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Abstract In this note we present a solution to the question
of whether or not, in the presence of torsion, the topological
Nieh–Yan term contributes to chiral anomaly. The integral
of Nieh–Yan term is non-zero if topology is non-trivial; the
manifold has a boundary or vierbeins have singularities. Not-
ing that singular Nieh–Yan term could be written as a sum of
delta functions, we argue that the heat kernel expansion can-
not end at finite steps. This leads to a sinusoidal dependence
on the Nieh–Yan term and the UV cut-off of the theory (or
alternatively the minimum length of spacetime). We show
this ill-behaved dependence can be removed if a quantiza-
tion condition on length scales is applied. It is expected as the
Nieh–Yan term can be derived as the difference of two Chern
class integrals (i.e. Pontryagin terms). On the other hand, in
the presence of a cosmological constant, we find that indeed
the Nieh–Yan term contributes to the index with a dimension-
ful anomaly coefficient that depends on the de Sitter length
or equivalently inverse Hubble rate. We find similar result in
thermal field theory where the anomaly coefficient depends
on temperature. In both examples, the anomaly coefficient
depends on IR cut-off of the theory. Without singularities,
the Nieh–Yan term can be smoothly rotated away, does not
contribute to topological structure and consequently does not
contribute to chiral anomaly.

1 Introduction

There has been a long debate with conflicting results on
the contribution of torsion to chiral anomaly via the Nieh–
Yan term [1–10]. One suspects that in the presence of tor-
sion, the parity odd Nieh–Yan four-form could potentially
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result in non-conservation of chiral current.1 However, as
the vierbein is chosen dimensionless and torsion has mass
dimension one, the anomaly coefficient of the Nieh–Yan
term is dimensionful. Naive computations imply that the
mass parameter in the coefficient is the UV cut-off of the
theory, namely the anomaly term is regulator dependent
which is not normally accepted. It is the source of confusion
that led some authors to completely abandon the Nieh–Yan
part.

In this short paper, we revisit this problem and we show
that depending on the underlying spacetime, the Nieh–Yan
term may or may not contribute to chiral anomaly. In fact
for smooth geometry, the Nieh–Yan contribution is com-
pletely rotated away. On the other hand, in geometries with
singularities in vierbein structure, it needs more elabora-
tion. In this case, in a locally flat gauge condition, the
Nieh–Yan term can be written as a sum of delta functions
about singular points. We will argue that, in the Fujikawa
method with a regulator, the Heat kernel expansion cannot
be truncated at finite steps. It gives a sinusoidal dependence
on the Nieh–Yan term as well as on the UV cut-off. This
ill contribution can be removed via applying a quantiza-
tion condition on the parameters. We argue that it is nat-
ural as the Nieh–Yan term can be written as a difference
between two Pontryagin terms. However, we find that in
the presence of cosmological constant, there is a residual
and indeed the Nieh–Yan term contributes to the index and
chiral anomaly. The anomaly coefficient is proportional to
the square of the Hubble rate or inverse de Sitter radius.
Similarly, we find that in a finite temperature field theory
there is a contribution to chiral anomaly through the Nieh–
Yan term. In this case, the anomaly coefficient is propor-
tional to temperature squared. In both scenarios, the anomaly

1 We recall that in the presence of torsion, the Pontrygin term con-
structed from curvature is modified and includes axial part of torsion
[11]. In this note, we study the contribution from the Nieh–Yan term.
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is related to a mass scale, in fact the IR scale in the the-
ory.

In the next section, after a brief review of chiral anomaly
and torsional geometry we present the main results and finally
conclude in the Sect. 3.

2 Torsion and chiral anomaly

We briefly review the calculation of chiral anomaly using the
Fujikawa method. In this method one uses the invariance of
partition function under a chiral rotation, which is merely a
field redefinition, and uses the fact that the measure in field
space does not remain invariant under this redefinition. Con-
sidering an infinitesimal chiral rotation given by parameter
β(x) as

ψ ′(x) = eiβ(x)γ 5
ψ(x), (1)

ψ̄ ′(x) = ψ̄(x)eiβ(x)γ 5
. (2)

the Dirac Lagrangian transforms as

L ′ = ψ̄ ′i /Dψ ′ = L − ∂μβψ̄γμγ 5ψ. (3)

The partition function can be written as

S =
∫

dψdψ̄ exp

[∫
d4xL

]
. (4)

Under the chiral transformation (1) the measure dψdψ̄ is not
left invariant and transforms as

dψ ′dψ̄ ′ = J (β)dψdψ̄, (5)

where we have

J (β) = exp

[
−2i

∫
d4xβ(x)

∑
n

ψ†
nγ 5ψn

]
, (6)

and ψn are the eigenmodes of the Dirac operator.
Invariance of partition function under this transformation

further implies

∂μ J
μ5 =

∑
n

ψ†
nγ 5ψn, (7)

where Jμ5 = ψ̄γ μγ 5ψ is the chiral current.
In general this sum is not well defined as it stands since

this is equal to trγ 5.δ4(0), therefore it is common to use a
regulator to make it well defined. The typical regulator that

one can use is exp
[ − λ2

n
M2

]
where λn are the eigenvalues of

the Dirac operator and M is some UV cut-off that is sent to
infinity in the calculation.

On the other hand we can see that the integral of non-
conservation of chiral current is determined by a topological
quantity, namely the index of the Dirac operator i /D on a

manifold M. Considering the integral of (7) we see that only
the zero modes contribute to the integral and we can write

ind =
∫

d4x∂μ J
μ5 = n+ − n−, (8)

where n+ and n− are respectively the number of positive and
negative chirality zero modes.

Using this background we can write the index of the Dirac
operator as

ind =
∫
M

d4x lim
M→∞ lim

x ′→x

∑
n

ψ†
n (x ′)γ 5e− /D2

M2 ψn(x)

= −1

2

∫
M

d(� j5), (9)

where ψn are the eigenstates of the Dirac operator and we
have used the Fujikawa method with a Gaussian cut-off fixed
by M to regularize the sum. Anomaly computations imply
that the chiral current non-conservation is proportional to
parity odd Pontryagin and Nieh–Yan [11–14] four forms

d(� j5) = 1

24π2 (Fab ∧ Fab)

+ M2

4π2 (T a ∧ Ta − Rab ∧ ea ∧ eb), (10)

where the field strengths (curvature and torsion respectively)
are

Fab = DAab = dAab + Aac ∧ Ac
b,

T a = Dea = dea + Aa
b ∧ eb, (11)

which satisfy Bianchi identities DFab = 0 and DTa = Fab∧
eb. Here ea = eaμdx

μ is the vierbein and A is a connection
1-form.

We note the appearance of a dimensionful coefficient M
in the second term which is also expected on dimensional
reasons as the vierbein is dimensionless. If we decompose
the Lorentz connection into spin-connection plus contorsion
i.e. Aab = ωab + Kab, then the curvature is written as Fab =
Rab + DKab + Kac ∧ Kc

b where Rab = dωab + ωac ∧ ωc
b

is Riemann curvature and torsion would be Ta = Kab ∧ eb.
Then, the Pontryagin term is computed as

Fab ∧ Fab = Rab ∧ Rab − 1

4
dS ∧ dS

(12)

where the axial vector field S is the fully antisymmetric part
of torsion (a.k.a. H-torsion)

S = �(ea ∧ Ta), (13)

or in component form Sμ = εμνρσ T νρσ . This is the part of
torsion that couples to fermions through the Dirac operator
[15] /D = /D0− i

8
/Sγ 5 ( /D0 is the torsion-free operator). More-

over, the axial vector S can be decomposed into a transverse
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pseudo-vector S⊥
μ (namely ∂μS⊥μ = 0) and a pseudo-scalar

σ

Sμ = S⊥
μ + ∂μσ. (14)

Finally, the Nieh–Yah term which only receives a contribu-
tion from the pseudo-scalar part of torsion is [9]

T a ∧ Ta − Rab ∧ ea ∧ eb = d (ea ∧ Ta)

= d(�S) = −1

4
1�σ, (15)

where 1 is the unit (volume) four-form.
On the other hand, the Nieh–Yan term can be written as the

difference of two Chern class integrals [3,14]. We consider
two SO(1,4) connections

AAB =
(

ωab 1
l e

a

− 1
l e

b 0

)
and AAB

0 =
(

ωab 0
0 0

)
,

(16)

where l is a length scale. Then, the field strengths are

F AB =
(
Rab − 1

l2
ea ∧ eb 1

l T
a

− 1
l T

b 0

)
and

F AB
0 =

(
Rab 0
0 0

)
. (17)

We find that the difference between corresponding Chern
class integrals is proportional to the Nieh–Yan term

Fab ∧ Fab − Fab
0 ∧ F0ab

= 2

l2
(T a ∧ Ta − Rab ∧ ea ∧ eb). (18)

Since these are topological terms with integer integrals, this
leads to a quantization condition on the Nieh–Yan term that
has a dependence on the length scale l. We think a natural
choice for this length scale where we want to have dimen-
sionless geometry [16,17] is the Planck’s length considered
to be the minimum length of spacetime.

2.1 Manifolds with trivial topology

In this section we consider the contribution of non-singular
Nieh–Yan term to chiral anomaly. Pseudo-scalar σ has a
non-singular behavior and using the redefinition ψ(x) =
e

i
8 σ(x)γ 5

φ(x) we can see that the index does not depend on
the total derivative part of axial torsion. In particular, we find

L = iψ̄(x) /Dψ(x) = i φ̄(x) /D0φ(x). (19)

By considering the Ward identity

〈∂μ J
μ5(x)〉

=
∫ Dψ(x)Dψ̄(x)e

∫
d4x ′iψ̄(x ′) /Dψ(x ′)∂μ Jμ5(x ′)∫ Dψ(x)Dψ̄(x)e

∫
d4x ′iψ̄(x ′) /Dψ(x ′)

, (20)

we note that the field redefinition is like a chiral transforma-
tion the measure in numerator and denominator is multiplied
by the same factor thus we find

〈∂μ J
μ5(x)〉ψ = 〈∂μ J

μ5(x)〉φ. (21)

We conclude the total derivative part of axial torsion doesn’t
contribute to chiral anomaly.

Moreover, if we consider the Gaussian regulator e− /D2

M2 in
Fujikawa method with

/D2 = /D2
0 + i∇μS⊥

μ γ 5 + S⊥2

−2eμ
a e

ν
bσ

abS⊥
μ D0

νγ
5 + eμ

a e
ν
bσ

ab∇μS
⊥
ν γ 5, (22)

where /D only has the S⊥
μ part, we find that the contribution

from torsion to chiral anomaly is

∇μ J
μ5 ⊃ a�∇μS

⊥μ + b∇μ(S⊥2S⊥μ)

+c∇μ(RμνS⊥
ν − 1

2
RS⊥μ) + dS⊥ ∧ dS⊥. (23)

Using ∇μS⊥μ = 0 and the Bianchi identity

∇μ

(
Rμν − 1

2
Rgμν

)
= 0, (24)

we find

∇μ J
μ5 ⊃ bS⊥μS⊥ν∇μS

⊥
ν + cRμν∇μS

⊥
ν + dS ∧ dS. (25)

Apparently, the first two terms depend on our choice of σ and
S⊥
μ . There is a residual symmetry transformation S⊥

μ → S⊥
μ −

∂μC, σ → σ +C with �C = 0, thus we can choose a gauge
such that the sum of first two terms vanishes. Therefore, the
chiral anomaly would be

〈∇μ J
μ5〉 = Rab ∧ Rab + dS ∧ dS. (26)

We provide an explanation for why calculating anomaly

with the typical regulator e− /D2

M2 does not lead to the expected
result. If we define a transformation

ψ ′ = eiβ(x)γ 5e
− /D2

M2
ψ, (27)

ψ̄ ′ = ψ̄eiβ(x)γ 5e
− /D2

M2
, (28)

using the partition function we can show that the anomaly of
this transformation is

〈∂μ(ψ̄γ μγ 5e− /D2

M2 ψ)〉 =
∑
n

ψ†
nγ 5e− λ2

n
M2 ψn . (29)

So we see that using the regulator is equivalent to calculating

the anomalous current 〈∂μ(ψ̄γ μγ 5e− /D2

M2 ψ)〉. We can show
that this current is not the same as the original current by
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looking at a symmetry that is present in the original calcula-
tion which is missing here. The transformation

ψ → eiσ(x)γ 5
ψ, Sμ → Sμ − ∂μσ, (30)

leaves 〈∂μ(ψ̄γ μγ 5ψ)〉 invariant but the above current is not
left invariant under this transformation.

We note that even without the above explanation, we can
redefine the chiral current such that the total derivative con-
tributions like ∇μKμ = ∇μ(S2Sμ) + · · · are removed from
the anomaly without changing its topological structure. This
is also true for the contribution of the non-singular part of
the Nieh Yan term as this part behaves like a total derivative
and is not a topological term.

2.2 Manifolds with non-trivial topology

We begin this section by an observation that on a manifold
with singularities in its vierbeins, the Nieh–Yan term can be
written as a sum of delta functions [9]

T a ∧ Ta − Rab ∧ ea ∧ eb = −1

4
1�σ

= 1
∑
i

l2i δ
4(x − xi ), (31)

where li are some length scales and xi are singular points. In
the following, for the sake of simplicity, we ignore spacetime
curvature and only consider the contribution of torsion to
anomaly via the Nieh–Yan term. In the Fujikawa method,
the regulator has an extra piece due to the Nieh–Yan term

/D2 = /D2
0 − i

8
�σγ 5 + 1

64
∂μσ∂μσ + · · · . (32)

Then, we find the torsion contribution to the index as

ind ⊃ lim
M→∞

∫
d4k

(2π)4 e
− k2

M2 tr

[
γ5e

i �σ

8M2 γ5

]
. (33)

Given the delta function form of Nieh–Yan term, we cannot
stop the sum at the first order term in �σ in the expansion and
we must consider all terms. Then, the torsion contribution to
the index is computed as

d ⊃ i lim
M→∞

M4

16π2

∫
d4x tr

[
γ 5e

i�σ

8M2 γ 5
]

= − lim
M→∞

M4

4π2

∫
d4x sin

(
−∑

i l
2
i δ

4(x − xi )

2M2

)
. (34)

In order to calculate this term we use a simple method. Using
the expansion of sine function we write

M4
∫

d4x sin

(
l2i δ

4(x)

2M2

)

= M4
∫

d4x
∞∑
n=1

(−1)n

(2n + 1)!

(
l2i δ

4(x)

2M2

)2n+1

= M4
∫

d4x

(
l2i δ

4(x)

2M2

) ∞∑
n=1

(−1)n

(2n + 1)!

(
l2i δ

4(x)

2M2

)2n

.

(35)

Using the definition of delta function
∫
d4xδ4(x) f (x) =

f (0) and the approximation δ4(0) = 1
ε4 with ε related to the

minimum length of spacetime (and therefore related to the
UV cut-off) we can write

ind ⊃ M4ε4

4π2 sin

(
l2i

2M2ε4

)
, (36)

and considering M = k
ε

with k some order 1 number we find

ind ⊃ k4

4π2 sin

(
l2i

2k2ε2

)
. (37)

Thus, in order to remove this term in the index, we demand
a quantization condition as

l2i
2M2ε4 = niπ, (38)

where ni are integer numbers. We note that, if we had incor-

rectly kept only the first order term in the expansion of ei
�σ

8M2 ,
then we would have found a contribution to the index as

ind ⊃ M2l2i
4π2 , (39)

which would be cut-off dependent and is not accepted. How-
ever, if we keep all terms in the expansion we find

ind ⊃ M4ε4

4π2 sin

(
l2i

2M2ε4

)
, (40)

which is finite given that ε ∼ 1
M and vanishing if the quan-

tization condition (38) is met.
Same result can be obtained via another approach. We

recall that the zero modes of the Dirac operator with torsion
ψ0
n and the zero modes of the Dirac operator without torsion

φ0
n are related as

ψ0
n (x) = e

i
8 σ(x)γ 5

φ0
n(x). (41)

With a finite torsion term, this simple reasoning states that
the total derivative part of pseudo-vector torsion does not
contribute to the index. However with singular point, the
outcome is different. Given (31) we write

σ(x) = −4
∑
i

l2i
|x − xi |2 , (42)

as we have singular behavior at some points. Taking care of
the divergent behavior close to one of the singularities we
find

ind ⊃
∫

d4x lim
x ′→x

∑
n

tr

[
γ 5ei

σ(x)
8 γ 5

φ0
n(x)φ

0†
n (x ′)e−i σ(x ′)

8 γ 5
]
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=
∫

d4x lim
x ′→x

∑
n

tr

[
γ 5e−i σ(x ′)−σ(x)

8 γ 5
φ0
n(x)φ

0†
n (x ′)

]
.

(43)

Applying

e−i σ(x ′)−σ(x)
8 γ 5 = cos

(
1

8
(x ′ − x)μ∂μσ

)

−iγ 5 sin

(
1

8
(x ′ − x)μ∂μσ

)
, (44)

the index is computed as

ind ⊃
∫

d4x lim
x ′→x

cos

(
1

8
(x ′ − x)μ∂μσ

)

×
∑
n

tr[γ 5φ0
n(x)φ

0†
n (x ′)]

−i sin

(
1

8
(x ′ − x)μ∂μσ

)
δ4(x − x ′). (45)

Given a minimum length scale ε we may write

1

8
(x ′ − x)μ∂μσ ∼ l2i

2ε2 . (46)

The first term in (45) is proportional to the torsion-free Index.
The second part is divergent though. Again, if we demand a
quantization condition for li as

l2i
2ε2 ∼ niπ, (47)

where ni are integers, then the divergent piece will be absent.
In passing, we emphasis that this quantization condition

is expected as the Nieh–Yan term could be seen as the dif-
ference between two Chern classes [2,14] where here we
replace the length scale in (18) with the minimum length of
spacetime. One might therefore conclude that adding torsion
to gravity has a close relationship with spacetime discretiza-
tion. In particular, if we choose l to be the minimum length
of spacetime, we find the quantization condition

l2i
ε2 = 4π2ni . (48)

Therefore, if in (38) we choose M =
√

2π
ε

the sinusoidal
dependence of index to the Nieh–Yan term will be absent.

In the following we consider two cases both with a natural
IR scale and show that contrary to what previously expected
the coefficient of the Nieh–Yan term will be related to the IR
scale of the theory. In this context we use the IR cut-off as
the lower limit for the physical energy levels. In the case of
a positive cosmological constant this natural scale is given
by the cosmological constant. This can be expected if we
consider de Sitter spacetime as a compact Euclidean space
with effective radius l. In the presence of temperature we also
have a natural IR scale which is expected given the fermionic
Matsubara frequencies ωn = (2n + 1)πT .

1. Adding a cosmological constant

In the absence of the cosmological constant, as the Nieh–Yan
term could be seen as the difference of two Pontryagin terms,
we considered two Lorentz connections in (16) and derive

l2i
l2

= 4π2ni , (49)

where ni is an integer and we have chosen ε = l.
In the presence of the cosmological constant � ∼ l−2

0
with de Sitter length l0, we propose to change the second
Lorentz connection in (16) as

AAB
0 =

(
ωab 1

l0
ea

− 1
l0
eb 0

)
. (50)

Then, the field strengths are

F AB =
(
Rab − 1

l2
ea ∧ eb 1

l T
a

− 1
l T

b 0

)
, (51)

F AB
0 =

(
Rab − 1

l20
ea ∧ eb 1

l0
T a

− 1
l0
T b 0

)
. (52)

We find that the difference between corresponding Chern
class integrals is proportional to the Nieh–Yan term as

Fab ∧ Fab − Fab
0 ∧ F0ab

= 2

(
1

l2
− 1

l20

)
(T a ∧ Ta − Rab ∧ ea ∧ eb). (53)

Then, following the same line of reasoning we find the quan-
tization condition(

1

l2
− 1

l20

)
l2i = 4π2ni . (54)

In the previous section, we computed the torsion contribution
to anomaly

ind ⊃ sin

(
l2i

2M2l4

)
. (55)

Upon using (54) we find

ind ⊃ sin

(
πni + l2i

4πl20

)

= (−1)ni sin

(
l2i

4πl20

)
≈ (−1)ni

l2i
4πl20

, (56)

which is similar to the result suggested by [3]. Therefore, we
see from (40) that the coefficient of Nieh–Yan term in index
should be the cosmological constant as an IR cut-off of the
theory and we can write

ind ⊃ (−1)ni �2
I R(T a ∧ Ta − Rab ∧ ea ∧ eb). (57)
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Note that the appearance of a potentially non-integer index
is a result of spacetime quantization and is evident from (9).
When we take the limit x ′ → x there is always a mismatch
due to discreteness of spacetime. On the other hand due to
the quantization condition (54) the final result for the index
is equivalent to replacing the UV cut-off in the calculation
with the IR scale 1

l0
. This is equivalent to summing over the

eigenmodes of the Dirac operator with eigenvalues less than
the IR scale in the index i.e. these modes effectively play the
role of zero-modes in a theory with an IR scale.

2. Finite temperature effect

Finally, we study the effect of finite temperature on chiral
anomaly in a background with torsion. It is in particular
interesting in condensed matter experiments where torsion
is realized as dislocations or defects in a sample [18–20]. In
the presence of temperature we use the concept of periodic
Euclidean time in the definition of delta function. We have

δβ(t − ti ) =
∑
n

δ(t + nβ − ti ), (58)

where β = 1
T is inverse temperature. We can approximate

the delta function as

δ(t) = 1

π

ε

ε2 + t2 , (59)

where ε is related to the minimum length of spacetime. Then,
after calculating the sum in (58) we find

δβ(t) = i

2β

(
cot

π(t + iε)

β
− cot

π(t − iε)

β

)

≈ 1

π

ε

ε2 + t2 + πε

3β2 , (60)

which is plotted in Fig. 1. Then, we find

δβ(t − ti ) = ε

π(ε2 + (t − ti )2)
+ πε

3β2

= δ(t − ti ) + πε

3β2 . (61)

The torsion contribution to the index is computed as

ind ⊃ sin

(∑
i

l2i δ
4
β(x − xi )

2M2

)
. (62)

Using (61) and M2 = 2π
ε2 , we find

ind ⊃
∑
i

(−1)ni
T 2

12
l2i . (63)

It is consistent with the results presented in [21,22] if we
require ni to be odd.

Fig. 1 The approximated Dirac delta function with periodic argument
for ε = 0.06 and β = 1

3 Conclusions

In this short note, we argued that there could exist an extra
torsional contribution to chiral anomaly through Nieh–Yan
term if the manifold has singular points and the field theory
has a natural IR cut-off. Moreover for that to be a sound result,
we found that there must exist a quantization condition on
the minimum length scale in the present of torsion. We stud-
ied two scenarios which come with an IR cut-off; one with
a cosmological constant and one in a finite temperature. In
both cases we found a finite contribution to chiral anomaly
proportional to the IR cut-off. These scenarios are in par-
ticular interesting as they are respectively relevant in early
Universe cosmology and condensed matter experiments. The
latter has been already studied in literature (see for instance
[21,22]). In a future work, we will study the effect of this
new torsional contribution to chiral current anomaly during
inflation.
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Appendix A

In this appendix, we argue that we can subtract the effect
of non-topological terms like ∇μ(S2Sμ), ∇μ(�Sμ) and the
non-delta function part of the Nieh–Yan term ∇μSμ by
redefining the current or equivalently adding counter terms
to the Lagrangian. These counter terms include S4, Sμ�Sμ

and M2S2 which correspond to redefining the chiral current
by adding terms proportional to S2Sμ, �Sμ and M2Sμ. This
subtraction is allowed as far as the topological behaviour of
chiral anomaly is not altered.

We explain how we can subtract the effect of the extra
terms using these counter terms. Considering the Lagrangian

L = iψ̄( /D + i /Sγ 5)ψ + aS4 + bSμ�Sμ + cM2S2, (64)

where a, b, c are some numbers and variating with respect
to Sμ we find

Jμ5 = aS2Sμ + b�Sμ + cM2Sμ. (65)

Therefore we see that by an appropriate choice of a, b, c we
can subtract the effect of the mentioned finite terms from
chiral anomaly.

In passing we note that the presence of a coupling SμCμ

in the effective Lagrangian in [15], where Cμ is related to
Pontryagin as P = 2∇μCμ, is expected since we can write

Jμ5 = δLef f
δSμ

and the Cμ term in this variation is a confirma-
tion of the presence of Pontryagin term in chiral anomaly.

In the case of delta-function type Nieh–Yan term we can
write

∇μS
μ =

∑
i

l2i δ
4(x − xi ). (66)

As an example we consider the case of a sphere as a compact
manifold with two such terms one at the north pole and one
at the south pole say x1 and x2. We need to cover the sphere
with two patches each including one of these singularities.
We can write∫

∇μS
μ =

∫
+
Sμ
+daμ −

∫
−
Sμ
−daμ, (67)

where S+ and S− are respectively defined in patch 1 and patch
2. So the integral depends on the difference of S defined in
the intersection of the two patches. Now given that Sμ ≈
l2i (xμ−xμ

i )

|x−xi |4 and considering the behaviour of daμ as we take
the limit x → ∞ (that we assume to be the boundary of
each patch) we find as expected that this integral receives
a non-zero contribution from delta-function type Nieh Yan
term.

Using the same argument we can show that terms like∫
S2 Sμdaμ and

∫
�Sμdaμ receive no contributions from

delta-function type Nieh–Yan term and therefore can be sub-
tracted from anomaly by redefining the chiral current.

We show that this reasoning is in fact a result of our previ-
ous argument that a total derivative axial torsion should not
contribute to anomaly as far as the topological behaviour is
not altered. Our original Lagrangian is

L = iψ̄ /∂ψ − Sμψ̄γ μγ 5ψ + kM2
Pl S

μSμ. (68)

Here the S2 term appears from torsional Ricci scalar. We have

seen that when we use the regulator e− /D2

M2 we are in fact calcu-

lating the divergence of a different current ψ̄γ μγ 5e− /D2

M2 .ψ .
This is effectively equivalent to changing the Lagrangian to

L = iψ̄ /∂ψ − Sμψ̄γ μγ 5e− /D2

M2 ψ + kM2
Pl S

μSμ. (69)

Expanding to first order we find extra terms like

1

M2 Sμψ̄γ μγ 5(� + S2 + · · · )ψ. (70)

On the other hand if we solve for Sμ in (68) classically we
find

Jμ5 = 2kM2
Pl S

μ. (71)

Therefore, if we require M ∝ MPl to be regarded as the UV
cut-off, the additional terms considering this identity will
be Sμ�Sμ and S4 among other terms. This means that if

we use the regulator e− /D2

M2 we need to subtract the effect of
these extra terms which is equivalent to redefining the chiral
current.
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