2ε, (63)

and zreh 
 ηreh is z from (56) evaluated at ηreh. For the scale-
invariant case with ε → 0, f (ε) → 1, the moduli squared
of the coefficients take the simplified forms

|α−(k)|2 = H4

4k4 ,

|β−(k)|2 = H4

πk4 kηkin,

|γ−(k)|2 = H4

4k4

ηkin

2ηreh
. (64)

Note that since we did the matchings at the super-Hubble
limit, the expressions in Eqs. (60)–(62) and (64) only apply
for modes that are super-Hubble during the corresponding
transition. To find the final behaviour of a mode, we take the
last transition where this applies, track the following mode
function from Eq. (59) to the sub-Hubble limit, where it takes
the form in Eq. (37), and equate the α−, β−, or γ− with
the coefficient λ−. Indeed, after a mode has settled to its
asymptotic sub-Hubble behaviour, its evolution is trivial –
redshifting gently like radiation – and it won’t be sensitive
to further changes in the equation of state of the Universe.

From the Mukhanov–Sasaki solutions in Eq. (59) we can
also deduce the metric perturbations hsk . Using the scale
factor expressions, a 
 Hη, a 
 H

√
2ηkinη, and a 


H
√

ηkin/(2ηreh)η during hyperkination, kination, and radia-
tion domination, respectively, and using Eqs. (60)–(62), we
get

hsk(η)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i H
mPk3/2 f (ε)

( k
H

)−ε
j0(kη), ηend ≤η≤ηkin,

i H
mPk3/2 f (ε)

( k
H

)−ε
J0(kz), ηkin ≤η≤ηreh,

i H
mPk3/2 f (ε)

( k
H

)−ε
j0(kη), ηreh ≤η,

(65)

where j0(kη) = √
π/(2kη)J1/2(kη) = sin kη/(kη) is a

spherical Bessel function of the first kind and J0 is a Bessel
function of the first kind. For a comparison with the numer-
ical solutions in the scale-invariant case, see Fig. 3. We do
not include the inflationary metric perturbations in Eq. (65)
as they do not simplify as nicely as the others.

Note that in the super-Hubble limit, all the expressions in
Eq. (65) freeze to

hsk(η)
k|η|→0−−−−→ i H

mPk3/2 f (ε)

(
k

aH

)−ε
ε→0−−→ i H

mPk3/2 ,

(66)

where the last one is the standard scale-invariant result. Note
that this result holds also for inflation. In principle, one can
use this as an initial condition and solve the Klein–Gordon
equation (28) to obtain Eq. (65) separately in each phase
without the matching procedure described above.10 One can
then use Eq. (38) to obtain the unregularized GW energy
density. We use this method in our numerical solutions. The
expressions for α±, β±, and γ± are still needed to regularize
the integral in Eq. (38), and they are the conventional way to
express the GW excitations in the literature.

10 In particular, GWs at the CMB scales stay frozen throughout the
kination and hyperkination periods and are thus not affected by the
non-standard background evolution. The same is true for the curvature
perturbation R – see [111] for a linear treatment of R in a model with
a non-standard kinetic sector, Appendix B of [94] for an application
to Palatini R2 models, and [112] for a general proof that R freezes at
super-horizon scales.
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5 Gravitational wave observations

5.1 Gravitational wave spectrum

We are finally in a position to calculate the spectral energy
density of the primordial GW background. It is defined as

ΩGW(k, η) ≡ 1

ρ(η)

dρGW(k, η)

d ln k
= 1

ρ(η)

k4|λ−(k)|2
π2a4(η)

, (67)

where ρ is the total energy density of the Universe and
ρGW(k, η) is the contribution to the GW energy density from
modes around k, given by Eq. (39) for the dominant, sub-
Hubble modes. Here λ− is to be matched to α−, β−, or γ−
as explained above.

To evaluate Eq. (67) at a specific time, we note that the
radiation energy density can be written as (remember our
normalization aend = 1)11

ρr(η) = Ωr(η)ρ(η) = Ωend
r ρenda

−4(η), (68)

so that

ρ(η)a4(η) = ρend
Ωend

r

Ωr(η)
. (69)

In particular, using the current radiation temperature and total
energy density, T0 = 2.7 K = 0.23 × 10−9 MeV and ρ0 =
1.05 × 10−120m4

P [114], we obtain ρ0
r = 8.79 × 10−125m4

P
and Ω0

r = 8.37 × 10−5. We use the index ‘0’ to refer to
quantities today. With this and the de Sitter limit results in
Eq. (64) together with Eqs. (50) and (52), the GW spectrum
today becomes

ΩGW(k, η0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ω0
r

96

(
H
mP

)2
, k < kreh,

Ω0
r

12π2Ωend
r

(
H
mP

)2
k
H eNhyp , kreh < k < kkin,

Ω0
r

12π2Ωend
r

(
H
mP

)2
, kkin < k < kend.

(70)

Below, we will refer to the different branches as Ω rad
GW, Ωkin

GW,

and Ω
hyp
GW. The boundary values are given by k = H at the

end of inflation and at the transition times. Using Eqs. (46)
and (47), we get

kend = H,

kkin 
 1

ηkin
= 4H

πeNhyp
,

kreh 
 1

2ηreh
= πΩend

r H

2eNhyp
, (71)

where we approximated |ηend| 	 ηkin 	 ηreh.

11 We neglect the change in the effective number of relativistic species
contributing to the entropy g∗S(T ) and to the energy density g∗(T ).
This introduces an additional mild scale dependence into the spectrum.
For further details, we refer the reader to Ref. [113], and in particular
to Fig. 4 therein.

Fig. 4 Analytical spectral energy density of the primordial GWs
(dashed orange) and its numerical counterpart (full green). For details
on the numerical solution, we refer the reader to Appendix B. The ver-
tical dotted lines represent the frequencies associated with the start of
kination, reheating and BBN, while the horizontal dashed line repre-
sents the BBN bound on the spectrum. The numerical spectral energy
density is not well resolved at the largest frequencies because the modes
re-entering the horizon right after inflation are never frozen as assumed
in the code. This leads to the unphysical upslope around 1011 Hz. The
parameters used are Nhyp = 15, Ωend

r = 10−10 and H = 1013 GeV

In our figures, we show the spectrum as a function of f ,
the GW frequency today. To relate f to our wavenumber12

k, we use Eq. (68) and ρ = 3H2m2
P, yielding

f = k

2πa0
= 1

2π

(
Ω0

r H
2
0

Ωend
r H2

)1/4

k. (72)

An important frequency is the one that corresponds to BBN.
It does not depend on the early expansion history, and we can
solve it explicitly as

fBBN = 1

2π

aBBNHBBN

a0
= 1

2π

(
ρ0

r

ρBBN

)1/4
(

ρBBN

3m2
P

)1/2


 1.36 × 10−11 Hz, (73)

where we used ρBBN 
 3 × 10−86m4
P. We present fBBN as a

vertical dotted line in our graphs.
We show a comparison between the numerical and ana-

lytical spectra, for an example set of parameters, in Fig. 4.
We see that the analytical expressions for the spectrum are
very accurate. In Fig. 5 we present some example analytical
spectra superimposed with the sensitivity curves for future
GW experiments.

From Eqs. (70) and (71), we can straightforwardly under-
stand the shape of the spectrum. The height of the first
plateau, corresponding to hyperkination, is given by the com-
bination H2/(Ωend

r m2
P), i.e., the larger the energy density at

12 Note that, since we have set a = 1 at the end of inflation instead of
today as is customary, the numerical values of our k differ from those of
the usual comoving wavenumber. Equation (72) takes this into account.
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O3

O5

ET
LISA

DECIGO

BBO

SKA

BBN

BBN

Fig. 5 A few different spectra superimposed with the PLIC curves
of the GW experiments. The parameter values {N , H,Ωend

r } are
{17.5, 4.3 × 1011 GeV, 10−12} for the blue curve, {25, 7.9 ×
1011 GeV, 10−9} for the orange curve, {20, 7.9 × 1010 GeV, 10−5}

for the green curve and {29.5, 1.7×1013 GeV, 10−8} for the red curve.
We also show lines parallel (dashed gray) to the kination part of the
spectrum. If not for the hyperkination period the spectra would violate
the BBN bound

the end of inflation and the smaller the reheating efficiency,
the larger the energy density spectrum amplitude will be.
The third free parameter of our theory, the number of e-folds
of hyperkination Nhyp, controls the length of the boosted
spectrum; the longer the hyperkination period lasts, the more
stretched the boosted spectrum is. In contrast, the height of
the second plateau depends on H2/m2

P, i.e., it depends on the
energy scale at the end of inflation only, the standard result
from a scenario with no period of kinetic domination, origi-
nally derived in Ref. [110]. Both plateaus are connected via a
region growing linearly with the frequency f , corresponding
to the kination period. At large frequencies, the spectrum is
cut off at the last mode to be excited by inflation. At small
frequencies, there is no cutoff; the first line in Eq. (70) applies
to all modes that re-enter during radiation domination.

Although it is easier to understand the shape of the spec-
trum in terms of Nhyp, the free parameter in the action in
Eq. (2) is α. For this reason, we present below our results
regarding the parameter space of the theory in terms of α

and not Nhyp. The two are related by Eq. (20). For complete-

ness, we present here the spectrum in terms of α, and with k
replaced with f :

ΩGW( f, η0)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ω0
r

96

(
H
mP

)2
,

f < freh,

(
Ω0

r
Ωend

r

)3/4
H3/2

6πH1/2
0 m2

P

(
1+
√

1+36αH2/m2
P

2

) 1
2

f,

freh < f < fkin,

Ω0
r

12π2Ωend
r

(
H
mP

)2
,

fkin < f < fend,

(74)

where

fend = 1

2π

(
Ω0

r H
2
0 H

2

Ωend
r

)1/4

, (75)

fkin = 2

π2

(
Ω0

r H
2
0 H

2

Ωend
r

)1/4
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Table 1 Values of the frequencies corresponding to reheating freh and
the end of inflation fend for different values of α, given that H =
1013 GeV and Ωend

r = 10−10

α freh fend

1030 3.9 × 10−5 Hz 4.4 × 1010 Hz

1035 2.2 × 10−6 Hz 4.4 × 1010 Hz

1040 1.2 × 10−7 Hz 4.4 × 1010 Hz

×
⎛
⎝1 +

√
1 + 36αH2/m2

P

2

⎞
⎠

− 1
2

, (76)

freh =
[
Ω0

r (Ωend
r )3H2

0 H
2
]1/4

4

×
⎛
⎝1 +

√
1 + 36αH2/m2

P

2

⎞
⎠

− 1
2

. (77)

Note that the frequencies of the modes that cause the trun-
cated peak, corresponding to hyperkination and kination,
are always between freh and fend, given by Eqs. (77) and
(75), respectively. The specific values depend on the Hubble
parameter at the end of inflation H , the density parameter
of radiation at the end of inflation Ωend

r and α. In order
to give some indicative values, let us assume GUT scale
inflation H 
 1013 GeV and electroweak-scale reheating
ρ(ηreh) 
 (200 GeV)4, corresponding to Ωend

r = 10−10.
Changing α obviously leaves fend unchanged. In Table 1, we
show freh and fend for a few different α. Note that they are
larger than fBBN, as they should be.

5.2 Parameter space and detectability

In the present section, we put our model to the test and anal-
yse the detectability of the generated spectrum of primor-
dial GWs in the presence of a period of hyperkination after
inflation. Since our analytical expression for the spectrum
approximates very well its numerical counterpart, as can be
seen from Fig. 4, we use it in order to compare with the sensi-
tivity curves of various detectors, namely LISA [30–32], ET
[115,116], LVK observing runs O3 and O5 [25–29], SKA
[117], DECIGO [33–35] and BBO [36]. For each of them,
we run a scan over the parameter space {α,Ωend

r , H}. The
successful parameter space can be found in Fig. 7.

Before we describe how the parameter space scan is
performed, we comment on some bounds that need to be
imposed. First, BBN should happen during the period of
radiation domination. In other words, at (and below) the fre-
quency associated with BBN, the spectrum needs to be in
its lower plateau, i.e., freh > fBBN, where freh is given by
Eq. (77). This imposes a bound on the maximum value α can

take. Solving for α in Eq. (77) gives

α <
m2

P

36H2

⎡
⎢⎣
⎛
⎝
√

Ω0
r (Ωend

r )3H2
0 H

2

8 f 2
BBN

− 1

⎞
⎠

2

− 1

⎤
⎥⎦


 m2
PΩ0

r (Ωend
r )3H2

0

2304 f 4
BBN

= 6.9 × 1085(Ωend
r )3. (78)

Importantly, we note here that the specific value we use
for fBBN in Eq. (73) comes from TBBN = 1 MeV. How-
ever, recent studies [69,102] have shown that the stiff era is
restricted to occur at temperatures T > 2.5 MeV. This means
that the value in Eq. (73) would become a factor of 2.5 larger,
and the bound in Eq. (78) a factor of 0.026 smaller. However,
given that the available parameter space for α spans many
order of magnitude (see Fig. 7), this change does not affect
our results appreciably. Nevertheless, the reader should keep
in mind that our bound T > 1 MeV is an approximate one.

In addition, the GW energy density at BBN must be low
enough not to disturb the standard results. Equations (67)
and (68) give ΩBBN

GW = Ω0
GW/Ω0

r , allowing us to translate
the bound to into the GW energy density today, yielding [118]

h2Ω0
GW =

∫
d f

f
h2ΩGW( f ) < 1.12 × 10−6, (79)

where h ≈ 0.7 is the dimensionless Hubble constant. In
practice, however, for all detectors except LVK O5 and ET,
this bound is irrelevant. Indeed, it is sufficient to impose that
the hyperkination plateau be below the minimum of LVK
O3, the region excluded by now by LVK, which is below the
BBN bound. Note that for LVK O5 and ET there exists some
parameter space where the hyperkination plateau is between
both limits. We take this into account in the scans by showing
the excluded region from LVK O3 in Fig. 6. There, for each
value of H and Ωend

r , we show the maximum value of α,
labelled αmax, below which the signal is not observationally
excluded.

We can also impose an upper bound on the energy scale
at the end of inflation. Using the slow-roll expression for the
amplitude of the scalar power spectrum, we can write the
Hubble parameter at CMB scales as

HCMB =
√

ρCMB

3m2
P

= mP

√
As

π2r

2
, (80)

where As = 2.1 × 10−9 [114] and r is the tensor-to-scalar
ratio. The latest constraint on r is r < 0.036 [16]. The energy
scale at the end of inflation is always lower than at CMB
scales, so Eq. (80) provides an upper bound on H at the end
of inflation,

H < 4.7 × 1013 GeV. (81)
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Fig. 6 Parameter space of the theory excluded by LVK O3. For each
value of H and Ωend

r , there is a maximum value for α, labelled αmax,
above which the signal is observationally excluded

Further, the plateau corresponding to radiation domination
should be below the one corresponding to hyperkination, but
this is not strictly guaranteed by our approximative spectrum
if the kination period is short. To ensure this condition is
satisfied, we impose

Ωend
r <

8

π2 
 0.81, (82)

see Eq. (74).
The logic for the parameter scan is as follows. We con-

sider a grid in the (H,Ωend
r ) plane, with the values of H

lying in the interval [106, 4.7×1013] GeV and those of Ωend
r

lying in the interval [10−20, 0.81], both in steps of 0.5 in log-
arithmic units. Then, for each point in the grid, we find the
minimum value αmin, such that our spectrum is detectable
by the specific experiment we are considering. Since the
effect of increasing α (or, analogously, Nhyp) is to stretch
the flat region corresponding to hyperkination, if a signal
is detectable for αmin, it will also be detectable for every
α > αmin. Note that for LVK O5 and ET, for a certain region
in the (H,Ωend

r ) plane, there is also a maximum value that
α can take, see Fig. 6. This limitation exists only for values
where the height of the hyperkination plateau is above the
minimum of the LVK O3 sensitivity curve.

In order to determine whether a signal can be detected, we
compute the power-law integrated curves (PLIC) [119] for
each experiment. Then, for each set of parameters, we find
the minimum αmin such that the energy density spectrum is at
least as large as the PLIC under consideration. An easy way
to picture this procedure is to realise that the spectra with
α = αmin are tangent to the PLICs. Increasing α increases
the length of the hyperkination plateau, so if the spectrum
is tangent to a PLIC, it will be above it for some frequency
range if α > αmin.

In Fig. 5, we show some example spectra with a large
enough SNR, superimposed with the sensitivity curves for
all considered experiments. In the same figure, we also show
a grid of lines with the same slope as Ωkin

GW( f, η0) to showcase
how in a setup with inflation being followed by usual kination
most of the signals would violate the BBN bound. Hyperki-
nation fixes this by truncating the spectrum and introducing
a new plateau at high frequencies.

We report the results of parameter space scans as contour
plots in Fig. 7. There, for each pair (H,Ωend

r ), we give the
minimum αmin such that the signal is detectable, for each
experiment. We emphasize that the totality of the success-
ful parameter space is contained in these figures. Besides
the maximum value of H from Eq. (81), the parameter
space is bounded at small H by the BBN timing condition
freh > fBBN, at small Ωend

r by the BBN energy density con-
dition in Eq. (79) and the LVK O3 exclusion bound, and at
large Ωend

r by the requirement that the higher hyperkination
plateau must reach the lower end of the sensitivity band for
the given experiment.

We conclude that there is ample parameter space to accom-
modate detectability by all experiments. Indeed, as can be
seen from Fig. 7, for a Hubble parameter H � 1013 GeV,
somewhat below the GUT scale, and a reheating efficiency
in the range of 10−15 � Ωend

r � 10−2, which can be easily
accommodated by a variety of reheating mechanisms [40,99–
101,120–122], we can always find a detectable signal. We
emphasize that the size of the parameter space is large, and
there is no need for fine-tuning to obtain a detectable signal.
Indeed, in Fig. 7 we report the minimum value α has to take
in order for the signal to be detectable. However, any value
of α larger than αmin also leads to a detectable signal.

The value of αmin is quite large for most experiments. This
can be understood from Eq. (20). Indeed, we can find a lower
bound on αmin by taking the limit Nhyp 	 1. It gives

αρend 
 2m4
P

3
Nhyp. (83)

Using a GUT energy scale ρend ∼ 10−10m4
P, consider-

ing an almost non-existent period of hyperkination with
Nhyp = 0.1, we obtain a rough lower bound αmin � 1010.
As soon as we have a larger Nhyp, αmin grows exponentially
with it. This is in line with our latest work [80], where we
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Fig. 7 Parameter space of the theory for the minimum α such that the
signal is detectable by LVK O5 (top left), ET (top middle), DECIGO
(top right, BBO (bottom left), and LISA (bottom middle) and SKA (bot-

tom right). For each value of H and Ωend
r , there is a minimum value

for α, labelled αmin, above which the signal is always detectable (minus
the excluded region in Fig. 6 for LVK O5 and ET)

study quintessential inflation with an action of the form in
Eq. (1). There, we find α ∼ 1010 for successful quintessential
inflation, without considerable hyperkination.

6 Discussion and conclusions

We have investigated the spectrum of primordial gravitational
waves (GWs) generated by cosmic inflation in a model where
after inflation but before reheating we have a period when the
Universe is dominated by the kinetic energy density of the
inflaton scalar field φ, when the field is characterised by both
the usual quadratic kinetic term and also by a higher-order
quartic kinetic term. This is natural in theories of quadratic
R + αR2 gravity in the Palatini formalism, where in the
Einstein frame the quartic kinetic term is proportional to α,
the coefficient of quadratic gravity. However, we can equally
well envisage a k-inflation scenario where the kinetic term
of the scalar field includes a term ∝ αX2, where X = 1

2 φ̇2.

This kinetically dominated period is divided into two
parts. In the first part, the inflaton kinetic energy density is
dominated by the higher-order kinetic term; a period which
we call hyperkination. In the second part, the higher-order
kinetic term becomes negligible and the inflaton kinetic
energy density is dominated by the usual quadratic term; a
period called kination. We have shown that, while kination
is a stiff phase with barotropic parameter w = p/ρ = 1, as
is well known, hyperkination is not; the barotropic param-
eter during hyperkination is that of radiation w = 1/3. As
a result, the modes of inflation-generated primordial GWs
which re-enter the horizon during hyperkination form a flat
spectrum, in the same way as the modes which re-enter the
horizon after reheating, in the usual radiation era. However,
during usual kination, the GW spectrum is not flat but the
GW density parameter per frequency logarithmic interval
is ΩGW( f ) ∝ f . This means that, for modes re-entering
the horizon after inflation and before reheating, the GW sig-
nal is boosted. This boost corresponds to a truncated peak

123



Eur. Phys. J. C (2023) 83 :1152 Page 17 of 23 1152

in the GW spectrum; truncated because the spectrum corre-
sponding to hyperkination is flat but it can be of much larger
amplitude than that corresponding to the eventual radiation
era. Consequently, the period of kinetic domination (kination
+ hyperkination) can be made to last longer and the boosted
spectrum to extend to lower frequencies without the danger
of the production of excessive primordial GWs. In particular,
the truncated spectrum can avoid the upper bound imposed
by the requirement that Big Bang Nucleosynthesis (BBN)
remains undisturbed. Thus, primordial GWs in all observ-
able frequencies can be enhanced without a problem.

We have analytically and numerically studied thoroughly
the inflationary production and the subsequent evolution of
GW modes and obtained the resulting GW spectrum, linking
it with the model parameters. The characteristic shape of the
spectrum will be testable in the near future by forthcoming
experiments, such as advanced LIGO-Virgo-KAGRA, LISA,
DECIGO, BBO and ET, as depicted in Fig. 5. If observed,
such a spectrum can provide insight into the underlying the-
ory, such as the energy scale of inflation, the reheating effi-
ciency and the coefficient α. The latter is directly related to
the duration of the hyperkination phase. Indeed, when hyper-
kination lasts Nhyp, then Eq. (20) suggests

α = m4
P

3ρend
exp(4Nhyp), (84)

where ρend = 3H2m2
P is the energy density at the end of

inflation, and H is the corresponding Hubble scale. Typically,
inflation is at the scale of grand unification, which implies
H2 ∼ 10−10 m2

P. In this case, the above suggests that eNhyp ∼
10−3α1/4, which means that

Nhyp 
 10 ⇒ α ∼ 1026. (85)

Note that, in the usual Starobinsky R2 inflation we have α =
1.1×109. Such large values of alpha are non-perturbative, but
this is no more a problem in our setup than it is in Starobinsky
gravity.

Important information can also be deduced by the ampli-
tude of the truncated peak corresponding to hyperkination.
Indeed, Eq. (70) suggests that the value of the GW spectrum
on the hyperkination plateau is given by

Ω
hyp
GW = 1

12π2

Ω0
r

Ωend
r

(
H

mP

)2

, (86)

where Ω0
r 
 10−4 is the density parameter of radiation at

present and Ωend
r is the density parameter of radiation at

the end of inflation, also called reheating efficiency, because
the larger it is the sooner after inflation, reheating takes
place. As discussed, in order not to destabilise BBN, we need
Ω

hyp
GW < 10−6. Thus, we obtain a lower bound on the reheat-

ing efficiency as Ωend
r > (H/mP)2. Typically for inflation

we have H2 ∼ 10−10m2
P, which implies Ωend

r > 10−10.

In an effort to stay generic, we have not considered a spe-
cific mechanism for producing the radiation which eventu-
ally reheats the Universe. We note however, that a number of
such mechanisms exist, such as instant preheating [40,120],
curvaton reheating [121,122] or Ricci reheating [99–101] to
name but some. It is even possible to avoid introducing addi-
tional degrees of freedom and consider that reheating occurs
due to the dissipating properties of the inflaton field itself,
as discussed in Ref. [103], where such processes become
negligible after inflation.

Additional important information can be obtained by the
observation of the frequency of the knee in the GW spectrum,
shown in Figs. 4 and 5, which is given by fkin in Eq. (76).
Combining this with Eq. (86), in the large Nhyp limit, we
obtain

fkin

(Ω
hyp
GW)1/4

= 2

π3/2

√
2

3
ρ

1/4
0 α−1/4

√
mP

H
, (87)

where ρ0 = 3H2
0 m

2
P is the energy density of the Universe at

present. Putting the numbers in the above, we find

(
fkin

Hz

)(
Ω

hyp
GW

10−6

)−1/4

∼ 1012 α−1/4

√
mP

103 H
. (88)

Observations might provide the values of the left-hand-side
of the above, which means that α could be estimated provided
H is known (e.g. H2 ∼ 10−10m2

P for inflation at the grand
unified energy scale).

In Fig. 7 we display our findings with respect to observ-
ability by different missions, such as LVK 05, ET, BBO,
LISA DECIGO and SKA. There, we show the minimum
value α has to take in order for the spectrum to be detectable.
Above this value, which we label αmin, the spectrum is always
detectable. We see that observability requires that the reheat-
ing efficiency is smaller the lower the inflation energy scale is
(the lower H is). Also, the values of αmin are larger for large
inflationary energy scales. For LVK 05 and LISA we find that
observability requires αmin ∼ 1030−60, while for ET, BBO
and DECIGO the numbers are smaller αmin ∼ 1010−50. For
the reheating efficiency, we find that observability requires
that the density parameter of radiation at the end of inflation
is Ωend

GW � 10−16, a value which may increase up to unity or
so in the case of ET, BBO or DECIGO. Such a high reheating
efficiency implies that the kinetic regime is very small or even
non-existent (prompt reheating). This is possible because, the
ET, BBO and DECIGO might be able to detect very faint sig-
nals at frequencies higher than LISA, which means that they
could even marginally observe the flat GW spectrum gen-
erated by the usual radiation era (no kinetic epoch). This is
why there is a region (for ET, BBO and DECIGO) when H is
large (H ∼ 1013 GeV) where suddenly α can be very small
(or even zero). The parameter space for this is very small
though.
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We conclude that, with our mechanism, the observability
of primordial GWs is much enhanced compared to traditional
models. We obtained concrete predictions involving H , α and
the reheating efficiency in the case the characteristic form of
the GW spectrum – a truncated peak – is indeed observed.
Observation of the primordial GW signal would not only
confirm another prediction of cosmic inflation but would also
be a tantalising hint towards the quantum nature of gravity,
which is behind the assumption of the Bunch-Davies vac-
uum in Eq. (36). Forthcoming GW observations may reveal
new and surprising details about the physics of inflation and
fundamental physics in general. Our work serves to explore
such a possibility.
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Appendix A: A toy model for a drastic change of α at the
end of inflation

The coefficient α parametrising quadratic gravity can experi-
ence a drastic change at the end of inflation if it is a function
of a degree of freedom which changes rapidly at that time.
For example, if inflation takes place at the energy of grand
unification, as is typically the case, then this degree of free-
dom could be the Higgs field χ of a Grand Unified Theory
(GUT). If the breaking of grand unification takes place via
spontaneous symmetry breaking, then the expectation value
of χ changes from zero to M ∼ 1016 GeV.

A toy model example of the inflaton potential, which leads
to the GUT phase transition but still retains the runaway
nature assumed in this work is

V (ϕ, χ) = 1

4
λ(χ2 − M2)2

+
{

1
2 (m2 + g2χ2)(ϕ2 + μ2) , ϕ < 0
1
2 (m2 + g2χ2)

μ6

ϕ4+μ4 , ϕ ≥ 0
, (A.1)

where m and μ are mass scales with 0 < μ 	 m < M
and λ, g � O(1). By taking λ = 0 = g, we recover the
(n, q) = (2, 4) case of the quintessential inflation potential
in an R + R2 Palatini modified gravity theory, which was
investigated in Ref. [78]. This potential, in turn, is a minor
modification of the original quintessential inflation potential
in Ref. [37]. Switching λ and g on, and considering the limit
|ϕ| � μ with ϕ < 0, we obtain the original hybrid inflation
potential [123].

Let us first consider standard gravity without an R2 term.
In the beginning, ϕ 	 −μ. Then the effective mass-squared
of the GUT Higgs field χ is positive, which sends χ to zero.
The scalar potential then becomes

V = 1

2
m2ϕ2 + 1

4
λM4. (A.2)

When the constant term dominates, we have an inflationary
plateau. The effective mass-squared of the GUT Higgs field
is m2

effχ = g2ϕ2 − λM2. Thus, m2
effχ is positive as long as

|ϕ| > |ϕc|, where ϕc ≡ −(
√

λ/g)M , where for simplicity
we assume |ϕc| � μ. Inflation ends when ϕ = ϕc, which
triggers a phase transition that sends the GUT Higgs field
towards its vacuum expectation value (VEV) χ = M , in
which case m2

effχ = 2λM2. At this time, the effective mass-

squared of the inflaton field becomes m2
effϕ = g2M2 > 0,

when the inflaton is still negative ϕc < ϕ < 0. This propels
the inflaton to the origin.

When ϕ becomes positive, it free-falls in its steep runaway
potential. In the limit ϕ � μ, the potential is

V =
1
2g

2M2μ6

ϕ4 , (A.3)

where we assumed gM > m. The above inverse quartic
potential can indeed work not as tracker quintessence, as
in the original quintessential inflation model [37], but as a
freezing-thawing quintessence, which unfreezes at present
provided the mass-scale ( 1

2g
2M2μ6)1/8 is of the correct mag-

nitude to satisfy the coincidence requirement. Inflation, how-
ever, as described above would not work. Indeed, the original
hybrid inflation model of Ref. [123], which is characterised
by the inflationary potential in Eq. (A.2), produces a blue
spectral index for the scalar curvature perturbation.

As shown in Ref. [78], things change when we embed
the above model in R + R2 Palatini modified gravity. We
assume that λ is small enough, such that the potential in

123
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Eq. (A.2) during inflation is V 
 1
2m

2ϕ2. Then, the infla-
tionary plateau is due to the quadratic gravity term, which
flattens the potential and creates the inflationary plateau with
Uinf 
 m4

P/4α as discussed in Sect. 2.1. As mentioned, the
scenario with λ = 0 = g was investigated in Ref. [78], which
found that successful quintessential inflation in achieved if
m ∼ 1013 GeV and ( 1

2g
2M2μ6)1/8 ∼ 10 GeV, which means

μ ∼ g−1/310−4 GeV. The assumption g > m/M ∼ 10−3

suggests that μ � O(MeV).
In Ref. [78] it was shown that for successful quintessen-

tial inflation with this model we need α ∼ 108, so that
U 1/4

inf ∼ 1016 GeV. The canonical inflaton field rolls down
the Palatini inflationary plateauUinf until it triggers the GUT
phase transition and sends the GUT Higgs field to its VEV.
Then, the potential V is reduced drastically so that the system
exits the Palatini plateau and U 
 V .

The change of the expectation value of the GUT Higgs
field χ at the phase transition not only terminates inflation
but may also affect the value of α provided the latter depends
on χ . Indeed, suppose that

α = α(χ) = α0 e
κχ/M , (A.4)

where κ = O(10) is a coefficient and α0 ∼ 108. Before
the phase transition, χ = 0 and α = α0 ∼ 108. After the
phase transition, χ = M ∼ 1016 GeV and κχ/M � 102. As
a consequence, α becomes huge. Indeed, for the range κ =
5−166 we find α ∼ 1010–80, which comfortably includes the
values considered in Fig. 7. Note that α should not depend
on the inflaton field, α �= α(ϕ), because the latter changes
substantially during kination and hyperkination, while α is
taken to be constant.

Finally, it must be pointed out that the period of hyper-
kination in the post-inflationary history would modify the
treatment of Ref. [78] somewhat. As a result, the value of μ

for successful coincidence might change, but this is beyond
the scope of the present work.

Appendix B: Numerical solutions

To check our analytical results, we solve numerically the time
evolution of the background composed of the field and radi-
ation and the GW mode functions. The full set of equations
reads

(
1 + 3α

φ̇2

m4
P

)
φ̈ + 3

(
1 + α

φ̇2

m4
P

)
H φ̇ = 0,

ρ̇ f = −3Hρ f (1 + w f ), 3H2m2
P = ρφ + ρ f ,

ρφ = 1

2

[
1+ 3

2
α

φ̇2

m4
P

]
φ̇2, hsk

′′+2
a′

a
hsk

′+k2hsk =0. (B.5)

Many of the variables vary by orders of magnitude during
cosmic evolution. To make numerics easier, we define new,
rescaled variables x , y, and Z , a new time variable s, and a
constant s0 through

φ̇ = m2
Pα−1/2e−s0−s+x , ρ f = m4

Pα−1e−2s0−2s+y,

H = mPα−1/2Ze−s0−s, s0 = − ln
(
2
√

αH0/mP
)
,

dt = m−1
P

√
αes0+sds, (B.6)

where H0 is the initial Hubble parameter. Definitions in
Eq. (B.6) are chosen to ensure the new numerical quanti-
ties remain of order one throughout the computation. The
equations of motion become

◦
x = 1 − 3Z

(
1 + e−2s0−2s+2x

)
1 + 3e−2s0−2s+2x ,

◦
y = 2 − 3Z

(
1 + w f

)
,

3Z2 = 1

2

(
1 + 3

2
e−2s0−2s+2x

)
e2x + ey,

◦◦
hk + (3Z − 1)

◦
hk + k2

m2
Pa

2
αe2s+2s0hk = 0, (B.7)

where a circle over a variable indicates a derivative with
respect to the new time variable s.

The initial conditions for the field velocity and fluid energy
density are set as described in the text, engineered to match
a desired end-of-inflation Hubble parameter Hend, duration
of hyperkination Nhyp, and initial radiation energy density
fraction Ωend

r . We then follow their evolution from the end
of inflation until the BBN temperature is reached, see Fig. 2.
The gravitational wave modes are evolved from their frozen
super-Hubble state in Eq. (66) starting somewhat before they
re-enter the Hubble radius, until somewhat after the re-entry,
after which they are taken to behave as radiation. To get the
mode energy density, we use the first equation in Eq. (38) –
as explained in the text, the error related to regularization is
negligible for all relevant modes. Iterated over a number of
modes, this produces the spectra in Fig. 4.

Appendix C: Mode function matching

In this appendix, we report the more technical results con-
cerning the mode function matching at the transition between
the different cosmological eras. We start with the transition
from inflation to hyperkination, which takes place at ηend.
During the hyperkination, the Mukhanov Sasaki equation
reads (see Eqs. (35) and (55))

vsk
′′ + k2vsk = 0. (C.8)

The solution is simply a superposition of plane waves,

vsk(η) = 1√
2k

(
α+e−ikη + α−eikη

)
. (C.9)
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Matching this to the standard slow-roll result (see the first
line of Eq. (59)) at ηend gives

ei
π
4 (1+2ν)

√
π

2

√
xendH

(1)
ν (xend)

= α+eik|ηend| + α−e−ik|ηend|, (C.10)

where xend ≡ k|ηend| and we dropped the subindex I from
ν. Matching the derivatives gives

i

√
π

2
ei

π
4 (1+2ν)

[
1√
xend

(
1

2
+ ν

)
H (1)

ν (xend)

−√
xendH

(1)
ν+1(xend)

]

= −α+eik|ηend| + α−e−ik|ηend|. (C.11)

Summing (subtracting) both expressions, we obtain

α∓ = e
i π

4

(
1+2ν

)
±i xend

2

√
π

2

[
H (1)

ν (xend)

(√
xend

± i√
xend

(ν + 1

2
)

)
∓ i

√
xendH

(1)
ν+1(xend)

]
. (C.12)

We now take the super-Hubble (small argument) limit
xend 	 1. Noting that the leading contributions come from
the terms proportional to H (1)

ν (xend)/
√
xend and H (1)

ν+1(xend)

× √
xend, it reads

α∓ = ±2ν−1ei
π
4 (1+2ν)

√
2π

(
1

2
− ν

)
Γ (ν)

1

(k|ηend|)ν+ 1
2

.

(C.13)

Using ν = 3/2 + ε, this expression can be further simplified
to

α∓ = ±2ε−1eiπε/2Γ (3/2 + ε)

Γ (3/2)

(
H

k

)2+ε

. (C.14)

For pure de Sitter, with ε → 0, we obtain

α∓ = ± H2

2k2 . (C.15)

We continue with the transition from hyperkination to
kination, which takes place at ηkin. During kination, the
Mukhanov–Sasaki equation takes the form

vsk
′′ +

[
k2 − 1

4
[
η − ηkin

2 + 1
H

]2
]

vsk = 0. (C.16)

Making the change of variables y ≡ k (η − ηkin/2 + 1/H)

(where y = kz in the notation of Eq. (56)) and redefining the
mode functions as g = √

yv, this equation can be recast as a
Bessel equation with ν = 0 (see Eq. (57)). Thus, the solution
reads

vsk(η) =
√

π

4k
√
y
[
e−iπ/4β+(k)H (2)

0 (y)

+eiπ/4β−(k)H (1)
0 (y)

]
, (C.17)

where the overall constant and phase has been chosen such
that the mode functions have a simple sub-Hubble (y � 1)
limit, as discussed below Eq. (59). We match this equation
(and its derivative) with Eq. (C.9) (and its derivative) at time
ηkin, i.e., at

ykin ≡ y(ηkin) = k

2

(
ηkin + 2

H

)

 kηkin

2
, (C.18)

where we have taken into account that ηkin � ηend. To avoid
clutter we also define r ≡ eiπ/4√π/2. Equating the mode
functions gives

α+e−ikηkin + α−eikηkin

= √
ykin

[
r∗β+H (2)

0 (ykin) + rβ−H (1)
0 (ykin)

]
, (C.19)

while doing so for the derivatives gives

i
(
−α+e−ikηkin + α−eikηkin

)

= 1

2
√
ykin

[
r∗β+H (2)

0 (ykin) + rβ−H (1)
0 (ykin)

]

+√
ykin

[
r∗β+

dH (2)
0

dy
(ykin)+rβ−

dH (1)
0

dy
(ykin)

]
.

(C.20)

Now, using Eq. (C.19) in Eq. (C.20) allows us to rewrite the
latter as[

α+
(

−i − 1

2ykin

)
e−ikηkin + α−

(
i − 1

2ykin

)
eikηkin

]

= √
ykin

[
r∗β+

dH (2)
0

dy
(ykin) + rβ−

dH (1)
0

dy
(ykin)

]
.

(C.21)

In order to obtain β− (β+), we multiply Eq. (C.21) by
H (2)

0 (ykin) (H (1)
0 (ykin)) and Eq. (C.19) by dH (2)

0 /dy

(dH (1)
0 /dy), subtract the latter from the former and use the

Wronskian of the Hankel functions. The results read

β− = e−iπ/4
√

πykin

i2
√

2

{
H (2)

0 (ykin)

×
[
α+
(

−i − 1

2ykin

)
e−ikηkin

+ α−
(
i − 1

2ykin

)
eikηkin

]

+ H (2)
1 (ykin)

(
α+e−ikηkin + α−eikηkin

)}
(C.22)

and

β+ = −eiπ/4
√

πykin

i2
√

2

{
H (1)

0 (ykin)
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×
[
α+
(

−i − 1

2ykin

)
e−ikηkin

+ α−
(
i − 1

2ykin

)
eikηkin

]
+ H (1)

1 (ykin)

×
(

α+e−ikηkin + α−eikηkin

)}
. (C.23)

Noting that α+ = −α−, these expressions can be rewritten
as

β− = e−iπ/4

√
πykin

2
α−
{
H (2)

0 (ykin)

[
cos (kηkin)

− 1

2ykin
sin (kηkin)

]
+ H (2)

1 (ykin) sin (kηkin)

}

(C.24)

and

β+ = −eiπ/4

√
πykin

2
α−
{
H (1)

0 (ykin)

[
cos (kηkin)

− 1

2ykin
sin (kηkin)

]
+ H (1)

1 (ykin) sin (kηkin)

}
.

(C.25)

We can now take the super-Hubble limit kηkin 	 1. Using
kηkin = 2ykin, the term in brackets multiplying H (1,2)

0 (ykin)

cancels out, and we obtain the result

β± = 2ie±iπ/4α−
√
kηkin

π
, (C.26)

where α− is given by Eq. (C.14). Note that

β+ = iβ−. (C.27)

For pure de Sitter, we have the simplified expression

β± = ie±iπ/4
(
H

k

)2√kηkin

π
. (C.28)

Finally, we consider the transition from kination to
the radiation-dominated era at ηreh. During the latter, the
Mukhanov–Sasaki equation is identical to the one corre-
sponding to hyperkination,

vsk
′′ + k2vsk = 0, (C.29)

the solution to which reads

vsk(η) = 1√
2k

(
γ+e−ikη + γ−eikη

)
. (C.30)

The matching conditions at ηreh now read

√
yreh

[
r∗β+H (2)

0 (yreh) + rβ−H (1)
0 (yreh)

]

=
(
γ+e−ikηreh + γ−eikηreh

)
(C.31)

and

1

2
√
yreh

[
r∗β+H (2)

0 (yreh) + rβ−H (1)
0 (yreh)

]

+√
yreh

[
r∗β+

dH (2)
0

dy
(yreh)+rβ−

dH (1)
0

dy
(yreh)

]

= i
(
−γ+e−ikηreh + γ−eikηreh

)
, (C.32)

where

yreh = k

(
ηreh − ηkin

2
+ 1

H

)

 kηreh, (C.33)

where we have taken into account that ηreh � ηkin � ηend.
Summing (subtracting) both expressions gives

γ± = e±ikηreh

2

{
r∗β+

[
H (2)

0 (yreh)

(√
yreh ± i

1

2
√
yreh

)

∓ i
√
yrehH

(2)
1 (yreh)

]
+ rβ−

[
H (1)

0 (yreh)

×
(√

yreh ± i
1

2
√
yreh

)
∓ i

√
yrehH

(1)
1 (yreh)

]}
.

(C.34)

We use Eq. (C.27) and take the super-Hubble limit kηreh 	 1
to obtain

γ± = ±rβ−
2

i√
yreh

, (C.35)

where β− is given by Eq. (C.26). For pure de Sitter, we have
the simplified expression

γ± = ∓ H2

2k2

√
ηkin

2ηreh
. (C.36)
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