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Abstract We find a new exact solution to Einstein field
equations that represents a cosmological wormhole embed-
ded in a flat Friedmann–Lemaître–Robertson–Walker uni-
verse. The new metric is a generalization of a previous cos-
mological wormhole solution found by Kim. We explicitly
show that the flaring out condition is satisfied at the throat
at all cosmic times; in addition, the null energy condition is
violated at the throat regardless of the background cosmo-
logical model; thus, the spacetime geometry presented here
describes a wormhole coupled to the cosmic dynamics that
exists at all cosmic times and whose throat remains open in
any cosmological model.

1 Introduction

Wormholes are shortcuts between different regions of the
universe. They are a special class of solutions of Einstein
field equations, which represent multiply connected space-
times. Wormholes require the absence of event horizons; the
“bridge” connecting different events in spacetime has a mini-
mum radius, the throat; in their simpler versions, two mouths
on either each side of the throat allow the passage of matter
and fields in both directions.

In the late eighties, wormhole research experienced a
major revival after the publication of Morris and Thorne’s
solution that describes a traversable wormhole [1]. Since
then, wormhole solutions have been the subject of intense
theoretical study. Although their nature is still conjectural,
many works have been devoted to the astrophysical conse-
quences of their existence. An updated review of the literature
on astrophysical wormholes can be found in [2].
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The Morris and Thorne (MT) wormhole solution is both
static and asymptotically flat. Over the years, there have been
many attempts to construct dynamic wormholes solutions
and, in particular, wormholes that evolve due to their coupling
with the cosmological background.

Roman [3] investigated whether inflation might provide
a natural mechanism to enlarge wormholes of microscopic
size. For this purpose, he considered a Lorentzian worm-
hole embedded in a flat de Sitter space and showed that the
throat expands at the same rate as the scale factor. At the
same time, Kim [4] considered the effects of the cosmological
constant on a Lorentzian wormhole constructed by connect-
ing two Schwarzschild–de Sitter spacetimes. Hochberg and
Kepart [5] also used a surgical procedure to obtain a worm-
hole solution from two copies of the Friedmann–Lemaître–
Robertson–Walker (FLRW) metric (see also [6]). Another
approach adopted to obtaining cosmological wormhole solu-
tions is to add a time-dependent scaling factor to the metric
[7–9].

Cosmological wormhole solutions have also been derived
in alternative theories of gravity such as f (R)-gravity
[10,11], f (T )-gravity [12] and Lovelock gravity [13].One
of these solutions [11] was recently used by Pavlović and
Sossich [14] to analyze whether wormholes could be created
during a cosmological bounce.

Among cosmological black hole spacetimes, the McVit-
tie metric [15] is probably the one that has been most ana-
lyzed. It is an exact solution of Einstein field equations for
a central inhomogeneity in a cosmological setting. Using a
similar approach, Kim [16,17] derived a new solution for
a MT wormhole embedded in a FLRW background. As in
McVittie’s original proposal, the solution is constructed in
such a way that accretion onto the wormhole is not allowed.
In the present paper, we obtain a new metric for a cosmolog-
ical wormhole that generalizes Kim’s solution. We explicitly
show that the new metric satisfies the criteria for a dynamical
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wormhole and that the energy conditions are always violated
at the throat.

The paper is structured as follows: in Sect. 2 we present
the generalized cosmological wormhole metric and calcu-
late Einstein field equations for the proposed ansatz. Next,
in Sect. 3, we analyze a specific model for the generalized
cosmological wormhole: we determine the location of the
throat, compute the flare-out condition (3.1) and Misner–
Sharp–Hernandez mass (3.2), and finally show that the null
energy condition is violated at the throat (3.3). We close the
paper with some conclusions.

2 Generalized cosmological wormhole metric

The cosmological wormhole metric derived by Kim [16] is
characterized by a redshift factor equal to 1 (�′ = 0) and a
shape function of the form b(r) = b2

0/r , being b0 the location
of the wormhole throat. In isotropic coordinates, (t, r, θ, φ),
the line element reads1

ds2 = −dt2 + a2(t)
(
1 + kr2

)2

(

1 + b2
0

4r2

)2 (
dr2 + r2d�2

)
.

(1)

Here, a(t) is the scale factor, k is the curvature of space, t
is the cosmic time, and d�2 ≡ dθ2 + sin2 θdφ2 is the line
element of the unit two-sphere. The coordinate r is defined
in the range 0 < r < ∞. In what follows, we focus on flat
cosmological models (k = 0).

We see that if a2(t) ≡ 1, we recover the metric for a
Morris-Thorne wormhole [1],

ds2 = −dt2 +
(

1 + b2
0

4r2

)2 (
dr2 + r2d�2

)
, (2)

while by setting b0 = 0 we obtain the FLRW line element

ds2 = −dt2 + a2(t)
(
dr2 + r2d�2

)
. (3)

We make the following proposal for the generalized cos-
mological wormhole metric

ds2 = −dt2 + a2(t)

(
1 + b(r, t)2

4r

)2 (
dr2 + r2d�2

)
, (4)

where b(r, t) = b1(r) × b2(t), being b2(t) an unspecified
function of the cosmic time. In particular, we choose for the
radial part of the shape function

b1(r) = b0√
r
. (5)

Notice that we recover the line element of

1 Throughout the paper, we use a geometric unit system, that is, G =
c = 1.

• the MT wormhole taking a(t) = 1, b1(r) = b0/
√
r and

b2(t) = 1.
• Kim’s cosmological wormhole choosing b1(r) = b0/

√
r

and b2(t) = 1.

We next compute the components of the Einstein tensor Gμ
ν

for the spacetime metric (4).

2.1 Einstein field equations

The mixed components of the Einstein tensor G0
0, G1

1, G2
2

and G3
3 can be divided into 3 different parts, each with a

specific physical interpretation:

Gμ
ν = Gμ

ν

∣∣
c + Gμ

ν |kcw + Gμ
ν |gcm. (6)

Here, “c”, “kcw” and “gcw” are the acronyms for cosmo-
logical, Kim cosmological wormhole and generalized cos-
mological wormhole, respectively. The explicit expressions
are

G0
0 = −3

a′(t)
a(t)

∣
∣
∣
∣
c
+ 256 b2

0 r4 b2
2(t)

a2(t)α(r, t)4

∣∣
∣
∣
∣
kcw

− 12
b0 b2(t) b′

2(t) f00(r, t)

a(t)α(r, t)2

∣
∣
∣∣
∣
gcw

, (7)

G1
1 =

[

−a′2(t)

a2(t)
− 2

a′′(t)
a(t)

]∣
∣
∣
∣∣
c

− 256 b2
0 r4 b2

2(t)

a2(t)α(r, t)4

∣
∣
∣
∣∣
kcw

− 4

[
b′

2(t) f11(t, t)

a(t) α(r, t)2 + b2
0 b2(t) b′′

2(t)

α(r, t)

]∣
∣∣
∣
∣
gcw

. (8)

G2
2 = G3

3 =
[

−a′2(t)

a2(t)
− 2

a′′(t)
a(t)

]∣
∣
∣∣
∣
c

+ 256 b2
0 r4 b2

2(t)

a2(t)α(r, t)4

∣
∣
∣∣
∣
kcw

− 4

[
b′

2(t) f11(t, t)

a(t) α(r, t)2 + b2
0 b2(t) b′′

2(t)

α(r, t)

]∣
∣∣
∣
∣
gcw

, (9)

where

f00(r, t) = α(r, t)a′(t) + b2
0(t) a(t) b2(t) b

′
2(t), (10)

f11(r, t) = 3b2(t) α(r, t) a′(t)
+2 a(t)

[
2r2 + b2

0(t)b
2
2(t)

]
b′

2(t), (11)

α(r, t) = 4r2 + b2
0 b2

2(t). (12)

The presence of the factor b2(t) in the metric gives the
Einstein tensor an additional nonzero component

G0
1 = −32

b2
0 r b2(t) b′

2(t)

α2(r, t)
, (13)

G1
0 = 64

b2
0 r5 b2(t) b′

2(t)

a2(t)α4(r, t)
. (14)
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Next, we consider an imperfect fluid with energy-momen-
tum tensor given by

Tab = (ρ + p) uaub + pgab + qaub + qbua, (15)

whereρ is the density, p is the pressure,ua is the four-velocity
of the fluid, and qa is a spatial vector field that represents the
current density of heat. We further assume that

uμ = (1, 0, 0, 0) , qα = (0, q, 0, 0) , ubqb = 0. (16)

Both density and pressure have two distinct components: one
corresponding to the cosmological fluid and another associ-
ated with the matter that constitutes the wormhole, that is

ρ(r, t) = ρc(t) + ρgcw(r, t), (17)

p(r, t) = pc(t) + pgcw(r, t). (18)

Einstein field equations take the form

−3
a′2(t)
a2(t)

∣∣∣∣
c
+ 256 b2

0 r4 b2
2(t)

a2(t)α(r, t)4

∣∣∣∣∣
kcw

− 12
b2

0 b2(t) b′
2(t) f00(r, t)

a(t)α(r, t)2

∣
∣∣∣∣
gcw

= 8π
(−ρc(t) − ρgcw(r, t)

)
, (19)

[
−a′2(t)
a2(t)

− 2
a′′(t)
a(t)

]∣∣∣
∣
c
− 256 b2

0 r4 b2
2(t)

a2(t)α(r, t)4

∣∣∣∣
∣
kcw

− 4

[
b′

2(t) f11(t, t)

a(t) α(r, t)2 + b2
0 b2(t) b′′

2(t)

α(r, t)

]∣∣∣∣∣
gcw

= 8π
(
pc(t) + prgcw(r, t)

)
, (20)

[
−a′2(t)

a2(t)
− 2

a′′(t)
a(t)

]∣∣∣
∣
c
+ 256 b2

0 r4 b2
2(t)

a2(t)α(r, t)4

∣∣∣
∣∣
kcw

− 4

[
b′

2(t) f11(t, t)

a(t) α(r, t)2 + b2
0 b2(t) b′′

2(t)

α(r, t)

]∣∣∣∣∣
gcw

= 8π
(
pc(t) + ptgcw(r, t)

)
, (21)

−64
b2

0 r5 b2(t)b′
2(t)

π a2(t)α4(r, t)
= q. (22)

Equations (19)–(21) show that the wormhole and the cos-
mological background can be decoupled. We recover the
Friedmann-Robertson equations by setting b0 = 0. In the
case b2 = 1, we get Kim cosmological wormhole metric
and q = 0 (the energy–momentum tensor is that of a per-
fect fluid). We see that the addition of the factor b2(t) in (4)
allows a current density of heat q through the wormhole.

In the following, we analyze the properties of the metric
(4) for a specific choice of the function b2(t).

3 Specific model for the generalized cosmological
wormhole

We now assumeb2(t) ≡ 1/a(t). The line element in isotropic
coordinates takes the form

ds2 = −dt2 + a2(t)

(

1 + b2
0

4a2(t)r2

)2 (
dr2 + r2d�2

)
.

(23)

The choice of the redshift function (�′ = 0) ensures the
absence of event horizons.

We identify the throat following the definition introduced
by Hochberg and Visser [18] for the case of dynamical worm-
holes. According to these authors, we can locate the throat
by looking for a certain behaviour of the null geodesics of the
metric: the throat is a minimal two-surface where null rays
coming from the mouth focus and, once they pass the throat,
they start to expand to the other side. If we denote by na

and la the ingoing and outgoing tangent fields of null radial
geodesics, and by θn and θl their respective expansions, one
of the following conditions is satisfied on the throat [19]

θn = 0 ∧ na∇aθn ≥ 0, (24)

or,

θl = 0 ∧ la∇aθl ≥ 0. (25)

The condition na∇aθn ≥ 0 (la∇aθl ≥ 0) is the generaliza-
tion of the Morris-Thorne flare-out condition for dynamical
wormholes.

Next, we compute whether conditions (24) or (25) is sat-
isfied. But first, we will perform a coordinate transformation
that it is better suited for our purpose.

3.1 Throat and flare-out condition

We write the line element in terms of the areal radius coor-
dinate R

R = a(t)

(

1 + b2
0

4a2(t)r2

)

r. (26)

as

ds2 = −
(

1 − R2H2
)
dt2 + 1

(
1 − b2

0
R2

)dR2

−2
RH

√
1 − b2

0
R2

dRdt + R2d�2, (27)

where H ≡ a′(t)/a(t) is the Hubble factor.
Because of the spherical symmetry, the equation for the

ingoing and outgoing radial null geodesics can be derived by
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setting dθ = dφ = 0 in ds2 = 0, thus obtaining

dR

dt

∣
∣∣∣±

= (±1 + RH)

√

1 − b2
0

R2 , (28)

where the “−” (“+”) corresponds to ingoing (outgoing) case.
The tangent vector fields na and la have the form

nμ =
⎛

⎝1, (−1 + RH)

√

1 − b2
0

R2 , 0, 0

⎞

⎠ , (29)

lμ =
⎛

⎝1, (+1 + RH)

√

1 − b2
0

R2 , 0, 0

⎞

⎠ . (30)

The expansion of the null vector na when the geodesic to
which it is tangent is not necessarily affinely-parametrized
can be computed using the expression [20]

θn =
[
gab + lanb + nalb

−ncldgcd

]
∇anb. (31)

In the same way, the expansion of the null vector la obeys
the relation

θl =
[
gab + lanb + nalb

−ncldgcd

]
∇alb. (32)

Given these definitions and under the choice of na and la

(Eqs. (29) and (30)), condition (24) yields

θn = 2
√

1 − b2
0
R (−1 + RH)

R
= 0, ⇒

R = ±b0, R = 1/H. (33)

Thus, R = b0 corresponds to the throat and R = 1/H to the
cosmological horizon of a spatially flat FLRW space. We see
that the flaring-out condition is satisfied on the throat

na∇aθn
∣∣
R=b0

, ⇒ 2
(−1 + b0H)2

b2
0

≥ 0. (34)

Condition (25) gives a similar result

θl = 2
√

1 − b2
0
R (1 + RH)

R
= 0, ⇒ R = ±b0, (35)

and the flaring-out condition is also satisfied on the throat

la∇aθl
∣∣
R=b0

, ⇒ 2
(1 + b0H)2

b2
0

≥ 0. (36)

Thus, the spacetime geometry given by the line element
(23) represents a cosmological wormhole with a throat at
R = b0 and a cosmological horizon at R = 1/H .

We also calculate the location of the throat in terms of the
isotropic radius r by solving the equation

b0 = a(t)

(

1 + b2
0

4a2(t)r2

)

r. (37)

The solution is r = b0/ (2a(t)). We see that regardless of the
coordinates we use (R or r ), there is always a throat for any
background cosmological model. This is not the case in the
Kim cosmological wormhole solution [16,17]: the existence
of the throat depends on the peak value of the energy density
of the wormhole.

3.2 Misner–Sharp–Hernandez mass

The Misner–Sharp–Hernandez (MSH) mass is a quantity that
allows to identify localized sources of gravity [21,22]; it
is defined only in spherically symmetric spacetimes and, in
this case, coincides with the Hawking–Hayward quasi-local
energy [23]. We can write the line element in terms of the
areal radius coordinate R and the angular coordinates (θ, φ)
as follows [20]

ds2 = habdx
a dxb + R2d�2, (38)

where xa = (t, R) and

hab = diag

[

−1, a2(t)

(

1 + b2
0

4a2(t)r2

)]

. (39)

The Misner–Sharp–Hernandez mass MMSH is defined as

MMSH = R

2

(
1 − hab∇a R∇bR

)
. (40)

In our case, it takes the form2

MMSH = R

2

[

H2
(
R2 − b2

0

)
+ b2

0

R2

]

. (42)

The MSH mass can be computed in terms of the Riemann
tensor. The decomposition of the latter into a Ricci and a
Weyl part results into a natural decomposition of the MSH
mass into a Ricci and a Weyl part [24,25]. The Ricci part of
the MMSH is

ER = R3 H2

2

(

1 − b2
0

R2

)

, (43)

and the corresponding Weyl part is

EW = b2
0

2R
. (44)

In the limit b0 → 0, we recover the expressions of the MMSH

in FLRW spacetime, that is, MMSH = ER = R3 H2/2. If
a(t) → 1, MMSH = EW = b2

0/2R, as in a MT wormhole.

2 We use the identity

1 − b2
0

R2 =

(
1 − b2

0
4a2(t)r̃

2
)2

(
1 + b2

0
4a2(t)r̃

2
)2 (41)

to reduce some of expressions obtained.

123



Eur. Phys. J. C (2023) 83 :1127 Page 5 of 7 1127

3.3 Energy conditions

Hochberg and Visser showed that if the flaring-out condition
is fulfilled at the throat, then the stress-energy tensor at the
throat must satisfy [18]

Tabk
akb ≤ 0, (45)

where ka is any null vector. Hence, the null energy condition
(NEC) is violated at the throat. These authors also argued
that not only static wormholes but also dynamic wormholes
have NEC violations at the throat [26].

Following the method explained in [27], we will now
derive the explicit expressions for the NEC in the case of
the imperfect fluid given by (15). The corresponding energy–
momentum tensor admits the decomposition

T αβ = ρ êα
0 ê

β
0 + p1 êα

1 ê
β
1 + p2 êα

2 ê
β
2 + p2 êα

3 ê
β
3

+q êα
0 ê

β
1 + q êβ

0 ê
α
1 ,

where the vectors êα
μ form an orthonormal basis and obey the

relations

gαβ ê
α
μê

β
ν = ημν. (46)

Here, ημν = diag (−1, 1, 1, 1) is the Minkowski metric. We
write the future-directed null vector kα as

kα = êα
0 + a êα

1 + b êα
2 + c êα

3 , (47)

where a, b and c are arbitrary functions of the coordinates
such that a2 +b2 + c2 = 1. After some algebraic operations,
the NEC yields

Tabk
akb = ρ − 2aq + a2 p1 + p2(b

2 + c2) ≥ 0. (48)

If we choose b = c = 0, then a = 1 and we get

ρ + p1 − 2q ≥ 0. (49)

Instead, if a = c = 0 and b = 1, the NEC reads

ρ + p2 ≥ 0. (50)

We get the same result for c = 1 and a = b = 0.
In short, the NEC in terms of the density ρ, principal

pressures p1 and p2 and the heat flux q is satisfied if

ρ + p1 − 2q ≥ 0, ρ + p2 ≥ 0. (51)

From Eqs. (19)–(22), we get expressions for ρc, ρgcw, prc,
prgcw, ptgcw and q:

ρc = 3

8π

a′2(t)
a2(t)

, (52)

ρgcw = −2b2
0r

2ρ̃(r, t)

πβ4 , (53)

pc = 1

8π

(
−a′2(t)
a2(t)

− 2
a′′(t)
a(t)

)
, (54)

prgcw = b2
0 p̃r(r, t)

2πa2(t)β4 , (55)

ptgcw = b2
0 p̃t(r, t)

2πa2(t)β4 , (56)

q = 64b2
0 r5a′(t) a3(t)

πβ4 , (57)

where

ρ̃(r, t) = 16r2a4(t) + 3β2a′(t)2, (58)

p̃r(r, t) = −64r4a6(t) + β2χ, (59)

p̃t(r, t) = 64r4a6(t) + β2χ, (60)

β = 4a2(t)r2 + b2
0, (61)

χ = −b2
0a

′2(t) + a(t)βa′′(t). (62)

We now calculate the left-hand side of the inequalities
(51) and evaluate the corresponding expressions at the throat
(rth = b0/(2a(t))

ρ + p1 − 2q = ρc + ρgcw + pc + prgcw − 2q
∣∣
rth

= −a2(t) + b0a′(t)
(
1 + b0a′(t)

)

4b2
0πa

2(t)
< 0, (63)

if a′(t) > 0, which is the case in an expanding universe. The
other null energy condition is

ρ + p2 = ρc + ρgcw + ptgcw
∣
∣
rth

= − a′2(t)
4πa2(t)

< 0. (64)

The latter inequality shows that the NEC is violated indepen-
dently of the background cosmological model.

Note that there are wormhole solutions where the energy
conditions are satisfied. For example, it has been shown
[28] that a positive cosmological constant can provide a
static wormhole configuration. Dai and collaborators [29]
also proved that a wormhole-like structure can form where
the brane tension provides the repulsion that counteracts the
gravitational attraction. In both cases, the wormhole solu-
tions do not require exotic matter.

4 Conclusions

We have found a new solution to Einstein field equations
that represents a MT wormhole embedded in a flat FLRW
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cosmological background. The obtained metric is a general-
ization of Kim’s cosmological wormhole: the shape function
depends on the radial coordinate and also on the cosmic time;
we have considered that the source of the spacetime geometry
is an imperfect fluid, so there is a current heat density.

We have also analyzed a specific model of the general-
ized cosmological wormhole solution. For this case, we have
explicitly shown that the flaring out condition is always satis-
fied at the throat; in addition, we have demonstrated that the
null energy condition is violated at the throat for all cosmic
times, and for any scale factor.

An important difference between Kim’s cosmological
wormhole and the generalization presented here is that in
our case the existence of the throat, and hence of the worm-
hole, is independent of the background cosmological model;
this is not the case in Kim’s solution where the throat of the
wormhole comes into existence at a given cosmic time, or
disappears as the universe evolves, depending on the back-
ground scale factor chosen.

As stated earlier, wormholes are conjectural objects. How-
ever, since they are solutions to the Einstein field equations,
they enable us to push the limits of General Relativity and
explore the underlying principles of the theory. In a cosmo-
logical context, wormholes coupled to the cosmic dynamics
could give rise to remarkable phenomena; for instance, intra-
cosmological wormholes could bring two separate regions of
the universe, at different cosmic epochs, into causal contact.
In this sense, intra-cosmological wormholes could serve as
bridges not only across space but also across cosmological
eras. It is impossible to foresee all the implications of any
theory, let alone such a vast and rich theory like General Rel-
ativity. However, we think that some of these issues deserve
to be explored, and so we hope to do in the near future.
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