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Abstract Machine-learned likelihoods (MLL) combines
machine-learning classification techniques with likelihood-
based inference tests to estimate the experimental sensitivity
of high-dimensional data sets. We extend the MLL method by
including kernel density estimators (KDE) to avoid binning
the classifier output to extract the resulting one-dimensional
signal and background probability density functions. We first
test our method on toy models generated with multivariate
Gaussian distributions, where the true probability distribu-
tion functions are known. Later, we apply the method to two
cases of interest at the LHC: a search for exotic Higgs bosons,
and a Z ′ boson decaying into lepton pairs. In contrast to
physical-based quantities, the typical fluctuations of the ML
outputs give non-smooth probability distributions for pure-
signal and pure-background samples. The non-smoothness is
propagated into the density estimation due to the good per-
formance and flexibility of the KDE method. We study its
impact on the final significance computation, and we com-
pare the results using the average of several independent ML
output realizations, which allows us to obtain smoother dis-
tributions. We conclude that the significance estimation turns
out to be not sensible to this issue.
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1 Introduction

Modern machine learning (ML) has become a fundamen-
tal tool in experimental and phenomenological analyses of
high-energy physics (for reviews see, for instance, [1–9] and
for pioneer papers see [10–12]). The ML algorithms can be
applied not only to event-by-event collider analyses but also
used at the event-ensemble level [13–20]. In order to esti-
mate the experimental sensitivity to potential new-physics
signals at colliders, several studies have recently appeared
that combine the use of ML classifiers with traditional statis-
tical tests [21–36]. More specifically, it was shown in [21] that
the calibration of classifiers trained to distinguish signal and
background samples under the relevant hypotheses ensures
to proper estimate the likelihood ratio and consequently can
be used to compute a statistical significance.

Recently, a simplification of [21] has been proposed
in [36], the so-called machine-learned likelihoods (MLL),
which computes the expected experimental sensitivity through
the use of ML classifiers, utilizing the entire discriminant out-
put. A single ML classifier estimates the individual probabil-
ity densities and subsequently one can calculate the statistical
significance for a given number of signal and background
events (S and B, respectively) with traditional hypothesis
tests. By construction, the output of the classifier is always
one-dimensional, so we reduce the hypothesis test to a single
parameter of interest, the signal strength μ. On the one hand,
it is simply and reliably applicable to any high-dimensional
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problem. On the other hand, using all the information avail-
able from the ML classifier does not require defining work-
ing points like traditional cut-based analyses. The ATLAS
and CMS Collaborations incorporate similar methods in their
experimental analyses but consider only the classifier output
as a good variable to bin and fit the binned likelihood formula
(see, for instance, Refs. [37–44]).

The MLL code [45] developed in [36] only includes the
calculation of the discovery hypothesis test, although the
expressions needed to calculate the exclusion limits were
provided. In [46] we extend the MLL method by adding
the exclusion hypothesis test. It is well-known that unbinned
methods could provide a better performance than binned ones
since the loss of information is minimized. In that sense,
in this work we improve the MLL method with the use of
kernel density estimators (KDE) [47,48], in order to avoid
binning the ML classifier output for extracting the resulting
one-dimensional signal and background probability density
functions (PDFs), as proposed in [36,46]. The implementa-
tion of unbinned methods to the ML output space has intrin-
sic difficulties that are usually not present if one considers
physical based features, specifically the stochasticity of the
machine learning training introduces fluctuations, even when
the classifier approaches its optimal limit. These fluctuations
translate to non-smooth distribution functions, that in turn,
are propagated by the KDE into the density estimation given
the plasticity of this consistent non-parametric method [49].
Therefore, it is necessary to analyze the impact of the lack of
smoothness in the statistical analysis. We propose to tackle
this issue by working with a variable build from the average
of several independent machine-learning realizations, that
gives smoother PDFs.

We would like to highlight that binned methods are com-
monly used since one can usually optimize the binning to
extract nearly all of the benefits of the unbinned approach,
but this optimization can be a highly non-trivial and scenario-
dependent task. The incorporation of KDE within our frame-
work allows to automatically elude any binning optimization
and outperform some of the most common binning schemes.
For illustration, we compare the results of our unbinned MLL
method with the results obtained by doing linear and non-
linear binnings in the toy examples used to validate our setup,
where the true PDFs are known.

The structure of the paper is the following: Sect. 2 is
devoted to summarizing the main features of the MLL
method with the relevant expressions for the calculation of
exclusion limits and the implementation of KDE in it. In
Sect. 3 we show the performance of the MLL method with
KDE and analyze the application of this unbinned method
to the ML output space in different examples: in Sect. 3.1
a case where the true probability density functions (PDFs)
are known, through a toy model generated with multivari-
ate Gaussian distributions; in Sect. 3.2 we present an LHC

analysis for the search for new heavy neutral Higgs bosons
at

√
s = 8 TeV and luminosity of 20 fb−1, estimating not

only exclusion limits, but also comparing our results with
those report in [12]; and in Sect. 3.3 we present an HL-LHC
study for Sequential Standard Model (SSM) [50] Z ′ bosons
decaying into lepton pairs, comparing the MLL+KDE per-
formance for estimating 95% CL exclusion limits with the
results obtained applying a binned likelihood to the machine
learning classifier output and also with respect to the pro-
jections reported by the ATLAS Collaboration for an LHC
center-of-mass energy of

√
s = 14 TeV with a total integrated

luminosity of L = 3 ab−1 [51]. Finally, Sect. 4 summarizes
our more important results and conclusions.

2 Method

In this section, we present the corresponding formulae for the
estimation of exclusion sensitivities with the MLL method,
first introduced in [36,46]. We summarize the main features
of the method which allows dealing with data of arbitrarily
high dimension through a simple ML classifier while using
the traditional inference tests to compare a null hypothesis
(the signal-plus-background one) against an alternative one
(the background-only one). We also present the details of
the implementation of KDE to obtain the unbinned posterior
probability distributions from the classifier output, needed to
compute the corresponding likelihood functions.

Following the statistical model in [52], we can define the
likelihood L of N independent measurements with an arbi-
trarily high-dimensional set of observables x as

L(μ, s, b) = Poiss
(
N |μS + B

) N∏

i=1

p(xi |μ, s, b), (1)

where S (B) is the expected total signal (background) yield,
Poiss stands for a Poisson probability mass function, and
p(x |μ, s, b) is the probability density for a single measure-
ment x , where μ defines the hypothesis we are testing for.

We can model the probability density containing the event-
by-event information as a mixture of signal and background
densities

p(x |μ, s, b) = B

μS + B
pb(x) + μS

μS + B
ps(x), (2)

where ps(x) = p(x |s) and pb(x) = p(x |b) are, respec-
tively, the signal and background probability density func-
tions (PDFs) for a single measurement x , and μS

μS+B and
B

μS+B are the probabilities of an event being sampled from
the corresponding probability distributions.

To derive upper limits on μ, and in particular considering
additive new physics scenarios (μ ≥ 0), we need to consider
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the following test statistic for exclusion limits [53]:

q̃μ =

⎧
⎪⎪⎨

⎪⎪⎩

0 if μ̂ > μ,

−2 Ln L(μ,s,b)
L(μ̂,s,b) if 0 ≤ μ̂ ≤ μ,

−2 Ln L(μ,s,b)
L(0,s,b) if μ̂ < 0,

(3)

where μ̂ is the parameter that maximizes the likelihood in
Eq. (1)

N∑

i=1

ps(xi )

μ̂S ps(xi ) + B pb(xi )
= 1. (4)

Considering our choice for the statistical model in Eq. (1),
q̃μ turns out

q̃μ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if μ̂ > μ

2(μ − μ̂)S

−2
∑N

i=1

Ln
(
Bpb(xi )+μSps (xi )
Bpb(xi )+μ̂Sps (xi )

)
if 0 ≤ μ̂ ≤ μ

2μS − 2
∑N

i=1 Ln
(

1 + μSps (xi )
Bpb(xi )

)
if μ̂ < 0;

(5)

Since ps,b(x) are typically not known, the base idea of our
method in [36] is to replace these densities for the one-
dimensional manifolds that can be obtained for signal and
background from a machine-learning classifier. After train-
ing the classifier with a large and balanced data set of signal
and background events, it can be obtained the classification
score o(x) that maximizes the binary cross-entropy (BCE)
and thus approaches [21,54]

o(x) = ps(x)

ps(x) + pb(x)
, (6)

as the classifier approaches its optimal performance. The
dimensionality reduction can be done by dealing with o(x)
instead of x , using

ps(x) → p̃s(o(x)), and pb(x) → p̃b(o(x)), (7)

where p̃s,b(o(x)) are the distributions of o(x) for signal and
background, obtained by evaluating the classifier on a set of
pure signal or background events, respectively. Notice that
this allows us to approximate both signal and background
distributions individually, retaining the full information con-
tained in both densities, without introducing any working
point. These distributions are one-dimensional, and there-
fore can always be easily handled and incorporated into the
test statistic in Eq. (5)

q̃μ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if μ̂ > μ

2(μ − μ̂)S

−2
∑N

i=1 Ln(
B p̃b(o(xi ))+μS p̃s (o(xi ))
B p̃b(o(xi ))+μ̂S p̃s (o(xi ))

)
if 0 ≤ μ̂ ≤ μ

2μS − 2
∑N

i=1 Ln
(

1 + μS p̃s (o(xi ))
B p̃b(o(xi ))

)
if μ̂ < 0;

(8)

as well as into the condition on μ̂ from Eq. (4)

N∑

i=1

p̃s(o(xi ))

μ̂S p̃s(o(xi )) + B p̃b(o(xi ))
= 1. (9)

The test statistic in Eq. (8) is estimated through a finite
data set of N events and thus has a probability distribution
conditioned on the true unknown signal strength μ′. For a
given hypothesis described by the μ′ value, we can estimate
numerically the q̃μ distribution. When the true hypothesis is
assumed to be the background-only one (μ′ = 0), the median
expected exclusion significance med [Zμ|0] is defined as

med
[
Zμ|0] =

√
med

[
q̃μ|0]

, (10)

where we estimate the q̃μ distribution by generating a set
of pseudo-experiments with background-only events. Then,
to set upper limits to a certain confidence level, we select
the lowest μ which achieves the required median expected
significance.

It is worth remarking that the output of the machine learn-
ing classifier, for a given set of events, gives us a sample
of the desired PDFs p̃s,b(o(x)). Hence, to apply Eq. (8) we
first need to extract the classifier posteriors. As these sam-
ples are one-dimensional, we can always compute binned
PDFs, as was done in [36]. Binning the output variable is a
typical procedure when using ML tools. Nevertheless, it is
also possible to compute the PDFs through other parametric
(such as mixture models [55]) or non-parametric methods
(such as kernel density estimation (KDE) [47,48] or neural
density estimation [49]). In comparison with other density-
estimation methods, KDE has the advantage of not assuming
any functional form for the PDF, in contrast with the mixture
of Gaussian methods, while keeping the computation and the
interpretation simple, as opposed to neural density estimation
methods. For this reason, in this work, we made extensive use
of the KDE method,1 through its scikit-learn imple-
mentation [57].

Given a set of N events that were previously classified by
the machine learning as signal (background) events, the PDF
estimated by the KDE method is defined as

ps,b(o(x)) = 1

N

N∑

i

κε [o(x) − o(xi )] (11)

where κε is a kernel function that depends on the “smooth-
ing” scale, or bandwidth parameter ε. There are several dif-
ferent options for the kernel function. In this work, we used

1 During the completion of this work, Ref. [56] has appeared, in which
data-driven methods are used for dealing with unbinned multivariate
EFT observables. Although this work is similar to ours in the spirit of
avoiding the binning of multidimensional variables, there are significant
differences in the application of ML and KDE algorithms between our
MLL+KDE method and the ML4EFT framework of [56].
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the Epanechnikov kernel [58] as it is known to be the most
efficient kernel [49]. This kernel is defined as

κε(u) =
{

1
ε

3
4

(
1 − (u/ε)2

)
, if |u| ≤ ε

0, otherwise

It is important to remark that the “bandwidth” parame-
ter ε censors the degree of smoothness. Hence, a very low
ε will overfit the data, whereas a very high ε will under-
fit it. In all our examples the ε was selected through a grid
search done using the GridSearchCV function inside the
sklearn.model_selection python package. Given a
value for ε, this function estimates the log-likelihood of the
data using a 5-fold cross-validation strategy, i.e. the data set is
split into 5 smaller sets, 4 are used to fit the KDE which is then
validated on the remaining part of the data. Finally, the func-
tion gives as an output the ε which maximizes the data like-
lihood. Also is worth remarking that although KDEs method
suffers from the curse of dimensionality, we are applying
such technique to the one-dimensional output of the machine
learning classifier to avoid this problem.

Notice that the machine learning training (and hence the
machine learning predictions) is a stochastic process that
introduces small fluctuations around the optimal limit. These
in turn could translate to non-smooth PDFs. To tackle this
issue, the same procedure described above can be done when
using an ensemble of N base classifiers trained on random
subsets of the original data set, that average their individual
predictions to form a final prediction. In this case, o(x) can
simply be replaced by < o(x) >= 1

N

∑N
i oi (x), which in

turns gives smoother PDFs p̃s,b(< o(x) >).
For completeness, we also introduce here the median

exclusion significance estimation for the traditional binned
likelihood (BL) method and the use of Asimov data sets [53],
which will be used to compare our technique

med
[
Zμ|0] =

√
q̃μ

=
[

2
D∑

d=1

(
Bd Ln

(
Bd

Sd + Bd

)
+ Sd

)]1/2

,

(12)

where Sd and Bd are the expected number of signal and back-
ground events in each bin d. This approximation is very
effective but runs into trouble when the dimension of the
data grows, which is known as the curse of dimensionality
since the number of data points required to reliably popu-
late the bins scales exponentially with the dimension of the
observables x . This is a non-existent problem in our method,
which always reduces the original dimension to one as stated
in Eq. (7), allowing the application of the BL method to the
classifier output, as also done by experimental collaborations
when using ML methods, as mentioned in Sect. 1.

3 Application examples

3.1 Known true PDFs: multivariate Gaussian distributions

To show the performance of the MLL method with KDE we
first analyze toy models generated with multivariate Gaussian
distributions of different dimensions,

Ndim(m,�) = 1

(2π)n/2|�|1/2

exp

(
−1

2
(x − m)T�−1(x − m)

)
, (13)

with mean m, and covariance matrix �.
We start with the simplest case, consisting of an abstract

two-dimensional space (x1, x2). Events are generated by
Gaussian distributions N2(m,�), with m = +0.3(−0.3)

and no correlation, i.e., covariance matrices � = I2×2 for S
(B). We trained supervised per-event classifiers, XGBoost,
with 1 M events per class (balanced data set), to distinguish S
from B. The PDFs obtained from the classifier output, o(x),
can be found in the top left panel of Fig. 1, for two new inde-
pendent data sets of pure signal (blue) and pure background
(red) events.

Since in this example we know the true underlying distri-
butions in the original multidimensional space, we can test
Eq. (6). In the right panel of Fig. 1 we show, in green dots,
the output of one machine learning realization vs. the right-
hand-side of Eq. (6) estimated with the real signal and back-
ground probability functions. We can observe that the clas-
sifier approaches the optimal limit, although there are some
small fluctuations around the 1-to-1 line. These fluctuations
are independent of the sampling of the data and come from
the stochasticity inherent to any machine learning training
process. In turn, these fluctuations translate to non-smooth
PDFs for the machine learning output of background and
signal events, as can be seen in the red and blue shadow
histograms in the top left panel of Fig. 1.

As explained before, to solve this issue we can take advan-
tage of ensembles, and build a variable from the average out-
put of ten independent machine learning realizations, define
as < o(x) >= 1

10

∑10
i oi (x). It can be seen in the red and

blue shadow histograms of the bottom left panel of Fig. 1
that, with this definition, the small fluctuations are washed
out resulting in smoother PDFs. For completeness on both
left panels, we also present the estimations of p̃s,b(o(x))
using the true PDFs (orange and purple solid lines), the KDE
over the machine learning output o(x) (red and blue dashed
curves of top left panel), and KDE over the average vari-
able < o(x) > (red and blue dashed lines of the bottom left
panel). On the one hand, it can be seen that, due to the flexi-
bility of the KDE method, when fitting the machine learning
output o(x) the resulting distributions follows the fluctua-
tions around the true PDFs. On the other hand, it can be seen
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Fig. 1 Results for the
N2(m,�) case. Top left panel:
output of a single XGBoost
classifier. Bottom left panel:
averaged output of 10
XGBoost classifiers, defined as
o(x) = 1

10

∑10
i oi (x). Right

panel: comparison between our
trained classifier output and the
mathematically optimal
performance defined in Eq. (6)

Fig. 2 Exclusion-limit significance for N2(m,�) with m =
+0.3(−0.3) for S (B) and no correlation, for fixed 〈B〉 = 50 k, and
different signal strengths 〈S〉. The red curves show the result of imple-
menting the MLL+KDE method, while the blue and magenta curves
represent the results obtained by applying the BL method to the classi-
fier’s one-dimensional output and the original two-dimensional space,
respectively. Dashed curves use the output of a single classifier, while
solid lines use the averaged output of 10 classifiers. For comparison,
we include the green solid curve with the results obtained using the true
PDFs

that, the KDE distributions obtained when fitting the average
variable are smooth and closely approach the true PDFs.

In Fig. 2 we show the results for the MLL exclusion sig-
nificance with KDE considering an example with a fixed
background of 〈B〉 = 50 k and different signal strengths. We
also include the significance calculated using the true proba-
bility density functions in Eq. (3), and the results employ-

ing a binned Poisson log-likelihood of the original two-
dimensional space (x1, x2) with Eq. (12), which is possible to
compute in this simple scenario. For completeness, we also
include the results binning the one-dimensional ML output
variable for obtaining the PDFs as in [36,46]. As can be seen,
since we are analyzing a simple example, the significances
estimated with all the methods are indistinguishable from the
ones estimated with the true PDFs, which is expected given
the low dimensionality of the space.

We would like to highlight that the significance does not
change significantly if we employ either o(x) computed with
a single ML classifier, or with the averaged variable< o(x) >

calculated ensembling several ML trainings. In addition, for
both the MLL+KDE and the true PDF methods, the signifi-
cance is estimated by generating a set of pseudo-experiments
with a finite-size number of events. This introduces a small
statistical fluctuation due to the randomness of the sample.

The advantage of the MLL+KDE method against tradi-
tional approaches appears when dealing with dim = n, with
n > 2. In Fig. 3 we present the exclusion significance for
higher dimensional data generated with Nn(m,�), no cor-
relation � = In×n , and m = +0.3(−0.3) for S (B).

It is worth reminding that the binned-poisson likelihood
method becomes intractable in the original high-dimensional
space. Also, it is interesting to note that, the results with the
MLL+KDE method approach the ones with the true genera-
tive functions for all the analyzed dimensions. It is important
to highlight that the ML output is always one-dimensional
regardless of the dimension of the input data and, hence,
can always be easily binned. For completeness, we show in
Fig. 3 the significances obtained by applying a BL method to
the machine learning output with two different types of bin-
ning: a linear binning where all bins have the same size (in
the one-dimensional output space), and a standard non-linear
approach where all bins have the same number of background
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s

Fig. 3 Exclusion-limit significance for Ndim(m,�) with m =
+0.3(−0.3) for S (B) and no correlation, as a function of the dim,
for fixed 〈B〉 = 50 k and 〈S〉 = 500. The red curves show the result
of implementing the MLL+KDE method, while the blue and brown
curves represent the results obtained by applying the BL method to

the classifier one-dimensional output for 10 linear and no-linear bins,
respectively. Dashed curves use the output of a single classifier, while
solid lines use the averaged output of 10 classifiers. For comparison,
we include the green solid curve with the results obtained using the true
PDFs

events (a binning strategy typically used by experimental col-
laborations since it avoids the presence of low-statistic bins
in the background estimation, which in turns constraints sys-
tematic uncertainties). As can be seen, binning the output of
the machine learning results in a non-negligible drop in sig-
nificance. This can be understood as the binning introduce a
loss of information due to a resolution effect. For this exam-
ple, the linear binning turns out to be more effective for the
BL method. In addition, and as in the n = 2 example, for
MLL+KDE the use of an ensemble of machine learning real-
izations to obtain smoother PDFs does not change the results
obtained with one single classifier. The same is verified when
using the BL method over the average variable, although this
behavior is expected since this method creates histograms
from the distributions.

In the left and right panels of Fig. 4 we show the impact
in the previous example of increasing the number of bins
when applying BL to the classifier output, both for linear
and non-linear bins, respectively. As stated before, linear
binning proves to be a better sampling choice since its result
approaches the ones obtained with the MLL+KDE method
and with the true PDFs, when increasing the number of bins.
Regarding the bins with the same number of background
events, even though performance improves with more bins,
the results are worst than its linear binning counterpart. This
example shows the difficulties arising when trying to find an
optimal binning that is not known a priori, and this highlights
the advantage of using MLL+KDE, which although compu-

tationally expensive (when tuning the bandwidth parameter),
sets an upper limit in the significance that can be achieved. It
is also possible to automatically choose the optimal num-
ber of bins for histograms, as well as to tune the width
of each bin, in a similar fashion as done for the ε param-
eter in the KDE method. The results of this analysis can
be found in Appendix A, where we show that the signifi-
cances obtained optimizing the bin widths is similar to the
ones assuming equal-sized bins, and hence, the MLL-KDE
method still offers the best significances when compared to
different binned multivariate approaches.

Finally, in the right panel of Fig. 5 we show a case with
correlation,Nn(m,�), with m = +0.7(−0.7) for S (B), and
�i j = 1 if i = j and 0.5 if i 	= j . Comparing with the same
example without correlation in the left panel of Fig. 5, the
correlation makes the signal and background more difficult
to distinguish, hence we obtain lower significance values,
with MLL+KDE still offering the best performance.

Although these are toy models they allow us to understand
the performance of MLL with KDE method over problems
of different complexity and demonstrate its improvement
with respect to the BL method applied to the classifier out-
put. Particularly the MLL+KDE has a stable behavior when
increasing the dimensionality of the input space, as well as
when increasing the separation of the signal and background
distributions on the original abstract variables. On the other
hand, the BL method applied to the classifier output departs
from the results obtained with the true PDFs as the number of
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Fig. 4 Exclusion-limit significance for Ndim(m,�) with m =
+0.3(−0.3) for S (B) and no correlation, as a function of the dim,
for fixed 〈B〉 = 50 k and 〈S〉 = 500. The red solid curve shows the
result of implementing the MLL+KDE method, while the green curve
shows the results obtained using the true PDFs. Dashed color curves rep-

resent the results obtained by applying the BL method to the classifier’s
one-dimensional output for different bin numbers. Left panel: linear
binning. Right panel: non-linear binning (same number of B events per
bin)

Fig. 5 Exclusion-limit significance for Ndim(m,�) with m =
+0.7(−0.7) for S (B), as a function of the dim, for fixed 〈B〉 = 50 k and
〈S〉 = 500. The red solid curve shows the result of implementing the
MLL+KDE method, while the green curve shows the results obtained
using the true PDFs. Dashed color curves represent the results obtained

by applying the BL method (with linear bins) to the classifier one-
dimensional output for different bin numbers. Left panel: covariance
matrices � = I2×2 (no correlation). Right panel: covariance matrices
�i j = 1 if i = j and 0.5 if i 	= j

dimensions and separation of signal and background samples
increases. The number of bins to use is another limitation,
non-existent in our method that uses a non-parametric tech-
nique for PDF extraction. We also tested that although the
KDE method is sensible to the fluctuations inherent to the
machine learning classifier output, the lack of smoothness

of the extracted PDFs does not affect the estimation of the
significance within our framework.

3.2 New exotic Higgs bosons at the LHC

In this section, we apply our method in the search for an
exotic electrically-neutral heavy Higgs boson (H0) at the
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Fig. 6 Left panel: ROC curves for the XGBoost classifiers associated
with each possible data representation, trained to discriminate between
H0 and t t̄ productions. Right panel: Exclusion limits for the search for
a heavy neutral H0 with MLL+KDE method (red solid line corresponds

to the averaged variable of 10 ML, and dotted orange line corresponds
to 1 ML), and with the BL fit for different number of linear bins (dashed
curves), for fixed 〈B〉 = 86 k, and different signal strengths 〈S〉

LHC, which subsequently decays to a W boson and a heavy
electrically-charged Higgs boson (H±). This example was
first analyzed with machine learning methods in Ref. [12].
The exotic H± decays to another W boson and the SM Higgs
boson (h). Taking into account only the dominant decay of
the Higgs boson, the signal process is defined as

gg → H0 → W∓H± → W∓W±h → W∓W±bb̄. (14)

The background is therefore dominated by top-pair produc-
tion, which also gives W∓W±bb̄.

For our analysis, we use the same data presented in [12]
that is publicly available at [59], which focus on the semi-
leptonic decay mode of both background and signal events
(one W boson decaying leptonically and the other one decay-
ing hadronically), giving as final state �ν j jbb̄. The data set
consists of low-level variables (twenty-one in total, consid-
ering the momentum of each visible particle, the b-tagged
information of all jets, and the reconstruction of the miss-
ing energy) and seven high-level variables (m j j , m j j j , m�ν ,
m j�ν , mbb̄, mWbb̄ and mWWbb̄), expected to have higher dis-
crimination power between signal and background (see [12]
for more details). The signal benchmark case corresponds to
a mH0 = 425 GeV and mH± = 325 GeV.

For this example, we have trained three XGBoost classi-
fiers with three different data representations: only low-level
variables, only high-level variables, and combining both low
and high-level features. For completeness we also add the
result obtained when using an average variable obtained after
ensembling 10 ML classifiers with all the input variables. In
the left panel of Fig. 6 we show the ROC curves for the anal-

ysis, and as expected, the best performance was achieved
using both low and high-level features (for both the averaged
and non-averaged variable). These results are in agreement
with the analysis performed in [12], obtained with different
ML algorithms. In the following, we will work with the latter
data representation to estimate the expected significance for
the search for heavy Higgs.

To compute the expected background yield at the ATLAS
detector at

√
s = 8 TeV and luminosity of 20 fb−1, B �

86 k, we simulated background events with MadGraph5_a
MC@NLO 2.6 [60], using PYTHIA 8 [61] for showering
and hadronization, and Delphes 3 [62] for fast detector
simulation. We applied all the selection cuts in [12], and
checked that the different kinematic distributions from our
simulation are in agreement with the ones from the public
data set. With the expected background prediction, we scan
over the expected signal yield, S, to be agnostic regarding
the coupling values of the model.

The exclusion significance for different S√
B

ratios are
shown in the right panel of Fig. 6. The results for the
MLL+KDE methods do not yield significant differences and
are shown as the red solid curve for the averaged variable
of 10 ML and as dotted orange curve correspond for 1 ML.
We also present as dashed curves the significance binning
the one-dimensional ML output for different numbers of
bins. We would like to remark that binning the original fea-
ture space is not possible due to its high dimensionality
(twenty-one and seven low and high-level variables, respec-
tively). Also for this collider example, it can be seen that the
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Table 1 Expected cross-section upper limit at 95% C.L., considering
ATLAS detector,

√
s = 8 TeV and luminosity of 20 fb−1 (B = 86 k).

Background process and cuts as discussed in the main text

Method σfid (pb) (95% C.L. upper limit)

MLL+KDE 8.94 × 10−3

MLL+KDE (10ML) 8.84 × 10−3

o(x̄) BL (100 bins) 9.91 × 10−3

o(x̄) BL (50 bins) 9.97 × 10−3

o(x̄) BL (25 bins) 10.03 × 10−3

o(x̄) BL (10 bins) 11.15 × 10−3

Table 2 Discovery significances assuming B = 1000 and S = 100.
For comparison, we also include the results for the same case shown in
[12] using a shallow neural network (NN) and a deep neural network
(DN)

Method Z

NN [12] 3.7σ

DN [12] 5.0σ

MLL+KDE 6.61σ

MLL+KDE (10ML) 6.65σ

o(x̄) BL (100 bins) 6.53σ

o(x̄) BL (50 bins) 6.52σ

o(x̄) BL (25 bins) 6.43σ

o(x̄) BL (10 bins) 6.14σ

MLL+KDE method outperforms the results obtained with
the binned likelihood procedure.

Since no excess has been found, we can compute the
expected cross-section upper limit at 95%C.L. for the new
exotic Higgs bosons search, which corresponds to the value
of S√

B
that gives Z = 1.64. The results are presented in

Table 1.
For completeness, and to compare with the results of [12],

we show in Table 2 the discovery significance for MLL+KDE
and BL methods. Notice that for this calculation we artifi-
cially set B = 1000 and S = 100 to directly compare our
results with the ones in [12]. The significant improvement
in this case is due to the use of the full ML output in both
MLL+KDE and BL methods, while in Ref. [12] only a frac-
tion of o(x) is used to define a signal enriched region with a
working point.

3.3 SSM Z ′ boson decaying into lepton pairs at the
HL-LHC

In this section, we analyzed the performance of our method
on a simple collider example, namely the search for an
SSM Z ′ boson decaying into lepton pairs at the HL-LHC.
We generated sample events for signal and background

withMadGraph5_aMC@NLO 2.6 [60], the showering and
clustering were performed withPYTHIA 8 [61], and finally,
the detector simulation was done withDelphes 3 [62]. For
the SM background, we considered the Drell-Yan production
of Z/γ ∗ → ��, with � = e, μ, as in [51]. As in the previ-
ous examples, we trained a XGBoost classifier, with 1 M
events per class, to distinguish S from B, for each Z ′ mass
value, mZ ′ = [2.5, 3.5, 4.5, 5, 5.5, 6.5, 7.5, 8.5] TeV, and final
state (dielectron and dimuon). We use as input parameters the
transverse momentum |pT |, the azimuthal angle φ, and the
pseudorapidity η of the final state leptons in each channel,
the kinematic variables that can be extracted directly from
the Delphes 3 output file. Considering the expected back-
ground prediction, for each parameter point we scan over S
to obtain the expected signal yield upper limit at 95% C.L.,
corresponding to the value that gives Z = 1.64. Finally, we
convert this yield to a cross section-upper limit that can be
compared with the theoretical prediction.

We are employing the same setup and detector level cuts
as in the work presented by the ATLAS Collaboration at√
s = 14 TeV and 3 ab−1 [51], but we only generated signal

and background events with dielectron and dimuon invari-
ant masses above 1.8 TeV, and since we are dealing with a
signal-enriched region and not the entire spectrum, the direct
comparison with ATLAS projections for 95% CL exclusion
limits is not strictly fair. This may enhance the performance
of our classifier, since a Z ′ signal would appear as an excess
at high dilepton invariant masses. However, the power of our
method can be shown in the left (right) panel of Fig. 7 for
the dielectron (dimuon) channel when compared to the BL
fit of the ML classifier output, which is on equal footing with
the results for our method since it uses the same ML clas-
sifier. Unbinning signal and background posteriors provide
more constraining exclusion limits for both final states, and
as in the previous examples, there is no significant differ-
ence between MLL+KDE using the output of 1 ML or the
averaged 10 ML.

4 Conclusions

The Machine-Learned Likelihoods method can be used to
obtain discovery significances and exclusion limits for addi-
tive new physics scenarios. It uses a single classifier and
its full one-dimensional output, which allows the estima-
tion of the signal and background PDFs needed for statis-
tical inference. In this paper, we extend the MLL method to
obtain exclusion significances and improve its performance
by using the KDE method to extract the corresponding PDFs
from the ML output. We found that the small fluctuations
of the machine learning output around the optimal value
translate into non-smooth PDFs. We verify that this problem
can be handled by averaging the output of several indepen-
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Fig. 7 Exclusion limits for the Z ′
SSM with MLL+KDE method (red

solid curve corresponds to the averaged variable of 10 ML, and dotted
cyan curve to 1 ML), and with the BL fit of the ML output using 15
linear bins (blue curve). The shaded area in each case includes a naive

estimation of the significance uncertainty caused by the mass variation
on each point, according to the systematic uncertainty for the invariant
mass estimated by ATLAS in [51]. Left panel: dielectron channel. Right
panel: dimuon channel

dent machine-learning realizations. But mostly, we show that
these small fluctuations do not have a major impact on the
final significance.

Although the binning of the classifier output is always
possible, irrespective of the dimensionality of the origi-
nal variables, we verify that computing the PDFs with a
non-parametric method such as KDE to avoid the binning,
enhances the performance. By analyzing toy models gener-
ated with Gaussian distribution of different dimensions (with
and without correlation between signal and background), we
showed that MLL with KDE outperforms the BL method
(with both linear and non-linear bins) when dealing with
high-dimensional data, while for low-dimensional data all
the methods converge to the results obtained with the true
PDFs. Although it is a well-known fact that almost all the
benefits of unbinned approaches can be obtained with opti-
mal binning, avoiding such a (usually cumbersome) process
is one of the main advantages of our work, providing an auto-
matic way of estimating the probability density distributions
through the KDE implementation.

Finally, we test the MLL framework in two physical exam-
ples. We found that, as expected, MLL also improves the
exclusion-limits results obtained in a realistic Z ′ analysis as
well as in the search for exotic Higgs bosons at the LHC,
surpassing the ones computed with the simple BL fit of the
ML one-dimensional output.

Last but not least, we would like to remark that this new
version of MLL with KDE does not include systematic uncer-
tainties in the likelihood fit, which is necessary for any real-
istic search. As this is a highly non-trivial issue for unbinned
methods, we leave the inclusion of nuisance parameters to
the MLL framework for future work. Nevertheless, we also
highlight that even though likelihoods without uncertainties
can not be used in most experimental setups, it could be use-
ful in specific scenarios where the nuisance parameters can

be considered small, and in phenomenological analyses as
proofs of concept.
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A Automatic tune of binning

In the KDE method presented in this work, we are automat-
ically tuning the bandwidths of the background and signal
distributions. On the other hand, for the histograms, assum-
ing equal-sized bins, there is only one parameter to tune: the
bin width (or equivalently, the number of bins). It is important
to remark that although we have two samples (background
and signal) the formula for significance in Eq. (8) requires the
same binning for both distributions. In that sense, we have
chosen to tune the histogram associated with the background
sample, since it limits the validity of the binned likelihood
method in statistical terms. There are different methods that
can be used to tune such parameter (Stone, Freedman Dia-
conis or FD, Auto, Doane, Scott, Sturges, etc.). Nevertheless
none of these methods is general for every possible ML out-
put as each one is optimized taking into account the func-
tional form of the data (size, shape, etc), which in our case
is the output of our classifier that depends on the specific
physical scenario. For example, the Sturges method is robust
for Gaussian data, while FD method is good for large data
samples.

In Table 3 we show the optimal number of bins found
by three different methods2 for Ndim(m,�), with m =
+0.3(−0.3) for S (B), no correlation, and fixed 〈B〉 = 50 k
and 〈S〉 = 500, corresponding to the Gaussian example intro-
duced in Sect. 3.1. As stated before, since there is no general
method to choose N , we decided to compare three meth-
ods whose assumptions fit some of our data set properties:
FD due to our large sample, Sturges because at low dimen-
sions the ML output resembles a normal distribution, and
Doane to account the skew of the data for high dimensions.
Additionally, in Fig. 8 we show the significances obtained
with these 3 methods for Gaussian distributions of different
dimensions. It is important to highlight that all these meth-
ods assume equal size bin widths, and hence they show the
same tendency already presented in the left panel of Fig. 4,
the significance increases with the number of bins.

If we do not assume equal-size bins, we must tune (N −1)
parameters (i.e. the width of each bin) where N is the number
of bins. Unlike in the KDE method, now we are dealing with a
high dimensional space. To perform a full exploration of this
space is computationally expensive, therefore we performed
a data-driven procedure to cross-validate the selection of the
number of bins and each bin size as follows:

1. We fix the number of bins (N ) with one of the previously
described methods (FD, Doane and Sturges) applied to
the background data set.

2. We randomly select the width of each bin.

2 We use the python implementation available in the library
numpy.histogram_bin_edges.

Table 3 Estimation of the optimal number of bins to describe the back-
ground data of the example shown in Fig. 8, using FD, Doane and
Sturges methods

Dim Number of bins (N)

FD Doane Sturges

1 74 21 18

2 62 23 18

3 57 23 18

4 54 24 18

5 52 24 18

6 52 24 18

7 52 24 18

8 54 25 18

9 55 25 18

10 57 25 18

3. We divide the background data set into 5 k-folds (as done
in the KDE optimization). For each bin d, we compute
the mean number of events per bin, μd = 1

4

∑4
k=1 N

(k)
d ,

where N (k)
d is the number of events in each bin for the

sample k. Notice that we used 4 k-folds.
4. For the last k-fold, k = 5, assuming a Poissonian dis-

tribution for each bin and the Stirling approximation for
log(Nd !), we calculate

qpoiss = −logL =
Nbin∑

d

(
μd − N (k=5)

d log(μd)

+N (k=5)
d log

(
N (k=5)
d

)
− N (k=5)

d

)
.

5. We repeat steps 2. to 4. 5000 times.
6. Finally, we select the binning that provides the minimum

value of qpoiss from among the 5000 iterations and com-
pute the significance using the signal and an independent
background sample.

This procedure provides a good trade-off between optimiza-
tion and computational cost. In Fig. 8 we show the obtained
exclusion significance (Z ). For each dimension, the signifi-
cance found optimizing the bin widths is similar to the result
assuming equal-sized bins (for the same number of bins). It
is worth to remark that the MLL-KDE method consistently
outperforms the binned multivariate analysis in terms of sig-
nificance. For completeness, we have also check that similar
conclusions can be drawn for alternative likelihood assump-
tions (for example, assuming a Gaussian distribution for each
bin).
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Fig. 8 Exclusion-limit significance for Ndim(m,�) with m =
+0.3(−0.3) for S (B) and no correlation, as a function of the dim,
for fixed 〈B〉 = 50 k and 〈S〉 = 500. The red solid curve shows the
result of implementing the MLL+KDE method, while the green curve
shows the results obtained using the true PDFs. The orange dashed
curve represents the results obtained by applying the BL method to the
classifier’s one-dimensional output for 100 equal-width bins, and the

blue dashed curve for 10 equal-width bins. The black dot-dashed curve
represents the BL method to the classifier’s one-dimensional output for
N equal bin width with N determined for each dimension by FD (top
left panel), Doane (top right panel), and Sturges (bottom panel), see
Table 3. The gray dotted curve shows the significance using BL method
with N bins, assuming non-equal bin widths
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