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Abstract One of the standard approaches of incorporating
the quantum gravity (QG) effects into the semiclassical anal-
ysis is to adopt the notion of a quantum-corrected spacetime
arising from the QG model. This procedure assumes that the
expectation value of the metric variable effectively captures
the relevant QG subtleties in the semiclassical regime. We
investigate the viability of this effective geometry approach
for the case of dust dominated and a dark energy domi-
nated universe. We write the phase space expressions for
the geometric observables and construct corresponding Her-
mitian operators. A general class of operator ordering of
these observables is considered, and their expectation values
are calculated for a unitarily evolving wave packet. In the
case of dust dominated universe, the expectation value of the
Hubble parameter matches the “semiclassical” expression,
the expression computed from the scale factor expectation
value. In the case of the Ricci scalar, the relative difference
between the semiclassical expression and quantum expec-
tation is maximum at singularity and decays for late time.
For a cosmological constant driven universe, the difference
between the semiclassical expressions and the expectation
value is most pronounced far away from the bounce point,
hinting at the persistent quantum effect at the late time. The
parameter related to the shape of the distribution appears as
a control parameter in these models. In the limit of a sharply
peaked distribution, the expectation value of the observables
matches with their semiclassical counterpart, and the usage
of effective geometry approach is justified.

1 Introduction

The notion of observables in canonical quantum gravity has
been at the forefront of the issues that plague the theory; (for
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recent reviews; see, e.g., [1,2] and references therein). Clas-
sically, at the level of canonical description of the singular
systems, i.e., the systems with gauge degrees of freedom,
the whole phase space is no longer the physical space [3–
6]. The gauge redundancy is encoded in a set of functions
of phase space variables which are constrained to vanish
on-shell. These functions are called the constraints of the
theory, and they define the physical space, called the con-
straint surface, in the phase space. The constraints generate
the gauge transformations on the phase space, and not all
functions of phase space variables correspond to the physi-
cal (Dirac) observables. The phase space functions that are
invariant under the gauge transformations are considered the
Dirac observables. This implies that these functions need to
have weakly vanishing Poisson bracket with the generators
of these gauge transformations [3–6].

General relativity is a famous example of the singular sys-
tems, which has diffeomorphism and time reparametrization
constraints appearing at the canonical level [7–9], that gener-
ate the gauge transformations in the phase space, i.e., diffeo-
morphism and time reparametrization transformations [10–
12]. The observables in general relativity, therefore, must
be invariant under diffeomorphisms and time reparametriza-
tions. However, the discussion surrounding the systems with
time reparametrization symmetry is tricky as the Hamilto-
nian of such systems is itself a constraint. This means that
the Hamiltonian generates the gauge transformations, imply-
ing the dynamics in a generally covariant system is just the
unfolding of the gauge transformation. It seems that the phys-
ical observables in such a system are frozen in time or, in other
words, are constants of motion; this is commonly referred to
as the problem of time in QG [13,14].

A possible resolution to this conundrum comes from the
understanding that the canonical Hamiltonian generates the
evolution in the coordinate time, which due to general covari-
ance, is indeed redundant. What we observe is the evolution
of the dynamical fields with respect to the other fields. This
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idea is best implemented in the context of relational quan-
tum dynamics, see e.g., [1,15]. The approach, in a nutshell,
is an amalgamation of the different manifestations of rela-
tional notions available, called the ‘trinity of relational quan-
tum dynamics’ [16,17]. The system can be described equally
well by a clock-neutral picture of Dirac quantization (first
quantize then constrain), the relational Schrödinger picture
of the Page–Wootters formalism [18,19], and the relational
Heisenberg picture resulting from quantum symmetry reduc-
tion [20,21]. A detailed exposition of these approaches can
be found in [16].

The motivation to have the discussion about observables
is twofold – how the QG effects are incorporated in the
observations, e.g., in effective geometry approach [22–25]
and how singularity resolution is addressed in the canoni-
cal approach to quantum gravity [26–28]. The operational
approach to incorporate the effects of quantum gravity is to
introduce the notion of quantum-corrected spacetime com-
ing from the quantization of the background geometry. It
can be achieved in various ways, e.g., in the dressed metric
approach, where the evolution of quantum fields on quantum
geometry defined by a physical state Ψo is mathematically
equivalent to their evolution on an effective classical back-
ground geometry “dressed” with quantum corrections [23].
The quantum state Ψo is conjectured to be sharply peaked
on the classical trajectory. The dressed metric is defined in
such a way that it captures the moments of the field variables
appearing in the Schrödinger equation for the perturbation
variables. Therefore, the main argument is that the dynam-
ics of the quantum fields is only sensitive to the expectation
values that are captured by the dressed metric.

Quantum corrections to the background geometry can
also be encoded via a quantum-corrected Friedmann equa-
tion coming from, e.g., polymerized Hamiltonian constraint
[29,30] or de Broglie–Bohm quantization [31–34] or via
semiclassical description of affine quantization scheme [35–
38]. We will colloquially term these approaches as effective
geometry approach where the singular background geometry
is replaced by a quantum-corrected singularity-free space-
time. A pertinent question to ask here is whether it is jus-
tified to use the semiclassical expressions for the Hubble
parameter and Ricci scalar (in the non-minimal setting, for
example) instead of the expectation value of these observ-
ables coming from the QG model. Most of these approaches
to quantum gravity rely on the expectation of one dynamical
variable, e.g., scale factor or volume, to completely capture
the quantum effects. But being a canonical theory, it is worth-
while to explore whether there exists any inconsistency in
the expectations of complex product operators such as the
Hubble parameter and the Ricci scalar are made up from
the conjugate variables. It is equivalent to checking if the
expectation of the position operator captures all the quantum
characteristics for a free particle. In this work, we will write

phase space expressions for these observables. Since these
observables are made up of the scale factor and its conjugate
momentum, knowing the expectation value of the scale fac-
tor alone may not be sufficient. In principle, one should scru-
tinize any scheme that involves quantum-corrected space-
time through the effective metric and check if any significant
departure is observed between the semiclassical expressions
(quantities computed from the expectation value of the met-
ric, i.e., effective metric) of the observables of interest and
their expectation value.

Furthermore, DeWitt’s criteria is widely used as a marker
for the non-existence of singularity in a quantum gravity
model. It states that “A singularity is said to be avoided if
Ψ → 0 in the vicinity of the classical singularity” [26].
DeWitt’s criteria has been applied for various systems to
check for singularity resolution, e.g., [28,39–52]. There also
exists criteria of singularity avoidance based on the vanish-
ing of Klein–Gordon like current associated with Wheeler–
DeWitt equation in the vicinity of the singularity and the
spreading of the wave packet near singularity [42,53]. Study-
ing the spectrum or the expectation value of configuration
variables of the model e.g., scale factor or volume operator,
is another way to infer the singularity structure in a quan-
tum model [54–62]. In general relativity, however, a singular
configuration is characterized by the divergence of the curva-
ture invariants and metric variable may indicate the presence
of coordinate singularity only. One would therefore expect
that the prediction of singularity resolution in these models is
robust if the Hermitian operators associated with the curva-
ture invariants have finite expectation values at the singular
configurations. Since such operators contain both canoni-
cally conjugate operators, the expectation value of only one
operator is not guaranteed to capture all the quantum gravity
effects. An extensive account of the various singularity reso-
lution criteria used in the context of quantum cosmology can
be found in [63].

However, within the framework of Dirac observables it
is not possible to obtain any local, dynamical observable
corresponding to any geometric quantity of interest, e.g.,
scale factor, the Hubble parameter, or any local curvature
invariants (which appear at the semiclassical level), since
the former demands a complete spacetime independence, by
construction. Therefore, one needs to resort to the relational
approach via a parameterized system set-up [15,16] where
one observes the growth of any of the variable of interest viz-
a-viz another degree of freedom, while the complete system
satisfies the geometric constraints. Still, there remains a ques-
tion of what phase space functions can be classified as valid
observables. In this work, this question is addressed by fol-
lowing Kuchař’s proposal for the observables in general rel-
ativity [64–66]. The main idea is to distinguish between con-
ventional gauge systems and parameterized systems. In the
case of parameterized systems, Kuchař proposed to relax the
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weakly vanishing of the Poisson bracket of observables with
the Hamiltonian constraint in order to capture the dynamics
of geometry. This enables one to obtain the growth of spa-
tial diffeomorphism invariant observables w.r.t. to another
component. In the context of the FLRW model with fluid
as matter, the spatial diffeomorphism constriants are already
taken care of via symmetry reduction at the action level itself
and one can consider all functions of the scale factor and its
conjugate momentum as observables at the classical level.
Nevertheless, at the quantum level one needs to worry about
which variable should be treated as time and what phase space
combination will remain a quantum observable.

The problem of time in this work is dealt with by work-
ing with Brown–Kuchař dust [67] and cosmological constant
[68–70] as matter, and the fluid degree of freedom provides
the notion of a clock in the system. These models are phe-
nomenologically constructed, such that the momentum con-
jugate to the fluid variable appears linearly in the Hamiltonian
constraint. Classically, the fluid variable is linearly related to
the comoving time in the appropriate gauge. The Wheeler–
DeWitt equation takes the form of Schrödinger equation with
dust variable as the Schrödinger time [71]. In the quantum
picture, unitarity is demanded with respect to the fluid clock.
Dynamics in the quantum model tell us about the behavior
of gravitational degrees of freedom with respect to the mat-
ter degree of freedom, thereby implementing the relational
notion of observables.

After quantization, one would ideally like to obtain the
self-adjoint extension of all the relevant observables appear-
ing in theory and study their spectral properties. In the context
of infinite dimensional Hilbert space, the self-adjoint opera-
tor is a Hermitian operator with the added condition that the
domain of the adjoint of the operator is equal to the domain
of the operator [72–74]. The blueprint that we will follow in
this work is to write the self-adjoint extension for the Hamil-
tonian operator to ensure unitary evolution in the model and
construct wave packets from the eigenfunctions of the Hamil-
tonian operator. We will primarily concern ourselves with the
Hermitian extension of the other operators, whose behavior
we are interested in. The Hermiticity condition suffices in
this case because it ensures that the expectation values are
real.

In this work, we aim to address three questions: (I) Writing
the phase space functions corresponding to the observables
that depict singularity in the classical picture, and studying
their behavior in the quantum model, thereby checking the
robustness of DeWitt’s criteria. (II) The status of the operator
ordering ambiguity in this quantum model. (III) The domain
of validity of the effective geometry approach, where the
QG signatures are investigated by replacing the scale factor
expectation in the classical expressions. These questions are
address in the context of a minisuperspace model of gravity
in which the system has a finite number of degrees of free-

dom. Although there are conceptual issues regarding such
symmetry reduction before quantization [75], yet this toy
model is a perfect playground that is relatively easier to han-
dle analytically and also captures the essence of the subtleties
associated with the quantization of gravity.

We will address these issues in the case of a flat-FLRW
(Friedmann–Lemaître–Robertson–Walker) model with the
Brown- -Kuchař dust [67] and the cosmological constant [68]
as the clock. Following Kuchař’s prescription of observables
in the QG models, we will write the quantum observables
that correspond to the Hubble parameter, Ricci scalar, and
other curvature invariants. We will start with the discussion
on observables in generally covariant systems in Sect. 2. The
classical and quantum description of the FLRW model with
Brown–Kuchař dust is given in Sect. 3, and we will discuss
singularity resolution in this model. In Sect. 4, we will write
Hermitian extensions of the observables of importance and
address the viability of the effective geometry approach. We
will extend this analysis for a perfect fluid model in Sects. 5
and 6 and investigate whether the generic features observed
in the earlier case can be seen in this case as well. Finally,
we will summarize the results in Sect. 7 with some remarks.

2 Observables and gauge invariance in generally
covariant systems

Physical observables in a gauge theory are supposed to be
invariant under the gauge transformations [3,4]. The canon-
ical analysis of general relativity establishes that the redun-
dancy associated with the choice of coordinates does, in fact,
have a direct correspondence with the gauge transformations
in the geometrodynamical phase space [10–12]. The total
Hamiltonian of general relativity is a constraint that gener-
ates the time reparameterization and diffeomorphisms. Thus,
the direct implementation of Dirac’s ideas about gauge sys-
tems leads to the counterintuitive notion of frozen dynamics
[13,14].

The notion of time and observables in generally covari-
ant systems is discussed in the context of relational dynam-
ics. Due to time reparameterization invariance, the dynam-
ics with respect to the coordinate time is indeed redundant,
and a physically meaningful change is observed relation-
ally. Instead of observing change with respect to an absolute
external time, the dynamics in a generally covariant system
is observed through an internal clock. In a gauge theory,
all degrees of freedom are not dynamical, and one can, in
principle, choose any internal degree of freedom as a clock.
Since one can choose the clock variable at their whim, there
exist multiple choices of clocks in the model [13,14]. The
inequivalence of clock choice at the quantum level, as con-
jectured by Gotay and Demaret [40], has been investigated
in recent works [59–62], where it is shown that the quan-
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tum model with different clock choices leads to different
quantum dynamics. Choosing the fluid clock, a slow clock
(which encounters a singularity in finite time), according to
the Gotay–Demaret terminology, leads to the singularity res-
olution. While the model with the scale factor clock, which
is a fast clock (which reaches the singular point asymptoti-
cally), does not resolve the singularity [61].

The mainstream implementation of relational dynamics is
achieved through Rovelli’s proposal of partial and complete
observables [76,77]. A partial observable is a ‘physical quan-
tity to which we can associate a measuring procedure leading
to a number,’ with the assumption that one can associate a
measuring procedure to an arbitrary phase space function. A
partial observable is a phase space function, and it does not
have to commute (weakly) with the constraints of the the-
ory. A complete observable is a ‘quantity whose value can
be predicted by the theory’. Therefore, a complete observ-
able has to commute with the constraints and is, in fact, the
Dirac observable. Relational ideas are incorporated by con-
sidering two partial observables, an internal clock T and a
phase space function f , calculating the value of f at a time
at which T takes the value τ . The value of f at the “clock
time” τ is a constant of motion for the flows generated by the
Hamiltonian constraint and therefore gives a one-parameter
family of complete (Dirac) observables.

This vague statement is cast succinctly in mathematical
language in [78,79]. The flow αt

C (x) of a phase space point
x generated by constraint C with a Hamiltonian vector field
χC ( f ) = {C, f } satisfies

d

dt
αt
C (x) = χC (αt

C (x)), and αt
C ( f )(x) = f (αt

C (x)).

(2.1)

With these definitions, for two partial observables f and T ,
one can associate a family of complete observables labeled
by a parameter τ , F[ f,T ](τ, x) defined as

F[ f,T ](τ, x) = αt
C ( f )(x)

∣
∣
αt
C (T )(x)=τ

. (2.2)

Let f , T be two phase space functions and x ∈ M be
a phase space point, fulfilling the condition αt

C ( f )(x) =
αs
C ( f )(x) ∀ s, t ∈ R for which αt

C (T )(x) = αs
C (T )(x),

then F[ f,T ](τ, x) is invariant under the flow generated by
C . The discussion on related implementations of relational
dynamics and their interplay can be found in [16,17].

A rather straightforward implementation of this idea is
achieved in the context of reduced phase space quantization,
where classically, the gauge is fixed, and then the quanti-
zation is carried out [80,81]. For the case analysis in this
work, the matter degree of freedom is used as the clock in
the model. The Hamiltonian constraint generates redundant
dynamics with respect to the comoving time. With the appro-

priate gauge choice, the fluid variable is linearly related to
the coordinate time, and one can write the relations between
gravitational variables and dust variables, which are gauge
invariant.

In the case of fluid models under consideration, the
momentum conjugate to the dust variable T is equal to the
negative of the gravitational part of the Hamiltonian con-
straint PT = −Hg(a, pa), and that generates the dynamics
with respect to the dust variable. The self-adjointness of the
operator corresponding to the gravitational Hamiltonian will
ensure the unitary evolution in the Schrödinger time, i.e.,
the fluid clock. The expectation values of the various grav-
itational observables are obtained as a function of the fluid
variable, and these relations are invariant under time reparam-
eterization transformations. Therefore, the relational notion
of dynamics is implemented by construction in the quantum
model.

Still, one has to address the following question: Which
phase space functions are to be considered observables in
this model? A Dirac observable is a function of phase space
variables that has a vanishing Poisson bracket with Hamil-
tonian constraint and diffeomorphism constraint, which is
a highly nonlocal quantity [82]. The gauge-invariant notion
of relational observables introduced above is inappropriate
for addressing the questions that we are interested in, as the
construction of the Dirac observables corresponding to the
Hubble parameter or the Ricci scalar is an untamable task. To
this end, we will follow Kuchař’s philosophy on observables
in general relativity.

Kuchař questions the notion of Dirac observables in gen-
erally covariant systems [64], where the Hamiltonian itself is
a constraint. Contrasting the conventional gauge system and
the generally covariant system, Kuchař argued for a differ-
ent notion of the physical observable for systems with time
reparameterization invariance. The main argument can be
summarized as the physically observable quantities need not
commute with the Hamiltonian constraint. The phase space
functions that commute with all constraints are termed peren-
nials and are not of interest in our analysis. We will follow
Kuchař’s proposal and consider any function of phase space
variables as observable while keeping in mind that the rela-
tional picture is implemented by construction in the quantum
model under consideration.

3 FLRW model with Brown Kuchař dust

In this section, we will discuss the FLRW model coupled
to the Brown–Kuchař dust. We will start with the canonical
description of the model and write the observables as a func-
tion of phase space variables in the Sect. 3.1. The classical
model has two disjoint solutions, which represent a universe
expanding from the Big Bang singularity and a universe col-
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lapsing to the Big Crunch singularity. The matter source is
the pressureless dust, parameterized via the Brown–Kuchař
formalism [67,83]. In Sect. 3.2, we will quantize this model
following [51] and discuss the singularity resolution in this
quantum model.

3.1 Classical model

Line element and Ricci scalar for a homogeneous and
isotropic FLRW spacetime with constant spatial curvature
k are given as

ds2 = −N 2(τ )dτ 2 + a2(τ )

[
dr2

1 − kr2 + r2dΩ2
]

, (3.1)

R = 6

N 2

[

−Ṅ ȧ

Na
+ ä

a
+

(
ȧ

a

)2
]

+ 6k

a2 , (3.2)

where a(τ ) is the scale factor and N is the lapse function.
We start with the Einstein–Hilbert action with the Gibbons–
Hawking–York (GHY) term,

S = 1

2κ

∫

d4x
√−gR − 1

2κ

∫

∂M
d3x

√
hK. (3.3)

where h is the determinant of the induced metric and K is
the extrinsic curvature. The GHY term is included to make
the variational problem well-defined, canceling the bound-
ary terms that are coming from the terms involving double
derivatives in the EH action. The action for the FLRW model
takes the form

S = 3V0

κ

∫

dτ

[

−aȧ2

N + kNa

]

. (3.4)

Here we have integrated over the fiducial cell of volume V0

for convenience, even though the integral is over the whole
spacetime. After performing Legendre’s transformation, we
get the Hamiltonian of the system.

H = N
[

− κ

6V0

p2
a

2a
− ka

]

. (3.5)

The Hamiltonian constraint is in the square bracket, which
generates the time reparametrization invariance transforma-
tion. We will use the Brown–Kuchař dust as the matter source
[67,83], which is parameterized by a set of non-canonical
scalar fields ρ, T, Wa and Sa with a = 1, 2 and 3 via the
action

SD = −1

2

∫

M
d4x

√−gρ(gμνUμUν + 1). (3.6)

Here Uμ = −∂μT + Wa∂μSa is the 4-vector parameterized
via the aforementioned scalar fields. The equation of motion

of field ρ ensures the timelike nature of the 4-vector Uμ and
the stress–energy tensor corresponding to this matter action
is Tμν = ρUμUν . Thus, the 4-vector Uμ is interpreted as
the 4-velocity of the fluid, and ρ is the energy density of the
fluid. The ADM decomposition of the matter action yields

SD =
∫

dτd3x
(

PT ∂0T + Pa∂0S
a − NHD − Ni HD

i

)

,

(3.7)

where PT and Pa are momentum conjugate to the fields T
and Sa , while HD and HD

i are the Hamiltonian and diffeo-
morphism constraints for the Brown–Kuchař dust, given by

HD =
√

P2
T + hi j H D

i H D
j , (3.8)

HD
i = PT∇i T + Pa∇i S

a . (3.9)

The fields ρ and Wa are non-dynamical and are related to the
phase space variables via

Wa = −P−1
T Pa, (3.10)

ρ = P2
T

√

h(hi j H D
i H D

j + P2
T )

. (3.11)

For the case of a symmetry-reduced model such as the FLRW
model, we have Sa ≡ 0, T = T (τ ) which implies Wa = 0,
ρ = ρ(τ) = PT /

√
h, HD

i = 0 and HD = PT . In this case,
the Hamiltonian constraint for the flat-FLRW model with
Brown–Kuchař dust is given by,

H = N
(

− κ

6V0

p2
a

2a
+ V0PT

)

= NH. (3.12)

In the further analysis, we will choose κ/6V0 = 1 and rescale
the dust variable as V0PT → PT . The momentum conjugate
to the dust proper time appears linearly in the Hamiltonian
constraint, and the quantization of this model will yield a
Schrödinger-like equation with the dust variable appearing
as Schrödinger time. In this case, the momentum conjugate
to the dust variable is a perennial (complete observable) and
is identified with the energy of the dust, V0ρa3, which is
indeed a constant of motion. On the other hand, the scale
factor and the momentum conjugate to the scale factor are
not perennials. The equations of motion for this model are

Ṫ = {T,H} = N ,

ṖT = {PT ,H} = 0,

ȧ = {a,H} = −N pa
a

,

ṗa = {pa,H} = −N p2
a

2a2 .

(3.13)
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In the comoving gauge with N = 1, the dust degree of free-
dom is linearly related to the comoving time, T (τ ) = τ +C ,
with C being a constant of integration. The momentum con-
jugate to the dust degree of freedom PT is the constant of
motion. The first two equations give rise to ȧ2 + 2aä =
0 �⇒ a(τ ) ∝ τ 2/3, which is the standard solution of the
Friedmann’s equations with pressureless dust. Since the coor-
dinate time is equal to the dust variable, the gauge-invariant
relation between the scale factor and the dust variable is
a(T ) ∝ T 2/3. Now that we have the phase space structure for
this model, we can analyze various geometric quantities of
relevance by expressing them as phase space functions and
study their behavior in the quantum domain.

3.1.1 Hubble parameter

The Hubble parameter for this model in terms of the phase
space variables is given by

H = ȧ

Na
= −a−2 pa . (3.14)

Classically, the Hubble parameter goes as H(τ ) = 2/3τ ,
diverging at the singularity τ = 0.

3.1.2 Ricci scalar

The canonical expression for ȧ and ä is computed by using
the defining equation for the momentum conjugate to the
scale factor,

ȧ = − paN
a

, (3.15)

ä = −
(

ṗaN
a

+ paṄ
a

− paN
a2 ȧ

)

= −
(

{pa,H}N
a

+ paṄ
a

+ p2
aN 2

a3

)

. (3.16)

The canonical expression of the Ricci scalar in Eq. (3.2) in
this case turns out to be

R = 6

N 2

[

− Ṅ
Na

(

− paN
a

)

− 1

a

( {pa,H}N
a

+ paṄ
a

+ p2
aN 2

a3

)

+ 1

a2

(

− paN
a

)2]

= −6{pa,H}
Na2 . (3.17)

In the comoving gauge, we haveN = 1, and any other gauge
choice is related to this gauge choice via

R = −6{pa,H}
a2 + 6

∂N
∂a

H
a2 ≈ −6{pa,H}

a2 . (3.18)

Thus the canonical expressions corresponding to different
gauge choices are equal on the constraint surface. The on-
shell expression (obtained by computing the Poisson bracket)
for the Ricci scalar, therefore, is

R = 3p2
a

a4 . (3.19)

For the dust dominated universe, the Ricci scalar behaves
as R = 4/3τ 2. Therefore, the flat-FLRW model with dust
as the matter has a curvature singularity at τ = 0, when
a(τ ) ∝ τ 2/3 → 0 and R → ∞.

All the phase space functions that we have considered here
do not commute with the Hamiltonian constraint and, in con-
ventional terminology, are not Dirac observables. Following
Kuchař’s prescription, we will consider these phase space
functions as observables. Moreover, these observables are
a product of scale factor and its conjugate momentum, and
hence their quantum avatars suffer from the operator order-
ing ambiguity. Therefore, supplementing only the expecta-
tion value of the scale factor is not guaranteed to capture the
full quantum behavior of these observables, as we shall see
below.

3.2 Quantum model

In the quantum realization of this model, the Brown–Kuchař
dust provides the notion of time, and the degree of free-
dom associated with dust is the clock variable, whose rate
of change is proportional to the flow of comoving time clas-
sically. In the quantum analysis, we will use the dust clock
variable and comoving time interchangeably. The Wheeler–
DeWitt equation for this model then takes the form,

i
∂Ψ (a, τ )

∂τ
= ĤΨ (a, τ ), (3.20)

Ĥ = 1

2
a−1+p+q d

da
a−p d

da
a−q . (3.21)

This model exhibits operator ordering ambiguity, and param-
eters p and q represent our freedom to choose operator order-
ing. This Eq. (3.20) has the form of Schrödinger equation and
the stationary states for this models are

φ1
E (a) = a

1
2 (1+p+2q) J 1

3 |1+p|
(

2

3

√
2Ea

3
2

)

φ1−E (a) = a
1
2 (1+p+2q) I 1

3 |1+p|
(

2

3

√
2Ea

3
2

) (3.22)

φ2
E (a) = a

1
2 (1+p+2q)Y 1

3 |1+p|
(

2

3

√
2Ea

3
2

)

φ2−E (a) = a
1
2 (1+p+2q)K 1

3 |1+p|
(

2

3

√
2Ea

3
2

) (3.23)

φ1
0(a) = aq , φ2

0(a) = a1+p+q . (3.24)
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Here, Jn, Yn, Kn and In are the Bessel functions of the
first and second kind. The eigenvalue of Hamiltonian can be
interpreted as Misner–Sharp mass which is related on-shell
to the energy density of dust.1 We choose the Hilbert space
L2(R+, a1−p−2q) that will make this Hamiltonian Hermi-
tian,

〈ψ |χ〉 =
∫ ∞

0
da a1−p−2qψ∗(a)χ(a). (3.25)

The self-adjoint extensions and the spectrum of the Hamilto-
nian operator (3.21) are discussed in [51]. Since Jν functions
have a closure relation,

∫ ∞

0
dx x Jν(ax)Jν(bx) = δ(a − b)

a
, for ν > −1

2
. (3.26)

The positive energy stationary states φ1
E form an orthogo-

nal set under the scalar product we have chosen, thus making
them suitable for the construction of wave packets.

〈φ̃1
E |φ̃1

E ′ 〉 = δ
(√

E − √
E ′

)

, φ̃1
E = 2√

3
E

1
4 φ1

E . (3.27)

For the case of these positive energy modes, the behavior of
the probability amplitude near singularity a = 0 is

a(1−p−2q)|φ̃1
E |2 ∼ a2+|1+a| → 0. (3.28)

Following DeWitt’s criteria, the singularity is considered to
be avoided for positive energy states and the wave packets
constructed from it. The discussion on singularity resolution
for other stationary states can be found in [51]. From the
positive energy modes, a unitarily evolving wave packet is
constructed by choosing a normalized Poisson-like distribu-
tion

ψ(a, τ ) =
∫ ∞

0
d
√
E φ̃E (a)ei Eτ A(

√
E), (3.29)

1 Misner–Sharpe mass for a spherically symmetric system ds2=
gab(z)dzadzb+R2(z)dΩ2 is MMS=R(z)

(

1 − gab∂a R(z)∂b R(z)
)

/

2G. For the case of FLRW model, the Misner–Sharp mass MMS =
aȧ2r3/2G = (4πr3/3)ρa3 = V0a3ρ, is related to the mass of dust in
the fiducial cell of volume V0, which is a constant of motion. The gravi-
tational Hamiltonian is given by H = −(3V0/8πG)aȧ2 = −V0ρa3 =
−MMS , therefore the Hamiltonian represents the energy associated with
dust.

A(
√
E) =

√
2λ

1
2 (κ+1)

√
Γ (κ + 1)

√
E

κ+ 1
2 e− λ

2 E , (3.30)

where κ ≥ 0 and λ > 0 are real parameters with κ being
dimensionless and λ has dimensions of length or inverse of
energy. For the choice of distribution, the expectation value
of Hamiltonian is inversely proportional to λ.

E =
∫ ∞

0
d
√
E A(

√
E)2 E = κ + 1

λ
, (3.31)

ΔE =
√

E2 − E
2 =

√
κ + 1

λ
. (3.32)

The distribution with well-defined energy, i.e., ΔE � Ē
corresponds to the limit κ → ∞. With this choice of distri-
bution, the wave packet takes the form,

ψ(a, τ ) = √
3

(√
2

3

) 1
3 |1+p|+1

Γ
( 1

6 |1 + p| + κ
2 + 1

)

√
Γ (κ + 1)Γ

( 1
3 |1 + p| + 1

)
λ

1
2 (κ+1)a

1
2 (1+p+|1+p|+2q)

(
λ
2 − iτ

) 1
6 |1+p|+ κ

2 +1

1F1

(
1

6
|1 + p| + κ

2
+ 1; 1

3
|1 + p| + 1;− 2a3

9
(

λ
2 − iτ

)

)

. (3.33)

To simplify the expression, one can take κ = |1 + p|/3
[51] with which the expression for the wave packet reduces
to the form,

ψ(a, τ ) =
√

3a(1+p+|1+p|+2q)/2
√

Γ ( 1
3 |1 + p| + 1)

( √
2λ
3

λ
2 − iτ

) |1+p|
3 +1

× e
− 2a3

9
(

λ
2 −iτ

)

. (3.34)

This simplification comes at a cost; the energy distribu-
tion, in this case, depends on the operator ordering parameter,
which may become a point of reflection in the analysis later.
In this case, the large ordering parameter p corresponds to
a sharply peaked distribution. This model avoids singularity
according to DeWitt’s criteria following [51] and represents
a bouncing universe that tunnels from the collapsing branch
to the expanding branch.

4 Observables in the model with Brown–Kuchař dust

As discussed in Sect. 2, we will not demand the observables to
commute with the Hamiltonian constraint and will incorpo-
rate Brown–Kuchař model for dust as matter, where the dust
proper time appears naturally in the quantum picture, thereby
sidestepping the issue of frozen dynamics in QG models.

In the quantum domain, we will be using the Hermitian
extension of the observables as it ensures the reality of expec-
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tation values appearing in the model. Since this work does not
involve studying the spectral properties of the operators cor-
responding to various phase space observables, we will adopt
the viewpoint that Hermiticity is a sufficient requirement for
an operator to be a quantum observable. In this section, we
will write Hermitian extension of the phase space functions
that are of particular importance in classical theory and com-
pute the expectation values of these operators in the wave
packet constructed in the previous section.

The focus of this analysis is around the operator ordering
ambiguity in the various observables, and in the last Sect. 4.3,
we will address the case where the constraint on the ordering
parameterκ = |1+p|/3 is relaxed. There are several physical
prescriptions for choosing the ordering of Hamiltonian, e.g.,
the covariance of superspace leading to Laplace–Beltrami
ordering [26] or ordering used by Vilenkin [84]. For the case
of observables, no such determination can be made a priori.
The best one can hope is to do a comparative analysis of
different ordering schemes, and check where the ambiguity
plays a role, and look out for any unphysical inconsistencies.

It is shown in [85] that the parameter q appears as a free
parameter in theory, and we can work with the Hilbert space
L2(R+, a2da) following quantization on the half-line, which
leads to the constraint on ordering parameters p+2q+1 = 0.
The momentum operator Hermitian with this choice is p̂a =
−ia−1∂aa and more discussion on the Hermiticity and self-
adjointness of momentum operator on half-line can be found
in [85] and references therein. With this choice, the Hamil-
tonian operator and the wave packet (3.34) take the form

Ĥ = −1

2
â−q−1 p̂aâ

2q+1 p̂aâ
−q−1, (4.1)

ψ(a, τ ) =
√

3a|q|
√

Γ (
2|q|+1

3 )

( √
2λ
3

λ
2 − iτ

) 2|q|
3 +1

e
− 2a3

9
(

λ
2 −iτ

)

. (4.2)

Now, the idea is to write the Hermitian extension of the phase
space functions corresponding to the geometric quantities
that characterize a classical FLRW universe, such as the Hub-
ble parameter, the Ricci scalar and higher curvature invariants
derived in Sect. 3.1 and analyze their quantum behavior for
the semiclassical2 wave packet in the Eq. (4.2). For instance,
the expectation value of the scale factor for the wave packet
in (4.2) is,

ā(τ ) =
∫ ∞

0
da a2ψ∗aψ

=
(

9(λ2 + 4τ 2)

8λ

) 1
3 Γ

(
2|q|

3 + 4
3

)

Γ
(

2|q|
3 + 1

) (4.3)

2 The wave packet is being referred to a semiclassical state as it is
peaked on the classical trajectory.

From Eq. (4.3), we see that for large |τ |, i.e., τ 2 � λ2, the
scale factor follows the classical trajectory a(τ ) ∝ τ 2/3 for
the dust dominated universe, but for small |τ | the behavior
differs. This model represents a bouncing universe where the
scale factor has a global minimum at the classical singularity
τ = 0. In this work, we will compute the expectation value
of the various observables and compare them with the “semi-
classical” expression computed directly from the expectation
value of the scale factor. This will be relevant for effective
geometry, where the quantum corrections to observationally
relevant objects, e.g., the power spectrum computed by sub-
stituting the quantum expectations of scale factor in the evo-
lution equations of perturbations, e.g., the Mukhanov–Sasaki
equation [86,87].

The interesting thing to note here is that the q dependence
of the expectation value of the scale factor is of the form
ā(τ, λ, q) = f (τ, λ)g(q). Since all observables in the dust
dominated case depend on the scale factor via the terms of
the form ȧ/a or ä/a, therefore, the semi-classical expressions
corresponding to these observables will be independent of the
parameter q. On a side note, as the energy distribution itself
depends on the ordering parameter, the q dependence of any
observable in this choice is a combined effect of its depen-
dence on the shape of energy distribution and the ordering of
the Hamiltonian.

4.1 Hubble parameter

The semiclassical expression of the Hubble parameter in Eq.
(3.14), computed from the expectation value of the scale fac-
tor (4.3) is given by

H(ā) = ˙̄a
ā

= 8τ

3
(

λ2 + 4τ 2
) . (4.4)

In order to compare the quantum expectation w.r.t. the semi-
classical expression, we will write symmetric operator order-
ings for the Hubble parameter. As the phase space expression
of the Hubble parameter is a product of the scale factor and its
conjugate momentum, its quantum counterpart exhibits the
operator ordering ambiguity. Here, we will introduce two
ordering schemes that we will follow throughout this work,
first the trivial symmetric ordering as ordering 1 and a Weyl-
like symmetric ordering as ordering 2.

F.O.1 → Ĥ1 = −a−1 p̂aa
−1, (4.5)

F.O.2 → Ĥ2 = −1

2

(

an−2 p̂aa
−n + a−n p̂aa

n−2
)

. (4.6)

It is a well-known result that for functions linear in either
position or momentum, i.e., of the form xpn or xn p, the dif-
ferent ordering prescriptions give rise to the same differential
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Fig. 1 Expectation value of the Hubble Parameter, the blue curve rep-
resents the expectation value of the Hubble parameter, and the orange
curve is the classical Hubble parameter, whereas the shaded region rep-
resents the regime where the quantum effects dominate

operator [88,89]. This can be shown explicitly in this case,

Ĥ1ψ = Ĥ2ψ = i a−2 ∂ψ

∂a
= Ĥψ. (4.7)

These operators are Hermitian, provided the boundary term
ψ∗χ

∣
∣
∞
0 vanishes, which is the case for the set of wave packets

(4.2), provided q �= 0. The expectation value of the Hubble
parameter for the wave packet (4.2) is,

H(τ ) = 〈ψ |Ĥ|ψ〉 = i
∫ ∞

0
ψ∗(a, τ )

∂ψ(a, τ )

∂a
da

= 8τ

3(λ2 + 4τ 2)
. (4.8)

Interestingly, the expectation value of the Hubble parameter
matches the semiclassical expression in (4.4). Therefore, in
this case, the effective geometry approach is well-justified as
the semiclassical expression completely captures the quan-
tum gravity effects. Another thing to note is that the expec-
tation value is independent of the parameter q, which is the
ordering parameter of the Hamiltonian and the parameter that
describes the shape of the energy distribution. In the large |τ |
limit, i.e. τ 2 � λ2, we recover the classical expression of the
Hubble parameter

H(τ )
∣
∣
τ 2�λ2 = 2

3τ
. (4.9)

The expectation value of the Hubble parameter is plotted in
Fig. 1.

The Hubble parameter H(τ ) has a global maximum at
τ = λ/2 and a global minimum at τ = −λ/2. At the point
of classical singularity, the Hubble parameter vanishes, and
the quantum effects regularize the divergent classical Hubble

parameter, thereby representing the bouncing universe. Early
on in the collapsing branch, the Hubble parameter decreases
and follows the classical behavior. As the system approaches
τ = −λ/2, the quantum effects kick in, and it deviates from
the classical trajectory with the Hubble parameter acquiring
a minimum at τ = −λ/2. Thereon, the Hubble parameter
starts increasing, vanishes at τ = 0, and just before τ = λ/2,
it again turns around and acquires a maximum at τ = λ/2
then starts decreasing and follows the classical behavior for
the late time in the expanding branch.

The differential operators corresponding to the square of
the Hubble parameter operator are again the same for both
ordering choices in (4.6).

Ĥ
2
1ψ = −a−2∂a(a

−2∂aψ) = Ĥ
2
2ψ. (4.10)

However, this analysis can be generalized by writing the sym-
metric orderings corresponding to the phase space function
that represents the square of the Hubble parameter p2

aa
−4,

̂
H

2
1 = a− j p̂aa

2 j−4 p̂aa
− j , (4.11)

̂
H

2
2 = 1

2

(

a− j p̂aa
−k p̂aa

j+k−4 + a j+k−4 p̂aa
−k p̂aa

− j
)

.

(4.12)

Here parameters j and k encapsulate the operator ordering
ambiguity in the square of the Hubble parameter. The choice
j = 1 in the case of the first ordering gives the square of the
Hubble parameter operator in (4.6). Here, the Hermiticity of
these operators requires the boundary term to vanish

[

a−2
(

ψ∗ ∂χ

∂a
− ∂ψ∗

∂a
χ

)]∞

0
−→ 0, (4.13)

which holds in the case when |q| > 3/2 for wave packet
under consideration in (4.2). The expectation value of the
square of the Hubble parameter for such states is

H
2
1 = H

2
(

1 + 3|q| + 2( j − 4)( j − 1)

36|q|(2|q| − 3)

λ2

τ 2

)

, (4.14)

H
2
2 = H

2
(

1 + 3|q| − 2 j ( j + k − 4) + 5k − 12

36|q|(2|q| − 3)

λ2

τ 2

)

.

(4.15)

For the second ordering, we see the square of the Hubble
parameter acquires negative values3 for small |q| which we
will later see is the theme for this class of orderings.

3 On the face of it, this result is troubling, the expectation value of the
square of a Hermitian operator Ô is always positive as 〈ψ |Ô2|ψ〉 =
∑

n 〈ψ |Ô|n〉 〈n|Ô|ψ〉 = ∑

n | 〈ψ |Ô|n〉 |2 > 0. But notably, a Weyl-
like ordered operator is not the square of a Hermitian operator, and
therefore the negative expectation value do not raise any logical fallacy
in the quantum model.
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Fig. 2 Expectation value of the square of the Hubble parameter for the
case of j = 1 is plotted along with the square of the expectation value
of the Hubble parameter

In the large q limit, the expectation value of the square of
the Hubble parameter closely follows the square of the expec-
tation value of the Hubble parameter (which is the semiclas-
sical expression for the square of the Hubble parameter), as
seen in Fig. 2. For smallq, the function has a global maximum
at the classical singularity, whereas, for large q, the function
has a local minimum at the classical singularity and global
maxima at τ ≈ ±λ/2. The key finding of this subsection is
that the expectation value of the Hubble parameter matches
its semiclassical expression. The analysis of the square of
the Hubble parameter hints that in the large q regime, which
implies a sharply peaked energy distribution, the ordering
of the square of the Hubble parameter is irrelevant, and the
expectation value of the square of the Hubble parameter cor-
relates well with its semiclassical counterpart.

4.2 Ricci scalar

In the study of Friedmann universes, the Ricci scalar is one
of the most prominent geometric quantity that appears in the
dynamical equations for the non-minimal coupling case [91].
First, we compute the Ricci scalar from the expectation value
of scale factor given in (4.3), i.e., the semiclassical expression
of the Ricci scalar

R(ā) = 6

[ ¨̄a
ā

+
( ˙̄a
ā

)2]

= 16
(

3λ2 + 4τ 2
)

3
(

λ2 + 4τ 2
)2 . (4.16)

This semiclassical expression for Ricci scalar represents the
regularized function with a maximum at the origin and fol-
lows the classical behavior R(τ ) → 4/3τ 2 in the large τ

regime. Near bounce, the quantum effects in this approach

are accounted for via the parameter λ, which is inversely
proportional to the mean energy (3.31).

We are interested in writing the Hermitian extension of the
Ricci scalar in the Hilbert space under consideration. Since
the Ricci scalar is a product of the phase space variables and
exhibits operator ordering ambiguity, we will write general
operator orderings that will make the operator that corre-
sponds to the phase space function given in Eq. (3.17) Her-
mitian with the given measure following the symmetrization
schemes as in Eqs. (4.5) and (4.6)

R̂1 = 6i â−1[ p̂a, Ĥ]â−1, (4.17)

R̂2 = 3i
(

â−n−2[ p̂a, Ĥ]ân + ân[ p̂a, Ĥ]â−n−2
)

. (4.18)

Here the parameter n encapsulates the freedom we have to
choose the operator ordering. The commutator between the
momentum operator and Hamiltonian operator (4.1) takes
the form,

[ p̂a, Ĥ] = −1

2
[ p̂a, â−q−1 p̂aâ

2q+1 p̂aâ
−q−1]

= i

2

(

− (q + 1)
(

â−q−2 p̂aâ
2q+1 p̂aâ

−q−1 + â−q−1

× â2q+1 p̂aâ
−q−2) + (2q + 1)â−q−1 p̂aâ

2q

p̂aâ
−q−1

)

. (4.19)

The differential operators corresponding to the Ricci
scalar operator for the two orderings come out to be,

R̂1 = 3a−6
(

3(q2 − 1) + 2a∂a − a2∂2
a

)

, (4.20)

R̂2 = 3a−6
(

(3q2 − n(n + 2) − 4) + 2a∂a − a2∂2
a

)

.

(4.21)

These operators are Hermitian provided the states satisfy the
boundary condition

−3

[

a−2
(

ψ∗ ∂χ

∂a
− ∂ψ∗

∂a
χ

)]∞

0
−→ 0, (4.22)

which is the case for the wave packet in consideration, pro-
vided |q| > 3/2. Thus, the expectation value of the Ricci
scalar operator with first ordering in the wave packet (4.2) is

R1(τ ) = 16
(

3λ2 (|q|(1 + 2|q|) − 2) + 4|q|(2|q| − 3)τ 2
)

3|q|(2|q| − 3)
(

λ2 + 4τ 2
)2 .

(4.23)
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Fig. 3 Expectation value of Ricci scalar for both orderings (4.17) and
(4.18). The first snap in the first row has the expectation value of the
Ricci scalar with the first ordering choice for different values of the
parameter q. The next two snaps contain the expectation value of the

Ricci scalar for the second choice of ordering for a fixed value of q and
different values of n. The second row contains the expectation value of
the Ricci scalar ordered according to the second scheme for different
values of q

For the second ordering choice of Ricci scalar, the expecta-
tion value is

R2(τ ) = 16

3|q|(2|q| − 3)
(

λ2 + 4τ 2
)2

(

λ2(−2n(n + 2)

+ 3|q|(2|q| + 1) − 8) + 4(2|q| − 3)|q|τ 2).

(4.24)

We see the expectation value for both cases is a well-behaved
regular function in the domain of parameters that ensures the
Hermiticity. The Hermiticity of the operator and regularity
of the expectation value does not have any direct correlation,
and the Hermiticity constraint appears as deus ex machina
that saves the model from possible divergences. In Appen-
dices A and B, we have derived the conditions for the her-
miticity of the Ricci scalar operator and the regularity of
its expectation values, among others, and shown that their
domain of applicability matches.

In this case as well, early in the collapsing regime or late in
the expanding regime, i.e., τ 2 � λ2, we recover the classical
expression for the Ricci scalar irrespective of the operator
ordering chosen,

R1,2(τ )
∣
∣
τ 2�λ2 = 4

3τ 2 . (4.25)

Therefore, this quantum gravity analysis predicts a regular-
ized Ricci scalar, which follows the classical behavior far
away from the region of the classical singularity, where the
quantum gravity effects are expected to be prominent. The
expressions for various ordering merge to those of semiclas-
sical one for q → ∞, a sharply peaked energy distribution.

R1,2(τ )

∣
∣
∣
∣
q→∞

= 16
(

3λ2 + 4τ 2
)

3
(

λ2 + 4τ 2
)2 = R(ā). (4.26)

Thus, we see that the semiclassical expression is a limiting
case, and the quantum expectation, in general, is different
for finite q. At the location of the classical singularity, the
expectation value is always positive for the first ordering in
the allowed q range. The operator with Weyl-like ordering
can have a negative expectation value (which is classically
forbidden) that depends on the value of the parameters n and
q. Moreover, the expectation value always has a maximum
at classical singularity for first ordering while for Weyl-like
ordering, the expectation value can have a minimum as well
as maximum depending again on the parameters n and q.

We have plotted the expectation value of the Ricci scalar
for the two orderings in Fig. 3. In the case of the opera-
tor ordered with the first scheme, the expectation value has
a global maximum at the classical singularity for allowed
parameter values, and it matches the semiclassical expres-
sion for large q. However, the case of the operator with the
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Fig. 4 In the first row, we have fractional change in the expectation
value of different operator orderings of the Ricci scalar as compared to
the semiclassical expression for the Ricci scalar. In the second row, we
have plotted the relative standard deviation in the Ricci scalar

second ordering choice is more interesting. The function can
have a maximum or a minimum at the classical singular-
ity and can also attain negative values as well. The trend
observed is, for fixed q and |n| � |q|, the Ricci scalar
has a minimum with negative amplitude at the singularity,
and it increases as |τ | increases. At finite time, the Ricci
scalar becomes positive, attains a maximum, and then starts
decreasing and matches the classical behavior. There exists a
window where O(n) ≈ O(q), where the crossover happens,
from the profile of Ricci scalar with a global minimum at
the origin to the profile with a global maximum at the ori-
gin. This is illustrated in the last two plots in the first row of
Fig. 3. For the case where |q| � |n|, the expectation value
for all the operator orderings merge to the same profile, i.e.,
the semiclassical expression. The standard deviation of the

Ricci scalar δR2 = R2 −R2
for the two operator orderings

is given by

δR2
1 = 1024λ2

(

4(|q| − 3)|q|2(2|q| − 9)(2|q| − 3)τ 2 + 3λ2(|q|(|q|(|q|(4|q|(3|q| − 8) − 27) + 60) + 12) − 27)
)

3(2|q| − 3)2(|q| − 3)|q|2(2|q| − 9)
(

λ2 + 4τ 2
)4 , (4.27)

δR2
2 = 1024λ2

3(3 − 2|q|)2(|q| − 3)|q|2(2|q| − 9)
(

λ2 + 4τ 2
)4

(

λ2
(

− 3(8n(n + 2) + 35)|q|3 + 60

× (n(n + 2) + 4)|q|2 + 4(n(n + 2) + 4)2|q| − 9(n(n + 2) + 4)2 + 36|q|5 − 96|q|4
)

+ 4(|q| − 3)|q|2(2|q| − 9)(2|q| − 3)τ 2
)

. (4.28)

In the first row of Fig. 4, we have plotted the fractional
change in the expectation value of the Ricci scalar as com-
pared to the Ricci scalar computed from the expectation value
of the scale factor for both ordering choices. As we continue
to increase the parameter q, the fractional change continues
to decrease, as expected. In the second row of Fig. 4, we have
plotted the relative standard deviation in the Ricci scalar as a
function of time for both orderings. Here, we also notice that
the quantum fluctuations are small for a large q parameter.
Moreover, the relative standard deviation in the Ricci scalar
overshoots the fractional change in the expectation value of
the Ricci scalar at all times for both orderings. This means
that for large q, we can trust the semiclassical expressions
even near the classical singularity where the quantum effects
dominate. We see even for small q, the fractional change in
the expectation of the Ricci scalar as compared to its semi-
classical counterpart does not exceed 35%, and it decreases
as q increases. Therefore, the effective geometry approach
does not receive significant corrections for the case of the
non-minimally coupled scalar field.

4.3 Operator ordering ambiguity in the Hamiltonian
constraint

For the case of the quantum FLRW model with Brown–
Kuchař dust, the simplification of the functional form of
wave packet (3.34) comes at the cost of making the distribu-
tion parameter ‘κ’ a function of operator ordering parameter.
This would mean that the operator ordering ambiguity in the
Hamiltonian constraint is harder to address in full generality.
We will circumvent this issue following the approach in [85],
where we simplify the expression for the wave packet by fix-
ing the distribution parameters and have different ordering
parameters leading to the wave packets

κ = 4, λ = 1, p = 5, and q = −3

ψI(a, τ ) = 16a3(27 − 4a3 − 54iτ)

243(1 − 2iτ)5
e
− 2a3

9
(

1
2 −iτ

)

, (4.29)
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κ = 4, λ = 1, p = 11, and q = −6

ψII(a, τ ) = 64a6

243(1 − 2iτ)5
e
− 2a3

9
(

1
2 −iτ

)

. (4.30)

The operator ordering ambiguity in the Hamiltonian can be
addressed in a restricted sense by comparing the expectation
value of the observables in these wave packets. The expec-
tation value of the scale factor is given by

aI(τ ) =
(

260τ 2 + 47
)

Γ
( 13

3

)

240 3
√

3
(

4τ 2 + 1
)2/3 , (4.31)

aII(τ ) =
3
√

4τ 2 + 1Γ
( 16

3

)

16 3
√

3
. (4.32)

Expressions for the Hubble parameter and the Ricci scalar
computed from the scale factor expectation value are

H(aI) = 8τ
(

260τ 2 + 101
)

(

12τ 2 + 3
) (

260τ 2 + 47
) , (4.33)

H(aII) = 8τ

3(1 + 4τ 2)
, (4.34)

R(aI) = 16
(

5200
(

52τ 2 + 47
)

τ 4 + 137452τ 2 + 14241
)

3
(

1040τ 4 + 448τ 2 + 47
)2 ,

(4.35)

R(aII) = 16
(

4τ 2 + 3
)

3
(

4τ 2 + 1
)2 . (4.36)

The boundary term ψ∗χ
∣
∣
∞
0 vanishes for the wave packets in

Eq. (4.29) and (4.30) and the Hubble parameter is Hermitian.
The expectation value of the Hubble parameter is given by

HI(τ ) = 16(τ + 2τ 3)

3(1 + 4τ 2)2 , (4.37)

HII(τ ) = 8τ

3(1 + 4τ 2)
. (4.38)

The locations of the extrema of both expressions do not
match; for the first expression, the extrema are located at
τ ≈ ±0.375 whereas for the second case, the extrema are
at τ = ±1/2. Furthermore, the profile for the second case
is completely enveloped by the profile for the first case. The
extrema in the first case are closer to the singularity and are
greater in magnitude as compared to the second case.

For the wave packet in Eq. (4.30), the expectation value
of the Hubble parameter matches the semiclassical expres-
sion, whereas it is not the case for the wave packet in (4.29).
This is an indication that the expectation value of the Hubble
parameter depends on the operator ordering chosen for the
Hamiltonian, and the exact matching with the semiclassical
expression may not always be the case, as is seen in Fig. 5.

However, the difference is small, and it has a global minimum
and maximum close to the singularity at the τ ≈ ±0.16,
which are sandwiched between the local minimum and max-
imum at τ ≈ ∓0.68, and it vanishes away from the singular-
ity.

We can also compare the expectation value of the Ricci
scalar operator in this case, as the Hermiticity condition is
satisfied for both wave packets in Eq. (4.29) and (4.30). In
the case of the first ordering scheme of the Ricci scalar in Eq.
(4.17), the expectation value takes the form

R1
I (τ ) = 64

(

36τ 4 + 65τ 2 + 119
)

27
(

4τ 2 + 1
)3 , (4.39)

R1
II(τ ) = 16

(

36τ 2 + 11
)

27
(

4τ 2 + 1
)2 . (4.40)

Whereas for the case of second ordering in Eq. (4.18), the
expectation value is

R2
I (τ ) = 16

81
(

4τ 2 + 1
)3

( − 4n(n + 2)τ 2 − 13n(n + 2)

+ 432τ 4 + 776τ 2 + 1415
)

, (4.41)

R2
II(τ ) = 16

(

4
(

27τ 2 + 8
) − n(n + 2)

)

81
(

4τ 2 + 1
)2 . (4.42)

For the Weyl-like ordered Ricci scalar operator, the expec-
tation value can take negative values, and we have plotted
for the case where the Ricci scalar is strictly positive (n = 4
and n = 2 respectively) in Fig. 6. For the wave packet in
(4.29), the expectation value overshoots the classical value
and joins the tail from the above, whereas it is the other way
around for the wave packet in (4.30). The striking difference
is in how these expectation values relate to the semiclassical
expression. For the first case, the expectation value over-
shoots the semiclassical expression, and it is the other way
around for the second case. Thus, as is seen for the case of the
Hubble parameter, the expectation value of the Ricci scalar
follows pretty much the same trend but its relation to semi-
classical expression changes drastically when we change the
ordering of the Hamiltonian operator. Therefore, in conclu-
sion, one has to be careful while using the effective geometry
approach, as different ordering schemes of Hamiltonian may
lead to inconsistency in the semiclassical analysis.

For the case of the FLRW model with Brown–Kuchař
dust clock, the main findings can be summarized as follows.
The model shows robust singularity resolution, where the
expectation of the observables that mark the singularity in
a classical model has regular expressions with appropriate
behavior away from the singularity. The operator ordering
ambiguity is relevant only near the classical singularity and
has no signature away from the singularity, reaffirming the
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Fig. 5 We have plotted the expectation value of the Hubble parameter
for both wave packets, along with the classical behavior in the first sub-
figure. We plotted the expectation value of the Hubble parameter along
with its semiclassical expression for the first wave packet in the sec-

ond subfigure and the difference between the expectation value of the
Hubble parameter and the semiclassical expression in the last subfigure

Fig. 6 The expectation values of the different orderings of Ricci scalar
with the two wave packets under consideration are plotted in the first
two sub-figures. In the third sub-figure, we have plotted the ratio of the

Ricci scalar computed from scale factor expectation and the expectation
value of the Ricci scalar for both cases

behavior reported in a previous work [85]. Moreover, in the
limit of a sharply peaked distribution, the operator ordering
of observables is not relevant. The applicability of the effec-
tive geometry approach is addressed in this model. It is found
that in a certain class of orderings of the Hamiltonian, the use
of the semiclassical expression is well justified as it matches
the expectation of the Hubble parameter, although a differ-
ent choice of ordering leads to the case where these expres-
sions do not match. For observables other than the Hubble
parameter, these expressions do not match in general, but
it is observed that the semiclassical expression is the lim-
iting case of the expectation of these observables when we
take the limit q → ∞. Therefore, the semiclassical expres-
sions can be trusted for the sharply peaked distribution. On
the other hand, for small q, there are appreciable departures
from the effective geometry approach, particularly for small
τ . Although there are no significant departures from semi-
classical expression at large τ , it was shown in [85] that in
the LTB collapse model, the post-bounce outgoing modes do
contain signatures of the ordering parameter in the infrared
regime, even at late time. A similar analysis in this context
is worthy of inspection.

5 FLRW model with cosmological constant

In this section, we will investigate the same questions in the
most trivial generalization of the previous case, the cosmo-
logical constant driven universe. Here, we will consider the
unimodular formulation of gravity, where the action is invari-
ant under the coordinate transformations that leave the vol-
ume form

√−g invariant. In this case, the cosmological con-
stant is a dynamical variable, and its conjugate momentum is
the clock variable [68–70,90]. The accepted point of view is
that the cosmological constant is not a constant of nature but
a constant of motion that fixes the initial data [59]. The aim
is to check the robustness and model independence of the
earlier analysis and see if the results hold true in this setting.
We will repeat the same exercise, and we will work with the
ordering of the Hamiltonian similar to the previous case. In
this section, we will present a classical and quantum analysis
of this model.
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5.1 Classical model

The action for a parameterized version of the unimodular
gravity is obtained by introducing auxiliary field T [90],

S = 1

2κ

∫

d4x
[√−g(R − 2Λ) + Λ∂μT

μ
]

. (5.1)

The Hamiltonian constraint for the flat-FLRW model with
cosmological constant is

H = N
[

− p2
a

2a
+ a3Λ

]

, (5.2)

where Λ is not a constant anymore, and its conjugate momen-
tum T is the clock variable. With the gauge choiceN = a−3,
we have Ṫ = 1, and the clock variable is linearly related to
the coordinate time. The equations of motion with this gauge
choice are

Ṫ = 1 & Λ̇ = 0 (5.3)

ä

a
+ 2

(
ȧ

a

)2

= 0, & a4ȧ2 = 2Λ. (5.4)

Classically the scale factor in this gauge behaves as

a(τ ) =
(

18Λτ 2
) 1

6
. (5.5)

With Hubble parameter and Ricci scalar in Eq. (3.2) given
by

H = ȧ

aN = a2ȧ = √
2Λ, (5.6)

R = 6a6

(

ä

a
+ 4

(
ȧ

a

)2
)

= 24Λ = 12H2. (5.7)

The classical model exhibits a coordinate singularity at τ = 0
where both the Hubble parameter and the Ricci scalar are
finite. This coordinate singularity will disappear for an appro-
priate choice of coordinates, e.g., the standard cosmic time
gauge4 where the lapse function is N = 1, and the scale fac-
tor vanishes at the infinity of cosmic time. The phase space
expression for the Hubble parameter in this model is

H = ȧ

Na
= −a−2 pa . (5.8)

4 The comoving gauge here will be defined according to the observer
comoving with the fluid and the N = 1 choice is identified with the
cosmic time gauge. For the case of dust as fluid, the comoving time and
cosmic time match.

The canonical expression for the Ricci scalar derived in Sect.
2 is lapse-choice independent. In this case, using Eq. (3.17)
and with gauge N = a−3, we have

R = −6a{pa,H}. (5.9)

Other gauge choices are equal on the constraint surface, as
seen in Eq. (3.18). These observables are a product of the
scale factor, and their conjugate momentum and their quan-
tum counterparts will be non-trivial. As is done previously,
we will use momentum conjugate to cosmological constant
T and coordinate time τ interchangeably.

5.2 Quantum model

The Wheeler–DeWitt equation for the flat-FLRW model with
the perfect fluid is,

1

2
a−4+p+q ∂

∂a
a−p ∂

∂a
a−qΨ = i

∂Ψ

∂τ
. (5.10)

For the Hamiltonian operator to be Hermitian, the inner prod-
uct is chosen as

〈Φ|Ψ 〉 =
∫ ∞

0
Φ∗Ψ a4−p−2qda (5.11)

With this choice of the Hilbert space L2(R+, a4−p−2qda),
the Hermitian representation of the momentum operator is
given by

p̂a = −ia− (4−p−2q)
2

∂

∂a
a

(4−p−2q)
2 . (5.12)

The ordering for the Hamiltonian operator corresponding to
this representation of the momentum operator is

Ĥ = −1

2
a−2+ p

2 p̂aa
−p p̂aa

−2+ p
2 . (5.13)

The solution of the WDW equation is obtained via the sep-
aration ansatz, and the eigenfunctions with the positive cos-
mological constant are,

Ψ 1
Λ(a, τ ) = a

1+p+2q
2 J |1+p|

6

(√
8Λ

6
a3

)

,

Ψ 2
Λ(a, τ ) = a

1+p+2q
2 Y |1+p|

6

(√
8Λ

6
a3

)

.

(5.14)

The model is singularity-free according to DeWitt’s criteria
as the probability amplitude associated with the ψ1

E states

vanishes a4−p−2q |ψ1
E |2 → a5+ |1+p|

2 → 0. The Hamiltonian
operator in Eq. (5.10) is essentially self-adjoint if |1+ p| > 6,
and it admits infinite self-adjoint extensions when |1 + p| ≤
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6, following [51]. The normalized wave packet constructed
from ψ1

Λ states with Poisson-like distribution in Eq. (3.30)
takes the form

Ψ (a, τ ) =
∫ ∞

0
A

(√
Λ

)

eiΛτΨ 1
Λ(a, τ )dΛ,

=
√
√
√
√

6

Γ
( |p+1|

6 + 1
)a

1
2 (|p+1|+p+2q+1)

× exp

(

− a6

18
(

λ
2 − iτ

)

)( √
2λ

6
(

λ
2 − iτ

)

) |p+1|
6 +1

.

(5.15)

In this case, the distribution parameter is chosen as κ = |1 +
p|/6 to simplify the wave packet. Here, also the parameter q
will appear as a free parameter in the model. Now the stage
is set to investigate the status of observables in this quantum
model, as we did for the dust dominated universe.

6 Observables in the cosmological constant driven
universe

The classical dynamics of this model implies that the curva-
ture invariant is finite, even though the scale factor vanishes
at a finite coordinate time, indicating that it is just a “coordi-
nate” singularity. Therefore, it will be interesting to study the
quantization of this “singularity-free” classical model and see
how the boundary conditions, that are required for the unitar-
ity modify the dynamics in this quantum model [59–61]. The
discussion on a general ordering scheme of the Hamiltonian
with the arbitrary equation of state parameter will be pre-
sented elsewhere. The expectation value of the scale factor
with wave packet in Eq. (5.15) is

ā(τ ) =
(

9(4τ 2 + λ2)

2λ

) 1
6 Γ

( |p+1|+7
6

)

6
√

2Γ
( |p+1|

6 + 1
) . (6.1)

Instead of vanishing, the scale factor acquires a finite mini-
mum at the point of coordinate singularity, thereby represent-
ing a bouncing cosmological model. Again, as before, the late
time in the expanding (early time in collapsing) regime, i.e.,
when τ 2 � λ2, the scale factor behaves as

ā(τ )
∣
∣
τ 2�λ2 →

Γ
( |p+1|+7

6

)

Γ
( |p+1|

6 + 1
)

(
18τ 2

λ

) 1
6

(6.2)

following the classical trajectory. Classically, the Hubble
parameter has a step function-like discontinuity and is nega-
tive for τ < 0 and positive for τ > 0, whereas the Ricci scalar

is constant throughout. The classically anticipated values of
these observables for the universe that is represented by the
wave packet in Eq. (6.1) are discussed in Appendix C. Again,
we will compare the semiclassical expressions of the Hubble
parameter and Ricci scalar computed from this expectation
value of the scale factor with the expectation value of these
observables.

6.1 Hubble parameter

The Hubble parameter in Eq. (5.6) computed from the expec-
tation value of the scale factor (6.1) turns out to be

H(ā) = ˙̄aā2 = 2
√

2τ√
λ3 + 4λτ 2

Γ
( |p+1|+7

6

)3

Γ
( |p+1|

6 + 1
)3 . (6.3)

The semiclassical expression asymptotes to a constant neg-
ative value early in the collapsing branch τ < −λ and to a
positive value late in the expanding branch τ > λ, with a
smooth transition from the collapsing branch to the expand-
ing branch, representing a bounce. At the leading order, the
classical step function-like behavior of the Hubble parameter
is recovered,

H(ā)
∣
∣
τ 2�λ2 =

√

2

λ

Γ
( |p+1|+7

6

)3

Γ
( |p+1|

6 + 1
)3

|τ |
τ

. (6.4)

The symmetric operator orderings of the Hubble parameter in
Eq. (5.8), following the prescription of ordering used earlier,
are

Ĥ1 = −a−1 p̂aa
−1, (6.5)

Ĥ2 = −1

2

(

a−2+n p̂aa
−n + a−n p̂aa

−2+n
)

. (6.6)

Again, both orderings for the Hubble parameter operator lead
to the same differential operator,

Ĥ1ψ = Ĥ2ψ = i

a2

(
∂ψ

∂a
− p + 2q − 2

2a
ψ

)

= Ĥψ. (6.7)

The Hermiticity of this operator requires the vanishing of the
boundary term,

[

a2−p−2qψ∗χ
]∞

0
→ 0, (6.8)

which is satisfied for the case of the wave packet in Eq. (5.15).
The expectation value of the Hubble parameter for the wave
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packet in Eq. (5.15) is,

H(τ ) = 2
√

2τ√
λ3 + 4λτ 2

Γ
( 1

6 (|p + 1| + 9)
)

Γ
( |p+1|

6 + 1
) . (6.9)

At the leading order, the expectation value of the Hubble
parameter asymptotes to a constant value given by

H(τ )
∣
∣
τ 2�λ2 =

√

2

λ

Γ
( 1

6 (|p + 1| + 9)
)

Γ
( |p+1|

6 + 1
)

|τ |
τ

. (6.10)

We see that the expectation value of the Hubble param-
eter does not agree with its semiclassical expression in the
classical regime (τ 2 � λ2). The possible origin of this dis-
agreement is discussed in Appendix C.

The expectation value of the Hubble parameter is plotted
in Fig. 7 along with its semiclassical expression. Classically,
the Hubble parameter has a behavior like that of a step func-
tion with a constant negative value in the contracting branch
and a constant positive value in the expanding branch, with
the transition from collapsing to expanding branch forbidden.
Both the semiclassical expression and the quantum expecta-
tion follow the same generic trend. The Hubble parameter, in
this case, is a continuous generalization of the step function
and has a smooth transition from a constant negative value
for τ � −λ to a constant positive value for τ � λ with
the Hubble parameter passing through the origin at τ = 0.
This represents a quantum tunneling of the universe from a
collapsing branch to an expanding branch, i.e., a bouncing
universe. In the large p limit, the expectation value of the
Hubble parameter matches its semiclassical counterpart

lim
p→∞

H(τ )

H(a)
= 1. (6.11)

The expectation value of the square of the Hubble parameter
is given by

H2(τ ) = 〈ψ |Ĥ2|ψ〉 = 2

λ
+ 9λ2 + 4(p + 1)2τ 2

3λ|p + 1| (λ2 + 4τ 2
) , (6.12)

with the Hermiticity constraint being |1 + p| �= 0. We are
interested in looking at the large p limit of the standard devi-
ation

lim
p→∞

(

〈ψ |Ĥ2|ψ〉 − 〈ψ |Ĥ|ψ〉2) = 2
(

λ2 + τ 2
)

λ3 + 4λτ 2 , (6.13)

which settles at 1/2λ in the large τ limit. Since the expec-
tation value of the Hubble parameter diverges in the large p
and large τ limits, therefore relative standard deviation will
vanish in that limit.

As is apparent from the plots in Fig. 8, H2 and H
2

match
in the large p and large τ limits for all practical purposes.
However, these two differ by the same amount ∼ 1/2λ for all
p and large τ , with the amplitude of the Hubble parameter
increasing as p increases. In the second row of Fig. 8, we
have plotted the standard deviation in the Hubble parameter
that shows a peculiar feature. It has a maximum at τ = 0, but
instead of decaying for large |τ |, it settles at a constant value
that remains the same for different choices of parameter p.
Therefore, even for sharply peaked distributions, the standard
deviation in the Hubble parameter remains finite at late times.

6.2 Ricci scalar

The semiclassical expression for the Ricci scalar is obtained
as

R(ā) = 12
(

3λ2 + 8τ 2
)

(

λ3 + 4λτ 2
)

Γ
( 1

6 (|p + 1| + 7)
)6

Γ
( |p+1|

6 + 1
)6 . (6.14)

At the leading order, the semiclassical expression of the Ricci
scalar settles at the value

R(ā)
∣
∣
τ 2�λ2 = 24Γ

( 1
6 (|p + 1| + 7)

)6

λΓ
( |p+1|

6 + 1
)6 , (6.15)

in the classical regime. Moreover, the semiclassical expres-
sion follows the classical relation between the Ricci scalar
and the Hubble parameter for large τ

R(ā) = 12H(ā)2 + 36λ
(

λ2 + 4τ 2
)
Γ

( 1
6 (|p + 1| + 7)

)6

Γ
( |p+1|

6 + 1
)6 .

(6.16)

In order to analyze the quantum behavior of the Ricci
scalar operator, we will again write the symmetric operator
orderings corresponding to the phase space function in Eq.
(5.9) that is Hermitian with the given measure, following the
ordering scheme introduced in Eqs. (4.5) and (4.6),

R̂1 = 6i â
1
2 [ p̂a, Ĥ]â 1

2 , (6.17)

R̂2 = 3i
(

â1−n[ p̂a, Ĥ]ân + ân[ p̂a, Ĥ]â1−n
)

. (6.18)

The differential operators corresponding to these orderings
turn out to be

R̂1 = 3

2a6

( (

p2 + p(2 − 8q) − 2(2q + 1)2
)

+ 8a
(

(p + 2q)∂a − a∂2
a

) )

, (6.19)
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Fig. 7 In the first row, we have plotted the expectation of the scale
factor and the cube root of the expectation value of the volume vari-
able. In the second row, we plotted the expectation value of the Hubble

parameter along with its semiclassical expression. Different notions of
the observables match in the limit of a sharply peaked distribution,
|p| → ∞

Fig. 8 We have plotted the square of the expectation value of the Hubble parameter along with the expectation value of the square of the Hubble
parameter. In this case, the two profiles match for large |p| and in the large |τ | limit

R̂2 = R̂1 − 3(1 − 2n)2a−6. (6.20)

The Hermiticity analysis of the Ricci scalar operator for both
orderings yields the boundary term,
[

a−p−2q (

ψ∗∂aχ − χ∂aψ
∗)

]∞

0
(6.21)

which goes to zero for the wave packets under consideration
(5.15), provided p �= −1. In this case, the expectation value
of the Ricci scalar for both ordering schemes with the wave
packet in Eq. (5.15) is given by
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Fig. 9 Expectation value of Ricci scalar for different operator ordering along with its semiclassical counterpart

Fig. 10 In the first row, we have plotted the fractional change in Ricci scalar expectation value as compared to its semiclassical counterpart for
both ordering schemes. In the second row, we have plotted the relative standard deviation in the Ricci scalar for both ordering schemes

R1(τ ) = 24

λ
+ 6λ2 p(p + 2) + 16(p + 1)2τ 2

λ|p + 1| (λ2 + 4τ 2
) , (6.22)

R2(τ ) = R1(τ ) − 4λ(1 − 2n)2

|p + 1| (λ2 + 4τ 2
) . (6.23)

In this case as well, the expectation value of the Ricci scalar
is regular except for at p = −1, excluded by the Hermiticity
consideration. The Ricci scalar settles at a constant value for
large τ , which is different from the value that the semiclassi-
cal expression settles at. The quantum imprints on the Ricci
scalar are pronounced near the coordinate singularity, where
the universe tunnels from a collapsing branch to an expanding

branch, similar to the case of semiclassical expression. In the
limit of the sharply peaked trajectory, i.e., large p, different
expressions asymptotes to the same profile given by

R1/2(τ )
∣
∣
p→∞ = 2p

(

3λ2 + 8τ 2
)

λ
(

λ2 + 4τ 2
) = R(ā)

∣
∣
p→∞. (6.24)

In Fig. 9, we have plotted the Ricci scalar expectation
value for different ordering choices along with its semiclas-
sical expression. For small p, the quantum expectation and
semiclassical expression do not agree, even in the “classi-
cal” regime, i.e., when τ 2 � λ2. Moreover, the nature of
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the extrema is also different for small p. The various profiles
merge onto a single profile in the case of large p. Therefore,
the semiclassical expression can be trusted, and the ordering
ambiguity is not relevant for a sharply peaked distribution.

Next, we will check whether the quantum expectations
respect the classical relation between the Ricci scalar and
the Hubble parameter, R = 12H2. The expression for the
expectation value of the Hubble parameter is given in Eq.
(6.9), and this relation is not satisfied even in the “classical”
regime. The expectation value of the square of the Hubble
parameter is given in Eq. (6.12) and the quantum expectation
values satisfy the classical relation at the leading order, i.e.,
for τ 2 � λ2, irrespective of the ordering of the Ricci scalar
operator.

R1/2(τ )

∣
∣
∣
∣
τ 2�λ2

= 12H2(τ )

∣
∣
∣
∣
τ 2�λ2

+ O(τ−2). (6.25)

The expectation value of the square of the Ricci scalar for
both orderings is given by

R2
1(τ ) = 4

(|p + 1| − 6)|p + 1| (λ3 + 4λτ 2
)2

(

48λ2τ 2
(

6(p(p + 2) − 46)|p + 1| + (p − 4)(p + 6)

× (p + 1)2
)

+ 9λ4(8(p − 4)(p + 6)|p + 1| + (p − 6)p(p + 2)(p + 8) + 48
) + 64(p − 5)(p + 7)

×
(

12|p + 1| + (p + 1)2
)

τ 4
)

(6.26)

R2
2(τ ) = R2

1(τ ) + 16(1 − 2n)2
(−12|p + 1| (λ2 − 4τ 2

) + λ2(4(n − 1)n − 3p(p + 2) + 145) − 8(p + 1)2τ 2
)

(|p + 1| − 6)|p + 1| (λ2 + 4τ 2
)2 (6.27)

At the leading order τ 2 � λ2, the relative standard deviation
in the Ricci scalar settles at

δR1

R1
=

√
√
√
√

6
(

6|p + 1| ((p + 1)2 − |p + 1|(|p + 1| + 6)
) + (p + 1)4

)

(|p + 1| − 6)
(

6|p + 1| + (p + 1)2
)2 + O(τ−2) = δR2

R2
, (6.28)

which vanishes for |p| → ∞ limit. Similar to what we have
observed in the case of dust dominated universe, the quantum
fluctuations in the Ricci scalar are small for a sharply peaked
distribution, and the semiclassical expressions match in this
regime. However, the quantum fluctuations saturate to a finite
value instead of decaying at the late time in the expanding
branch for all ordering parameter values, as is seen for the
Hubble parameter (Fig. 10).

The results for the cosmological constant driven universe
can be summarized as follows. The quantum model admits
the resolution of the coordinate singularity and represents

a bouncing universe that tunnels from a collapsing branch
to an expanding branch. This behavior is apparent from the
expectation value of the scale factor and the Hubble parame-
ter, where the scale factor has a global minimum at the point
of coordinate singularity, and the Hubble parameter has a
smooth transition from negative to positive values. Due to
quantum effects, the Ricci scalar gets disturbed from its con-
stant value near the tunneling point. Furthermore, the oper-
ator ordering of the observables is relevant only near the
tunneling point, and the expectation value of the Ricci scalar
settles at the same value for different orderings late in the
expanding phase.

As far as the applicability of the effective geometry
approach is concerned, the results are in the same spirit as
is the case for dust dominated universe. Again, the shape
parameter (that is identified with the ordering parameter) acts
as the control parameter, and the usage of effective geome-
try approach is well justified in the limit of a sharply peaked
distribution, as conjectured in the [22].

7 Conclusions

We have investigated the three questions discussed in the
introduction in the context of dust dominated and the cosmo-
logical constant-dominated flat-FLRW universes: (i) to check
the robustness of DeWitt’s criteria of singularity resolution,
(ii) the status of operator ordering ambiguity in this quan-
tum model, and (iii) the domain of validity of the effective
geometry approach, where the expectation of certain quan-
tity is used for characterizing all quantum corrections. For the
canonical system corresponding to the aforementioned mod-
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els, we obtained the phase space expressions for the observ-
ables relevant to the analysis, e.g., the Hubble parameter
and the Ricci scalar. Apart from the fact that these observ-
ables mark the existence of the singularity in the classical
picture, they are also involved in the semiclassical analysis.
Therefore, studying these observables in the quantum picture
allows us to address all three questions at hand. Furthermore,
as the quantum model has unitary evolution with respect to
the fluid degree of freedom, the expectation values of gravi-
tational observables in the quantum model are with respect to
the fluid variable and therefore are time reparameterization
invariant, i.e., gauge invariant.

We have addressed the robustness of the singularity resolu-
tion in these quantum models by showing that the expectation
values of the operators associated with curvature invariants
are regular functions that follow the classical behavior away
from the classical singularity and remain finite at the loca-
tion of singularity. In the case of the Hubble parameter, the
general trend is that the expectation value has a minimum
in the collapsing branch and a maximum in the expanding
branch, while it vanishes at the singularity. The location and
width of these extrema depend upon the energy density of
the fluid, and the extrema are sharp and closely spaced for
highly energetic fluid. For the case of Ricci scalar in the dust
dominated universe, the expectation value has a maximum
at the singularity for a certain class of orderings and a min-
imum of negative magnitude sandwiched between maxima.
Away from the singularity, the expectation value asymptotes
to the classical trajectory for all orderings. Therefore, we have
demonstrated the robustness of the singularity resolution in
the FLRW model with a dust clock. In the case of the cosmo-
logical constant driven universe, the classical model has two
disjoint branches, a collapsing branch labeled by a constant
negative Hubble parameter and an expanding branch labeled
by a constant positive Hubble parameter. The quantum model
predicts a quantum tunneling from a collapsing branch to an
expanding branch. Classically, the Ricci scalar is constant
throughout, and the model has no curvature singularity. The
Hubble parameter has a step function-like discontinuity at
the coordinate singularity, and its quantum expectation is a
smooth approximation of the step function behavior repre-
senting a bouncing cosmological model. Even though there
is no divergence or discontinuity in the classical Ricci scalar,
the quantum expectation of the Ricci scalar still gets mod-
ified from the classical value due to the quantum tunneling
from the collapsing branch to the expanding branch.

Another question of interest in this model is the opera-
tor ordering ambiguity. The phase space expressions of all
observables under consideration are in the product form of
the scale factor and its conjugate momentum. It is apparent
that there will be operator ordering ambiguity since multiple
ordering choices are available for the same observable. In
this work, we write two classes of ordering to symmetrize

operators: trivial symmetric ordering and Weyl-like order-
ing. For the case of the Hubble parameter, it is observed that
both ordering prescriptions give rise to the same differen-
tial operator, following a generic result that various ordering
prescriptions lead to the same operator for functions linear in
either position or momentum. Therefore, there is no operator
ordering ambiguity at the level of the Hubble parameter oper-
ator. For the case of observables that are quadratic or have a
higher power in momentum, the key finding of this analysis
is that the operator ordering ambiguity plays a role only near
the classical singularity, the regime where quantum effects
dominate. There is no strong signature of ordering ambiguity
away from the singularity, and various orderings converge to
the classical behavior. The regulated expectation value of var-
ious observables is highly sensitive to the ordering scheme as
observed, e.g., for the square of the Hubble parameter, Ricci
scalar, and other curvature invariants. The parameters, q for
dust dominated and p for the cosmological constant driven
universe, appear as a control parameter that is related to the
ordering of the Hamiltonian as well as the shape of the dis-
tribution. Different orderings of the observables merge to the
same expectation in the limit of sharply peaked distribution,
i.e., q, p → ∞.

Lastly, we have investigated the applicability of the effec-
tive geometry approach in this setting. The semiclassical
expressions for the observables are computed from the expec-
tation value of the scale factor. We compared these semi-
classical expressions against the expectation value of these
observables. In the case of dust dominated universe, the
general trend observed is that the semiclassical expression
and quantum expectation match in the classical domain, i.e.,
τ 2 � λ2, and the difference is pronounced only near the
classical singularity. The Hubble parameter is one of the most
important objects in this regard, as it appears in almost all
dynamical equations for perturbations and leaves a direct
imprint on the physical observations [86]. The semiclassi-
cal expression matches the expectation value of the Hubble
parameter for a certain choice of the ordering of the Hamil-
tonian. However, for a different choice of the ordering of
Hamiltonian and distribution parameters, these expressions
do not match, although the difference between them remains
substantially small. The Ricci scalar also plays a crucial role
in the dynamics of a non-minimally coupled scalar field at
the semiclassical level. In the case of dust dominated uni-
verse, the semiclassical expression for Ricci scalar does not
match the expectation value in general. In the limit of the con-
trol parameter q → ∞, different orderings of observables
merge to the same profile, which in fact is the semiclassical
expression for the Ricci scalar. The same behavior is true for
other curvature invariants as well. Furthermore, the fractional
change in the expectation of the Ricci scalar as compared to
the semiclassical expression does not exceed 35%, with the
limiting case being for small q and at the singularity. There-
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fore, the semiclassical expression for the Ricci scalar can be
trusted for the case when the distribution is sharply peaked.

The case of quantum dynamics of the cosmological con-
stant driven universe is somewhat different. The major devi-
ation from the dust dominated case comes from the compari-
son of the semiclassical expressions and respective quantum
expectations for the Hubble parameter and the Ricci scalar.
The semiclassical expression and quantum expectation val-
ues for both the Hubble parameter and the Ricci scalar asymp-
tote to different constant values away from the bounce point.
However, again in the limit of the control parameter p → ∞,
the different profiles for the expectation value of the observ-
ables merge onto the semiclassical profile. Therefore, the use
of the effective geometry approach is well motivated in the
assumption of a sharply peaked distribution.

The matching of the semiclassical expressions with quan-
tum expectations in the models under consideration is order-
ing and state-dependent. The conjecture of a state sharply
peaked on the classical trajectory, proposed in [22], is cru-
cial for the applicability of the effective geometry approach,
which we have shown to be applicable in this setting. For a
general state, this approximation of the quantum corrected
spacetime breaks down, and hence, one has to be careful
while using the effective geometry in the semiclassical anal-
ysis. For the cosmological constant driven universe, the dis-
agreement between the semiclassical expressions and the
quantum expectations is most pronounced at the late time
in the expanding branch, and the quantum fluctuations are
finite in this regime, hinting at quantum effects surviving at
late times. There have been recent studies that also indicate
significant quantum effects at late times in matter and dark
energy-dominated universes, e.g., possible quantum effects
at the transition from cosmological deceleration to accelera-
tion in [92], the quantum fluctuations survive at the late time
leading to a large backreaction [93] and enhanced quantum
correlations for a nearly matter-dominated universe in [94].
The observational signature of the operator ordering ambigu-
ity in the late time universe will be pursued in a future work.
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Appendix A: Hermiticity of operators

The self-adjointness of the Hamiltonian operator (3.21) is
discussed in [51] whereas the self-adjointness of the Hamil-
tonian in Eq. (5.10) follows along the same line. In this sec-
tion, we will discuss the Hermiticity of other operators that
appears in the main text.

A.1 Hubble parameter: dust dominated universe

For the case of Brown–Kuchař dust, the Hermiticity of the
Hubble parameter operator in Eq. (4.7) implies

〈ψ |Ĥ|χ〉 =
∫ ∞

0
da a2 ψ∗

Ĥχ = i
∫ ∞

0
da ψ∗ ∂χ

∂a

= i

(

ψ∗χ
∣
∣
∣
∣

∞

0
−

∫ ∞

0
da

∂ψ∗

∂a
χ

)

= i

[

ψ∗χ
]∞

0
+ 〈Ĥψ |χ〉 . (A.1)

The Hermiticity of the operator requires the vanishing of
the boundary term in the square bracket. This term vanishes
for the case where the wavefunctions vanish at a → 0 and
a → ∞. For the wave packets under consideration in Eq.
(4.2), the boundary condition is satisfied, provided q �= 0.

A.2 Hubble parameter: cosmological constant driven
universe

Similarly, for the case of Schutz fluid, the Hermiticty of Hub-
ble parameter operator in Eq. (6.7) implies

〈ψ |Ĥ|χ〉 =
∫ ∞

0
da a4−p−2q ψ∗

Ĥχ

= i
∫ ∞

0
da a2−p−2qψ∗

(
∂χ

∂a
− p + 2q − 2

a
χ

)

= i
[

a2−p−2qψ∗χ
]∞

0
+ 〈Ĥψ |χ〉 . (A.2)

The Hubble parameter operator is Hermitian, provided the
boundary term in the square bracket vanishes. For the case
of the wave packets in Eq. (5.15), at the lower limit a → 0,
the boundary term goes as a|p+1|+3 and therefore vanishes
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for all p. Whereas at the upper limit a → ∞, the exponential
term will kill off the boundary contribution. Therefore, the
Hubble parameter is Hermitian for the set of wave packets
under consideration.

A.3 Square of Hubble parameter and Ricci scalar: dust
dominated universe

The differential operators corresponding to the square of the
Hubble parameter operator in Eqs. (4.11), (4.12) is

Ĥ2
1 = a−6

(

( j − 1)( j − 4) + 2a∂a − a2∂2
a

)

, (A.3)

Ĥ2
2 = a−6

(

2 j ( j + k − 4) − 5k + 12 + 2a∂a − a2∂2
a

)

.

(A.4)

We see that the difference comes from the term with no
derivative and the terms with a derivative match with the
terms for the Ricci scalar operator in Eqs. (4.20) and (4.21).
The reason for this happenstance is that the two observables
in question have similar phase space expression on-shell
∝ p2

aa
−4. We can write a general operator that represents

all four cases via

Ô = αa−6
(

β + 2a∂a − a2∂2
a

)

. (A.5)

The Hermiticity of this operator implies

〈ψ |Ô|χ〉 =
∫ ∞

0
da a2ψ∗Ôχ

= α

∫ ∞

0
da a−4ψ∗ (

βχ + 2a∂aχ − a2∂2
aχ

)

,

= α

[

a−2
(

ψ∗ ∂χ

∂a
− ∂ψ∗

∂a
χ

)]∞

0
+ 〈Ôψ |χ〉 .

(A.6)

The boundary conditions required for the Hermiticity of these
operators are the same. For operators to be Hermitian, these
boundary terms have to vanish. For a function with asymp-
totic behavior ψ(a) → ak as for a → 0 and ψ(a) → ak

′
as

for a → ∞, the boundary term behaves as

lim
a→0

[

a−2
(

ψ∗ ∂χ

∂a
− ∂ψ∗

∂a
χ

)]

= lim
a→0

a2k−3 = 0, if k >
3

2
,

(A.7)

lim
a→∞

[

a−2
(

ψ∗ ∂χ

∂a
− ∂ψ∗

∂a
χ

)]

= lim
a→∞ a2k′−3 = 0,

if k′ <
3

2
. (A.8)

For the set of wave packets, the boundary term vanishes at
the upper limit for all parameter values, while at the lower
limit, the boundary term vanishes when |q| > 3/2.

A.4 Square of Hubble parameter and Ricci scalar:
cosmological constant driven universe

The differential operators correspond to different ordering
in Eqs. (6.19) and (6.20) differ only at the level of the term
without derivative. The general operator can be cast in the
form

Ô = a−6
(

β(p, n) + 12a((p + 2q)∂a − a∂2
a )

)

(A.9)

The Hermiticity of this operator implies

〈ψ |Ô|χ〉 =
∫ ∞

0
da a4−p−2qψ∗Ôχ (A.10)

=
[

a−p−2q
(

ψ∗ ∂χ

∂a
− ∂ψ∗

∂a
χ

)]∞

0
+ 〈Ôψ |χ〉 , (A.11)

the boundary term in the square bracket should vanish. For the
set of wave packets considered in Eq. (5.15), the upper limit
vanishes due to the exponential factor, and for the lower limit,
the boundary term goes as a|1+p| and vanishes as a → 0,
provided |1 + p| �= 0.

Appendix B: Regularity of the expectation values of oper-
ators

In the Sect. 4.2, we encountered the divergences in the expec-
tation value of the Ricci scalar in Eqs. (4.23) and (4.24) that
are for the parameter values outside of the domain of Her-
miticity of Ricci scalar. A similar trend is observed in the
case of the Riemann and Kretschmann scalar, as will be seen
in the Appendix D. In the last section, we have derived the
Hermiticity condition for various operators, and here, we
will derive the condition for the regularity of the expecta-
tion value of the various operators. As the states considered
in this analysis are vanishing exponentially as a → ∞, the
cause for divergences is the lower limit. For the discussion
in this section, we will assume the states with asymptotic
behavior ψ(a) → aα as a → 0 and exponentially decaying
as a → ∞. First, we will discuss the case of the Hubble
parameter for which the expectation value in state ψ is

H̄ =
∫ ∞

0
daψ∗ ∂ψ

∂a
. (B.1)

Here, since the lower limit is of concern, we need to check the
behavior of the integrand near a = 0. Using the asymptotic
expression for wave function, the integrand behaves as a2α−1

as a → 0. Using the p-test5 for the convergence, we get

5 the integral of form
∫ a

0
dxx p is convergent, if p > −1.
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the condition α > 0. For the wave packet in Eq. (4.2), this
condition translates to q �= 0.

In the case of the Ricci scalar operator for both orderings
in Eq. (4.20) and (4.21), the expectation value in the state ψ

takes the form

R = 3
∫ ∞

0
da a−4ψ∗ (

β(q)ψ + 2a∂aψ − a2∂2
aψ

)

.

(B.2)

The behavior of the integrand for the given state is a2α−4 as
a → 0 (as the terms are of the form a∂a and a2∂2

a ). Again
using the p-test, the integral converges for the case when
α > 3/2 translates to |q| > 3/2 for the states under consid-
eration in Eq. (4.2). Similarly, for a cosmological constant
driven universe as well, the expectation value of the Ricci
scalar diverges for parameter values outside the domain of
Hermiticity, with its origin also being the same as above.

Here, we have derived the conditions for the Hermiticity
of operators and the conditions for the regularity of the expec-
tation value of these operators. Although the origin of these
conditions is different, the domain of Hermiticity overlaps
with the domain of regularity, thereby saving the quantum
model from problematic divergences in a natural manner.

Appendix C: Classically anticipated expressions

In the case of a dust dominated universe, the classical expres-
sion for the scale factor is

a(τ ) =
(

9PT
2

) 1
3

τ
2
3 , (C.1)

and the Hubble parameter and curvature invariants are inde-
pendent of the constant of motion PT . The system is placed in
a state described by the wave packet given in Eq. (4.2), which
is constructed using the energy distribution in Eq. (3.30). For
this state, the classically anticipated expression for the scale
factor is given by,

a(τ ) =
(

9

2

) 1
3

τ
2
3 〈P

1
3
T 〉 =

(
9(λ2 + 4τ 2)

8λ

) 1
3 Γ

(
2|q|

3 + 4
3

)

Γ
(

2|q|
3 + 1

)

∣
∣
∣
∣
τ 2�λ2

,

(C.2)

where 〈P1/3
T 〉 is the ensemble average6 in the distribution

(3.30). The expectation value of the scale factor in Eq. (4.3)
matches with the classically anticipated scale factor at the

6 Since PT = E , the ensemble average 〈Pn
T 〉 = 〈En〉 = 〈ψ |Ĥn |ψ〉 =

∫ ∞

0
d
√
EEn A(

√
E)2 is the 2n-th moment of the distribution A(

√
E).

leading order, i.e., when τ 2 � λ2. The observables of inter-
est are independent of the constant of motion, and therefore,
there is no ambiguity in their classically anticipated expres-
sion.

In the case of a dark energy dominated universe at the
classical level, the scale factor, Hubble parameter, and Ricci
scalar are related to the energy density via a ∝ ρ1/6,
H = √

2ρ and R = 24ρ, with energy density being equal
to the momentum conjugate to the fluid variable, i.e., the
cosmological constant ρ = Λ. First, we will address what
should be the classically expected behavior of various objects
for the universe that the wave packet in Eq. (5.15) represents.
The wave packet is constructed using the Poisson-like energy
distribution, and the ensemble averages with the distribution
in Eq. (3.30) for various objects are

acl(τ ) = 〈(18Λ)1/6〉 τ 1/3 =
(

18

λ

) Γ
( |p+1|

6 + 7
6

)

Γ
( |p+1|

6 + 1
) , (C.3)

Hcl(τ ) = 〈√2Λ〉 =
√

2

λ

Γ
( |p+1|

6 + 3
2

)

Γ
( |p+1|

6 + 1
) , (C.4)

Rcl(τ ) = 24 〈Λ〉 = 24

λ

( |p + 1|
6

+ 1

)

. (C.5)

These expressions correlate exactly with the asymptotic
expression of the expectation values of these observables in
Eqs. (6.2), (6.10), (6.22) and (6.23) in the classical regime
τ 2 � λ2, but the semiclassical expressions do not corre-
late with the classically expected expressions. Interestingly,
this exact quantum to classical correspondence is possible
only in the context of the semiclassical state (e.g., coherent
state or squeezed state), and it seems that the wave packets
constructed in this analysis mimic the behavior as that of a
semiclassical state [95].

The difference between the semiclassical expressions and
the quantum expectations of these observables comes from
the fact that for the distribution in Eq. (3.30), the ensemble
average follows 〈Λn〉 �= 〈Λ〉n . The semiclassical expres-
sions capture the distribution properties via the expectation
value of the scale factor through 〈Λ〉1/6, and the semiclas-
sical expressions are the powers of this factor. The physical
imprint of ambiguity of this kind is discussed in [36], where
the expectation value 〈an〉1/n is used to describe the quan-
tum corrected spacetime and the imprint of parameter n is
investigated on the primordial gravitational wave spectrum.

Appendix D: Higher curvature invariants

The method of constructing phase space expressions outlined
in Sec. 3 can be used to find phase space expressions of the
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higher curvature invariants, and one can study these observ-
ables at the quantum level. Non-vanishing components of the
Riemann and Ricci tensors are

R0101 = R0202 = R0303 = a

N
(

ȧṄ − N ä
)

, (D.1)

R1212 = R1313 = R2323 = a2ȧ2

N 2 , (D.2)

R00 = 3
ȧṄ − N ä

aN , Rii = aN ä − aȧṄ + 2N ȧ2

N 3 .

(D.3)

We will term the scalar constructed out of the contraction of
the Ricci tensor with itself as the Riemann scalar,

Ri = RμνR
μν = 9

(

ȧṄ − N ä
)2

a2N 6

+ 3

(

aN ä − aȧṄ + 2N ȧ2
)2

a4N 6 . (D.4)

Using (3.15) and (3.16) and gauge N = 1, we arrive at

Ri = 12

a4

(

{pa,H}2 + p4
a

a4 + p2
a

a2 {pa,H}
)

. (D.5)

Similarly, the canonical expression for the Kretschmann
Scalar for this model is given by

K = Rμναβ R
μναβ = 12

(

R0101R
0101 + R1212R1212

)

= 12

((

ȧṄ − N ä
)2

N 6a2 + ȧ4

a4N 4

)

= 12

a4

(

{pa,H}2 + 2p4
a

a4 + 2p2
a

a2 {pa,H}
)

. (D.6)

Classically for dust as matter, the Riemann and Kretschmann
scalars are given by Ri = 16/9τ 4, and K = 80/27τ 4, again
diverging at τ = 0.

Here, we will do the analysis for the case of dust dominated
universe only, and the case of a cosmological constant driven
universe can be done in the same spirit. The expression for
the Riemann and Kretschmann scalar computed from the
expectation value of scale factor (4.3) is

Ri(ā) = 9
¨̄a2

ā2 + 3
(ā ¨̄a + 2 ˙̄a2)2

ā4 = 256
(

3λ4 + 16τ 4
)

9
(

λ2 + 4τ 2
)4 ,

(D.7)

K(ā) = 12

( ¨̄a2

ā2 + ˙̄a4

ā4

)

= 256
(

9λ4 − 24λ2τ 2 + 80τ 4
)

27
(

λ2 + 4τ 2
)4 .

(D.8)

The semiclassical expressions for both curvature invariants
are regularized functions with a maximum at the singular-
ity and follow the classical behavior Ri → 16/9τ 4 and
K → 80/27τ 4 in the large |τ | regime. The phase space
expressions for the Riemann and Kretschmann Scalar are
given in equations (D.5) and (D.6). There are three distinct
terms appearing in both expressions, involving the powers of
scale factor, momentum, and the Poisson bracket of momen-
tum and Hamiltonian. In principle, there exist infinitely many
options for symmetric ordering of these terms, but in this
analysis, we will do a comparative analysis and write two
sets of symmetrized orderings following the first ordering
prescription.

In one set, the powers of the scale factor operator will be
the leftmost and rightmost while other operators are sand-
wiched in between. Whereas in the other set, the powers of
the momentum operator are placed on the leftmost and right-
most with other operators sandwiched, and in one term that
is devoid of the bare momentum operator, the commutator
operators are placed on the leftmost and rightmost, as shown
in Table 1. With these choices of ordering, the operators cor-
responding to the Riemann and Kretschmann scalars are

R̂i1 = 12
(

−â−2[ p̂a, Ĥ][ p̂a, Ĥ]â−2 + â−4 p̂4
aâ

−4

−i â−3 p̂a[ p̂a, Ĥ] p̂aa−3
)

,

K̂1 = 12
(

−â−2[ p̂a, Ĥ][ p̂a, Ĥ]â−2 + 2â−4 p̂4
aâ

−4

−2i â−3 p̂a[ p̂a, Ĥ] p̂aa−3
)

,

R̂i2 = 12
(

−[ p̂a, Ĥ]â−4[ p̂a, Ĥ] + p̂2
aâ

−8 p̂2
a

−i p̂aâ
−3[ p̂a, Ĥ]a−3 p̂a

)

,

K̂2 = 12
(

−[ p̂a, Ĥ]â−4[ p̂a, Ĥ]
+2 p̂2

aâ
−8 p̂2

a − 2i p̂aâ
−3[ p̂a, Ĥ]a−3 p̂a

)

.

(D.9)

Using the expression of the commutator of the momentum
operator and Hamiltonian operator in Eq. (4.19), the differ-
ential operators corresponding to these orderings take the
form

R̂i1 = 3a−12
(

(9|q|4 − 66|q|2 + 1153) − 736a∂a

+218a2∂2
a − 36a3∂3

a + 3a4∂4
a

)

,

R̂i2 = 3a−12
(

(9|q|4 − 282|q|2 + 493)

+608a∂a + 50a2∂2
a − 36a3∂3

a + 3a4∂4
a

)

,
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Table 1 Three terms that the
Riemann and Kretschmann
scalar are comprised of and the
symmetric orderings
corresponding to each term

Classical expression Ordering 1 Ordering 2

{pa,H}2a−4 −â−2[ p̂a, Ĥ][ p̂a, Ĥ]â−2 −[ p̂a, Ĥ]â−4[ p̂a, Ĥ]
a−8 p4

a â−4 p̂4
aâ

−4 p̂2
aâ

−8 p̂2
a

a−6 p2
a{pa,H} −i â−3 p̂a[ p̂a, Ĥ] p̂aa−3 −i p̂a â−3[ p̂a, Ĥ]a−3 p̂a

Fig. 11 Expectation value of Kretschmann scalar and Riemann scalar operator for various operator orderings

K̂1 = 3a−12
(

(9|q|4 + 18|q|2 + 2005) − 16(3|q|2 + 79)a∂a

+(6|q|2 + 368)a2∂2
a − 60a3∂3

a + 5a4∂4
a

)

,

K̂2 = 3a−12
(

(9|q|4 − 342|q|2 + 913) − 16(3|q|2 − 77)a∂a

+(6|q|2 + 56)a2∂2
a − 60a3∂3

a + 5a4∂4
a

)

. (D.10)

For different orderings, the third and fourth-order terms in
the derivative match, while the other terms are distinct. The
boundary terms arising from the requirement of Hermiticity
of the Riemann scalar and Kretschmann scalar operator are

[

3a−6
(

ψ∗ ∂3χ

∂a3 − ∂ψ∗

∂a

∂2χ

∂a2

+ ∂2ψ∗

∂a2

∂χ

∂a
− ∂3ψ∗

∂a3 χ

)

+ 18a−7
(

∂2ψ∗

∂a2 χ

− ψ∗ ∂2χ

∂a2

)

+ Aa−9
(

ψ∗ ∂χ

∂a
− ∂ψ∗

∂a
χ

)]∞

0
(D.11)

[

5a−6
(

ψ∗ ∂3χ

∂a3 − ∂ψ∗

∂a

∂2χ

∂a2 + ∂2ψ∗

∂a2

∂χ

∂a
− ∂3ψ∗

∂a3 χ

)

+ 30a−7
(

∂2ψ∗

∂a2 χ − ψ∗ ∂2χ

∂a2

)

+ Ba−9
(

ψ∗ ∂χ

∂a
− ∂ψ∗

∂a
χ

)]∞

0

respectively. The operators are Hermitian, provided that these
boundary terms vanish. In the Hermiticity condition for dif-
ferent orderings, only the coefficients in the third term are
different. The coefficient A is 92 for R̂i1 and 76 for R̂i2
whereas B is 2(3|q|2 + 79) for K̂1 and 2(3|q|2 − 77) for
K̂2. Anyway, the coefficients do not matter for the vanishing
of these boundary terms, and for the set of wave packets,
the boundary terms vanish if |q| > 9/2. We notice that the
Hermiticity condition is indifferent to the operator orderings
ambiguity. The expectation values of these operators for the
wave packet in (4.2) are

Ri1(τ ) = 256
(

λ2 + 4τ 2
)−4

27(|q| − 3)|q|(2|q| − 9)(2|q| − 3)

×
(

λ4
(

3|q|
(

12|q|3 − 61|q| − 205
)

+ 1264
)

+ 48(|q| − 3)|q|(2|q| − 9)(2|q| − 3)τ 4
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+ 8λ2(|q| − 3)(2|q| − 9)(27|q| − 62)τ 2
)

, (D.12)

Ri2(τ ) = 256
(

λ2 + 4τ 2
)−4

27(|q| − 3)|q|(2|q| − 9)(2|q| − 3)

×
(

λ4
(

3|q|
(

12|q|3 − 349|q| + 131
)

+ 7696
)

+ 48(|q| − 3)|q|(2|q| − 9)(2|q| − 3)τ 4

+ 8λ2(|q| − 3)(2|q| − 9)(27|q| + 106)τ 2
)

, (D.13)

K 1(τ ) = 256
(

λ2 + 4τ 2
)−4

27(|q| − 3)|q|(2|q| − 9)(2|q| − 3)

×
(

− 24λ2(|q| − 3)(2|q| − 9)(|q|(2|q| − 15) + 36)τ 2

+ λ4(9|q|(|q|(4(|q| − 1)|q|
− 13) − 117) + 2188) + 80(|q| − 3)|q|(2|q| − 9)

× (2|q| − 3)τ 4
)

, (D.14)

K 2(τ ) = 256
(

λ2 + 4τ 2
)−4

27(|q| − 3)|q|(2|q| − 9)(2|q| − 3)

×
(

− 24λ2(|q| − 3)(2|q| − 9)(|q|(2|q| − 15) − 68)τ 2

+ (9|q|(|q|(4(|q| − 1)|q|
− 173) + 91) + 14668)λ4 + 80(|q| − 3)|q|
× (2|q| − 9)(2|q| − 3)τ 4

)

. (D.15)

All expressions are regular functions for the case when
|q| > 9/2 and have a maximum at the classical singularity,
except for K 2(τ ). Here as well, the regularity of the expec-
tation value and the Hermiticity condition put the same con-
straint on the parameter q. In the large q regime, different
orderings give rise to the same expectation value, thereby
reaffirming that there is no signature of operator ordering
ambiguity in this regime. Far away from the singularity
τ 2 � λ2, we recover the classical expressions for both Rie-
mann and Kretschmann scalar.

We have plotted the expectation value of both curvature
invariants in Fig. 11. Here, as well, the expectation value of
different orderings of the curvature invariants are in stark
contrast for smallq values. On the other hand, different order-
ings merge onto the semiclassical expressions as we keep on
increasing the q parameter, following the trend observed in
the case of Ricci scalar expectation value. The expectation
value of the Kretschmann scalar in the second case acquires
a negative value near singularity for small q, with a profile
similar to the one observed for the Weyl-like ordering of the
Ricci scalar.

The analysis for higher curvature invariants yields the
same trend as observed in the preceding subsections. Thus,
for the ordering class of the Hamiltonian in Eq. (4.1) and wave
packet in Eq. (4.2), the main results can be summarized as the
Hubble parameter matches the semiclassical expression, and
for other observables, we can trust the semiclassical expres-
sions only in the large q parameter regime, i.e., for a sharply
peaked distribution as argued in [23]. All this was discussed
with a fixed ordering scheme of the Hamiltonian. We can
now relax the condition used to simplify the expression in
Eq. (3.33) and consider the case when the model has the
same energy distribution parameters but different ordering
parameters of the Hamiltonian operator.
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