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Abstract We investigate the cosmological implications of
a phantom dark energy model with bulk viscosity. We explore
this model as a possible way to resolve the big rip singularity
problem that plagues the phantom models. We use the latest
type Ia supernova and Hubble parameter data to constrain
the model parameters and find that the data favor a signif-
icant bulk viscosity over a non-constant potential term for
the phantom field. We perform a dynamical analysis of the
model and show that the only stable and physical attractor
corresponds to a phantom-dominated era with a total equa-
tion of state that can be greater than −1 due to the viscosity.
We also study the general effect of viscosity on the phantom
field and the late time evolution of the universe. We apply the
statefinder diagnostic to the model and find that it approaches
a nearby fixed point asymptotically, indicating that the uni-
verse can escape the big rip singularity with the presence of
bulk viscosity. We conclude that bulk viscosity can play an
important role in affecting the late-time behavior as well as
alleviating the singularity problem of the phantom universe.

1 Introduction

Cosmological observations in recent decades have revealed
more details about the evolutional history of the universe.
One of the major discoveries is the late time acceleration of
cosmic expansion, which can be generally understood from
at least two different perspectives. Either Einstein’s theory of
gravity is incomplete and calls for modifications (for recent
reviews, see, e.g., Refs. [1,2]), or there is an unknown form
of energy dubbed dark energy (DE) that exhibits repulsive
behavior. The simplest model of DE is the cosmological
constant � model with cold dark matter (�CDM), which
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assumes that DE consists of a constant energy density that
fills the space uniformly and has a constant equation of state
(EoS) wDE = −1, where wDE is the ratio of pressure to
energy density of the DE content.

However, the cosmological constant has no clear physi-
cal origin and faces several theoretical challenges (see, e.g.,
Ref. [3]). Therefore, many alternative DE models have been
proposed and explored (see, e.g., Refs. [4–6]). These models
can be roughly divided into two categories: the quintessence
model with wDE > −1 [7,8] and the phantom model with
wDE < −1 [9,10], which have different implications for the
ultimate fate of the universe. Quintessence models generally
predict that the universe will undergo an eternal expansion,
while phantom models usually indicate that the universe will
enter a super-accelerated expansion phase and end in a finite
time with a cosmic singularity known as big rip, where all
structures will be torn apart. Recent observations seem to
favor the phantom model over the quintessence model [9,11–
14]. Nonetheless, such discussions about wDE rest upon the
assumption that it is simply given by pDE/ρDE. This repre-
sentation is purely phenomenological and lacks underlying
physics. To provide a more comprehensive understanding of
the nature of DE including its temporal evolution or perturba-
tion, a more fundamental framework should be considered.
One approach involves introducing a dynamic scalar field as
part of either the quintessence or phantom models, depend-
ing on the specific properties of its potential and kinetic
terms [9]. In particular, the phantom scalar field model has
attracted significant interests within the literature (see, e.g.,
Refs. [4,13,15] and the references therein).

The studies of phantom models typically lead to discus-
sions about the big rip singularity [16–25]. To address this
issue, researchers have introduced modifications to DE based
on quantum effects [26], geometric effects derived from
modified gravities [27,28], or interactions between cosmic
content [29,30]. One way to introduce interactions involves
considering the viscosity of each component. This approach
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accounts for the dissipative properties of real fluids. In partic-
ular, bulk viscosity is the most relevant for cosmology since
we assume a homogenous and isotropic universe. This can
be incorporated into the standard cosmological scheme by
redefining the effective pressure peff = p − � with a vis-
cous pressure term � to restore thermal equilibrium [31–33].

Invoking viscosity in cosmology is proven to be useful to
resolve or soften the cosmic singularity problem in different
models [34–41]. Following this approach, it is shown that
the singularity problem can be alleviated in the anisotropic
phantom universe with viscosity [25]. Moreover, an interact-
ing phantom DE with dark matter induced by the viscous
approach is shown to be able to avoid the big rip singularity
[17,18].

In this work, we will study viscous phantom scalar field
DE model and explore its late time behavior. The paper is
structured as follows. In Sect. 2, we review the phantom
scalar field model of DE and introduce the viscous cosmology
framework. Section 3 contains the late time observation fit to
constrain the model parameters. Dynamical system analysis
and statefinder diagnostic of the model are given in Sects. 4
and 5, respectively. And we conclude our study in the last
section.

2 Viscous phantom scalar field DE model

The action for a phantom field minimally coupled to gravity
is given by

S =
∫

d4x
√−g

[
−(∂φ)2 + V (φ)

]
, (1)

where V (φ) is the potential of the phantom field φ. The
energy density and pressure of the phantom field are [9]

ρφ = −1

2
φ̇2 + V (φ),

pφ = −1

2
φ̇2 − V (φ).

(2)

We assume a spatially flat*** Friedmann-Lemaître-Robert
son-Walker metric for the homogeneous and isotropic uni-
verse, given by

ds2 = dt2 − a(t)2
[
dr2 + r2

(
dθ2 + sin2 θdψ2

)]
, (3)

where a(t) is the scale factor. Then, the Friedmann equations
read

H2 = 1

3

(
ρm + ρφ

)
,

Ḣ = −1

2

(
ρm + ρφ + pφ

)
,

(4)

where ρm and pm are the energy density and pressure of dust
matter, respectively, H = ȧ

a is the Hubble parameter, and
the dot represents the derivative with respect to the cosmic
time t .

As mentioned in the Introduction, the bulk viscosity dissi-
pation in the cosmic phantom field fluid can be represented by
a pressure term −� added to pφ . For bulk viscosity related
to the cosmic expansion, we assume that � ∝ H , which
implies that the effective pressure of the phantom field is

peff = pφ − 3ξφH, (5)

where ξφ is the viscosity coefficient. Then, the evolutionary
equations for dust matter and the phantom field are given by

ρ̇m + 3Hρm = 0,

ρ̇φ + 3H(ρφ + pφ − 3Hξφ) = 0.
(6)

Using Eq. (2), we obtain the equation for the phantom field

φ̈ + 3H φ̇ − V ′(φ) + 9ξφH2

φ̇
= 0, (7)

where the prime denotes the derivative of the potential V
with respect to the field φ.

Generally, the viscosity of a fluid may depend on energy
density, pressure, spacetime geometry and so on. For sim-
plicity, in the current work, we assume the viscosity is pro-
portional to the changing rate of the phantom field, i.e.,

ξφ = ξ0φ̇, (8)

where the viscosity coefficient ξ0 is a constant parameter.
As for the potential of the phantom field, it is shown that an
exponential form of potential can match or account for the
acceleration of expansion [42–47], which is then adopted in
the current work and is given by

V (φ) = V0e−α0φ, (9)

where α0 and V0 are constants.

3 Observational constraints

We constrain the viscous phantom model using the late-time
observational data sets based on Markov Chain Monte Carlo
method. We use the Pantheon compilation of Type Ia super-
nova (SNIa) [5] and Hubble parameter (H(z)) data points
[48] to fit the model parameters. The SNIa data consist of 279
samples from Sloan Digital Sky Survey (SDSS) and Super-
nova Legacy Survey (SNLS) with redshifts 0.03 < z < 0.68,
and 1048 samples with redshifts 0.01 < z < 2.3 including
the Hubble Space Telescope (HST) samples and various low-
z samples. The H(z) data include 26 data points from Baryon
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Table 1 The best fitting values of model parameters and 1σ confidence
level for Model P and Model vP under Pantheon+H(z) data sets

Parameter Model P Model vP

�m 0.331+0.026
−0.025 0.322+0.003

−0.003

H0 68.31+1.16
−1.14 68.31+1.23

−1.20

V0/H2
0 2.184+0.102

−0.087 2.612+0.347
−0.261

α0 1.262+0.479
−0.436 −0.04+0.355

−0.309

ξ0 − 0.323+0.099
−0.106

χ2
min/dof 1053.93/1099 1053.174/1098

Acoustic Oscillations and 31 data points from the differen-
tial age method. For comparison, besides fitting the viscous
phantom model under consideration (denoted as Model vP
in the following), we also perform the same fitting procedure
for the phantom model without viscosity (denoted as Model

P in the following). The fitting results are summarized in
Table 1.1 Figure 1 shows the constraints on the parameters of
Model vP at 2σ confidence level.

One can see that for Model P, the phantom potential can-
not be constant at 1σ confidence level as the phantom field
is the sole mechanism in operation for the late-time cosmic
acceleration. However, if both the viscosity and the phan-
tom field with its potential are taken into consideration, as in
Model vP, the fitting result favors a significant viscosity and
does not exclude the constant potential case with α0 = 0.

4 Dynamical analysis

By using the dimensionless variables [42,43,51]

x = φ̇√
6H

, y =
√
V (φ)√
3H

,

ζ = ξφ

H
= ξ0

φ̇

H
= √

6ξ0x,

(10)

the partial differential equations of the phantom scalar field
can be recast into an autonomous system as

1 For the detailed description of the fitting procedure, see Refs. [49,50].

dx

dN
= −3x −

√
6

2
α0y

2 + 3

2
x

[
1 − x2 − y2 − √

6ξ0x

]

− 3
√

6

2
ξ0,

dy

dN
= −

√
6

2
α0xy + 3

2
y

[
1 − x2 − y2 − √

6ξ0x

]
,

(11)

where N = ln a = − ln(1+ z). The Friedmann equation can
also be rewritten as a dimensionless constraint

�m + �φ = �m − x2 + y2 = 1, (12)

where �i = ρi
3H2 is the density parameter of the correspond-

ing component.
The critical points of the above system and their existence

conditions are listed in Table 2.
The stability of each critical point can be inferred from

the eigenvalues of the linearized perturbation matrix M of
the autonomous given by

M =
(

− 3
2

(
1 + 3x2 + y2 + 2

√
6ξ0x

) −3xy − √
6α0y

−3xy − √
6α0y − 3

√
6

2 ξ0y − 1
2

(
3 + 3x2 + 9y2 + √

6α0x + 3
√

6
2 ξ0x

)
)

.

(13)

• For critical point A1, the eigenvalues of the linearized
perturbation matrix are

η
(1)
A1

= −3C1 + C2

4α4
0

,

η
(2)
A1

= −3C1 − C2

4α4
0

,

(14)

where
C1 = α4

0 − 3α3
0ξ0,

C2 =
√

−6α6
0

[
24 + 78α0ξ0 + 16α3

0ξ0 − 9ξ2
0 + α2

0(7 + 48ξ2
0 )

]
.

(15)

In Fig. 2, the colored areas mark the possible regions of
parameters for the critical point A1 to exist. The stable (pink)
and saddle (blue) regions are divided by the line �φ = 1.
However, the conditions 0 ≤ �m,�φ ≤ 1 further rule out
the unphysical regions (shaded) of the parameters ξ0 and α0.

• For critical point A2, the eigenvalues of the linearized
perturbation matrix are

η
(1)
A2

= 3

2
+ 3α0ξ0,

η
(2)
A2

= −3

2
− 9ξ2

0 .

(16)
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Fig. 1 Constraints on the
viscous phantom model
parameters from 1σ to 2σ

confidence level. Where
γ = V0/H2

0

Table 2 The critical points and their existence conditions of autonomous system (11)

Critical points (x, y) Existence conditions �φ

A1

(√
3
2

α0
,

√
− 3

2 −3α0ξ0

α0

) (
ξ0 < 0 and α0 > − 1

2ξ0

)
or

(
ξ0 > 0 and α0 < − 1

2ξ0

)
− 3(1+α0ξ0)

α2
0

A2 (−√
6ξ0, 0) All ξ0 and α0 �= 0 −6ξ2

0

A3

(
− α0+3ξ0√

6
,

√
6+(α0+3ξ0)2√

6

)
All ξ0 and α0 �= 0 1

A2 exists as long as α0 �= 0. The sign of the first eigenvalue
η

(1)
A2

is bifurcated by the hyperbola α0ξ0 = −1/2, while the

second eigenvalue η
(2)
A2

is always negative for any real value
of parameter ξ0. Therefore, the stable (pink) and saddle (blue)
regions of A2 are shown as Fig. 3. However, we note that A2

only exists when �φ < 0. This scenario is also known as
the perfect fluid supra-dominated era [52], which is beyond
the scope of the current work and is considered unphysical.
We constrain the parameters α0 and ξ0 as such that 0 ≤
�m,�φ ≤ 1 and this point A2 will not exist.

• For critical point A3, the eigenvalues of the linearized
perturbation matrix are

η
(1)
A3

= −3 − α0(α0 + 3ξ0),

η
(2)
A3

= −1

2
(6 + (α0 + 3ξ0)

2).
(17)

A3 also exists for α0 �= 0 and any real ξ0. The second
eigenvalue η

(2)
A3

is always negative, while the first one can
have either sign. The stable (pink) and saddle (blue) regions
of A3 are shown in Fig. 4. We note that at this point the
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Fig. 2 The parameter regions
for the existence of critical point
A1. The shaded areas are
considered unphysical due to
either �φ > 1 (shaded pink
area) or �φ < 0 (shaded blue
area)

phantom field energy density parameter �φ = 1, which is
invariant under the variation of the parameters α0 and ξ0. So,
this point represents a phantom field dominated universe and
is always physical.

The saddle and physically relevant regions of parameters
for A1 are subsets of the stable regions of A3, but only under
the circumstance that A1 exists (i.e., the pair of parameters
lies in the colored region depicted in Fig. 2). In this sce-
nario, the system will evolve from A1 to A3 in the cosmic
history since A2 does not exist for these parameters. How-
ever, it is also possible that the parameters do not allow
for the existence of A1 (i.e., they fall outside the colored
region depicted in Fig. 2), yet satisfy the physical conditions
0 ≤ �m,�φ ≤ 1. Then, A3 becomes the sole existing crit-
ical point and the system will simply converge towards it.
The best-fit result of Model vP corresponds to the second
scenario.

Figure 5 shows the phase portrait of the viscous phantom
field in the late universe. The phase plane is divided into three
regions: (i) �φ > 1 (the light gray region above the upper
branch of the blue hyperbola y2 − x2 = 1); (ii) 0 < �φ < 1
(the region between the upper branch of the blue hyperbola
y2 −x2 = 1 and red straight lines y = ±x); and (iii) �φ < 0
(the regions below the red straight lines). The blue hyperbola
y2 − x2 = 1 represents all the possible attractors A3 for
different values of parameters {α0, ξ0}. The blue rounded
marker indicates the specific attractor point A3 for the best-
fit parameters. The purple hyperbola corresponds to �φ0 =
1 − �m0 = 0.678, which is the best-fit density parameter
of the phantom field at present time. The green hyperbola
corresponds to �φ = 0.018, which is the value of �φ when
�m reaches its maximum in the cosmic history, indicating
the matter-dominated era calculated from the fitting result.

Fig. 3 The parameter regions
for the existence of critical point
A2
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Fig. 4 The parameter regions
for the existence of critical point
A3

Moreover, the total EoS of the cosmic fluid can be
expressed in terms of x, y and ζ as

wtot = peff + pm
ρφ + ρm

= −x2 − y2 − ζ. (18)

The universe is in accelerating phase if −1 < wtot < −1/3,
and decelerating if −1/3 < wtot < 0. When wtot < −1,
the universe will enter the super-acceleration and end in a
Big Rig singularity. For Model P which has no viscosity, the
region −1 ≤ wtot = −x2 − y2 < −1/3 intercepts with the
blue hyperbola y2−x2 = 1 only at one point (x, y) = (0, 1),
which means that either the model needs severe fine-tuning
or it will encounter big rip singularity. This is independent
of the fitting. For Model vP, the regions wtot ∈ [−1,−1/3]
and wtot ∈ [−1/3, 0] calculated from the best-fit result are
painted cyan and yellow in Fig. 5, respectively. One can see
that the cyan region covers a portion of the blue hyperbola

that represents all possibilities of A3. The best-fit A3 is in this
region. Therefore, the presence of bulk viscosity can indeed
allow the model evolve into an attractor that is still in the
wtot > −1 region, and help avoid the cosmic singularity.

A heteroclinic orbit representing the evolutionary history
of our universe most likely starts somewhere near the green
hyperbola (matter dominated era) in the yellow region (decel-
erating phase with −1/3 ≤ wtot ≤ 0), crosses the purple
hyperbola (present time) in the cyan region (accelerating
phase), and eventually reaches some point on the blue hyper-
bola (attractor A3). However, the preceding section of such a
heteroclinic orbit seems to cross from the �φ < 0 region to
�φ > 0 region in early time and encounter a singularity of the
phantom field EoS wφ = peff/ρφ . This issue arises because
our analysis relies on late time observation data, which do
not capture the early stages of cosmic phase transitions. Fur-

Fig. 5 The phase space
evolution of the dynamical
system for Model vP
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ther research may be needed to address this typical concern
rooting from the negative kinetic energy of phantom field.

5 Statefinder diagnostic

The statefinder diagnostic uses the parameters {q, r, s} that
are derived from higher derivatives of the scale factor,

q ≡ − ä

aH2 , r ≡
...
a

aH3 , s ≡ r − 1

3(q − 1/2)
, (19)

to differentiate various DE models. For the current model,
the parameters are

q = 1

2
(1 + 3wφ�φ),

r = 1 − 3

2

dwφ

dN
�φ + 9

2
wφ(1 + wφ)�φ,

s = 1 − dwφ

dN

1

3wφ

+ wφ.

(20)

Using the best-fit parameters, we plot the r -q and r -s tra-
jectories for both Model P and Model vP in Figs. 6 and 7,
respectively. The present time is indicated by the rounded
marker on the curves. As shown in Fig. 6, Model P exhibits a
monotonically increasing deviation from the de Sitter point
in the future and asymptotes to a point in the region with
q < 0, r > 1. In contrast, Model vP will asymptotically
approach a stable fixed point (q, r) = (−0.9794, 0.9391)

near the de Sitter point. Figure 7 reveals that both models
have r < 1 and s > 0 in the early universe, and they both
cross the �CDM point (0, 1), but have different behaviors

afterwards. Model P moves away from the �CDM point,
while Model vP returns to it and passes it again before con-
verging to a nearby fixed point (s, r) = (0.0137, 0.9391) in
the far future.

The effective EoS parameters of the total cosmic fluid,
wtot, for both Model P and vP are plotted in Fig. 8. As shown
in the figure, wtot of Model vP remains above −1 and asymp-
totes to −0.9863 in the infinite future, which implies that the
universe will avoid the big rip singularity. This result is con-
sistent with the dynamical analysis in the previous section.
Moreover, the effective EoS parameter, wφ , of the viscous
phantom field is also plotted. One can see that it can cross
the phantom divide during the cosmic evolution. In this sense,
the phantom field model with viscosity is an effective quin-
tom model. At present time, the effective EoSs of the viscous
phantom field and the total cosmic fluid are −1.0565 and
−0.7159, respectively.

We also investigate the effect of viscosity on the evolution-
ary history by computing the ratio K of the effective pressure
to the intrinsic pressure of the phantom field, which is defined
as

K ≡ pef f
pφ

∼ 1 + φ̇e
α0
2 φ. (21)

Figure 9 shows the evolution of K as a function of ln a. It is
evident that viscosity has a significant impact on reducing the
pressure of the phantom field, especially around z = 0.8475
(ln a = −0.6138), where K reaches a minimum value of
about 0.4921 and the pressure of the field is only a half of the
intrinsic pressure. At present (z = 0), the effective pressure is
about one third (32.73%) lower than the intrinsic pressure due

Fig. 6 Evolving trajectories of
the statefinder pairs in the q-r
plane. The black dot (−1, 1)

represents the de Sitter phase,
and the solid dots on the lines
represent the current state of the
models
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Fig. 7 Evolving trajectories of
the statefinder pairs in the r -s
plane. The black dot (0, 1)

represents the �CDM model,
and the solid dots on the lines
represent the current state of the
models

to viscosity. In the future, viscosity will continue to reduce
the intrinsic pressure by about one quarter, as K asymptotes
to 0.7672.

6 Conclusion and discussions

Recent cosmological observations suggest that the late-time
acceleration of the universe is more likely driven by phan-

tom DE rather than quintessence DE. However, phantom DE
models typically encounter the big rip singularity problem.
In this work, we explore the possibility of avoiding the big rip
singularity by introducing bulk viscosity in the phantom field
model. We constrain the model parameters using the latest
SNIa and H(z) data. The results indicate that the data favor a
significant bulk viscosity over a non-constant potential term
for the phantom field.

Fig. 8 The evolution of the
total EoSs, wtot, of Model P and
Model vP, as well as the
effective EoS, wφ of Model vP
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Fig. 9 Evolution of the ratio of
effective pressure pef f to scalar
field pressure pφ

We then perform a dynamical analysis of the viscous phan-
tom field model using the best-fit values of the parameters.
We find that the only stable and physical attractor of the
autonomous system is A3, which corresponds to a phantom-
dominated era. The other critical points, may that be either
unstable, unphysical, or cannot exist for the best-fit param-
eters, do not represent different cosmological eras, since the
two variables of the autonomous system only correspond
to the kinetic and potential energy. We also plot the pos-
sible curves that represent the matter-dominated era and the
present epoch on the phase portrait. The heteroclinic orbit
that describes our universe is expected to cross these curves
and converge to the A3 attractor. However, we cannot trust
the early part of the orbit or the critical points that precede
the matter-dominated era, since we only fit the model for the
late-time behavior. Due to bulk viscosity, some combinations
of the parameters may allow the A3 attractor have a total EoS
wtot of cosmic fluid that falls within the accelerating region
−1 < wtot < −1/3. This implies that the phantom universe
may avoid the big rip singularity and end in a state with
wtot > −1 with the presence of bulk viscosity.

We apply the statefinder diagnostic to the viscous phan-
tom field model and compare it with the non-viscous model.
We find that the statefinder parameters of the viscous model
do not diverge monotonically from the �CDM point, but
rather approach a nearby fixed point asymptotically. The bulk
viscosity acts as a dissipative force that lowers the intrinsic
pressure of the phantom field. The viscosity has its maximum
effect around z = 0.8475, where it lowers the intrinsic pres-
sure by about a half. At the present time (z = 0), the viscosity
reduces the intrinsic pressure by a third, resulting in a lower

effective pressure. In the asymptotic future, the viscosity will
still lower the intrinsic pressure by a quarter. This reduction
enables the universe to escape the big rip singularity.

For simplicity, we have limited our study to a specific form
of the phantom field potential and the bulk viscosity, which
may not be the most general or realistic choice. It would be
worthwhile to explore other forms of potential and viscosity
that can fit the observational data and avoid the big rip singu-
larity. Due to the scope of our work, we have only focused on
the late-time behavior of the viscous phantom field model,
and ignored the early-time dynamics that may involve other
mechanisms. A more comprehensive study should include
the full history of the universe and investigate the transi-
tions between different cosmological eras. We also use con-
ventional methods of data analysis and dynamical analysis,
which may have some limitations or biases. Future research
could employ artificial intelligence techniques to improve the
accuracy and efficiency of data fitting, parameter estimation,
and model selection [53,54].
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