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Abstract We investigate scalarized black holes in new mas-
sive gravity dressed by a nonminimally coupled scalar. For
this purpose, we find the Gregory–Laflamme (GL) and tachy-
onic instability bounds of bald BTZ black hole expressed
in terms of m2 a massive spin-2 parameter and α a scalar
coupling parameter to Ricci scalar by making use of the lin-
earized theory around black hole. On the other hand, we
obtain a solution bound of 0.161 < α < 3/16 for achiev-
ing non-BTZ black holes with scalar hair analytically and a
thermodynamic bound of 1/8 < α < 13/80 for obtaining
consistent thermodynamic quantities. Without imposing the
GL instability bound (m2 < 1/2�2), we find a very narrow
bound of 0.161 < α < 0.1625 which is located inside tachy-
onic instability bound of α > 1/8 + m2

��2/6 for obtaining
scalarized black holes where m2

� is a scalar mass parameter.

1 Introduction

Recently, there was a significant progress on obtaining black
holes with scalar hair called as spontaneous scalarization
[1]. This corresponds to an explicit example for evading
no-hair theorem. In this direction, the tachyonic instability
of bald black holes is regarded as the onset of scalarized
black holes when introducing a scalar coupling f (φ) to the
source term: the Gauss–Bonnet (GB) term for Schwarzschild
black hole with mass M [2–4] and Kerr black hole [5] or
Maxwell term for Reissner–Nordström (RN) black hole with
mass M and charge Q [6] and Kerr–Newman black hole
[7]. For the GB coupling, the coupling function was usu-
ally chosen to be either f (φ) = (1 − e−6φ2

)/6 or φ2 which
leads to the same form when linearizing equations. Explic-
itly, the tachyonic instability for a scalar perturbation can
be found when the negative region of potential is devel-
oped in the near horizon by including a negative mass term
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μ2
S = −2α R̄2

GB = − 96αM2

r6 with a positive scalar coupling
parameter α in the Einstein–Gauss–Bonnet-scalar (EGBS)

theory or μ2
RN = α F̄2/2 = −α(Mq)2

r4 with q = Q/M
in Einstein–Maxwell-scalar theory. Another source terms
might be geometric invariant sources of Ricci scalar (R)
and Chern–Simons term (∗RR). The first branch of scalar-
ized black holes crosses the Schwarzschild black hole at the
threshold (αth = 0.363 for M = 1) of tachyonic instabil-
ity, while the first branch of scalarized charged black holes
crosses the RN black hole at the threshold (αth = 8.45 for
q = 0.7) of tachyonic instability. However, it is worth noting
that most of scalarized black hole solutions were constructed
numerically because their analytic solutions are hardly found.
This implies that a completely thermodynamic study of these
scalarized black holes is handicapped. For this purpose, it is
desirable to find an analytic black hole solution with scalar
hair.

On the other hand, a fourth-order gravity [Einstein–Weyl
theory: R− 1

2m2
2
(R2

μν − R2/3)] with a massive spin-2 param-

eter m2
2 has provided the non-Schwarzschild solution which

crosses the Schwarzschild solution at the threshold point
(mth

2 = 0.876 for r+ = 2M = 1) [8]. This numerical solu-
tion represents a black hole with Ricci tensor hair, compar-
ing to Schwarzschild with zero Ricci tensor. Even though its
approximate analytic solutions were found by making use
of the continued-fraction expansion [9], one could not find
any analytic form of non-Schwarzschild solution. At this
stage, we note that the instability of Schwarzschild black
hole was found in the dRGT massive gravity [10,11] and the
instability bound of Schwarzschild black hole was found as
m2 < 0.876/r+ when solving the Lichnerowicz equation for
the linearized Ricci tensor δRμν [12]. It corresponds exactly

to the linearized Einstein equation for h(4)
μν a four-dimensional

metric tensor around a five-dimensional black string where
the Gregory–Laflamme (GL) instability was firstly observed
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[13]. More recently, it was shown that the long-wave length
instability bound for non-Schwarzschild solution is given by
m2 < 0.876/r+ [14], which is the same bound as the GL
instability for Schwarzschild solution. However, this insta-
bility bound is not consistent with that predicted by thermo-
dynamic analysis of non-Schwarzschild solution [15].

Now, it is very interesting to note that the new massive
gravity with a positive massive spin-2 parameter m2 [16] is
considered as a three-dimensional version of Einstein–Weyl
gravity with a negative cosmological constant. In this case,
the GL instability bound was found to be m2 < 1

2�2 with �

the AdS3 curvature radius [17]. Also, it indicates a clear con-
nection (CSC: correlated stability conjecture) between ther-
modynamic instability and GL instability for the BTZ black
hole regardless of the horizon radius r+ [18]. On later, ana-
lytic black hole solutions were found in new massive gravity
dressed by a nonminimally coupled scalar to Ricci scalar
R [19]. However, an interpretation of asymptotically AdS
black hole solutions is not still clear as well as their ther-
modynamic analysis is incomplete. Furthermore, these solu-
tions have received less attention than asymptotically Lifshitz
black hole solutions in three dimensions [20,21].

In the present work, we wish to revisit these AdS black
hole solutions as non-BTZ black holes with scalar hair
and find all thermodynamic quantities. Without imposing
the GL instability bound, we find a very narrow bound of
0.161 < α < 0.1625 which is located inside tachyonic
instability bound of α > αth with αth = 1/8 + m2

��2/6 for
obtaining scalarized black holes by analyzing both solution
and thermodynamic bounds. On the other hand, imposing
the GL instability bound, one could not find any consistent
bound.

2 BTZ black holes

We start with the new massive gravity dressed by a nonmin-
imally coupled scalar (NMGdbs) [19]

SNMGdbs = SNMG + S�, (1)

SNMG = 1

2

∫
d3x

√−g
[
R − 2�

− 1

m2

(
Rρσ R

ρσ − 3

8
R2

)]
, (2)

S� = −1

2

∫
d3x

√−g
[
(∂�)2 + αR�2

+m2
��2 + λ

12
�4

]
, (3)

where m2 is a positive massive spin-2 parameter, α is a pos-
itive scalar coupling to Ricci scalar R, and m2

� is a scalar
mass parameter [m,m�, α ∈ (0,∞)]. Here, it is important to
note that we introduce a quadratic scalar coupling φ2 to Ricci

scalar R but not to fourth-order term K = Rρσ Rρσ −3R2/8.

The reason for this choice is that the former is easy to find an
analytic black hole solution with scalar hair than the latter.

The Einstein equation is given by

Gμν + �gμν − 1

2m2 Kμν − T�
μν = 0, (4)

where

Kμν = 2�Rμν − 1

2
∇μ∇νR − 1

2
�Rgμν + 4Rμρνσ R

ρσ

−3

2
RRμν − Rρσ R

ρσ gμν + 3

8
R2gμν (5)

and the stress tensor for a scalar � is defined by

T�
μν = ∂μ�∂ν� − gμν

2

[
(∂�)2 + m2

��2 + λ

12
�4

]

+α
(
gμν� − ∇μ∇ν + Gμν

)
�2. (6)

On the other hand, the scalar equation takes the form as

�� − αR� − m2
�� − λ

6
�3 = 0. (7)

Our primary concern is the non-rotating BTZ black hole solu-
tion to Eqs. (4) and (7) given by

ds2
BTZ = ḡμνdx

μdxν = − f (r)dt2 + dr2

f (r)
+ r2dϕ2,

f (r) = −M + r2

�2 , (8)

� = 0

under the condition of 1/�2 + � + 1/(4m2�4) = 0. Here
M is an integration constant related to the ADM mass of
BTZ black hole and � denotes the curvature radius of AdS3

spacetimes. The horizon radius r+ = √
M� is determined by

the condition of f (r) = 0. Its Hawking temperature is found
to be

TH(r+) = f ′(r+)

4π
= r+

2π�2 . (9)

Using the Abbott–Deser–Tekin method [22,23], one can
derive all (m2-dependent) thermodynamic quantities of its
mass, heat capacity (C = dMADT

dTH
), entropy, and Helmholtz

free energy as [18]

MADT = M2

m2 M(r+), CADT = M2

m2 C(r+),

SADT = M2

m2 SBH(r+), FADT = M2

m2 F(r+), (10)

where M2 is defined by

M2(m2) = m2 − 1

2�2 . (11)
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Here, thermodynamic quantities in Einstein gravity are given
by

M(r+) = r2+
�2 , C(r+) = 4πr+, SBH (r+) = 4πr+,

F(r+) = M − THSBH = −r2+
�2 . (12)

We note that these quantities are positive regardless of the
horizon size r+ except that the free energy is always negative.
This means that the BTZ black hole is thermodynamically
stable in Einstein gravity. Also, it is easy to check that the
first-law of thermodynamics is satisfied as

dMADT = THdSADT (13)

as the first-law is satisfied in Einstein gravity

dM = THdSBH (14)

where ‘d’ denotes the differentiation with respect to the hori-
zon size r+ only. It is interesting to observe that in the limit
of m2 → ∞ one recovers thermodynamics of the BTZ black
hole in Einstein gravity, while in the limit of m2 → 0 we
recover the black hole thermodynamics in purely fourth-
order gravity.

We are in a position to discuss the linear stability of BTZ
black hole in NMGdbs by considering metric perturbation
hμν and scalar perturbation φ in gμν = ḡμν + hμν and � =
0 + φ. Firstly, the linearized Einstein equation to (4) upon
choosing the transverse-traceless gauge (∇̄μhμν = 0 and
hμ

μ = 0) leads to the fourth-order equation for the metric
perturbation hμν

[
�̄L + 2

�2 − M2(m2)
](

�̄L + 2

�2

)
hμν = 0, (15)

where �̄L denotes the Lichnerowicz operator defined as

�̄Lhμν = −�̄hμν − R̄ρμσνh
ρσ − 2

�2 hμν. (16)

This might imply the two second-order linearized equations

(
�̄L + 2

�2

)
hμν = 0, (17)

[
�̄L + 2

�2 − M2(m2)
]
hMμν = 0. (18)

Here, the mass squared M2 of a massive spin-2 is given by
Eq. (11). Importantly, Eq. (17) describes a massless spin-2
(gauge degrees of freedom), whereas Eq. (18) describes a
massive spin-2 with 2 DOF propagating around the BTZ
black hole under the transverse-traceless gauge. Solving
a coupled first-order equations for s(n = 0)-mode Htr

and H− = Htt/ f (r) − f (r)Hrr derived from Eq. (18)
with hμν = e�t einϕHμν, the classical instability (Gregory–
Laflamme instability) bound of the BTZ black hole on m2

was found by

M2 < 0 → m2 <
1

2�2 → m < mth, mth = 0.7

�
(19)

regardless of the horizon radius r+ [17].
It is well known that the local thermodynamic stability

is determined by the positive heat capacity (CADT > 0) in
NMGdbs. For M2 > 0(m2 > m2

th), all thermodynamic
quantities have the same property as those for Einstein grav-
ity, whereas for M2 < 0(m2 < m2

th), all thermodynamic
quantities have the same property as those for fourth-order
term. We observe that for M2 > 0, the BTZ black hole is
thermodynamically stable, regardless of the horizon radius
r+ because of CADT > 0. The case of M2 = 0(m2 = m2

th)

corresponds to the critical gravity where all thermodynamic
quantities are zero and logarithmic modes appear. ForM2 <

0, the BTZ black hole is thermodynamically unstable because
of CADT < 0 as well as it is classically unstable against met-
ric perturbation. Hence, it shows a clear connection (CSC:
correlated stability conjecture) between thermodynamic and
classical instability for the BTZ black hole regardless of the
horizon radius r+ in NMGdbs. However, it is important to
note that there is no such connection in Einstein gravity.

Finally, let us study the tachyonic instability for scalar
perturbation. By linearizing Eq. (7), one finds a linearized
scalar equation with R̄ = −6/�2

�̄φ −
(

− 6α

�2 + m2
�

)
φ = 0. (20)

Considering the separation of variables as

φ(t, ϕ, r) ∝ e−iωt+inϕ ψ(r)√
r

, (21)

one finds the Schrödinger equation with a tortoise coordinate
defined by dr∗ = dr/ f (r) as

d2ψ

dr2∗
+

[
ω2 − Vψ,α(r)

]
ψ = 0, (22)

where the scalar potential is given by

Vψ,α(r) = f (r)
[ M

4r2 + n2

r2 − 6

�2

(
α − 1

8
− m2

��2

6

)]
. (23)

The appearance of negative region in the far region indicates
tachyonic instability because the last term of Eq. (23) plays
the role of an effective mass term.

Observing Fig. 1, one finds that the tachyonic instability
bound for s(n = 0)-mode scalar is determined by

α > αth, αth = 1

8
+ m2

��2

6
. (24)

Consequently, we find two instability bounds (19) and (24)
from stability analysis of BTZ black holes in NMGdbs.
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Fig. 1 Scalar potential Vψ,α(r ∈ [r+ = 1, 30]) for s(n = 0)-mode
φ with M = �2 = m2

� = 1 and α = 1/8 + 1/6 − 0.0001 (stable),
α = 1/8 + 1/6(= αth) (threshold of tachyonic instability), and α =
1/8 + 1/6 + 0.0001 (unstable). The negative region increases as α

increases because the last term of Eq. (23) plays the role of an effective
mass term

3 Scalarized black holes

One finds an analytic solution for scalarized black holes by
solving (4) and (7) as [19]

ds2
sbh = −F(r)dt2 + dr2

F(r)
+ r2dϕ2,

F(r) = −M
(r
�

) 32α−5
16α−3 + r2

�2

�α(r) =
(r
�

) 0.5
16α−3

�̃α, �̃α =
√

8M(32α − 5)

256α2 − 32α − 1
, (25)

where M denotes the ADM mass of scalarized black hole.
We regard Eq. (25) as non-BTZ black holes with scalar hair
in three dimensions. One finds that 256α2 − 32α − 1 =
256(α − 1+√

2
16 )(α − 1−√

2
16 ). Importantly, we observe that a

case of α = 5
32 recovers the BTZ black hole Eq. (8) with

� = 0. Imposing a vanishing �α(r) at infinity and a positive
finite scalar hair on the horizon, we find two bounds for α

(see Fig. 2)

0 < α <
1 + √

2

16
(= 0.151),

5

32
(= 0.156) < α <

3

16
(= 0.1875). (26)

For this solution, other parameters take the forms as

m2(α) = 256α2 − 32α − 1

2(16α − 3)2�2 ,

�(α) = − (16α − 1)(48α − 7)

2(256α2 − 32α − 1)�2 ,

m2
�(α) = (8α − 1)(768α2 − 192α + 11)

4(16α − 3)2�2 ,

λ(α) = −3(8α − 1)(256α2 − 32α − 1)(768α2 − 152α + 9)

16(16α − 3)2(32α − 5)�2 .

(27)

Taking a positive m2(α), one has a bound of α > 1+√
2

16
[see (Left) Fig. 3]. For a negative �(α), one has two bounds:
1
16 (= 0.063) < α < 7

48 (= 0.146) and α > 1+√
2

16 [see
(Right) Fig. 3]. Two roots of 768α2 − 192α + 11 = 0 are
given by α = 0.089, 0.161. For a positive m2

�(α), we find
two bounds: 0.089 < α < 1

8 (= 0.125) and α > 0.161 (see
Fig. ??). However, there is no restriction on λ(α). A common
bound from m2(α) > 0, �(α) < 0, and m2

�(α) > 0 leads
to

α > 0.161. (28)

Finally, combining Eq. (28) with Eq. (26), one finds a
solution bound for obtaining scalarized black hole solutions

0.161 < αsol <
3

16
(= 0.1875). (29)

Here, we obtain three isolated points for positive α: αiso =
1+√

2
16 , 5

32 , 3
16 because of α = 1−√

2
16 < 0. These all are

excluded from the allowed parameter space.

Fig. 2 (Left) �̃α as a function of α with M = 1. The shaded region
represents �̃α > 0, it blows up at α = 1.151 (dotted line) and it is
zero at α = 0.156, 0.1875. (Right) Scalar hairs �α(r) as function

of r ∈ [r+ = 1, 5] with � = 1 and α = 0, 0.15, 0.16, 0.18. The
forbidden region is between α = 0.151 and α = 0.156
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Fig. 3 (Left) Mass m2(α) as a function of α with � = 1. The shaded region represents m2(α) > 0 and it blows up at α = 0.1875 (dotted line).
(Right) Cosmological constant �(α) as function of α with � = 1. The shaded region represents �(α) < 0 and it blows up at α = 0.151 (dotted
line)

4 Complete analysis for thermodynamics of scalarized
black holes

First of all, the (α-dependent) Hawking temperature is
defined by

TH(r+, α) = F ′(r+)

4π
= r+

4π�2(3 − 16α)
. (30)

Other (α-dependent) thermodynamic quantities are found to
be

M(r+, α) = r2+
�2

(r+
�

) 32α−5
16α−3

, C(r+, α) = 4πr+
(r+

�

) 32α−5
16α−3

,

SBH (r+, α) = 2πr+
(16α − 3

8α − 1

)(r+
�

) 32α−5
16α−3

,

Fα(r+) = M − THSBH = r2+
�2

(80α − 13

16α − 2

)(r+
�

) 32α−5
16α−3

. (31)

In deriving the entropy SBH , we use the first-law of thermo-
dynamics as

dM = THdSBH . (32)

For an isolated point (α = 5
32 ), we observe that the above

reduces to those in Eq. (12) for BTZ black hole exactly. For
an isolated point (α = 3

16 ), any thermodynamic quantities
are not defined properly because they blow up. Requiring that
TH(r+, α) > 0 → 0 < α < 3

16 , SBH (r+, α) > 0 → 1
8 <

α < 3
16 , and Fα(r+) < 0 → 1

8 < α < 13
80 , one finds a ther-

modynamic bound for obtaining appropriate thermodynamic
quantities for scalarized black hole as

1

8
(= 0.125) < αther <

13

80
(= 0.1625). (33)

We note that in view of having appropriately thermodynamic
quantities, two cases of α = 3

16 and 1
8 (stealth black hole) are

isolated points which are excluded from the allowed param-
eter space α.

Consequently, combining Eq. (29) with (33), one has a
very specific bound for obtaining scalarized black hole with

Fig. 4 (Left) Mass of scalar m2
�(α) as a function of α with � = 1.

Two shaded regions denote m2
φ(α) > 0 and it blows up at α = 0.1875

(dotted line)

Fig. 5 Helmholtz free energy Fα(r+ ∈ [0, 10]) with �2 = 1 and α =
0.1625 (zero: r+-axis), α = 0.162 (within bound (34)), α = 0.1615
(within bound (34)), α = 0.161, α = 0.156 (BTZ), and α = 0.126
(Fα-axis)

appropriate thermodynamic quantities as

0.161 < α < 0.1625, (34)

which is regarded as our key result. We note that this bound
belongs to the tachyonic bound (24). However, if the GL

123



1137 Page 6 of 7 Eur. Phys. J. C (2023) 83 :1137

instability bound (19) is imposed, the mass bound on m2 is

modified as 1+√
2

16 < α < 5
32 . In this case, we have no such

bound like as Eq. (34). In this sense, the GL instability bound
might have noting to do with constructing scalarized black
holes.

Finally, we observe the Helmholtz free energy depicted in
Fig. 5 to study phase transition between BTZ and scalarized
black holes since all specific heats C(r+, α) are positive def-
inite. We find that phase transition from BTZ black hole to
scalarized black holes within the bound Eq. (34) is unlikely
to occur. The BTZ black hole is always favored than scalar-
ized black hole because of Fα=0.156(BT Z) < F0.161<α<0.625.

It needs to perform stability analysis of scalarized black holes
within the bound Eq. (34).

5 Discussions

We have investigated the new massive gravity dressed by
a nonminimally coupled scalar (NMGdbs) in Eq. (1). In
this case, a quadratic scalar coupling to Ricci scalar R
was included, instead of a quadratic scalar coupling to
fourth-order term K = Rρσ Rρσ − 3R2/8: SNMGS =
1
2

∫
d3x

√−g [R − 2� − (∂�)2 − (1 − �2)K/m2 with m2

a single massive spin-2 parameter. We note that K plays a
role of the Gauss–Bonnet term in four dimensions because
the Gauss–Bonnet term is identically zero in three dimen-
sions. Even though the former coupling does not belong to
the general setup like the latter coupling, we have considered
the former coupling because it may admit an analytic black
hole solution with scalar hair.

From the NMGdbs, we have found the non-rotating BTZ
black hole as the bald black hole without scalar hair. We
have made the linearized theory around the BTZ black hole
to find the condition for instability and to trigger the spon-
taneous scalarization. Linearizing two equations (4) and (7)
leads to two linearized equations: one is the linearized Ein-
stein equation and the other is the linearized scalar equation.
The linearized scalar equation (20) differs from the four-
dimensional linearized scalar equation. The mass term of the
NMGdbs is a constant term like as ‘−6α/�2 +m2

�’, whereas

the mass term of the EGBS theory is given by μ2
S = − 96αM2

r6 .

The former induces negative potential in the far region, while
the latter provides negative potential in the near horizon.
Also, the linearized Einstein equation (18) in NMGdbs is
the same form as in NMG, whereas the linearized Einstein
equation in the EGBS theory is the same as that for Einstein
theory. We have obtained the Gregory–Laflamme instability
bound (m < mth = 0.7/�) and tachyonic instability bound
(α > αth = 1/8 + m2

��2/6) of bald BTZ black hole by
making use of the linearized theory around BTZ black hole.

Solving two full equations (4) and (7) directly, one has
found an analytic (α-dependent) scalarized black hole (25)
with four parameters m2(α), �(α), m2

�(α), and λ(α). We
have obtained a solution bound of 0.161 < αsol < 3/16
for achieving black holes with scalar hair analytically and a
thermodynamic bound of 1/8 < αther < 13/80 for finding
consistent thermodynamic quantities. Without imposing the
GL instability bound (m < 0.7

�
),we have found a very narrow

bound of 0.161 < α < 0.1625 which is located inside tachy-
onic instability bound of α > αth with αth = 1/8 +m2

��2/6
for obtaining scalarized black holes. However, if the GL
instability bound is imposed, the mass bound on m2(α) is

modified as 1+√
2

16 < α < 5
32 . In this case, there is no such

bound like Eq. (34). In this sense, it seems that the GL insta-
bility bound has noting to do with constructing scalarized
black holes.

On the other hand, the GL instability supports correlated
stability conjecture (CSC) between thermodynamic instabil-
ity and classical instability for bald BTZ black hole regardless
of the horizon radius r+ in NMGdbs.

Consequently, the scalarized (α-dependent) black hole
exists within a very narrow band of 0.161 < α < 0.1625
in NMGdbs.
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1. D.D. Doneva, F.M. Ramazanoğlu, H.O. Silva, T.P. Sotiriou, S.S.
Yazadjiev, arXiv:2211.01766 [gr-qc]

2. D.D. Doneva, S.S. Yazadjiev, Phys. Rev. Lett. 120(13),
131103 (2018). https://doi.org/10.1103/PhysRevLett.120.131103.
arXiv:1711.01187 [gr-qc]

3. H.O. Silva, J. Sakstein, L. Gualtieri, T.P. Sotiriou, E. Berti,
Phys. Rev. Lett. 120(13), 131104 (2018). https://doi.org/10.1103/
PhysRevLett.120.131104. arXiv:1711.02080 [gr-qc]

4. G. Antoniou, A. Bakopoulos, P. Kanti, Phys. Rev. Lett. 120(13),
131102 (2018). https://doi.org/10.1103/PhysRevLett.120.131102.
arXiv:1711.03390 [hep-th]

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2211.01766
https://doi.org/10.1103/PhysRevLett.120.131103
http://arxiv.org/abs/1711.01187
https://doi.org/10.1103/PhysRevLett.120.131104
https://doi.org/10.1103/PhysRevLett.120.131104
http://arxiv.org/abs/1711.02080
https://doi.org/10.1103/PhysRevLett.120.131102
http://arxiv.org/abs/1711.03390


Eur. Phys. J. C (2023) 83 :1137 Page 7 of 7 1137

5. P.V.P. Cunha, C.A.R. Herdeiro, E. Radu, Phys. Rev. Lett. 123(1),
011101 (2019). https://doi.org/10.1103/PhysRevLett.123.011101.
arXiv:1904.09997 [gr-qc]

6. C.A.R. Herdeiro, E. Radu, N. Sanchis-Gual, J.A. Font, Phys.
Rev. Lett. 121(10), 101102 (2018). https://doi.org/10.1103/
PhysRevLett.121.101102. arXiv:1806.05190 [gr-qc]

7. M.Y. Lai, Y.S. Myung, R.H. Yue, D.C. Zou, Phys. Rev. D
106(8), 084043 (2022). https://doi.org/10.1103/PhysRevD.106.
084043. arXiv:2208.11849 [gr-qc]

8. H. Lu, A. Perkins, C.N. Pope, K.S. Stelle, Phys. Rev. Lett. 114(17),
171601 (2015). https://doi.org/10.1103/PhysRevLett.114.171601.
arXiv:1502.01028 [hep-th]

9. K. Kokkotas, R.A. Konoplya, A. Zhidenko, Phys. Rev. D
96, 064007 (2017). https://doi.org/10.1103/PhysRevD.96.064007.
arXiv:1705.09875 [gr-qc]

10. E. Babichev, A. Fabbri, Class. Quantum Gravity 30, 152001
(2013). https://doi.org/10.1088/0264-9381/30/15/152001.
arXiv:1304.5992 [gr-qc]

11. R. Brito, V. Cardoso, P. Pani, Phys. Rev. D 88(2), 023514 (2013).
https://doi.org/10.1103/PhysRevD.88.023514. arXiv:1304.6725
[gr-qc] [12]

12. Y.S. Myung, Phys. Rev. D 88(2), 024039 (2013). https://doi.org/
10.1103/PhysRevD.88.024039. arXiv:1306.3725 [gr-qc]

13. R. Gregory, R. Laflamme, Phys. Rev. Lett. 70, 2837–
2840 (1993). https://doi.org/10.1103/PhysRevLett.70.2837.
arXiv:hep-th/9301052

14. A. Held, J. Zhang, Phys. Rev. D 107(6), 064060 (2023). https://doi.
org/10.1103/PhysRevD.107.064060. arXiv:2209.01867 [gr-qc]

15. H. Lü, A. Perkins, C.N. Pope, K.S. Stelle, Phys. Rev.
D 96(4), 046006 (2017). https://doi.org/10.1103/PhysRevD.96.
046006. arXiv:1704.05493 [hep-th]

16. E.A. Bergshoeff, O. Hohm, P.K. Townsend, Phys. Rev. Lett. 102,
201301 (2009). https://doi.org/10.1103/PhysRevLett.102.201301.
arXiv:0901.1766 [hep-th]

17. T. Moon, Y.S. Myung, Phys. Rev. D 88(12), 124014 (2013). https://
doi.org/10.1103/PhysRevD.88.124014. arXiv:1310.3024 [hep-th]

18. Y.S. Myung, T. Moon, JHEP 04, 058 (2014). https://doi.org/10.
1007/JHEP04(2014)058. arXiv:1311.6985 [hep-th]

19. F. Correa, M. Hassaine, J. Oliva, Phys. Rev. D 89(12),
124005 (2014). https://doi.org/10.1103/PhysRevD.89.124005.
arXiv:1403.6479 [hep-th]

20. E. Ayón-Beato, M. Bravo-Gaete, F. Correa, M. Hassaïne, M.M.
Juárez-Aubry, J. Oliva, Phys. Rev. D 91(6), 064006 (2015). https://
doi.org/10.1103/PhysRevD.91.064006. arXiv:1501.01244 [gr-qc]

21. M. Bravo-Gaete, M.M. Juárez-Aubry, Class. Quantum Gravity
37(7), 075016 (2020). https://doi.org/10.1088/1361-6382/ab7694.
arXiv:2002.10520 [hep-th]

22. L.F. Abbott, S. Deser, Nucl. Phys. B 195, 76–96 (1982). https://
doi.org/10.1016/0550-3213(82)90049-9

23. S. Deser, B. Tekin, Phys. Rev. Lett. 89, 101101 (2002). https://doi.
org/10.1103/PhysRevLett.89.101101. arXiv:hep-th/0205318

123

https://doi.org/10.1103/PhysRevLett.123.011101
http://arxiv.org/abs/1904.09997
https://doi.org/10.1103/PhysRevLett.121.101102
https://doi.org/10.1103/PhysRevLett.121.101102
http://arxiv.org/abs/1806.05190
https://doi.org/10.1103/PhysRevD.106.084043
https://doi.org/10.1103/PhysRevD.106.084043
http://arxiv.org/abs/2208.11849
https://doi.org/10.1103/PhysRevLett.114.171601
http://arxiv.org/abs/1502.01028
https://doi.org/10.1103/PhysRevD.96.064007
http://arxiv.org/abs/1705.09875
https://doi.org/10.1088/0264-9381/30/15/152001
http://arxiv.org/abs/1304.5992
https://doi.org/10.1103/PhysRevD.88.023514
http://arxiv.org/abs/1304.6725
https://doi.org/10.1103/PhysRevD.88.024039
https://doi.org/10.1103/PhysRevD.88.024039
http://arxiv.org/abs/1306.3725
https://doi.org/10.1103/PhysRevLett.70.2837
http://arxiv.org/abs/hep-th/9301052
https://doi.org/10.1103/PhysRevD.107.064060
https://doi.org/10.1103/PhysRevD.107.064060
http://arxiv.org/abs/2209.01867
https://doi.org/10.1103/PhysRevD.96.046006
https://doi.org/10.1103/PhysRevD.96.046006
http://arxiv.org/abs/1704.05493
https://doi.org/10.1103/PhysRevLett.102.201301
http://arxiv.org/abs/0901.1766
https://doi.org/10.1103/PhysRevD.88.124014
https://doi.org/10.1103/PhysRevD.88.124014
http://arxiv.org/abs/1310.3024
https://doi.org/10.1007/JHEP04(2014)058
https://doi.org/10.1007/JHEP04(2014)058
http://arxiv.org/abs/1311.6985
https://doi.org/10.1103/PhysRevD.89.124005
http://arxiv.org/abs/1403.6479
https://doi.org/10.1103/PhysRevD.91.064006
https://doi.org/10.1103/PhysRevD.91.064006
http://arxiv.org/abs/1501.01244
https://doi.org/10.1088/1361-6382/ab7694
http://arxiv.org/abs/2002.10520
https://doi.org/10.1016/0550-3213(82)90049-9
https://doi.org/10.1016/0550-3213(82)90049-9
https://doi.org/10.1103/PhysRevLett.89.101101
https://doi.org/10.1103/PhysRevLett.89.101101
http://arxiv.org/abs/hep-th/0205318

	Scalarized black holes in new massive gravity dressed by a nonminimally coupled scalar
	Abstract 
	1 Introduction
	2 BTZ black holes
	3 Scalarized black holes
	4 Complete analysis for thermodynamics of scalarized black holes
	5 Discussions
	References




