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Abstract In our previous paper (Aref’eva et al. in JHEP
07:161, 2021, arXiv:2011.07023 [hep-th]) we have con-
structed a twice anisotropic five-dimensional holographic
model supported by Einstein-dilaton-three-Maxwell action
that reproduced some essential features of the “heavy quarks”
model. However, that model did not describe the magnetic
catalysis (MC) phenomena expected from lattice results for
the QGP made up from heavy quarks. In this paper we fill this
gap and construct the model that improves the previous one.
It keeps typical properties of the heavy quarks phase diagram,
and meanwhile possesses the MC. The deformation of pre-
vious model includes the modification of the “heavy quarks”
warp factor and the coupling function for the Maxwell field
providing the non-trivial chemical potential.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 1
2 Holographic model with three Maxwell fields . . . . 2
3 Magnetic catalysis for heavy quarks . . . . . . . . . 3

3.1 Solution and thermodynamics for A(z) =
− cz2/4 − pz4 . . . . . . . . . . . . . . . . . 3

3.2 Solution for A(z) = − cz2/4 − (p − cBq3)z4 . 6
3.2.1 Blackening function . . . . . . . . . . . 8
3.2.2 Scalar field . . . . . . . . . . . . . . . . 9
3.2.3 Coupling function f3 . . . . . . . . . . . 10
3.2.4 Coupling function f1 . . . . . . . . . . . 11
3.2.5 Scalar potential . . . . . . . . . . . . . . 12

3.3 Thermodynamics for A(z) = − cz2/4 − (p −
cBq3)z4 . . . . . . . . . . . . . . . . . . . . . 14

a e-mail: arefeva@mi-ras.ru
b e-mail: hajilou@mi-ras.ru
c e-mail: rannu-ka@rudn.ru (corresponding author)
d e-mail: slepov@mi-ras.ru

3.3.1 Temperature and entropy . . . . . . . . . 14
3.3.2 Free energy and magnetic catalysis . . . . 17
3.3.3 Phase diagrams . . . . . . . . . . . . . . 18

4 Conclusion and discussion . . . . . . . . . . . . . . 20
A Equations of motion . . . . . . . . . . . . . . . . . 21
B Coupling functions f1, f3 and dilaton potential V . . 24
C Comparison with [53] . . . . . . . . . . . . . . . . 25
References . . . . . . . . . . . . . . . . . . . . . . . . 26

1 Introduction

Quantum chromodynamics (QCD) is a theory that describes
strong interactions between subatomic particles such as
quarks and gluons. Complete description of the QCD phase
diagram in a parameter space with temperature, chemical
potential, quark masses, anisotropy, magnetic field etc. is a
challenging and very important task in high energy physics.
Standard methods to do calculations in QCD such as per-
turbation no longer work for the strongly coupled regime of
this theory, while the lattice theory has problems with non-
zero chemical potential calculations. Hence, to understand
physics of the strongly coupled quark-gluon plasma (QGP)
produced in heavy ion collisions (HIC) at RHIC and at the
LHC, and future experiments, we need a non-perturbative
approach [2–4].

According to the results of the experiments with rela-
tivistic HIC, it is believed that a very strong magnetic field,
eB ∼ 0.3 GeV2, is created in the early stages of the collision
[5–8]. Therefore, magnetic field is an important parameter
characterizing the QCD phase diagram expected from the
experiments with relativistic HIC [9–11]. Studying QCD in
the background of magnetic field has received much attention
recent years, among other things, because of such an interest-
ing phenomena as chiral magnetic effect [12,13], magnetic
catalysis (MC) [14,15], inverse magnetic catalysis (IMC)
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[16,17], as well as the early Universe physics [18,19] and
dense neutron stars [20]. Therefore, investigation of the mag-
netic field effect on the QCD features and in particular its
phase diagram is very interesting and crucial for better under-
standing of the QCD. Besides, such an investigation has been
considered via lattice calculations [21–24]. For more infor-
mation and detailed reviews the interested reader is referred
to [10,15] and references therein. In particular, many holo-
graphic QCD models have been developed to investigate the
effect of magnetic field on the characteristics of QCD [25–
43].

The enhancement effect of the phase transition tempera-
ture under the magnetic field’s increasing is known as MC
phenomenon, the opposite effect is called IMC. Lattice cal-
culations show that for small chemical potential there is a
substantial influence of the magnetic field on the QCD phase
diagram structure. This influence essentially depends on the
quark mass: for small quark mass (light quarks) IMC takes
place, meanwhile for large mass (heavy quarks) MC occurs.
In this context note that lattice calculations predict different
types of phase transitions even for small chemical poten-
tial and zero magnetic field – we have a crossover for light
quarks, and a first-order phase transition for heavy quarks.
The holographic QCD models for heavy and light quarks
constructed in [37,44–48] reproduce these phase diagram
features at small chemical potential and predict new inter-
esting phenomena for finite chemical potential, in particu-
lar, the locations of the critical end points. In our previous
papers [49], see also [29], where the light quark holographic
model with non-zero magnetic field is investigated, it has
been shown that IMC takes place. Our paper [1] shows that
the heavy quark holographic model [45] still has IMC, not
MC, that contradicts with lattice zero chemical potential cal-
culation. This indicates that one has to modify the heavy
quark holographic model [1].

In the current paper we fill this gap and construct a heavy
quark model that improves the previous one [1,45,50]. The
main goal of the improvements is to get the MC phenomenon
in holographic description of the heavy quarks’ first order
phase transition scenario with external magnetic field keep-
ing typical properties of the heavy quarks phase diagram. For
this purpose we can consider additional z4- [51–53] or/and
z5-terms [54,55] into the exponent warp factor. In particular,
within this holographic model we show that z4-term allows
to produce the MC phenomenon required.

As we have emphasized in the previous papers [45,46,56],
there is a reason to introduce one more parameter charac-
terizing the QCD phase diagram – an anisotropy parame-
ter ν. Non-central HIC produces anisotropic QGP, and the
isotropisation time is estimated as 1–5 fm/c ∼ 10−24 s [57].
Anisotropic holographic models have been used to study
QGP in [56,58–67]. One of the main purposes to consider
anisotropic models is to describe the experimental energy

dependence of total multiplicity of particles created in HIC
[68]. In [56] it has been shown that the choice of the pri-
mary anisotropy parameter value about ν = 4.5 reproduces
the energy dependence of total multiplicity [68]. Note that
isotropic models could not reproduce it (for more details see
[56] and references therein). In addition, it is very interest-
ing to know how the primary (spatial) anisotropy can affect
the QCD phase transition temperature. Note also that there
is another type of anisotropy due to magnetic field and its
effect on the QCD phase diagram is a subject of interest.

In this work we set up a twice anisotropic “heavy quarks”
model. In fact, we consider 5-dim Einstein-Maxwell-dilaton
action with three Maxwell fields: the first Maxwell field sets
up finite non-zero chemical potential in the gauge theory, the
second Maxwell field provides the primary spatial anisotropy
to reproduce the multiplicity dependence on energy, and the
3-rd Maxwell field provides another anisotropy that origi-
nates from magnetic field in the gauge theory. We use an
anisotropic metric as an ansatz to solve Einstein equations
and the field equations self-consistently. The central ques-
tion of the current investigation is the form of the warp factor
able to provide the MC phenomenon within the constructed
holographic model. This our consideration shows a phe-
nomenological character of the bottom-up holographic mod-
els [1,4,45–47,49,50,53,54,69–98], that is different from
the top-down holographic models [99–103].

This paper is organized as follows. In Sect. 2 we present a
5-dim holographic model to describe a hot dense anisotropic
QCD in the magnetic field background. In Sect. 3 we intro-
duce an appropriate warp factor able to produce MC phe-
nomenon in this holographic model and obtain the first order
phase transition for the model parameters. In Sect. 4 we
review our main results. This work in complemented with
Appendix A where we solve EOMs, Appendix B where
we present expressions for the blackening function deriva-
tives, gauge coupling functions and dilaton potential, and
Appendix C where we consider the relation of our setting
with the setting [53] explicitly.

2 Holographic model with three Maxwell fields

Let us take the Lagrangian in Einstein frame used in [1]:

L = √−g

[
R − f0(φ)

4
F2

0 − f1(φ)

4
F2

1 − f3(φ)

4
F2

3

−1

2
∂μφ ∂μφ − V (φ)

]
, (2.1)

where R is Ricci scalar, φ is the scalar field, f0(φ), f1(φ)

and f3(φ) are the coupling functions associated with stresses
F0, F1 and F3 of Maxwell fields, and V (φ) is the scalar field
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potential. In this paper we considered F0, F1 and F3 as first,
second and third Maxwell fields, respectively.

Varying Lagrangian (2.1) over the metric we get Einstein
equations of motion (EOMs):

Gμν = Tμν, (2.2)

where

Gμν = Rμν − 1

2
gμνR,

δSm
δgμν

= 1

2
Tμν

√−g, (2.3)

and varying over the fields gives the fields equations

−∇μ∇μφ + V ′(φ) +
∑

i=0,1,3

f ′
i (φ)

4
F2

(i) = 0, (2.4)

∂μ

(√−g fi F
μν

(i)

)
= 0. (2.5)

Let us take the metric ansatz in the following form:

ds2 = L2

z2 b(z)

⎡
⎣− g(z) dt2 + dx2

1 +
(
z

L

)2− 2
ν

dx2
2

+ecB z
2

(
z

L

)2− 2
ν

dx2
3 + dz2

g(z)

⎤
⎦,

b(z) = e2A(z), (2.6)

and for matter fields1

φ = φ(z), (2.7)
F0 − electric ansatz A0 = At (z), Ai = 0, i = 1, 2, 3, 4,

Fk − magnetic ansatz F1 = q1 dx
2 ∧ dx3, F3 = q3 dx

1 ∧ dx2.

(2.8)
In (2.6) L is the AdS-radius, b(z) is the warp factor set by
A(z), g(z) is the blackening function, ν is the parameter
of primary anisotropy caused by non-symmetry of heavy-
ion collision (HIC), and cB is the coefficient of secondary
anisotropy related to the magnetic field F3. Choice of A(z)
determines the heavy/light quarks description of the model.
In previous works we considered A(z) = − cz2/4 for heavy
quarks [1,45,50] andA(z) = − a ln(bz2+1) for light quarks
[46,49]. In (2.8) q1 and q3 are constant “charges”.

The explicit form of the EOM (2.3–2.5) with ansatz (2.7)–
(2.8) is given in Appendix (A.12–A.18). Investigation of their
self-consistency shows that there is one dependent equation
in the system and all other equations are independent. Thus,
system (A.12–A.18) is self-consistent and the dilaton field
equation (A.12) serves as a constraint.

It is important to note that the coupling function f0 is
defined from the requirement to reproduce the Regge trajec-
tories. Functions f1 and f3 are obtained from the EOM, and
we find that they are different (see Appendices A and B for

1 Also, we can add a new Maxwell field F2 with magnetic ansatz F2 =
q2 dx1 ∧ dx3 to our model.

more details). If we take f0 = f1 = f3, then we cannot
construct a solution of EOM within our ansatz.

Note that while solving equations of motions we do
not actually get f0(φ), f1(φ), f3(φ) and V (φ) dependen-
cies, but obtain f0(φ(z)) = f0(z), f1(φ(z)) = f1(z),
f3(φ(z)) = f3(z) and V (φ(z)) = V (z). The reason is that
φ(z)-expression is rather complicated, so the analytic expres-
sion for the inverse function z = z(φ) can’t be written down.
There still remains the possibility to get this function via
approximation, but such a result can be useful for a limited
number of aspects only because of lack of accuracy.

3 Magnetic catalysis for heavy quarks

Our goal is to generalize solution [1] to get magnetic cataly-
sis effect on the heavy quarks version of the phase diagram.
For this purpose we choose the deformation of the warp fac-
tor from [1] again. This factor has been used in [51,52] to
reproduce Cornell potential and in [53] also to get magnetic
catalysis effect.

3.1 Solution and thermodynamics for
A(z) = − cz2/4 − pz4

Our strategy to solve the EOMs presented in Appendix A with
the factor A(z) = − cz2/4 − pz4 is the same as in [1] and
[46]. Subtracting (A.17) from (A.16) we get the expression
for the third Maxwell field’s coupling function

f3 = 2

(
L

z

) 2
ν

bg
cBz

q2
3

(
g′

g
+ 3b′

2b
− 2

νz
+ cBz

)
(3.1)

and rewrite Eq. (A.14) as

g′′ + g′
(

3b′

2b
− ν + 2

νz
− cBz

)
− 2g

(
3b′

2b
− 2

νz
+ cBz

)
cBz

−
(
z

L

)2
f0(A′

t )
2

b
= 0. (3.2)

To derive the exact solutions we just need to specify the warp
factor:

b(z) = e2A(z) = e− cz2/2 − 2pz4
. (3.3)

Following [48,53,95] we take c = 4Rgg/3, Rgg = 1.16,
p = 0.273 (this choice is dictated by the Regge spectra and
lattice QCD fitting) and solve system (A.12)–(A.18) with
usual boundary conditions

At (0) = μ, At (zh) = 0, (3.4)
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Fig. 1 Electric potential At (z) (A) and density ρ(zh)/μ in logarithmic scale (B) for the “heavy quarks” case with (solid lines) and without (dashed
lines) magnetic field, q3 = − cB = 0, 2 (B); Rgg = 1.16; [z]−1 = GeV

g(0) = 1, g(zh) = 0, (3.5)

φ(z0) = 0, (3.6)

where z0 serves to fit the string tension behavior [46].
Equation (A.13) with (C.8) gives

At (z) = μ
e(2Rgg+cB (q3−1)) z

2
2 − e(2Rgg+cB (q3−1))

z2h
2

1 − e(2Rgg+cB (q3−1))
z2h
2

= μ

⎛
⎝1 − 1 − e(2Rgg+cB (q3−1)) z

2
2

1 − e(2Rgg+cB (q3−1))
z2h
2

⎞
⎠ . (3.7)

For q3 = 1 and cB = C the result (3.7) coincides with the
expressions (2.27) and (2.31) in [53]:

At (z) = μ

(
1 − 1 − eRggz2

1 − eRggz2
h

)
. (3.8)

Density is the coefficient in At expansion:

At (z) = μ − ρ z2 + · · · �⇒
ρ = − μ

(
2Rgg + cB(q3 − 1)

)
2

(
1 − e(2Rgg+cB (q3−1))

z2h
2

). (3.9)

The electric potential At (z) and density ρ(zh)/μ in log-
arithmic scale are depicted in Fig. 1A and B, respectively.
Equation (3.2) with (C.8) and (3.7) gives

g(z) = ecB z
2

⎡
⎢⎢⎢⎣1 − I1(z)

I1(zh)
+ μ2

(
2Rgg + cB(q3 − 1)

)
I2(z)

L2

(
1 − e(2Rgg+cB (q3−1))

z2h
2

)2

(
1 − I1(z)

I1(zh)

I2(zh)

I2(z)

)⎤⎥⎥⎥⎦ , (3.10)

I1(z) =
∫ z

0
e(2Rgg−3cB)

ξ2

2 +3pξ4
ξ1+ 2

ν dξ,

I2(z) =
∫ z

0
e
(

2Rgg+cB
( q3

2 −2
))

ξ2+3pξ4
ξ1+ 2

ν dξ. (3.11)

We use the following formulas of temperature and
entropy:

T =
√
gtt ′ gzz ′

4π

∣∣∣
z=zh

=
√
g00

′ g44′

4π

∣∣∣
z=zh

, (3.12)

s =
√
gxx gy1y1 gy2y2

4

∣∣∣
z=zh

=
√
g11 g22 g33

4

∣∣∣
z=zh

. (3.13)

For the metric (2.6) and the warp factor (3.3) temperature
and entropy can be written as:

T = |g′|
4π

∣∣∣∣∣∣∣∣∣
z=zh =

∣∣∣∣∣∣∣−
e(2Rgg−cB )

z2
h
2 +3pz4

h z
1+ 2

ν

h

4π I1(zh)

×

⎡
⎢⎢⎢⎣1−

μ2
(
2Rgg+cB (q3−1)

) (
e(2Rgg+cB (q3−1))

z2
h
2 I1(zh)−I2(zh)

)

L2

(
1−e(2Rgg+cB (q3−1))

z2
h
2

)2

⎤
⎥⎥⎥⎦
∣∣∣∣∣∣∣∣∣
,

s = 1

4

(
L

zh

)1+ 2
ν

e−(2Rgg−cB )
z2
h
2 −3pz4

h . (3.14)

In Fig. 2 (first line) we see that magnetic “charge” q3

affects the temperature function for the fixed magnetic coef-
ficient cB and non-zero chemical potential μ values indepen-
dently from primary anisotropy. For zero chemical potential
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Fig. 2 Temperature T (zh) for different q3, cB = − 0.3 and μ = 0.2 (1-st line) and for different cB , q3 = 1 and μ = 0 (2-nd line); ν = 1 (A) and
ν = 4.5 (B); Rgg = 1.16, p = 0.273; [T ] = [zh]−1 = GeV

temperature obviously has no dependence on q3 at all, see
Eq. (3.12). At fixed cB increasing q3 decreases the phase tran-
sition temperature and eventually makes it monotonic (Fig. 2,
second line) independently from primary anisotropy as well.
All this leads to the idea used in other works to associate the
magnetic “charge” with the magnetic coefficient q3 = − cB .

To understand the role of pz4-term in the warp factor let’s
consider the temperature behavior for p = 0, 0.1, 0.2, 0.273
(Fig. 3). Earlier in [1] we obtained a hypersensitivity of the
background phase transition from the magnetic field: for
cB ∼ − 0.01 (for ν = 1) it fully degenerated. Non-zero

p makes the background phase transition in the magnetic
field more stable, allowing it to achieve more realistic values
(in Fig. 3 q3 = − cB = 0.2).

In Fig. 4 temperature function for different chemical
potential values and p = 0.273 in presented. Magnetic
field amplification makes three-valued behavior of zh(T ) to
become monotonic and lowers the local minimum temper-
ature. Entropy has usual behavior (Fig. 5) and the inverse
magnetic catalysis can be expected again. To make this sure
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Fig. 3 Temperature T (zh) for different p, μ = 0 (A), μ = 0.3 (B), μ = 0.6 (C), μ = 1 (D); ν = 1, q3 = − cB = 0.2, Rgg = 1.16; [T ] = [zh]−1 =
GeV

let us consider a free energy function

F = −
∫

s dT =
∫ ∞

zh
s T ′dz. (3.15)

Note that for non-zero chemical potential we should integrate
to second horizon zh2 and for μ = 0 we have zh2 = ∞.

The result for the first order (background) black hole-black
hole (BB) phase transition or Hawking-Page-like (HP) phase
transition originating from the free energy is presented in
Fig. 6 and confirms the inverse magnetic catalysis effect. As
to the pz4-term effect, in Fig. 7 we can clearly see that larger
p-value prevents the background phase transition degeneracy
with the magnetic field amplification.

Thus our choice of (3.3) as a warp factor to deform the
metric did not possess the MC phenomenon although could
lead to good results for IMC. In the next section we con-
sider a new warp factor to produce the proper result for MC
phenomenon.

3.2 Solution for A(z) = − cz2/4 − (p − cBq3)z4

In search for the MC phenomenon we considered a corrected
version of our new warp factor. Let us remind that varying
Lagrangian (2.1) over the metric (2.6) we get the same equa-
tions of motion (A.12–A.18) for different fields. Using the
new warp factor

b(z) = e2A(z) = e− cz2/2 − 2(p−cB q3)z4
, (3.16)

where c = 4Rgg/3, Rgg = 1.16, p = 0.273, one can solve
system of EOMs (A.12–A.18) with the same boundary con-
ditions (3.4–3.6).

To possess the linear Regge trajectories for the meson
mass spectra in our model, in comparison with [53], we con-
sidered the kinetic function (C.8) and the new warp factor
(3.16). Then, at T = μ = B = 0 one can produce linear
mass spectrum m2

n = 4Rggn, in such a way that the param-
eter Rgg can be fitted by Regge spectra of meson, such as
J/ψ . Note also that the parameters Rgg and p can be fixed
for the zero magnetic field with Rgg = 1.16 and p = 0.273
[48,95].
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Fig. 4 Temperature T (zh) for different μ, q3 = − cB = 0 (1-st line), q3 = − cB = 0.2 (2-nd line), q3 = − cB = 0.5 (3-rd line) and q3 = − cB = 1
(4-th line); ν = 1 (A) and ν = 4.5 (B); Rgg = 1.16, p = 0.273; [T ] = [zh]−1 = GeV
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Fig. 5 Entropy s(T ) in logarithmic scale for different q3 = − cB , μ = 0.2 (1-st line) and for different μ, q3 = − cB = 0.2 (2-nd line); ν = 1 (A)
and ν = 4.5 (B); Rgg = 1.16, p = 0.273; [T ] = GeV

3.2.1 Blackening function

For the corrected factor (3.16) the EOM on the gauge field
At (z) is the same as before and has the same solution (3.7).
Therefore, the Eq. (3.2) with (C.8), (3.7) and the corrected
warp factor (3.16) gives

g(z) = ecB z
2

⎡
⎢⎢⎢⎣1− Ĩ1(z)

Ĩ1(zh)
+ μ2

(
2Rgg+cB(q3 − 1)

)
Ĩ2(z)

L2

(
1 − e(2Rgg+cB (q3−1))

z2h
2

)2

(
1 − Ĩ1(z)

Ĩ1(zh)

Ĩ2(zh)

Ĩ2(z)

)⎤⎥⎥⎥⎦ , (3.17)
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Fig. 6 Phase diagram for ν = 1
(green lines) and ν = 4.5 (blue
lines) for qB = − cB ;
Rgg = 1.16, p = 0.273;
[T ] = [μ] = GeV

Fig. 7 Phase diagram for different p, qB = − cB = 0 (A), qB = − cB = 0.2 (B), qB = − cB = 0.5 (C); ν = 1, Rgg = 1.16, p = 0.273

Ĩ1(z) =
∫ z

0
e(2Rgg−3cB)

ξ2

2 +3(p−cB q3)ξ
4
ξ1+ 2

ν dξ, (3.18)

Ĩ2(z) =
∫ z

0
e
(

2Rgg+cB
( q3

2 −2
))

ξ2+3(p−cB q3)ξ
4
ξ1+ 2

ν dξ.

(3.19)

The behavior of the blackening function g in terms of the
holographic coordinate z for different values of the magnetic
coefficient cB and different primary anisotropy background,
i.e. ν = 1 (green lines) and ν = 4.5 (blue lines), normalized
to the horizon zh = 1, is depicted in Fig. 8A. Here black-
ening function is monotonic, and larger values of magnetic
coefficient cB correspond to lower g values both in isotropic
and anisotropic background. But comparing isotropic and
anisotropic backgrounds we see that at 0 < |cB | < 0.3 the
blackening function gets lower values for ν = 4.5 than for
ν = 1, while at 0.3 < |cB | < 1 it is not sensible to changes
in primary anisotropies.

The effect of chemical potential on the blackening func-
tion for different primary anisotropies of the background is
demonstrated in Fig. 8B. Larger μ decreases the blackening
function value in both isotropic and anisotropic background

cases. But, for the fixed chemical potential the blackening
function value is smaller in the background with larger pri-
mary anisotropy. Note also that for large chemical potential
values one has to deal with the second black hole horizon.

3.2.2 Scalar field

The scalar, i.e. dilaton field φ can be obtained from
Eq. (A.15)2 with the boundary condition (3.6) imposed

φ(z) =
∫ z

z0

[
− 4 + 2

3
ν

(
6 + 3 (cB (2 − 3ν) + 6Rggν) ξ2

+ (− 3 cB(cB + 60 q3)

+ 4(45 p + R2
gg)
)
νξ4 + 48Rgg(p − cB q3) νξ6

+ 144 (p − cB q3)
2 νξ8

)] 1
2 dξ

νξ
. (3.20)

2 This is a generalization of the method [104,105] of reconstructing the
dilaton potential, see also [106–108].
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Fig. 8 The blackening function g(z) for different cB and ν, μ = 0 (A) and for different μ and ν, cB = − 0.2 (B); ν = 1 (green lines) and ν = 4.5
(blue lines); Rgg = 1.16, p = 0.273, q3 = 5, zh = 1; [z]−1 = GeV

Fig. 9 The dilaton field φ(z) for different cB , q3 = 5 (A) and different q3, cB = − 0.5 (B); ν = 1 (green lines) and ν = 4.5 (blue lines);
Rgg = 1.16, p = 0.273, z0 = 0.001; [z]−1 = GeV

Expanding the integrand of the dilaton field we have
φ(z) ∼ ∫ z

z0

√
ν − 1 dξ/ξ . Therefore, the dilaton field has no

divergency at z0 = 0 on the primary isotropic background
ν = 1, while on anisotropic background a logarithmic diver-
gency exists. It is important to note that we generalize the
boundary condition for the dilaton field as φ(z0) = 0 [46,96],
where z0 can be some function of zh . The fact is that the
scalar field boundary conditions can affect the temperature
dependence of the string tension, i.e. the coefficient of the lin-
ear term of the Cornell potential. The string tension should
decrease with the temperature growth and become zero at the
confinement/deconfinement phase transition [109–111]. To
preserve this feature and also avoid divergences in anisotropic
backgrounds we considered the dilaton boundary condition

as φ(z0) = 0. For special cases one can consider z0 = 0 [48]
and z0 = zh [45].

Figure 9 shows that the scalar field is a monotonically
increasing function of the holographic coordinate z both in
primary isotropic and anisotropic cases, i.e. for ν = 1 and
ν = 4.5, but larger primary anisotropy shifts the dilaton curve
up to larger φ-values. Larger absolute value of the magnetic
coefficient cB and larger magnetic charge q3 make φ(z) to
grow faster (Fig. 9A, B respectively).

3.2.3 Coupling function f3

The function f3 that describes the coupling between the third
Maxwell field F3 and the dilaton field φ is still calculated by
the expression (3.1). The detailed formula obtained by sub-
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Fig. 10 The coupling function f3(z) for different cB , μ = 0 (A) and for different cB , μ = 0.2 (B); ν = 1 (green lines) and ν = 4.5 (blue lines);
zh = 1.5, Rgg = 1.16, p = 0.273, q3 = 5; [z]−1 = GeV

stituting the blackening function, it’s derivative and the cor-
rected warp factor (3.16) is presented in Appendix B. For zero
magnetic coefficient cB = 0 the coupling function f3 obvi-
ously equals zero. It’s behavior depending on the holographic
direction z is plotted in Fig. 10. We see that for zero chemi-
cal potential μ = 0 it is positive and preserves the NEC both
in isotropic ν = 1 and primary anisotropic ν = 4.5 back-
grounds (Fig. 10A). However in the isotropic background we
see the decreasing monotonic behavior of f3(z), while in the
anisotropic background it demonstrates a multivalued behav-
ior with a local minimum and a local maximum. Note also
that for larger magnetic coefficient (larger cB absolute val-
ues) f3 is positive not everywhere beyond the fixed horizon
zh , therefore we need to choose appropriate parameters in
our theory and in particular the correct value for the second
horizon to have positive value for coupling function f3 (see
the Fig. 10B for the second horizon zh2 = 0.55 for ν = 1
and zh2 = 0.45 for ν = 4.5).

According to the boundary condition g(zh) = 0 expres-
sion (3.1) is simplified as

f3(zh) = 2

(
L

zh

) 2
ν cBzh

q2
3

b(zh) g
′(zh) > 0. (3.21)

At the first horizon (the one with smaller zh value, that really
matters) the blackening function is decreasing, so g′(zh) < 0
and temperature T (zh) = |g′(zh)/4π | is positive. If we also
take cB < 0, their product is positive, all the other multipliers
in (3.21) are positive as well, therefore f3(zh) > 0 for any
negative cB in the z interval we need for 0 < z < zhmin ,
where zhmin is not the fixed horizon, but the horizon with
smaller value, i.e. T (zhmin ) = 0. For zero chemical potential
zhmin = zh and for μ = 1, for example, zhmin = zh2 (Fig. 8B).

In Fig. 11 the third coupling function f3 in terms of dilaton
field φ is displayed. It demonstrates a nonmonotonic behav-

ior, quite sensible to the magnetic field presence – larger
cB absolute value leads to larger f3. Neither fixed horizon
(Fig. 11A), nor chemical potential (Fig. 11B) have no signif-
icant effect.

3.2.4 Coupling function f1

We also need to check the NEC for the function f1 in our
model. It describes coupling between the second Maxwell
field F1 and the dilaton field φ:

f1 = −
(
z

L

)1− 4
ν ecB z

2
b (ν − 1)

L q2
1 ν

×
[

2g′ + 3g

(
b′

b
− 4 (ν + 1)

3νz
+ 2cBz

3

)]
.

(3.22)

The exact formula obtained by substituting the blackening
function, its derivative and the new warp factor is presented
in Appendix B. It is clearly seen that the coupling function f1
is zero for ν = 1, as according to the holographic dictionary
the second Maxwell field F1 serves for primary anisotropy
of the background.

Figure 12 shows the coupling function f1 in terms of holo-
graphic coordinate z. It gets positive value for zero chemical
potential (Fig. 12A, light blue), so the NEC is fulfilled in our
model. For perceptible chemical potential value μ = 0.5
(Fig. 12A, dark blue) the coupling function f1 can be not
positive for z < zh in magnetic field strong enough. But
the second horizon shift under the first (fixed) one must be
taken in account again. For z < zh2 the coupling function f1
stays positive similar to the coupling function f3, thus NEC is
respected (Fig. 12B, the second horizon zhmin = zh2 = 0.39).
For f1 it can be proven algebraically, like it was done for it
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Fig. 11 The coupling function f3(φ) different zh and cB , μ = 0.5 (A), for different μ and cB , zh = 1 (B); ν = 4.5, Rgg = 1.16, p = 0.273,
q3 = 5, z0 = 0.001

Fig. 12 The coupling function f1(z) for different cB ≥ − 1, μ = 0 (light blue) and μ = 0.5 (dark blue), zhmin ≥ 0.73 (A); for different cB ≤ − 1,
μ = 0.5, zhmin ≥ 0.39 (B); ν = 4.5, zh = 1.5, Rgg = 1.16, p = 0.273, q3 = 5, q1 = 1; [z]−1 = GeV

in [1] and for f3 in previous section, that it doesn’t break the
NEC either. According to the boundary condition g(zh) = 0
expression for f1 can be simplified as

f1(zh) = − 2

(
zh
L

)1− 4
ν ν − 1

L q2
1ν

ecB z
2
h b(zh) g

′(zh). (3.23)

At the first horizon zh = zhmin the blackening function
is decreasing, so g′(zh) < 0 and temperature T (zh) =
|g′(zh)/4π | is positive. As f1 has sense for ν > 1 only,
all the multipliers in (3.23) are positive, so their product is
positive, therefore f1(zh) > 0 for any zh from the inter-
val 0 < zh < zhmin , where zhmin is the actual horizon, i.e.
T (zhmin ) = 0.

For the completeness of the results presented the second
coupling function f1(φ) is also plotted (Fig. 13). It turns out
to be insensitive to the magnetic field for small φ values and

almost insensitive to the fixed horizon value even for large φ

(Fig. 13A). Besides, the magnetic field shifts f1 up to larger
values, while the chemical potential, on the contrary, downs
to smaller values (Fig. 13B).

3.2.5 Scalar potential

The equation of motion for the scalar potential V as a func-
tion of holographic coordinate z can be derived from the
Eq. (A.18):

V (z) = − 3

2L2ν2b

[{
b′′
b

ν2z2 + (b′)2

2b2 ν2z2

−b′
b

(
3(1 + ν) − 2cBνz2)νz +
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Fig. 13 The coupling function f1(φ) for different zh and cB , μ = 0.5 (A), for different μ and cB and zh = 1 (B); ν = 4.5, Rgg = 1.16, p = 0.273,
q3 = 5, z0 = 0.001

Fig. 14 The scalar potential V (φ) for different cB and zh , ν = 1 (A) and ν = 4.5 (B); Rgg = 1.16, p = 0.273, q3 = 5, μ = 0.5, z0 = 0.001;
[V ] = GeV2

+2

3

(
2(1 + ν)(1 + 2ν)−(3+2ν)cBνz2+c2

Bν2z4)} g

+
{

3b′
2b

νz − 4 + 5ν

3
+ cBνz2

}
νzg′ + ν2z2

3
g′′
]

.

(3.24)

The exact formula obtained by substituting the blackening
function, its first and second derivatives and the new corrected
warp factor is presented in Appendix B.

The scalar potential V as a function of dilaton field φ is
described by Eqs. (3.20) and (3.24) and is depicted in Fig. 14.
Within the interval 0 ≤ z ≤ zh , that we are interested in,
V (φ) is stable and has no crucial dependence either on the
horizon nor on the magnetic field. More focus in the scale
allows to see that the magnetic field increases the absolute
value of the scalar potential, while zh growth decreases it.
Primary anisotropy (Fig. 14B for ν = 4.5) shifts the scalar
potential to larger absolute values (Fig. 14A for ν = 1),
causes a constant region to appear at small φ and then makes
V (φ) to decrease faster.
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Fig. 15 Temperature T (zh) for different cB , q3 = 5 (1-st line) and for different q3, cB = − 0.5 (2-nd line); ν = 1 (A) and ν = 4.5 (B); Rgg = 1.16,
p = 0.273, μ = 0; [T ] = [zh]−1 = GeV

3.3 Thermodynamics for A(z) = − cz2/4 − (p − cBq3)z4

3.3.1 Temperature and entropy

Using the metric (2.6) and the warp factor b(z) =
e− cz2/2 − 2(p−cB q3)z4

(3.16) one can obtain the temperature
and entropy from Eqs. (3.12) and (3.13) respectively:

T = |g′|
4π

∣∣z=zh =

∣∣∣∣∣∣∣−
e(2Rgg−cB )

z2
h
2 +3(p−cB q3)z4

h z
1+ 2

ν

h

4π Ĩ1(zh)

×

⎡
⎢⎢⎢⎣1−

μ2
(
2Rgg+cB(q3−1)

) (
e(2Rgg+cB (q3−1))

z2
h
2 Ĩ1(zh)− Ĩ2(zh)

)

L2

(
1−e(2Rgg+cB (q3−1))

z2
h
2

)2

⎤
⎥⎥⎥⎦
∣∣∣∣∣∣∣∣∣
,

s = 1

4

(
L

zh

)1+ 2
ν

e−(2Rgg−cB )
z2
h
2 −3(p−cB q3)z4

h . (3.25)

123



Eur. Phys. J. C (2023) 83 :1143 Page 15 of 28 1143

Fig. 16 Temperature T (zh) for different cB , q3 = 5 (1-st line) and for different q3, cB = − 0.5 (2-nd line); ν = 1 (A) and with ν = 4.5 (B);
Rgg = 1.16, p = 0.273, μ = 0.3; [T ] = [zh]−1 = GeV

The behavior of the temperature T as a function of the
horizon radius zh for different values of the magnetic coeffi-
cient cB (1-st line) and the magnetic “charge” q3 (2-nd line)
in backgrounds with different primary anisotropy ν = 1 (A)
and ν = 4.5 (B) and zero chemical potential μ = 0 is shown
in Fig. 15. The system temperature is obviously sensible to
the magnetic field parameters in such a way that the tem-
perature minimum grows with the magnetic coefficient cB

absolute value (Fig. 15, 1-st line) and the magnetic “charge”
q3 (Fig. 15, 2-nd line). Naively, it means that the Hawking-
Page phase transition temperature THP value increases with
the magnetic field in all the cases considered. Note that to
investigate the magnetic field effect on the phase transition
temperature below, we consider the magnetic coefficient cB ,
although the magnetic “charge” q3 acts on the transition tem-
perature in a similar way. As to the primary anisotropy, it
makes the temperature local minimum to decrease both for
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Fig. 17 Free energy F(T ) for different cB , q3 = 5 (1-st line) and for different q3, cB = − 0.5 (2-nd line); ν = 1 (A) and ν = 4.5 (B); Rgg = 1.16,
p = 0.273, μ = 0; [F] = [T ] = GeV

various cB and q3. Therefore, one can expect the Hawking-
Page phase transition temperature THP to increase during
the isotropisation process. But to check this point and the
BB phase transition explicitly, we need to calculate the free
energy of the system.

Now, we consider the non-zero chemical potential as we
need to include matter to investigate the realistic QGP with
high baryonic density. In Fig. 16 the system temperature T
in terms of the horizon zh at the chemical potential μ = 0.3
for different values of cB (1-st line) and q3 (2-nd line) is

plotted. The temperature is still very sensible to both mag-
netic field parameters, and the Hawking-Page phase transi-
tion temperature THP increases. Primary anisotropy makes
the temperature local minimum to decrease again and there-
fore the Hawking-Page phase transition THP requires less
energy. To investigate the process precisely we need to plot
a free energy for different chemical potential values.
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Fig. 18 Free energy F(T ) for different cB , q3 = 5 (1-st line) and q3, cB = − 0.5 (2-nd line); ν = 1 (A) and ν = 4.5 (B); Rgg = 1.16, p = 0.273,
μ = 0.3, in units [F] = [T ] = GeV

3.3.2 Free energy and magnetic catalysis

To investigate the first order phase transition we start from
the free energy F as a function of temperature T considera-
tion for different values of the magnetic field parameters cB
and q3 at zero chemical potential. Regardless of the primary
background anisotropy (ν = 1 in Fig. 17A and ν = 4.5 in
Fig. 17B) the free energy is a multivalued function of tem-
perature and at μ = 0 has two branches. One of them is
positive but asymptotically decreasing to zero, the other goes

down into the region of negative values sharply, almost ver-
tically. The negative part of this branch describes the large
stable black hole, positive free energy values correspond to
the small unstable black hole and at F = 0 thermal gas is
formed. Temperature of the phase transition from a small
black hole to thermal gas known as Hawking-Page phase
transition is so called Hawking-Page temperature, F(THP ) =
0. According to the holographic dictionary this process cor-
responds to the first order phase transition in the dual 4-dim
gauge theory. To reveal the magnetic field effect on the free
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Fig. 19 THP as a function of cB , μ = 0 (A), TBB as a function of cB , μ = 0.3 (B) and their comparison (C); ν = 1 (green lines) and ν = 4.5

(blue lines); Rgg = 1.16, p = 0.273, q3 = 5; [T ] = [cB ] 1
2 = GeV

energy behavior and, consequently, on the phase transition
temperature THP , we increase the absolute values of the mag-
netic parameters cB (Fig. 17, 1-st line) and q3 (Fig. 17, 2-nd
line). In both cases THP grows, thus the magnetic catalysis
phenomenon takes place for any primary anisotropy, but in
the background with higher primary anisotropy phase transi-
tion requires lower temperature, like it was in previous works
[1,37–40,49].

At a non-zero chemical potential there appears the free
energy third (almost horizontal) branch, and a closed struc-
ture called a “swallow-tail” appears (Fig. 18, μ = 0.3). Its
self-intersection point describes the first order phase transi-
tion, and its temperature is marked as BB temperature TBB .
All other tendencies preserve: magnetic field parameters cB
and q3 cause the phase transition growth while the primary
anisotropy ν lowers it. This allows us to expect the MC-
effect to be general on the first order phase diagram. All these
results are summarized in Fig. 19, where the phase transition
temperature dependence on the magnetic coefficient cB for
μ = 0 (A) and μ = 0.3 (B) in the background with dif-
ferent primary anisotropy is depicted; the results for various
chemical potentials in primary isotropic case are confronted
in Fig. 19C.

To obtain the full picture of the first order phase transition
the free energy and consequently the temperature dependence
on the chemical potential should be considered. At μ = 0
the temperature has minimum Tmin = T (zmin) (Fig. 20A).
Black hole solutions with zh > zmin (small black holes) are
unstable, and the essence of the phase transition lies in the
collapse of such a black hole into a stable black hole with
the same temperature, but zh < zmin (large black holes).
There is no black hole solution for T < Tmin , therefore
Hawking-Page phase transition occurs at THP ≥ Tmin . At
the very point Tmin a large stable black hole transforms into
the thermal gas. This point is clearly seen on the free energy
plot as F(Tmin) = 0 (Fig. 20B).

For μ > 0 the function T (zh) also has a local maxi-
mum Tmax = T (zmax ), where zmax > zmin (Fig. 20A),
and this leads to the “swallow-tail” appearance in the free

energy plot again (Fig. 20B). Temperature of the phase tran-
sition, i.e. the collapse from a small unstable black hole to
a large stable black hole, can be determined as the tempera-
ture of the self-intersection point in the “swallow-tail” base
of the F(T )-curve. As the chemical potential increases both
T (zmin) and T (zmax ) decrease so that the difference between
them reduces and eventually disappears at some critical value
of the chemical potential. For example, in the magnetic field
with cB = − 0.5 for ν = 1 and ν = 4.5 it happens at
μCEPHQ ≈ 0.94 and μCEPHQ ≈ 0.81 correspondingly
(Fig. 20A). This process is reflected by the “swallow-tail”
decrease on the free energy plot (Fig. 20B). For μ > μCEPHQ

the black hole temperature becomes a monotonic function of
the horizon and its free energy becomes smooth. Note that
additional details on this subject can be found in papers on
previous considerations [1,45,46].

3.3.3 Phase diagrams

Phase diagram, i.e. the diagram of the confinement/
deconfinement phase transition displays the dependence of
the phase transition temperature on the chemical potential.
This phase diagram consists of two different phase transi-
tion lines, i.e. first order phase transition line and phase tran-
sition line for temporal Wilson loops on the (μ,T )-plane.
In this research we considered the first order phase transi-
tion only. In the “heavy quarks” version of our holographic
model the phase transition line stretches over the interval
μ ∈ [0, μmax ], and the temperature in this interval drops
(Fig. 21). The rightmost point of the curve with coordinates(
μmax , T (μmax )

)
is called a critical end point (CEPHQ for

heavy quarks) and marks the free (not attached to the axis)
end of the phase transition line (dots on the right end of the
T (μ)-curves).

First of all, we really see the MC effect in the background
with any amount of anisotropy. For ν = 1 CEP chemical
potential μCEPHQ grows by increasing |cB | for the region
0 < |cB | < 0.5, after that μCEPHQ decreases by increas-
ing |cB | and gets zero at |cB | = 6 when the phase tran-
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Fig. 20 Temperature T (zh) for different μ (A) and free energy F(T ) for different μ (B); ν = 1 (1-st line) and ν = 4.5 (2-nd line); Rgg = 1.16,
p = 0.273, q3 = 5 and cB = − 0.5, in units [T ] = [zh]−1 = GeV

sition line completely disappears (Fig. 21A). For ν = 4.5
μCEPHQ decreases by increasing |cB |, and the phase transi-
tion line shortens until complete disappearance at |cB | ∼ 10,
(Fig. 21B). We presented critical end points for different cB
with ν = 1 and ν = 4.5 in Table 1.

In both cases the THP/BB rise slows down with increasing
magnetic field, before the complete disappearance of phase
transition lines it stops and even turns back. We observed
that for the small region the IMC appears at near-limit cB

values, namely |cB | > 5 for ν = 1 and |cB | > 8 for ν = 4.5
(light green and blue curves, respectively). But it is obvious
that in the primary isotropic background the phase transition
degenerates at a magnetic field weaker than in the primary
anisotropic one. Besides for ν = 4.5 phase transition tem-
perature is lower and drops faster as μ increases (Fig. 21C).
We can compare heavy quarks phase diagrams (Fig. 21A–C)
that describe MC and light quarks phase diagram (Fig. 21D)
that presents IMC phenomenon [49].
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Fig. 21 The phase diagrams in the (μ, T )-plane for heavy quarks with
different cB for ν = 1 (A) and ν = 4.5 (B), the comparison between
ν = 1 and ν = 4.5 (C); Rgg = 1.16, p = 0.273, q3 = 5, in units

[T ] = [μ] = GeV; the phase diagrams in the (μ, T )-plane for light
quarks (D) from [49]. In all plots we considered ν = 1 (green lines)
and ν = 4.5 (blue lines) for different cB

Table 1 The critical end points
for different cB with ν = 1 and
ν = 4.5

ν = 1 (μCEPHQ , TCEPHQ ) ν = 4.5 (μCEPHQ , TCEPHQ )

cB = 0 (0.74, 0.52) cB = 0 (0.91, 0.27)

cB = − 0.1 (0.85, 0.61) cB = − 0.5 (0.81, 0.43)

cB = − 0.5 (0.94, 0.76) cB = − 1 (0.74, 0.50)

cB = − 1 (0.93, 0.85) cB = − 2 (0.62, 0.59)

cB = − 3 (0.67, 1.00) cB = − 4 (0.50, 0.70)

cB = − 5 (0.33, 1.04) cB = − 6 (0.36, 0.75)

cB = − 5.5 (0.18, 1.04) cB = − 8 (0.23, 0.79)

– – cB = − 9.6 (0.06, 0.81)

4 Conclusion and discussion

In this research we studied the influence of the magnetic
field on the first order phase transition temperature. For this
purpose we used the “bottom-up” approach and chose 5-
dim Einstein-dilaton-Maxwell holographic model with three
Maxwell fields. In previous paper [1] only the IMC phe-

nomenon was obtained. In this research we look for a warp
factor, that serves for a deformation of metric, providing the
MC phenomenon for the heavy quark model [1]. As our holo-
graphic model is phenomenological, there is no systematic
way to construct it. We have to use the trial and error method
to get results compatible with existing experiments and oth-
ers theoretical methods.
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Let us summarize our main results.

• A new 5-dim exact analytical solution for anisotropic
holographic model of QGP is presented. One of its impor-
tant features is inclusion of two types of anisotropy,
caused by the spatial anisotropy, called primary, and the
external magnetic field. Their influences on the back-
ground physical properties such as background phase
transition are investigated.

• Choosing the warp factor that deforms the metric is a
key point of the current research. The warp factor b(z) =
e2A(z) = e− cz2/2 − 2pz4

leads to IMC in the sense of
decreasing of the critical temperature with increasing the
magnetic field B.

• The MC effect is achieved for the warp factor b(z) =
e− cz2/2 − 2(p−cB q3)z4

for cB not to be large (see discus-
sion of the Fig. 21). This takes place for zero chemical
potential, i.e. for Hawking-Page-like (HP) phase transi-
tion, and for non-zero chemical potential, i.e. black hole-
black hole first order. In both cases we get MC in the dual
4-dim gauge theory.

• The effect of primary anisotropy on black hole-black hole
(BB) and Hawking-Page-like (HP) phase transition is
investigated. It is found that anisotropy decreases both
THP and TBB for all values of magnetic field.

• The phase diagram, i.e. the dependence of the phase tran-
sition temperature on chemical potential, is built for dif-
ferent magnetic field magnitudes and different primary
anisotropy values within the model constructed.

• Complete disappearance of the phase transition lines for
the primary isotropic background, ν = 1, occurs at
weaker magnetic field (|cB | ∼ 6) in comparison to the
anisotropic one, ν = 4.5 (|cB | ∼ 10).

• Even for the near-limit chemical potential values the NEC
to be preserved, as the consideration has sense and can
be performed within the physical interval between the
boundary and the second horizon in this model.

• It is expected that for the presented model different quan-
tities such as baryon density, entanglement entropy, elec-
trical conductivity should have jump in the vicinity of the
first order phase transition. This jump should strongly
depend on the model parameters (anisotropy, magnetic
field, chemical potential etc.) similar to previously con-
sidered models [49,83,97].

• In [1,45,50,112] the temporal and spatial Wilson loops
were considered on the background for heavy quarks
with two types of anisotropy with the warp factor b(z) =
e− cz2/2. It would be interesting to study phase transition
on this background with the new corrected warp factor.
Also one can investigate energy loss and jet quenching
on this background similar to [113]. This will allow to
obtain full confinement/deconfinement phase transition

structure, that is determined by the Wilson loop and first
order phase transition interplay.

In this paper we do not make calculations of the chiral
condensate 〈ψ̄ψ〉. We would like to emphasize that to cal-
culate 〈ψ̄ψ〉 one has to consider a new action, i.e. chiral
action including a few new fields χ , and solve correspond-
ing equations of motion. We do not perform these calcu-
lations in the present paper, this will be the subject of the
future investigations. Similar calculations have been per-
formed in [54,114,115] in different models. The chiral con-
densate 〈ψ̄ψ〉 has been calculated for light quark models
in [114,115] for zero magnetic field. The chiral condensate
〈ψ̄ψ〉 has been calculated in [54] for non zero B for the heavy
quark holographic model with IMC in the sense of decreas-
ing of the critical temperature with increasing B (i.e. without
extra term z4 in the warp factor). It has been found that 〈ψ̄ψ〉
increasing with increasing B that could be called MC in the
sense of the condensate value.
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A Equations of motion

Varying Lagrangian (2.1) over metric (2.6) we get 5 Einstein
equations of motions:

00 : −
(
L

z

)3+ 2
ν

ecB z
2/2 b5/2

×g

[
g′

2

(
3b′

2b
−2+ν (1 − cBz2)

νz

)
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+g

(
3b′′

2b
− 3b′2

4b2 − 3b′

2b

2 − νcBz2

νz
+ 3 + 2ν + ν2

ν2z2

−cB
(
3 − ν (1 + cBz2)

)
ν

)(
z

L

)2
f0A′2

t

4b
+
(
L

z

)2− 4
ν

+ e−cB z2
f1q2

1

4b
+
(
z

L

) 2
ν f3q2

3

4b

+g

4
φ′2 +

(
L

z

)2
bV

2

⎤
⎦ = 0, (A.1)

11 : −
(
L

z

)3+ 2
ν

ecB z
2/2 b5/2

×
[
g′′

2
+ g′

(
3b′

2b
− 2 + ν (1 − cBz2)

νz

)

+g

(
3b′′

2b
− 3b′2

4b2 − 3b′

2b

2 − νcBz2

νz
+ 3 + 2ν + ν2

ν2z2

−cB
(
3 − ν (1 + cBz2)

)
ν

)
−
(
z

L

)2
f0A′2

t

4b

+
(
L

z

)2− 4
ν e−cB z2

f1q2
1

4b

−
(
z

L

) 2
ν f3q2

3

4b
+ g

4
φ′2 +

(
L

z

)2
bV

2

⎤
⎦ = 0, (A.2)

22 : −
(
L

z

)1+ 4
ν

ecB z
2/2 b5/2

×
[
g′′

2
+ g′

(
3b′

2b
− 1 + ν (2 − cBz2)

νz

)

+g

(
3b′′

2b
− 3b′2

4b2 − 3b′

2b

1 + ν (1 − cBz2)

νz

+1 + 2ν + 3ν2

ν2z2 − cB(2 − νcBz2)

ν

)

−
(
z

L

)2
f0A′2

t

4b
−
(
L

z

)2− 4
ν e−cB z2

f1q2
1

4b

−
(
z

L

) 2
ν f3q2

3

4b
+ g

4
φ′2 +

(
L

z

)2
bV

2

⎤
⎦ = 0, (A.3)

33 : −
(
L

z

)1+ 4
ν

e3cB z2/2 b5/2

[
g′′

2
+ g′

(
3b′

2b
− 1 + 2ν

νz

)

+g

(
3b′′

2b
− 3b′2

4b2 − 3b′

2b

1 + ν

νz
+ 1 + 2ν + 3ν2

ν2z2

)

−
(
z

L

)2
f0A′2

t

4b
−
(
L

z

)2− 4
ν e−cB z2

f1q2
1

4b

+
(
z

L

) 2
ν f3q2

3

4b
+ g

4
φ′2 +

(
L

z

)2
bV

2

⎤
⎦ = 0, (A.4)

44 : −
(
L

z

)3+ 2
ν

ecB z
2/2 b5/2

g

×
[
g′

2

(
3b′

2b
− 2 + ν (1 − cBz2)

νz

)

+g

(
3b′2

2b2 − 3b′

2b

2 + ν (2 − cBz2)

νz

+1 + 4ν + ν2

ν2z2 − 1 + 2ν

ν
cB

)

+
(
z

L

)2
f0A′2

t

4b
+
(
L

z

)2− 4
ν e−cB z2

f1q2
1

4b

+
(
z

L

) 2
ν f3q2

3

4b
− g

4
φ′2 +

(
L

z

)2
bV

2

⎤
⎦ = 0. (A.5)

We rewrite these 5 Einstein equations (remove factors in
front of (A.1–A.5)) as:

[00] : g′

2

(
3b′

2b
− 2 + ν (1 − cBz2)

νz

)

+g

(
3b′′

2b
− 3b′2

4b2 − 3b′

2b

2 − νcBz2

νz
+ 3 + 2ν + ν2

ν2z2

−cB
(
3 − ν (1 + cBz2)

)
ν

)

+
(
z

L

)2
f0A′2

t

4b
+
(
L

z

)2− 4
ν e−cB z2

f1q2
1

4b
+
(
z

L

) 2
ν f3q2

3

4b

+g

4
φ′2 +

(
L

z

)2
bV

2
= 0, (A.6)

[11] : g′′

2
+ g′

(
3b′

2b
− 2 + ν (1 − cBz2)

νz

)

+g

(
3b′′

2b
− 3b′2

4b2 − 3b′

2b

2 − νcBz2

νz
+ 3 + 2ν + ν2

ν2z2

−cB
(
3 − ν (1 + cBz2)

)
ν

)

123



Eur. Phys. J. C (2023) 83 :1143 Page 23 of 28 1143

−
(
z

L

)2
f0A′2

t

4b
+
(
L

z

)2− 4
ν e−cB z2

f1q2
1

4b
−
(
z

L

) 2
ν f3q2

3

4b

+g

4
φ′2 +

(
L

z

)2
bV

2
= 0, (A.7)

[22] : g′′

2
+ g′

(
3b′

2b
− 1 + ν (2 − cBz2)

νz

)

+g

(
3b′′

2b
− 3b′2

4b2 − 3b′

2b

1 + ν (1 − cBz2)

νz

+1 + 2ν + 3ν2

ν2z2 − cB(2 − νcBz2)

ν

)

−
(
z

L

)2
f0A′2

t

4b
−
(
L

z

)2− 4
ν e−cB z2

f1q2
1

4b

−
(
z

L

) 2
ν f3q2

3

4b
+ g

4
φ′2 +

(
L

z

)2
bV

2
= 0, (A.8)

[33] : g′′

2
+ g′

(
3b′

2b
− 1 + 2ν

νz

)

+g

(
3b′′

2b
− 3b′2

4b2 − 3b′

2b

1 + ν

νz
+ 1 + 2ν + 3ν2

ν2z2

)

−
(
z

L

)2
f0A′2

t

4b
−
(
L

z

)2− 4
ν e−cB z2

f1q2
1

4b
+
(
z

L

) 2
ν f3q2

3

4b

+g

4
φ′2 +

(
L

z

)2
bV

2
= 0, (A.9)

[44] : g′

2

(
3b′

2b
− 2 + ν (1 − cBz2)

νz

)

+g

(
3b′2

2b2 − 3b′

2b

2 + ν (2 − cBz2)

νz

+1 + 4ν + ν2

ν2z2 − 1 + 2ν

ν
cB

)

+
(
z

L

)2
f0A′2

t

4b
+
(
L

z

)2− 4
ν e−cB z2

f1q2
1

4b
+
(
z

L

) 2
ν f3q2

3

4b

−g

4
φ′2 +

(
L

z

)2
bV

2
= 0, (A.10)

where ′ = ∂/∂z.
We can see, that Eqs. (A.6–A.10) have rather complicated

form on the one hand and include repeating combinations of
terms on the other hand. For further operating let us com-

bine these Einstein equations into the linear combinations,
thus excluding the repeating terms and concentrating on the
specific details. To do this we use the following receipt:

(I) [11] − [00],
(II) [00] − [44],
(III) [11] − [22],
(IV) [11] − [33],
(V) [22] + [44]. (A.11)

Together with the variations over the scalar field and first
vector field (Maxwell field that serves a non-zero chemical
potential and for which we have chosen the electric ansatz)
we get the following EOMs:

φ′′ + φ′
(
g′

g
+ 3b′

2b
− ν + 2

νz
+ cBz

)

+
(
z

L

)2
(A′

t )
2

2bg

∂ f0
∂φ

−
(
L

z

)2− 4
ν e−cB z2

q2
1

2bg

∂ f1
∂φ

−

−
(
z

L

) 2
ν q2

3

2bg

∂ f3
∂φ

−
(
L

z

)2
b

g

∂V

∂φ
= 0, (A.12)

A′′
t + A′

t

(
b′

2b
+ f ′

0

f0
+ ν − 2

νz
+ cBz

)
= 0, (A.13)

(I) g′′ + g′
(

3b′

2b
− ν + 2

νz
+ cBz

)

−
(
z

L

)2
f0 (A′

t )
2

b
−
(
z

L

) 2
ν q2

3 f3
b

= 0, (A.14)

(II) b′′ − 3(b′)2

2b
+ 2b′

z

− 4b

3νz2

(
1 − 1

ν
+
(

1 − 3ν

2

)
cBz

2 − νc2
Bz

4

2

)

+b (φ′)2

3
= 0, (A.15)

(III) 2g′
(

1 − 1

ν

)
+ 3g

(
1 − 1

ν

)(
b′

b
− 4 (ν + 1)

3νz

+2cBz

3

)
+
(
L

z

)1− 4
ν L e−cB z2

q2
1 f1

b
= 0, (A.16)

(IV) 2g′
(

1 − 1

ν
+ cBz

2

)

+3g

[(
1 − 1

ν
+ cBz

2
)(b′

b
− 4

3νz
+ 2cBz

3

)
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−4 (ν − 1)

3νz

]
+
(
L

z

)1− 4
ν L e−cB z2

q2
1 f1

b

−
(
z

L

)1+ 2
ν L q2

3 f3
b

= 0, (A.17)

(V)
b′′

b
+ (b′)2

2b2 + 3b′

b

(
g′

2g
− ν + 1

νz
+ 2cBz

3

)

− g′

3zg

(
5 + 4

ν
− 3cBz

2

)

+ 8

3z2

(
1 + 3

2ν
+ 1

2ν2

)
− 4cB

3

(
1 + 3

2ν
− cBz2

2

)

+ g′′

3g
+ 2

3

(
L

z

)2
bV

g
= 0. (A.18)

B Coupling functions f1, f3 and dilaton potential V

We can obtain the exact form of the coupling function f1
that is coupling function between the second Maxwell field
F1 and dilaton field φ by utilizing the Eq. (3.22) and inserting
the equation of g(z) (3.17) and take into account its derivative

g′(z) = − z
2+ν
ν e− cB z2

2 +Rggz2+3(p−cB q3)z4

Ĩ1(zh)

⎡
⎣1 −

μ2 (cB(−1 + q3) + 2Rgg)
(
Ĩ1(zh) e

1
2 (cB (−1+q3)+2Rgg)z2

h − Ĩ2(zh)
)

(e
1
2 (cB (−1+q3)+2Rgg)z2

h − 1)2 L2

⎤
⎦

+ 2 cB ecB z
2
z

[
1 − Ĩ1(z)

Ĩ1(zh)
+ μ2 (cB(−1 + q3) + 2Rgg)

(e
1
2 (cB (−1+q3)+2Rgg)z2

h − 1)2 L2

(
Ĩ1(zh) Ĩ2(z) − Ĩ1(z) Ĩ2(zh)

)]
. (B.1)

After some algebra, one can obtain

f1(z) = −2(ν − 1)

q2
1 ν2L2

(
L

z
)

4
ν e

−2
3 z2 (−3cB+Rgg+3(p−cB q3)z2) [− 2 − 2 ν + z2 ν

(
3cB − 2Rgg − 12(p − cB q3)z

2

+μ2 (cB(−1 + q3) + 2Rgg) z
2
ν e

1
2 z

2
(
4Rgg+6(p−cB q3)z2−4cB +cB q3

)
(e

1
2 (cB (−1+q3)+2Rgg)z2

h − 1)2 L2

)
−
((

e
1
2 z

2 (−3cB 2Rgg+6(p−cB q3)z2)
ν z2+ 2

ν

+ (−2 + ν
(−2 + (3cB − 2Rgg)z

2 − 12 (p − cB q3)z4)) Ĩ1(z))×
(

1

Ĩ1(zh)
+ μ2 (cB(−1 + q3) + 2Rgg)

(e
1
2 (cB (−1+q3)+2Rgg)z2

h − 1)2 L2

Ĩ2(zh)

Ĩ1(zh)

))

+ μ2 (cB(−1 + q3) + 2Rgg)
(−2 + ν

(−2 + (3cB − 2Rgg)z2 − 12 (p − cB q3)z4
))

Ĩ2(z)

(e
1
2 (cB (−1+q3)+2Rgg)z2

h − 1)2 L2

]
, (B.2)

where Ĩ1(z) and Ĩ2(z) were defined in Eqs. (3.18) and (3.19).
The coupling function f3 that is coupling function for

the third Maxwell field F3 dilaton field φ can be obtained by
utilizing the Eq. (3.1). It can be done by inserting the equation
of g′(z) (B.1) and take into account its derivative

g′′(z) = ecB z2
(2cB + 4c2

B z2)

[
1 − Ĩ1(z)

Ĩ1(zh)
+ μ2 (cB(−1 + q3) + 2Rgg)

(e
1
2 (cB (−1+q3)+2Rgg)z2

h − 1)2 L2

(
Ĩ1(zh) Ĩ2(z) − Ĩ1(z) Ĩ2(zh)

)]

− e− 1
2 z

2 (cB−2Rgg−6(p−cB q3)z2) z
2
ν

Ĩ1(zh)

⎡
⎣
⎛
⎝1 −

μ2 (cB(−1 + q3) + 2Rgg)
(
Ĩ1(zh) e

1
2 (cB (−1+q3)+2Rgg)z2

h − Ĩ2(zh)
)

(e
1
2 cB (−1+q3)+2Rgg)z2

h − 1)2 L2

⎞
⎠

×
(

1 + 2

ν
+ (2Rgg + 3cB)z2 + 12(p − cB q3)z

4
)

− μ2 z2 (cB(−1 + q3) + 2Rgg) e
1
2 (2Rgg+cB (q3−1)z2)

(e
1
2 (cB (−1+q3)+2Rgg)z2

h − 1)2 L2
Ĩ1(zh)

]
. (B.3)
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For the coupling function f3 we obtained

f3(z) = − 2 cB ecB z2− 2Rgg
3 z2−2(p−cB q3)z4

( Lz )
2
ν(

e
1
2 (cB (−1+q3)+2Rgg)z2

h − 1
)2

L2 q2
3 ν Ĩ1(zh)

×
[(

e
1
2 z

2
(−3cB 2Rgg+6(p−cB q3)z2

)
z2+ 2

ν ν

+ (−2 + z2 ν (3cB − 2Rgg

−12(p − cB q3)z
2)) Ĩ1(z)

)
×
((

e
1
2 (cB (−1+q3)+2Rgg)z2

h − 1
)2

L2

+μ2(cB(−1 + q3) + 2Rgg) Ĩ2(zh)
)
Ĩ1(zh)

×
(
−e

1
2 z

2
(
4Rgg+6(p−cB q3)z2−4cB +cB q3

)

×μ2(cB(−1 + q3) + 2Rgg)

× z2+ 2
ν ν −

(
2 − z2 ν (3cB − 2Rgg

−12(p − cB q3)z
2)
)

×
((

e
1
2 (cB (−1+q3)+2Rgg)z2

h − 1
)2

L2

+μ2(cB(−1 + q3) + 2Rgg) Ĩ2(z)
))]

. (B.4)

The dilaton potentialV (z) can be obtained using Eq. (3.24)
by plugging the blackening function g(z) (3.18) and the equa-
tions of g′(z) (B.1) and g′′(z) (B.3). After some algebra we
have

V (z) = ecB z2+ 2Rgg z2

3 +2(p−cB q3)z4

2 L2 ν2
(
−1 + e

1
2 (cB (q3−1)+2Rgg)z2

h

)2

×
[
−e

z2
2 (4Rgg+6p z2+cB (−4+q3−6q3 z2))z2+ 2

ν

×μ2 ν(cB(q3 − 1) + 2Rgg)

×(−2 + ν(−4 + (cB(3 + q3) − 2Rgg)z
2

− 24(p − cB q3)z
4)) − 2L2

×
(
−1 + e

1
2 (cB (q3−1)+2Rgg)z2

h

)2

×
(

2 + ν
(

6 + 4ν + z2(−7cB + 6Rgg + 36p z2

− 36cB q3 z
2 + 2ν(−3cB + 2Rgg + (3cB − 2Rgg)

×(cB − Rgg)z
2

−6(p − cB q3)(5cB − 4Rgg)z
4

+ 72(p − cB q3)z
6))
))

+ 2e
−3
2 cB z2(1+2q3 z2)

Ĩ1(zh)

×
(

−eRgg z2+3p z4
z2+ 2

ν ν

(
1 + 2ν(

1 + (−cB + Rgg
)
z2

+ 6 (p − cB q3) z
4
)

+ Ĩ1(z)e
3
2 cB z

2(1+2q3 z2)

×
(

2 + ν

(
6 + 4ν + z2

(
−7cB + 6Rgg + 36p z2

−36cB q3 z
2 + 2ν

×
(
−3cB + 2Rgg + (3cB − 2Rgg)(cB − Rgg)z

2

−6(p − cB q3)(5cB − 4Rgg)z
4

+72(p − cB q3)z
6
))))))

×
((

−1 + e
1
2 (cB (q3−1)+2Rgg)z2

h

)2
L2

+(cB(−1 + q3) + 2Rgg) μ2 Ĩ2(zh)

)

−2μ2 Ĩ2(z)(cB(−1 + q3)

+ 2Rgg)

(
2 + ν

(
6 + 4ν + z2

(
−7cB + 6Rgg

+36p z2 − 36cB q3 z
2

+2ν
(
−3cB + 2Rgg + (3cB − 2Rgg)

×(cB − Rgg)z
2 − 6(p − cB q3)(5cB − 4Rgg)z

4

+72(p − cB q3)z
6
))))]

. (B.5)

C Comparison with [53]

In this section we intend to compare the geometry of [1] with
the metric and Lagrangian introduced in [53]:

ds2 = w2
E

[
− g(z) dt2 + g11dx

2
1 + g22

(
dx2

2 + dx2
3

)
+ dz2

g(z)

]
,

(C.1)

g11 = ec1C(B)z2
, g22 = ec2C(B)z2

, (C.2)

L = √−g

[
R − f (φ)

4
F2 − 1

2
∂μφ ∂μφ − V (φ)

]
, (C.3)

φ = φ(z),

electro-magnetic ansatz F : Aμ = (
At (z), 0, 0, A3(x2), 0

)
,

μ = 0, 1, 2, 3, 4. (C.4)

Components F00 ∼ At (z) and F23 ∼ A3(x2) of the united
electro-magnetic field Fμν from [53] formally correspond to
electric Maxwell field F0

μν and first magnetic Maxwell field
F1

μν from [1]. Magnetic component F23 acts along the x1-
direction in (C.1), but it is real magnetic field, not an effective
source of primary anisotropy ν, as [53] describes an isotropic
model with magnetic field. Magnetic field (analogous to Fμν

from [1]) has non-zero component F23, acts along the x1-
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direction and influences g11 making it differ from g22 and
g33. Therefore we can say that for models [53] and [1] indexes
1 ↔ 3:

ec1(B)z2 ←→ ecB z
2
, c2 = 0. (C.5)

We also see that

wE = L

z

√
b(z) ⇒ wE z

2 = √
b z, L = 1. (C.6)

In [53] the coupling function f0 and the warp factor are:

f0 = z−(Rgg+ c1C
2 )z2

wE z2 , wE = ed(z)

z
, (C.7)

where d(z) = − (Rgg/3) z2 − pz4, Rgg = 1.16, p = 0.273,
c1 = − 1. Therefore, via simple comparison with [1] we have
c ←→ 4Rgg/3 = 4 · 1.16/3 = 1.54(6). In addition for the
coupling function f0 we considered

f0 = e−(Rgg+ cBq3
2 )z2 z−2+ 2

ν√
b

(C.8)

in this research.
We’ll leave cB as a model parameter to preserve an oppor-

tunity to fit magnetic field back reaction on the metric (2.6)
and fix AdS-radius to be L = 1 in all numerical calculations.
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