
Eur. Phys. J. C (2023) 83:1134
https://doi.org/10.1140/epjc/s10052-023-12313-0

Regular Article - Theoretical Physics

Low-energy matrix elements of heavy-quark currents

Harvey B. Meyer1,2,a

1 PRISMA+ Cluster of Excellence, Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
2 Helmholtz-Institut Mainz, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany

Received: 20 October 2023 / Accepted: 1 December 2023 / Published online: 14 December 2023
© The Author(s) 2023

Abstract In QCD at energies well below a heavy-quark
threshold, the heavy-quark vector current can be represented
via local operators made of the lighter quarks and of the
gluon fields. We extract the leading perturbative matching
coefficients for the two most important sets of operators
from known results. As an application, we analytically deter-
mine the O(α3

s )m2
c/m2

b effect of the bottom quark current
on the R(s) ratio below the bottom but above the charm
threshold. For the low-energy representation of the charm
quark current, the two most important operators are given
by the total divergence of dimension-six gluonic operators.
We argue that the charm magnetic moment of the nucleon is
effectively measuring the forward matrix elements of these
gluonic operators and predict the corresponding bottom mag-
netic moment. Similarly, the contribution of the charm cur-
rent to R(s ≈ 1 GeV2), which is associated with quark-
disconnected diagrams, is dominantly determined by the
decay constants of the ω and φ mesons with respect to the
two gluonic operators.

1 Introduction

Imagine a world of strong and electromagnetic interactions
in which the up, down and strange quarks are electrically
neutral. What would be the size of the magnetic moment of
the proton? With what signal strength would the ω and φ

mesons show up in the famous ratio of cross-sections

R(s) = σ(e+e− → hadrons)

σ (e+e− → μ+μ−)
? (1)

More generally, what form would R(s) take below the J/ψ

resonance? These are the sorts of questions we are after in
this paper.

These questions may at first seem to be of purely academic
interest. However, there are a few reasons to pay attention

a e-mail: meyerh@uni-mainz.de (corresponding author)

to them. One is that the observables in the aforementioned
world can be isolated and computed rigorously in lattice
QCD, since it is straightforward in that framework to keep
the (u, d, s) electric charges ‘switched off’. In particular, a
first calculation of the nucleon charm magnetic moment has
appeared [1], finding a negative value on the order of 10−3

in units of the nuclear magneton. In the context of high-
precision calculations of the hadronic vacuum polarisation
(HVP), the sub-threshold effects due to the heavy quarks are
associated with the quark-disconnected diagrams involving
at least one heavy-quark loop. The charm disconnected dia-
grams have been reported to be very small [2] in a calculation
of the hadronic vacuum polarisation contribution to the muon
(g−2) performed on a coarse lattice: less than one percent of
the (u, d, s) disconnected contribution. However, the charm
disconnected loops are bound to be less suppressed at some-
what higher virtualities, in the vacuum polarisation or in the
closely related running of the weak mixing angle [3,4]. In
any case, theoretical predictions for the charm-quark contri-
butions can be compared unambiguously with lattice QCD
calculations.

A second motivation is that in the process of deriving these
theoretical predictions, one gains insight into what matrix
elements in the low-energy effective theory the heavy-quark
contribution is really picking up. By the same token, the pre-
dictions can fairly straightforwardly be extended to the bot-
tom quark, which is not easily handled dynamically in lattice
QCD due to its large mass.

A third, much longer-term motivation, is that the proton
magnetic moment μp is known experimentally to a precision
of 0.3 ppb [5]. In principle, it could be used to search for new
physics, as is done for the anomalous magnetic moment of
the muon aμ = (g−2)μ/2, if the Standard Model prediction
could be made significantly more precise. The generic sen-
sitivity to heavy degrees of freedom is enhanced due to the
heavier mass scale of the proton. Since its magnetic moment
is a non-perturbative quantity from the outset, and not just
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starting at O(α2) as for aμ, the hadronic uncertainties enter
at O(1), making the theoretical task enormously harder. For
instance, a recent lattice QCD calculation [6] achieved a
precision of 2.4% on the magnetic moment of the proton.
Nevertheless, from this point of view one might be curious
to know whether the current experimental precision on the
proton magnetic moment already makes it sensitive to the
bottom, or even to the top quark contributions to the electro-
magnetic current.

The questions formulated in the introductory paragraph
can be addressed by ‘integrating out’ the heavy quark. In a
low-energy matrix element, the heavy quark-antiquark pair
coupling to the external photon annihilates in a short-distance
process. Via a three-gluon intermediate state, it can act as a
light-quark bilinear. The total divergence of the antisymmet-
ric tensor current is the lowest-dimensional operator that has
the right symmetry properties. However, it is a helicity-flip
operator, and therefore cannot contribute if the light quarks
are actually massless. This leads to an additional factor of
the light-quark masses appearing in this operator, making it
effectively of dimension five, and therefore suppressed by
1/m2

Q . This operator is considered in Sect. 2. Looking for
further, not chirally suppressed contributions, we note that it
is not possible to construct a low-energy effective operator
with just two field strength tensors, leading us to consider
(dimension-seven) operators built out of three field strength
tensors in Sect. 3. Operators such as m f ∂ν(ψ̄ f Gμνψ f ) are
of the same dimension, but chirally suppressed, and we will
therefore not consider them.

Thus the low-energy representation of the heavy-quark
vector current is power-suppressed. In this paper we will
therefore be discussing effects that are very small, but this
must be weighed against the fact that matrix elements of
the electromagnetic current are known to very high preci-
sion and are continuously being improved upon. It is worth
contrasting the low-energy representation of a heavy-quark
vector current with that of the corresponding axial-vector
current, which has been worked out long ago [7]. The lead-
ing result for the mapping between renormalisation-group
invariant currents reads [8]

(Q̄γ μγ 5 Q)RGI
m Q→∞−→ − 6

33 − 2(N f + 1)

(αs(m Q)

π

)2

×
N f∑
f =1

(q̄ f γ
μγ 5q f )RGI. (2)

That is, the low-energy matrix elements of the axial cur-
rent of a heavy quark are asymptotically suppressed by
1/ log(m2

Q/�2
QCD), as opposed to a power law. A further

example is the Lagrangian mass term of a heavy quark,
m Q Q̄ Q, which does not decouple as m Q → ∞, but rather
contributes to the trace anomaly of the low-energy effective
theory [9].

In Sect. 2, we work out the matching coefficient of the
light-quark tensor currents to the heavy-quark vector current.
In Sect. 3, we work out the matching coefficient of the three-
gluon operators to the heavy-quark vector current. We turn
to physics applications in Sect. 4 and conclude in Sect. 5.

2 The tensor currents of the light quarks

Consider QED with two types of leptons � and L , respectively
of masses m and M . The latter is assumed to be far greater
than the former, m � M , and we denote the action by S.
At scales well below M , and to leading order, the effective
field theory is QED with the lepton � only, which has the
standard action S0. We refer the reader to the lecture notes
[10] for more details. But what are the low-energy matrix
elements of the heavy-lepton current L̄γ μL? This question
can be answered by minimally coupling the heavy-lepton
current to an external electromagnetic field Bμ(x), so that
S → S − eL

∫
d4x Bμ L̄γ μL , the constant eL representing

the charge of the heavy lepton.
Correspondingly, the low-energy effective action is

extended from S0 to (S0 + Sext). The generating func-
tional F[B] describing the complete theory in the presence
of the external field is approximated at low energies by
the generating functional F0[B] given by exp(i F0[B]) =
〈0|T exp(i Sext)|0〉, where the dynamics in the latter matrix
element are governed by the action S0. The connected corre-
lation functions of the heavy-quark current are then obtained
by taking functional derivatives of F[B] at Bμ = 0, respec-
tively of F0[B] in the effective theory. The leading form of
Sext in powers of 1/M is given by the Pauli term,1

Sext = eL · dQED
2

∫
d4x (∂μ Bν − ∂ν Bμ) �̄ i

2 [γ μ, γ ν]� (3)

= −eL · dQED
2

∫
d4x Bμ (−i)∂ν(�̄[γ μ, γ ν]�), (4)

with dQED
2 a matching coefficient to be determined below.

If we are only interested in those correlation functions of
the current L̄γ μL with a finite separation in position space
between the current insertions (which is the case throughout
this paper), the use of the generating function is equivalent
to substituting each current by the divergence of the anti-
symmetric tensor current, as it appears in Eq. (4). Indeed,
−i∂ν(�̄[γ μ, γ ν]�) plays the role of a conserved current with
vanishing forward matrix elements on a light-lepton state. In
the chiral limit, this operator is however chirality-flipping,
which L̄γ μL is not; therefore, we can anticipate that our
operator will be accompanied by a factor m.

1 Note that we use a Minkowski-space notation with ‘mostly minus’
metric and {γ μ, γ ν} = 2ημν . A transcription into Euclidean notation
is given at the beginning of Sect. 4.
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Fig. 1 Left: representative diagram of the light-by-light contribution
to the g − 2 of an electron via a muon loop. Right: effective interac-
tion between the electron and the photon induced by the muon loop,
described by the total divergence of the antisymmetric tensor current

By dimensional analysis, the matching coefficient dQED
2

must be of order 1/M2. It can be obtained from the
following consideration (Fig. 1). The contribution to the
anomalous magnetic moment of lepton � of the current
−i∂ν(�̄[γ μ, γ ν]�) is

�F2(q
2 = 0) = −4m, (5)

while the contribution to F1(0) vanishes. On the other hand,
the direct (three-loop) calculation of the anomalous magnetic
moment contribution of the current L̄γ μL yields [11,12]

�F2(0) = c2

(α

π

)3 ( m

M

)2 + O((m/M)4), (6)

c2 = 3

2
ζ(3) − 19

16
. (7)

Hence we have the following mapping

L̄γ μL −→ dQED
2 (M, m, α)(−i)∂ν(�̄[γ μ, γ ν]�), (8)

dQED
2 (M, m, α) = −c2

4

m

M2

(α

π

)3
, (9)

of the current in the complete theory into the low-energy EFT.
The two-point function

f μν(x; M, m) ≡ 〈L̄(x)γ μL(x) �̄(0)γ ν�(0)〉
→ dQED

2 (M, m, α)〈(−i)∂λ(�̄(x)[γ μ, γ λ]�(x)) �̄(0)γ ν�(0)〉
(10)

can thus be evaluated within QED with a single light lepton
for large spacelike separations, −M2x2 	 1.

Similar considerations apply to QCD with N f ‘light’
quark flavours and one additional heavy flavour Q. The heavy
quark current Q̄γμQ can be matched to an operator made of
fields in the ‘light’ sector. The matching coefficient is the
same as in QED, up to a colour factor. To determine this
factor, consider the two-point function

〈Q̄(x)γ μQ(x) q̄(0)γ νq(0)〉 = dabc

4

dabc

4
f μν(x; mc, ms),

(11)

where dabc = 2 Tr({T a, T b}T c), Tr(T aT b) = δab

2 and we
have indicated the colour factor explicitly. For the gauge

group SU(N ), dabcdabc = (N 2 − 1)(N 2 − 4)/N and the
tensor f μν is the same as in Eq. (10), to leading perturba-
tive order. In the low-energy EFT, i.e. QCD with N f quark
flavours, the two-point function of Eq. (11) is represented by
the matching coefficient times 〈−i∂λ(q̄(x)[γ μ, γ λ]q(x))

q̄(0)γ νq(0)〉. At leading non-trivial order in perturbation
theory, the latter two-point function is simply N times the
low-energy two-point function in the second line of Eq. (10).
From this comparison, one obtains the colour factor and con-
cludes that

Q̄γ μQ −→
N f∑
f =1

d2(M, m f , αs) (−i)∂ν(q̄ f [γ μ, γ ν]q f ),

d2(M, m, z) = (N 2 − 1)(N 2 − 4)

16N 2 dQED
2 (M, m, z)

N=3= 5

18
dQED

2 (M, m, z). (12)

Clearly, due to the chiral suppression, the largest contribution
comes from the heaviest quark still considered as ‘light’;
typically, this would be the strange quark. In terms of large-
N counting, d2 is of order λ3

H /N , where λH ≡ g2
s N is the

’t Hooft coupling. Finally, the scale at which αs should be
evaluated in d2 is of order 2M .

The tensor operator has an anomalous dimension, there-
fore it should be evolved from the scale 2M to the standard
renormalisation scale at which it is defined, typically 2 GeV
in the MS scheme. The anomalous dimension is known to
four-loop order in the MS and in the RI′ schemes [13], and
the non-perturbative renormalisation of the tensor current has
also been determined very recently [14]. To leading order, its
scale evolution reads

OT (μ) = OT (2M)

(
αs(μ)

αs(2M)

)CF /β0

, CF = N 2−1
2N ,

β0 = 11
3 N − 2

3 N f . (13)

Since we will mostly be interested in the charm quark, for
which 2M is not very different from μ = 2 GeV, and since
we are only making order-of-magnitude estimates, we will
ignore this effect in the following numerical estimates. It
should however be taken into account for making asymp-
totic statements on the M dependence of low-energy matrix
elements of the heavy-quark current, and when estimating
the effects of the bottom quark.

One can now answer questions such as ‘What would be
the magnetic moment of the nucleon if the photon coupled
only to an asymptotically heavy quark of mass M?’ One finds

μQ
p,n ≡ G Q

M (0) = F Q
2 (0) = −4m N

N f∑
f =1

d2(M, m f , αs) g f
T ,

(14)
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where g f
T is the tensor charge of the nucleon with respect to

flavour f ,

〈N (p, s)|q̄ f [γμ, γν]q f |N (p, s)〉
= g f

T Ū (p, s)[γμ, γν]U (p, s). (15)

Although the quark-mass factor gives an enhanced weight
to the strange quark, the strange tensor charge is expected
to be much smaller than the sum of the up and down tensor
charges. We return to numerical estimates for the charm-
current contribution in Sect. 4.1. A simple prediction of the
considerations above is that the heavy-quark current contri-
bution to the magnetic moments of the hyperons occuring via
the tensor currents is expected to be much larger than in the
nucleon. However, we shall see that the three-gluon operator
actually dominates for the interesting cases of the charm and
bottom quarks.

3 Gluonic operators and the Euler–Heisenberg
Lagrangian

In this section, we derive the low-energy representation of the
heavy-quark current (a) in the case that the N f light quarks
are massless – in which case the tensor current does not con-
tribute, or (b) in the N f = 0 case, i.e. for the case that the
low-energy is pure gluodynamics. The most efficient way
to proceed is to write an effective Lagrangian for the cou-
pling of the gluon fields to an external photon. This was
the method used in [15] to derive the effective Lagrangian
for the low-energy (γ γ gg) interaction induced by a heavy-
quark loop connecting two electromagnetic vertices. Here
we are treating the case of a heavy-quark loop emanating
from a single electromagnetic vertex and inducing a γ ggg
coupling. This case was considered by Combridge [16] in
the perturbative regime. Both cases are closely related to the
classic Euler–Heisenberg Lagrangian for the pure QED case
[10,17]. First, some notational conventions. The free fermion
action is S = ∫

d4x ψ̄(i∂μγ μ−m)ψ . The gluon action reads

S(g) = − 1
2

∫
d4x Tr{Gμν(x)Gμν(x)}

= − 1
4

∫
d4x Ga

μν(x)Gμν,a(x) (16)

with Gμν(x)=Ga
μν(x)T a=(∂μ Aa

ν −∂ν Aa
μ+g f abc Ab

μ Ac
ν)T

a

and [T a, T b]=i f abcT c. Following the conventions of [18],
the interactions between the gauge fields and the fermions
are written

S(Qγ ) + S(Qg)

=
∫

d4x
(

− eQ Aμ Q̄γ μQ + gs Aa
μ Q̄γ μ T a Q

)
(17)

Fig. 2 Left: the heavy-quark loop inducing a coupling between a pho-
ton and three gluons. Right: effective interaction between the photon
and the three gluons, described by the effective action Eq. (18)

with eQ the electric charge of the heavy quark, for instance
eQ = − 1

3 |e| with α = e2/(4π) for the bottom quark and
gs the (positive) strong coupling constant. The interaction of
the light quarks with the gluon field then takes the same form
as in S(Qg). The two possible terms in the action describing
the interaction with a hypothetical photon coupling only to a
heavy quark of electric charge eQ are

S(Qγ )
eff = −eQ

2

∫
d4x Fμν(x)

(
h1 Tr

(
Gμν(x) Gαβ(x)Gαβ(x)

)

+h2 Tr
(

1
2 {Gμα(x), Gνβ(x)}Gαβ(x)

))
, (18)

= −eQ
dabc

8

∫
d4x Fμν(x)

×
(

h1 Ga
αβ(x)Gαβ,b(x)Gc

μν(x) + h2 Ga
μα(x)Gb

νβ(x)Gαβ,c(x)

)

(19)

= −eQ

∫
d4x Aμ(x)

(
h1∂

ν Tr
(

Gμν(x) Gαβ(x)Gαβ(x)
)

+h2∂
ν Tr

(
1
2 {Gμα(x), Gνβ(x)}Gαβ(x)

))
, (20)

with {A, B} = AB + B A denoting the anticommutator. The
heavy-quark loop diagram enabling a coupling between a
photon and three gluons, as well as its effective representation
in the low-energy effective theory, are shown in Fig. 2.

To determine the matching coefficients h1 and h2, we con-
sider the invariant amplitude M for the scattering process of
a photon and a gluon into two gluons,

γ (p, σ ) + g(k, τ, a) −→ g(p′, σ ′, b) + g(k′, τ ′, c), (21)

which we write M = −eQ(h1M(1) + h2M(2)) in the low-
energy effective field theory. The analogous γ γ → γ γ light-
by-light scattering amplitudes at low energies are for instance
given in the tutorial [19]. These matching coefficients can be
inferred from the well-known Euler–Heisenberg (EH) result
for the pure QED case by applying the appropriate color and
combinatorial factors. We thus start off from the EH result
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for the case of a heavy-lepton loop of mass M [20–22],

hQED
1 (M, eQ) = 1

18

e3
Q

16π2 M4 , (22)

hQED
2 (M, eQ) = − 7

45

e3
Q

16π2 M4 . (23)

Let us first inspect the one-loop calculation of the amplitude
M in the complete, N f + 1 flavour theory with regard to
the differences between the γ γ → γ γ and γ g → gg cases.
First, the factor dabc

4 appears in the latter case, as we have
seen in Sect. 2. The only other difference is that eQ must be
replaced by (−gs). The sign stems from the opposite sign of
the Q̄ Qg interaction term in S(Qg) as compared to the Q̄ Qγ

term in S(Qγ ).
When computing the amplitude γ g → gg in the low-

energy effective field theory, there are two differences with

respect to the γ γ → γ γ case. First, the factor dabc

4 appears,
as is clear from comparing Eq. (18) applied to QED and Eq.
(19) applied to QCD. However, precisely the same factor
also appears in the calculation of the quark-loop diagram in
the (N f + 1) flavour theory, as described in the previous
paragraph, so that it does not affect the matching calculation.

Secondly, there is a combinatorial effect. In Eq. (18)
applied to QED, each field strength tensor plays the same
role: the first operator consists of two contracted field strength
tensors, the second of a single circular chain of such ten-
sors. Now, in the calculation of the γ g → gg amplitude,
one specific field strength tensor is necessarily annihilating
the initial-state photon, whereas in the QED case, it can be
contracted with any one of the four photons involved in the
amplitude. This results in the γ γ → γ γ amplitudes M(1)

and M(2) being four times larger than the corresponding

expressions multiplying dabc

4 in the γ g → gg case.
The upshot is that, in order to compensate the reduced

combinatorial factor, the matching coefficients must be four
times larger in the γ g → gg case. We thus conclude

h1(M, gs) = −2

9

g3
s

16π2 M4 , (24)

h2(M, gs) = +28

45

g3
s

16π2 M4 . (25)

In summary, using Eq. (20)) we have found the following
low-energy representation of the heavy-quark current,

Q̄γ μQ −→ h1(M, gs) ∂νTr
(

Gμν(x) Gαβ(x)Gαβ(x)
)

+h2(M, gs) ∂νTr
(

1
2 {Gμα(x), Gνβ(x)}Gαβ(x)

)
. (26)

To repeat, these two operators are parametrically the leading
ones in the limit where the light-quark masses vanish, or
indeed for the N f = 0 (pure gauge) theory. In the former
case, one must be aware that chirally invariant four-fermion

operators such as

∂ν

(∑N f
f =1(q̄ f γ

[μγ νγ λ]q f )
∑N f

f ′=1(q̄ f ′γλq f ′)
)

,

where the square brackets denote complete antisymmetriza-
tion of the enclosed indices, have the same dimension as
the three-gluon operators above. While their matching coef-
ficients, being at least of order α3

s , are parametrically sup-
pressed, their mixing under renormalisation with the gluonic
operators of Eq. (26) should in general be taken into account.

Rewriting the gluonic operators in terms of the rescaled
non-Abelian gauge field having for action S = ∫

d4x(− 1
2 g2 )

Tr{GμνGμν}, the computed matching coefficients formally
become independent of the gauge coupling. They are also
independent of N . We expect the gluonic operators Tr{GGG}
to have hadronic matrix elements of order unity, similar to the
Tr(GμνGμν) ‘trace anomaly’ operator having an order-unity
matrix element on the nucleon in units of the nucleon mass
[23]. Thus, while the matching coefficients of the gluonic
operators are suppressed by two additional powers of 1/M
relative to the tensor current of the light quarks, they are
neither suppressed by light quark masses, nor by a factor of
1/N , nor by (αs(M)/π)3.

4 Physics applications

Since some of our applications are closely related to lat-
tice QCD calculations, we provide the low-energy repre-
sentation of the heavy-quark current in Euclidean nota-
tion. In Euclidean space, we use hermitian Dirac matrices,
{γ E

μ, γ E
ν } = 2δμν , so that the action for a free fermion reads

SE = ∫
d4x ψ̄(γ E

μ ∂μ + m)ψ , and the Euclidean action
describing the heavy quark’s interactions with the gauge
fields takes the form

S(Qγ )
E + S(Qg)

E

=
∫

d4x
(

− ieQ Aμ Q̄γ E
μ Q + ig Aa

μ Q̄γ E
μ T a Q

)
. (27)

We then have the operator mappings

Q̄γ E
μ Q −→

N f∑
f =1

d2(M, m f , αs) ∂ν(q̄ f [γ E
μ, γ E

ν ]q f ), (28)

and

Q̄γ E
μ Q −→ h1(M, gs) i ∂νTr

(
Gμν(x) Gαβ(x)Gαβ(x)

)

+h2(M, gs) i ∂νTr
(

1
2 {Gμα(x), Gνβ(x)}Gαβ(x)

)
. (29)

The expressions for the coefficients d2, h1 and h2 are given
in Eqs. (12, 24, 25).
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4.1 Charm and bottom magnetic moments of the proton

In this section, we estimate the size of the charm magnetic
moment of the nucleon in units of the nuclear magneton,
μc

p,n . Consider first the contribution of the tensor currents
of the light quarks in the low-energy EFT. For the following
numerical estimates, we use the tensor charges given in Ref.
[24] in the MS scheme at 2 GeV, which have been computed
in lattice QCD with dynamical up, down, strange and charm
quarks; see also the recent results in Ref. [25].

μc
p,n

∣∣∣
tensor

= 5

18
( 3

2ζ(3) − 19
16 )

×
(αs

π

)3 m N

m2
c

(mu gu
T + md gd

T + ms gs
T )

(30)

� 9 × 10−8(mu gu
T + md gd

T + ms gs
T )/MeV

� (3 ± 3) × 10−8. (31)

We have used mc = 1.27 GeV and the light-quark masses
from the Particle Data Group [26] (which are in the MS
scheme at 2 GeV), and set αs = 0.3. The uncertainty is
large, due to a significant cancellation between the up and
down quark contributions; the strange contribution is some-
what smaller, but not negligible, due to the ms factor. In any
case, the entire tensor contribution is minuscule. The same
conclusion applies a fortiori to the bottom magnetic moment
of the nucleon, μb

p,n .
We now turn to the O(1/m4

c) contribution of the two glu-
onic operators. For the second gluonic operator, which has
the larger matching coefficient, we obtain a contribution on
the order of

μc
p,n

∣∣∣
glue

= 28

45

1

16π2m4
c

· (ξ m4
N ) = 1.1 × 10−3ξ, (32)

where ξ parametrizes the forward nucleon matrix of
1
2 Tr({Gμα,Gνβ}Gαβ). We expect |ξ | to be of order unity, in
analogy with the matrix elements of the operator Tr(GμνGμν)

[23]. Since the strangeness magnetic moment of the nucleon
μs

p,n is already negative (and on the order of −0.02 [27,28]
with about 25% uncertainty), one might expect the same for
the contribution of heavier quarks. The order of magnitude
is consistent with the findings of Ref. [1] in lattice QCD,

μc
p,n = (−1.27 ± 0.38stat ± 0.05syst) × 10−3. (33)

Using the result of the latter publication, we can predict the
order of magnitude of the bottom magnetic moment to be

μb
p,n �

(
mc

mb

)4

μc
p,n ≈ −1 × 10−5, (34)

while the top-quark contribution is at the level of −4×10−12.
The physical magnetic moment of the proton, μp � 2.793,
is known to 0.3 ppb [5]. Thus the present measurement is

sensitive to the coupling of the photon to the bottom quark,
but not yet to its coupling to the top quark.

It is also worth noting that the charm contribution to the
average anomalous magnetic moment of proton and neutron,
(μp+μn−1)/2 � −0.060, can be estimated as (+2/3) times
Eq. (33), yielding a one to two percent contribution. Experi-
mentally, the average nucleon anomalous magnetic moment
is known at the level of 3.7 ppm [5], which is still precise
enough to resolve the bottom current contribution, even tak-
ing into account the latter’s small charge factor of −1/3.

4.2 Vacuum polarisation: heavy-quark contributions well
below their threshold

Consider the two-point correlation function of two quark cur-
rents in the Euclidean time-momentum representation,

G f, f ′
(x0) = −

∫
d3x 〈(q̄ f γ

E
1 q f )(x) (q̄ f ′γ E

1 q f ′)(0)〉

= 1

12π2

∫ ∞

0
ds s R f, f ′

(s)
e−√

s|x0|

2
√

s
. (35)

We have indicated the spectral representation of the correla-
tor [29], the spectral function being normalized as the well-
known R ratio, such that

R(s) =
N f∑

f, f ′=1

Q f Q f ′ R f, f ′
(s) (36)

with Q f ∈ { 2
3 ,− 1

3 } the quark charges. We begin with the
case of two distinct quark flavours f and f ′, the former being
the more massive one. In that case, the correlator receives
exclusively quark-disconnected contributions.

4.2.1 The tensor current contribution: perturbative regime

In Gb,c(x0), at distances much greater than M−1
ϒ , we replace

the bottom current by its low-energy representation in terms
of the charm-quark tensor current according to Eq. (12). Due
to the relatively large charm mass, no chiral suppression of
this contribution takes place. Evaluating the charm vector-
tensor correlator to lowest order in perturbation theory, we
obtain

Rb,c(s) = 3

64

(
3ζ(3) − 19

8

) (N 2 − 1)(N 2 − 4)

N

(
αs(2mb)

π

)3

×m2
c

m2
b

√
1 − 4m2

c

s
. (37)

In an expansion in 1/m2
b, this expression is the leading per-

turbative contribution of the bottom current to the spectral
function above the charm threshold, but well below the bot-
tom threshold. We believe this result to be new. The quark-
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disconnected contribution has been computed for massless
quarks, in which case it is known to O(α4

s ) included [30,31].

4.2.2 The tensor current contribution: hadronic regime

Consider the correlator Gc,s(x0) at distances much greater
than M−1

J/ψ . In this subsection, we replace the charm current
by its low-energy representation in terms of the strange-quark
tensor current according to Eq. (12) and work out an estimate
for the ratio Gc,s/Gs,s .

Moreover, we exploit the fact that the strange-strange cor-
relator is dominated over a significant interval of Euclidean
times by the φ meson, of mass Mφ . This comes from the
narrowness of the φ resonance (�φ � 4 MeV), from the sup-
pressed coupling of the strange current to the ω meson and the
small size of the K K̄ and πππ continua below

√
s = 1 GeV.

Using the spectral decomposition, we then obtain, for x0 pos-
itive and on the order of 1 fm,

Gc,s(x0) � d2(mc, ms, αs)Mφ · e−Mφ x0

2Mφ

×
3∑

λ=1

〈0|s̄[γ E
1 , γ0]s|φ, 0, λ〉 〈φ, 0, λ|s̄γ E

1 s|0〉. (38)

Now we insert the standard parametrization of the matrix
elements of a massive vector particle,

〈0|s̄γ μs|φ,p, λ〉 = ε
μ
λ fφ Mφ, (39)

〈0|s̄ i
2 [γ μ, γ ν]s|φ,p, λ〉 = i (ε

μ
λ pν − εν

λ pμ) f ⊥
φ . (40)

Thus we arrive at the expression

Gc,s(x0) � −d2(mc, ms, αs)(2 fφ f ⊥
φ M3

φ)
e−Mφ x0

2Mφ

, (41)

the corresponding contribution to the spectral function read-
ing

Rc,s(s)

12π2 = − (
d2(mc, ms, αs)2Mφ

)
( fφ f ⊥

φ ) δ(s − M2
φ).

(42)

On the other hand, the strangeness correlator is given by

Gs,s(x0) � f 2
φ M2

φ

e−Mφ x0

2Mφ

, (43)

corresponding to

Rs,s(s)

12π2 = f 2
φ δ(s − M2

φ). (44)

Taking the ratio of correlators

Gc,s(x0)

Gs,s(x0)
� − (

d2(mc, ms, αs)2Mφ

) f ⊥
φ

fφ
� 5 · 10−6 · f ⊥

φ

fφ

� 3 · 10−6 (x0 ≈ 1 fm), (45)

we find a very small result. In the last step, we have assumed
f ⊥
φ / fφ ≈ 2/3 based on the lattice calculation [32], which

was for the ρ meson, and references therein. Since the ratio
(45) is very small, we turn to the role of the gluonic operators
in the next subsection.

For a long time, charmonium properties have been
extracted on the lattice by neglecting the disconnected dia-
gram in charm-current two-point functions. See however the
dedicated study and discussion in Ref. [33], where the effect
of the disconnected diagram on the extraction of the J/ψ

mass could not be resolved, in contrast to the ηc channel.
The effect of charm sea quarks, which is distinct from the one
discussed here, has recently been addressed in [34]. Here we
assess the relative importance of the disconnected diagram
based on representing the charm current as a strange tensor
current. We define Gc,c = Gc,c

conn + Gc,c
disc with

Gc,c
conn(x0) =

∫
d3x 〈Tr{γ1Sc(x, 0)γ1Sc(0, x)}〉, (46)

Gc,c
disc(x0) = −

∫
d3x 〈Tr{γ1Sc(x, x) Tr{γ1Sc(0, 0)}〉,

(47)

where Sc(x, y) denotes the charm-quark propagator in a non-
perturbative gauge field background, which is being averaged
over. At distances well beyond the inverse J/ψ mass M−1

ψ ,
we have

Gc,c
conn(x0) � f 2

ψ M2
ψ · e−Mψ x0

2Mψ

, (48)

whereas

Gc,c
disc(x0) � d2(mc, ms, αs)

2 ( f ⊥
φ )2 2M4

φ · e−Mφ x0

2Mφ

. (49)

Although the matching coefficient d2 is small, Gc,c
disc falls off

much more slowly than Gc,c
conn(x0). With fψ � 0.405 GeV

[35] and f ⊥
φ � 0.160 GeV (an educated guess based on lat-

tice results for f ⊥
ρ [32]), we reach the conclusion that the

disconnected is about 10% of the connected at x0 � 2.4 fm,
and of course its relative size increases proportionally to
exp((Mψ − Mφ)x0) beyond that point. The effect on the
effective mass (defined as the negative of the logarithmic
derivative of Gc,c(x0)) reaches 1% at x0 ≈ 2.2 fm and
increases rapidly thereafter. The ω meson also contributes,
for two reasons: one is through the matching of the charm
current to the light-quark tensor current, which is however
strongly chirally suppressed, and the other is via the coupling
of the strange tensor current to the ω, whose size is unknown
but presumably quite strongly Okubo-Zweig-Iizuka (OZI)
suppressed. Asymptotically, the three-pion continuum dom-
inates the charm correlator Gc,c(x0) in isospin-symmetric
QCD.

The values of x0 estimated above, at which the discon-
nected diagrams become significant, must be viewed as upper
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bounds, since in the next subsection we show that the repre-
sentation of the charm current via gluonic operators probably
yields a larger contribution.

4.2.3 The contribution of the two gluonic operators

Define the gluonic decay constants of the φ meson as follows,

〈0|Tr
(
Gμν(x)Gαβ(x)Gαβ(x)

)
|φ,p, λ〉

= i (ε
μ
λ pν − εν

λ pμ) f G,1
φ M3

φ, (50)

〈0| 1
2 Tr

(
{Gμα(x),Gνβ(x)}Gαβ(x)

)
|φ,p, λ〉

= i (ε
μ
λ pν − εν

λ pμ) f G,2
φ M3

φ, (51)

and similarly for the ω meson. Based on the gluonic contri-
bution, Eq. (26), we then obtain from the spectral represen-
tation, neglecting the OZI-suppressed ω meson contribution,

Gc,s(x0) �
[

− 2
9 f G,1

φ + 28
45 f G,2

φ

]

· M5
φ

16π2m4
c
(Mφ fφ)

e−Mφ x0

2Mφ

, (52)

leading to the ratio of correlators for x0 ≈ 1 fm,

Gc,s(x0)

Gs,s(x0)
� M4

φ

16π2m4
c

·
[

− 2
9 f G,1

φ + 28
45 f G,2

φ

]/
fφ

= 2.6 · 10−3 ·
[

− 2
9 f G,1

φ + 28
45 f G,2

φ

]/
fφ. (53)

We expect this contribution via the gluonic operators to be
dominant over that of the tensor currents in Eq. (45) because
we see no reason why the ratios f G,i

φ / fφ should be as small

as 10−3. By the same token, we expect Gc,c
disc(x0) to become

comparable to Gc,c
conn(x0) at smaller x0 than estimated in the

previous subsection. Moreover, via the gluonic operators, the
ω meson contributes to (Gc,u + Gc,d)/2 analogously to the
φ meson in Gc,s , without any chiral suppression, and both
mesons contribute in a similar way to Gc,c

disc(x0).

5 Conclusion

We have derived the low-energy effective representation
of heavy-quark vector currents. As a concrete perturbative
result, we have obtained the bottom-current contribution to
the R(s) ratio of order (m2

c/m2
b) in the sub-Mϒ region; see

Eq. (37).
The leading contributions in 1/m Q to low-energy observ-

ables associated with the set of light-quark tensor currents
can be estimated fairly reliably, but turn out to be very small
in the hadronic vacuum polarisation or the charm magnetic
moment of the nucleon. In the latter case, an existing direct
lattice calculation strongly suggests that a different mecha-
nism is responsible for the O(10−3) size found for μc. Two

(non-chirally suppressed) gluonic operators, whose match-
ing coefficients we derived, can explain the size of μc if their
matrix elements are of order one in units of the nucleon mass.
From here, we estimated the size of the bottom magnetic
moment of the nucleon.

Similarly in the R(s) ratio, the gluonic operators are bound
to be the dominant ones in the low-energy representation of
the charm current at s � 1 GeV2, unless the corresponding
decay constants of the ω and φ mesons turn out to be enor-
mously suppressed. The correlator (Gc,u + Gc,d) provides
a clean way to probe the gluonic decay constants of the ω

meson.
Since the charm quark can be treated dynamically in lattice

calculations, the matching coefficients (d2, h1, h2) could be
determined non-perturbatively and the reliability of the low-
energy expansion directly tested. Though technically more
challenging, this type of study could also be carried out for
the axial current to test the prediction of Eq. (2). Finally,
the operator mappings derived in this paper might also be
used for the algorithmic purpose of accelerating the stochas-
tic calculation of disconnected charm loops over the entire
lattice.
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