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n. Reconstructing on-shell HS vertices order by order one
obtains vertices proportional to various powers of 7 and 7.

Since the HS gauge theory contains infinite tower of gauge
fields of all spins and the number of space-time derivatives
increases with the spins of fields in the vertex [5-8], the
theory exhibits certain degree of non-locality. The level of
non-locality of HS gauge theory is debatable in the literature.

In the papers [9—15] vertices in the holomorphic (anti-
holomorphic) sector up to 52 (72), were reconstructed from
the generating Vasiliev system in the spin-local form. (See
also [16] for a higher-order extension of these results.) The
shifted homotopy approach used in [9-14] demands careful
choice of the homotopy scheme compatible with the spin-
locality of the vertices (for more detail on the notion of spin-
locality see Sect.4.1).

Being efficient in the lowest orders, the original shifted
homotopy approach turns out to be less powerful at higher
orders. This way, it has not been yet possible to find spin-
local vertices in the so called mixed nn sector of equations
for zero-form fields.

From the perspective of HS theory in the bulk it is hard
to identify the minimal level of non-locality of the theory
unless a constructive scheme that supports some its specific
level is presented. The aim of this paper is to present such
a scheme that supports a moderate non-locality of the HS
theory in the mixed 17 sector, that is less non-local than those
resulting from the shifted homotopy approach available in
the literature so far. Specifically, we will use the differential
homotopy approach proposed recently by Vasiliev in [17]
to obtain moderately non-local vertices Y"(w, C, C, C) for
the zero-form equations in the mixed sector.

Since the moderately non-local vertices obtained in this
paper minimize the level of non-locality of the known HS
vertices, it would be interesting to compare it with the level of
non-locality of the vertices obtained in [18] via holographic
duality based on the Klebanov—Polyakov conjecture [2] (see
also [19-21]). A priori, there are two options:

(i) Moderately non-local vertices may have the same (or
even worse) level of nonlocality than that deduced in [18].

(i) Moderately non-local vertices of this paper may be
less nonlocal than those of [18].

The option (i) is in fact inconclusive since it is not guaran-
teed that there is no better scheme allowing to soften further
the level of vertex non-locality. On the other hand, the option
(i1) would imply that the HS holographic duality has to be
modified one way or another, for instance along the lines of
[22]. Though the analysis of this issue is very interesting,
it is not straightforward because of the difference between
the formalisms underlying the space-time analysis of [18]
and the unfolded analysis of this paper in terms of auxiliary
spinor variables. Hence it is postponed for the future study.

The paper is organized as follows. In Sect.2 we recall
the form of HS equations. In Sect. 3 the Vasiliev concept of
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differential homotopy and the Ansatz for the linear in n defor-
mations of [17] are recalled. In Sect.3.3 the Ansatz for the
linear in n7n deformations is introduced, as a straightforward
generalization of that of [17]. In Sect.4.1 we briefly discuss
a locality issue and introduce a notion of moderate spin-
non-locality’ (MNL), also introducing ’interpolating homo-
topy’ (IH) that respects MNL. In Sect.5 the derivation of
the MNL Bj is considered in detail. In Sect. 6 the resulting
MNL vertices T”ﬁ(a), C, C, C) are introduced. Conclusions
are summarized in Sect.7. Appendices A—C collect previ-
ously known results of the lowest-order computations while
Appendices D and E contain vertex Y, ccc and Ycucc cal-
culation details, respectively.

2 Higher-spin equations
2.1 Original form

The nonlinear HS equations of [4]

d.W+WsxW=0, 2.1)
dS+WxS+S«W=0, (2.2)
d,B +[W,Bl, =0, (2.3)
S%S =i+ Bx@y +i7)), (2.4)
[S,Bl, =0 (2.5)

reproduce field equations on dynamical HS fields in any
gauge and choice of field variables. The field B(Z; Y; K|x)
is a zero-form, x are space-time coordinates, Z4 = (24, Za)»
Y4 = (Va, Yg) are auxiliary commuting spinor variables
(0, B = 1,2 d,B = 1,2), n is a free complex parameter
(7 is its complex conjugate) and K = (k, k) are involutive
Klein operators obeying

{k, }’ot} = {ka Za} =0,
=1, [k kl=0.

[k, yo1 = [k, za] = 0,
2.6)

Analogously for k.

The field W(Z; Y; K|x) is a space-time one-form, i.e.,
W = dx"W,, while S(Z; Y; K|x) is a one-form in Z spinor
directions, i.e., S = 6%S, + 6%S,, 6% := dz*, 69 = dz9.
The wedge symbol is implicit in this paper since all products
are exterior.

The star product is

(f*g)(Z.Y) = /dUde<Z+U; Y+ U)g

Q2m)*

X(Z = VY +V)exp(iUsVH. (2.7)

Indices are raised and lowered by the symplectic form Cp4 =
(E ﬁ as € ﬁot ) s

XA =C48Xxp,  Xa=XBCpa. (2.8)
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Elements y and y,

y = explizay*)k0%0y, 7 = exp(iZe7)k0%05, (2.9)

are central with respect to the star product since 6> = 63 = 0.
Following [4], to analyse Egs. (2.1)—(2.5) perturbatively
one starts with the vacuum solution

Bo=0, So=0%Z4=0%,+0%. (2.10)
Plugging this into (2.1)—(2.5) and using that

= —2id dy = 040 2
[S()v]*__ tdz, Z'_e mv ( 11)

one finds that Wy should be Z-independent, Wy = w(Y; K|x),
and satisfy (2.1). Similarly, at the next order one gets B] =
C(Y; K|x) from [Sp, B;] = 0 and that C satisfies (2.3).
This way one reconstructs the first terms on the rA.s.’s of the
unfolded equations of the form originally proposed in [23]

dwo+owro=""w,w,C)
+Y T (w, w, C) + Y (w, w, C, C)

+Y"(w, w,C,C) + Y (w, w,C,C)..., (2.12)
d,C + [w, Cly = Y(w, C,C) + Y (w, C, C)

+Y"(w, C,C,C)+Y"(w,C,C,C)

+Y"(w,C,C,C).... (2.13)

As in [23], the resulting perturbative expansion is in powers
of the zero-forms C.

To obtain dynamical Eqgs. (2.12), (2.13) one should plug
obtained B;, W; into Egs. (2.1), (2.3). For instance, Eq. (2.3)
up to the third order in C-field is
dC +[w, Cly = =DBy — [Wy, Cl«

—DB3 — [W1, B2]« — [W2, Clx,

2.14
where ( )

DA = d, A + [0, Al.. (2.15)

For more detail we refer the reader to the review [24].
2.2 Free equations in AdS4

Ad S4 vacuum one-form connection Wy is
1
Wo = EwAB(x)YAYB, dw® + wA€Cepw?® =0,
(2.16)

where Cy4p is the sp(4) invariant form, wAB = (cp"‘ﬂ ,
%P, e“®) describes Lorentz connection, o®P, &P and vier-
bein, ¢““. The unfolded system for free massless fields
w(y,y; K|x) and C(y, y; K|x) reads as [23]

RiOT:K 10 = 5 (nﬁdﬁé&éﬁ'c(()i; K [x)kn

+iH* 9,95C(y, 0; K | )k), (2.17)

DyC(y,y: K | x) =0, (2.18)
where
P - 3
Oy = —, Oy = —, (2.19)
ay“ ay“

Hyp := eqgep”,  Hgyp = eaac®, (2.20)

Ri(y, 7 K | x) == D§w(y, 3 K | x)

ped = pt — (b (yaéﬂ n aayﬂ), 2.21)

DE = d — (00 + @ 5435).

Do = DL + ¢#F (yayﬁ + aaéﬁ). (2.22)
The massless fields obey

o(y, y; —k, —k | x) = o(y, yi k. k | x),

C(y,y;, =k, =k |x)=—-C(y,y; k, k| x). (2.23)

System (2.17), (2.18) decomposes into subsystems of
different spins, with a spin s described by the one-forms
o(y, y; K|x) and zero-forms C(y, y; K|x) obeying

w(uy, ui; K | x) = p**Dao(y, 5 K | x),

Cluy, k'3 K | x) = p*C(y, 5 K | x), (2.24)

where 4+ and — correspond to helicity 7 = =£s selfd-
ual and anti-selfdual parts of the generalized Weyl tensors
C(y,y: Klx).

We consider Eq. (2.18) on the gauge invariant zero-forms
C

1 00
C(Y: K|x) = Z Z

A=0n,m=0
CoySn e §am ARl =A

1
Al-A a
2nlm! Coq B O 2 B 7 (x)y

Al-A

Spin-s zero-forms are Coq.‘.ot,, 1. (x) with
n—m = =£2s. (2.25)
Eq. (2.18) rewritten in the form
. 2
DLc = e -C
ay2oyP
+ lower-derivative and nonlinear terms (2.26)

(discarding indices A) implies that higher-order terms in
y and y in the zero-forms C(y, y|x) describe higher-
derivative descendants of the primary components C(y, 0|x)
and C(0, y|x) relating second derivatives in y, y to the x
derivatives of C(Y; K|x) of lower degrees in Y. Generally,
Cay...cn.dy...a, (X) contains ”“;m — {s} space-time derivatives
of the spin-s dynamical field. As a result, the zero-forms C
in the HS vertices may induce infinite towers of derivatives

and, hence, non-locality.
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3 Vasiliev’s differential homotopy approach
Here we recall the concept of differential homotopy of [17]

and the Ansatz for (anti)holomorphic deformation linear in
(7)n and discuss its nn generalization used in this paper.

3.1 Differential homotopy

Shifted contracting homotopy A, and cohomology projector
hg act as follows [10]

Agd(Z, Y, 0)= 1dtz ad tZ—(1 9
q¢(,,)—/0 7( +q) ae—Ad)( —(1—-1)gq,10),

obeying the standard resolution of identity
{dz, 84} +hg=1d. (3.2)

Here a shift ¢ must be independent of Z and ¢ but can
depend on some parameters and/or integration variables.
Moreover, further contracting homotopies lead to multiple
integrals [ dt! i dr? .. .. All of these parameters were inter-
preted in [17] as additional coordinates #* of some manifold
M with the total differential

d=dz +4d,, 3.3)
dy = A2 a, = dr* z
z =0 3ZA° = tﬁ, 34

where 64 and dt® are anticommuting differentials and the
homotopy coordinates ¢ belong to a unite hypercube con-
fining integration to a compact M,

0<t*<l.

(3.5)

In these terms, perturbative equations to be solved acquire
the form

df(Z,t,0,dt) = g(Z,t,0,drt), dg(Z,t,6,dt) =0,

(3.6)

where the second one expresses the compatibility of the first
with dd = 0.

Functions like f and g contain theta and delta functions
like 6(+%)0(1 — %) restricting the ¢ integration to a locus
inside a unit hypercube. Physical fields and equations in HS
theory are supported by d; cohomology carried by the inte-
grals over 1.

Differential homotopy is based on the removal of the inte-
grals. Namely, following [17] let

demt = &int» fint = /M f(Zveatvdt)s

8int :/ g(Zvevlvdt)v (37)
M
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where M is a manifold with homotopy variables like ¢ as
local coordinates, resulting in

dzf = g +dh + g»eok, (3.8)

where g"¢?¥ is any differential form of a degree different

from dim M, which therefore does not contribute to the inte-
gral. Setting g¥¢?* = dzh — d, f (taking into account that
degh = dimM — 1 and deg f = dim M) and replacing
f — f — h, we obtain (3.6).

M can be treated as R". Following [17], for f M We
use notation [ ... [x := [ . with the convention that
it is totally antisymmetric in . Though the integrals are
removed from the equations, to avoid a sign ambiguity due
to (anti)commutativity of differential forms, every differen-
tial expression is accompanied with integrals -ftl...tk that can
be written anywhere in the expression for the differential
form to be integrated with the convention

d/ :(_1)’</ d.
th .tk th. .tk

3.2 Differential homotopy Ansatz for the n deformation

(3.9)

As shown in [17] direct computation within the differential
homotopy approach gives the following form for the lowest
order holomorphic deformation linear in 7 in the perturbative
analysis

f/l«:n/ M(Tsovﬂvpvuvv)
u2vitoBp

dQ?EQG1(8(M)],_- (3.10)
dQ? = dQ*dS, (3.11)
E(Q) = expi(Q,g(y’3 + pﬁ + uPy + ugv®
- > i) (3.12)
k>j>i>1
Gi(g) :==gi(r1) ... gi(rDk, (3.13)
‘ 3
Pra = Z}Pia, Pia =iz oo, (3.14)
1=

gi(y) are some functions of y, (e.g., C(y) or w(y)) (anti-
holomorphic variables yg, Klein operators K = (k, k) and
the antiholomorphic star product % are implicit).

d=dz" 0 +dr8 +d 9
Ry ar P
9 ) 3 3
do;— +dBf— + du® —— + dv® — 3.15
rdoig s Fdfag tdut S S TV S (3-.15)
and
iz, o, B, p,u,v) = u(t, o, p, p)d*ud*v, (3.16)

where du® and dv® are anticommuting differentials,
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d*u = du®du,, d*v = dv¥dv,,
X /dzud2vexpiuav“ =1, (3.17)
2, has the form
Qy =120 — (1 = 1)(pa(0)
—BVa + (Yo + Pta + Ua)), (3.18)
where
k
Pa(0) =Y piaci (3.19)
i=1

with some parameters o;. We use the convention of [17] that
it does not matter where the symbol of integral is situated,;
the integration over d 24 and d?v in (3.10) also accounts for
the u, v—dependent measure factor d22.

The measure ud$2> may contain so called weak terms
that do not contribute under the integration if the number of
integrations does not match the number of respective differ-
entials. This issue plays important role in the computations
of [17].

Due to the identity (d2)> = 0 being a consequence of
the anticommutativity of d€2, and two-componentness of the
spinor indices «, formula (3.10) has the following remarkable
property [17]

d[d*ud®vdQ*E(Q)] = d(dzudzvdﬁz expi(Qﬁ O+ psr+u)f

dugv® — Z piﬁpf)):o.

k>j>i>1

(3.20)
As a result,
dfu = (=D fap,

where N is the number of the integration parameters
7, 07, B, p. By virtue of (3.21), Eq. (3.6) amounts to

(3.21)

Jauy = &ug- (3.22)
This demands
dur = g, (3.23)

where = denotes the weak equality up to possible weak terms,
that do not contribute under the integrals in fq, , and g, .
Since g in (3.6) is d closed

dug =0. (3.24)
In most cases this implies that

g = dhg (3.25)
allowing to set

wy=h,. (3.26)

3.3 Ansatz for the nn deformations

In this paper we use a particular case of Vasiliev’s Ansatz
(3.10) with p = B = 0 allowing to discard the dependence
on u and v, that trivializes at 8 = 0.

Firstly, recall that HS equations remain consistent with
the fields W and B valued in any associative algebra [23]. As
a result, the components of W and B do not commute and
different orderings of the fields can be considered indepen-
dently. Hence, functions G;(g, K) under consideration with
| =3 and! = 4, being at least linear in w, can be represented
as a sum of expressions with different positions of w. For the
future convenience we denote arguments of w as rg, ro for
any ordering. Namely, for/ = 3, 4

C(r',FHC 2, FHC (., F)kk,
w0, F)Cr! FHCE?, FHC 3, F)kk,
Gi(g) =4 Ctr', P, FOC 2 FHC (3, F)kk,

Crl,iHCE? o, P C 3, F)kk,

crt,iHCw? P, o, FO)kk.
(3.27)

To simplify formulae we will use shorthand notations wCCC
instead of
o, FCE!, FHYCE?, P C 3, 7)), ete.

In this paper, we introduce Ansatz in the bilinear n1 defor-
mation with

F:ZFi where
i
F' =i / Wit 7, 0)EQ|Q)Gi(g)

t70(n)

(3.28)

with the some compact measure factors /,Li (t,7,0), Gi(g)
(3.27),

EQ, Q) = dQ)?WdQ)H*EQHEE) (3.29)
with
o enn B B

E(Q) = expl(Q,s(y + p)

- > et - > s,-po,spf>, (3.30)

3>j>i>1 3>j>1
E(Q) = expi(s'zﬂ-@ +pf = Y piht
3>j>i>1
- 5]150313?>, (3.31)

3=j=1

Q=124 — (1 = 1)d"/ (0) pja-

@ Springer
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QL =77 — (1= 0)a' (o) pja, (3.32)

where s;, 5; are sign factors that depend on the order-
ing of fields C and w (3.27), o are integration parameters
and a'/ (o), a'/ (o) are some rational functions that satisfy
inequalities |a'/ (0)| < 1, |@”/ (¢0')| < 1. The notation o () at
the integral symbol is used for the ordered string of variables
01,02, ...0p.

Introducing additional integration parameters ¢’"/ and
new measure factors

l
wi(t.o.0") = p'(t.0) [Tdo"s(" —a” (@),
j=0
(3.33)

one brings Qfx to the form (3.18). Note that in [17] it was pro-
posed to consider polyhedra as integration domains, while
Eq. (3.33) provides some variety embedded into a polyhe-
dron. In this paper it is more convenient to use (3.28) with
Q, Q (3.32) with some polyhedra as integration domains.

Another difference compared to the approach of [17] is
that in this paper we discard the weak terms, reconstructing
the final results from the compatibility conditions. Though
we agree with the idea of [17] that it is useful to keep the weak
terms inducing non-zero contribution at the further stages of
the computations preserving the form of the Ansatz we find
it simpler to discard the weak terms in this paper since our
aim is just to illustrate how moderately non-local vertex can
be obtained in the mixed sector without going too much into
the computation details.

4 Moderate spin-non-locality
4.1 Spin-locality and moderate spin-non-locality

To check whether F' (3.28) is spin-local or not we consider
the coefficients in front of pry p;“ and prg p;* in the expo-
nents of E(Q'|Q"), which yield, schematically,

1 . .
eXpi(rZay“ + - -+§P"’pk“ma + 7745

+-~-+%13"fﬁkdﬁjd>. .1
By the Z-dominance Lemma of [10] (see also [25]), only the
coefficients at T = 7 = 0 matter.
e Spin-locality

Space-time spin-locality demands [10] that truncation of all
vertices to any finite subset of fields be local at any given
order of the perturbation expansion, containing at most a
finite number of space-time derivatives. By virtue of (2.26)
and taking into account that, by virtue of (2.25), for any given
spin s the degree in y* is limited once that in 7% is, this

@ Springer

can be reformulated in terms of spinor variables y%, 7% as
a condition that any vertex represented as a power series in
yj, yj-derivatives p;, p; contains at most a finite power of
(pjp;)" for any j. To check whether F' (3.28) with Gi(g)
(3.27) is spin-local or not one has to analyse coefficients in
front of the terms bilinear in spinor derivatives p; p;* and
Dia P jé‘ with respect to arguments of the zero-forms C; (i.e.,
with with #, j > 0) in the exponents of £(2) and E(Q) in
(3.29). To achieve spin-locality it is enough to demand that

Pipi|l,_s_o=0 Vi, j>D0. 4.2)

Being formulated in terms of spinor derivatives p; and
p; this condition is referred to as spinor spin-locality. Note
that, being equivalent at a given order of the perturbative
expansion, space-time and spinor definitions of spin-locality
may differ when the lower-order contributions are taken into
account. For more detail on this issue we refer to [26] where
the concept of projectively-compact spin-local vertices has
been introduced for which spinor spin-locality implies space-
time spin-locality at all orders of the perturbative expansion.

e Spin-non-locality
Violation of this condition for at least one pair of i, j > 0
implies spin-non-locality,

3i,j>0 PYPY|—;=0 #0. 4.3)
e Moderate spin-non-locality

Here we introduce the concept of moderate spin-non-locality

(MNL) with the coefficients P/ and P/ obeying the condi-

tions

(PY| 4+ |PY|)|peseo <1 Vi, j>0. 44

Note, that the concept of spin-locality simply demands
that power series in y, y does not contain an infinite number
of (pjp;)" for any j. Hence, its formal definition does not
demand (4.4). Indeed, e.g., the case of P=0and P =2
is also spin-local. Nevertheless, all known examples of spin-
local perturbative contributions to Vasiliev nonlinear equa-
tions obey the moderately spin non-locality condition (4.4). It
is this property that induces the inequality (4.4) hence playing
the key role in the construction of this paper of the moderately
non-local vertex Y (w, C, C, C).

For instance, the lower-order computations for vertices
bilinear in C in the (anti)holomorphic sectors [11,12,27,28]
imply that they satisfy both condition (4.2) and (4.4),

PRPR|_sg=0, (P +|P?])|r=t=0=1.

4.5)
Itis nothard to find P/ and P/ (4.1) for the Ansatz (3.28).
For instance, for
Q%o =—(a"po+a'pi+---+a"pa)",

Qg =—@"po+a'pr+---+a pn)? (4.6)
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one obtains

Pij|r=f=0 =a —al + L, ﬁij|r=f=0

=a —-a'+1 V<i<j<n. 4.7

Note that the star product C(y, y) * C(y, y) (2.7) yields
|P2|+ P12 =2.

4.2 Moderate non-locality compatible interpolating
homotopy

Consider equation of the form

dA=F, dF=0. (4.8)

Let F be (i) of the form (3.28) and (ii) MNL. To proceed
we need a scheme allowing to solve (4.8) within the same
class. This is achieved by a MNL compatible interpolating
homotopy (IH) introduced in this section.

Let two expressions F¢ and F? be of the form (3.28) and

FO 4 FP = i / {we @ 2. B0
t70(n)

—ub(r, 7, 0)EQ° |§_2b)}G1(g, K). (4.9)

Suppose that there exists such a measure w(v, 7,7, 0)
depending on an additional parameter v, that

w7, T, 0) =t = ul(z, 7, 0),

M(\), T’ .Ea U)'VZO = /’l’a(rﬂ .Ea 0)

Since
d[e(w)o(1 —v)] =dv(§(v) — §(1 —v)), (4.10)
F* 4+ F? =i
X / W, T, 7,0)EQIQ)Gi(g, K), 4.11)
tto(n)v
where
W, t,7,0) =d[0W)6 —v)]uW, T, T,0), 4.12)
Q=vQl + (1 —v)Q°,
Q=10+ (1 - Q. (4.13)

In these terms, the total differential d (3.3) acquires the form

0 d
—{—dfa—_ +do,-8— +dv—. (4.14)
Since the property (3.20) is still true,

d[E(Q”|§z”)] - d[(dQ")2(dQ”)ZE(Q”)E_(Q”)] —0,
(4.15)

(4.12) allows us to represent F*? (4.11) in the form

F% + F? = dG*? + Fe?, (4.16)
G*P =i / w1, 7,0)EQIQV)Gi(g, K),
tto(n)v
(4.17)
Fob — _pi / o)1 — v)d[u(v, T, %, 0)]
tto(n)v
xE(Q"|1Q")G (g, K). (4.18)

If F and F® (4.9) are MNL, ie, P and P4 of
E(Q7 Q%) as well as PP and PP of E(QP Q) obey
4.4),

(P + [P )z < 1,

(IPPU | 4| PPz < 1, i, j >0, (4.19)

this is also true for PV and P'Y of E(QV|QY) with
QY , Q"(4.13) forany v € [0, 1]. Indeed, according to (4.13),
(3.30), (3.31) and (3.29)

E(Q", Q") = d(Q")2d(Q")? expi[u{gz;(yﬁ +p°)

=Y pdt =Y Sjpo;spf}

Izj>i=1 [=j>1

+(1 - v){sz’,g(yﬂ +p = Y pispf

I>j>i>1
- % simerf]

I=j=1

T laeis s 50 o
XeXpl[v{Qg(y+p+) Y bih

[>j>i>1
- - B
-2 S/p()ﬁpj}
1>j>1

> hi)

[>j>i>1

- gjﬁoﬁﬁf”. (4.20)

12j=1

+(1 —v){s'z‘;(wm)ﬁ' -

Rewriting exponents in the form (4.1), one obtains

Pvij — VPaij + (1 _ V)Pbij,

PV = y P 4 (1 — )PP, (4.21)
Since v € [0,1], (4.19) and (4.21) imply (|P"Y| +
|P'”'J'|)|r:f:0 < 1. The essence of the idea is that if the

coefficients a'/ (o) for any i, j on the rh.s. of (3.32) satisfy

la' ()] < 1 (4.22)
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then

va®i (o) + (1 — v)a® (o) < 1 (4.23)

as well. In the sequel it will be shown, that inequality (4.22)
holds true for a set of functions €2, Q under consideration,
thus forming a convex set.

Picking up an appropriate pair £ and F” on the r.h.s. of
(4.8) we apply IH to single out the corresponding d-exact
part setting A = G*? + A’ we are left with the equation

dA'= Y F 4 Fe,
i#a,b

with F%? (4.18). The r.h.s. of (4.24) is evidently (i) d-closed,
(ii) of the form (3.28) and (iii) MNL as the r.A.s. of (4.8).

To arrive at the final result we repeat this procedure as
many times as needed for the leftover MNL terms until all of
them cancel. Note that, at every step, the choice of a proper
pair is to large extent ambiguous and it is not a priory guar-
anteed that the process ends at some stage. For instance, the
choice u? = 0 can unlikely yield a reasonable result.

Nevertheless, for some reason to be better understood, it
works. Let us stress that in this paper we manage to choose
all appropriate pairs of the rA.s.’s under consideration with
the same measure factors % = 2, that simplifies the cal-
culations making (v, 7, T, o) v-independent.

This interpolating homotopy approach underlies the con-
struction of MNL solutions. Specifically, it is used below to
solve for S, the following consequences of (2.2)

(4.24)

2idsy" = — {iiiB] + 7 +inBlxy —(S]S7).} @25

in such a way that the r.A.s.’s of the following consequences
of (2.1), (2.3)

20dW)7 = {doS] + deS] + (W], ST + (W], ST,

+do ST o, Sgﬁ}*} , (4.26)

2By’ = i8], Bl + 18], BIL + 187, CL) - @27)

as well as [dW."7, C], be MNL. ]
This allows us to find by IH such B;’ " that the r.h.s. of
T1(,C.C.C) =[W)", Cl, — [W], B,
—[W/, BJ1, — d. B}
—[w, B!, — d,B)(Y"(w, C, C))
—d, B} (1" (w, C, C)) (4.28)

in its turn becomes MNL, allowing to eliminate step by
step manifest Z-dependence using IH. Namely, choosing an
appropriate pair from the 7A.s. of (4.28) we apply IH to drop
the d-exact part since it does not contribute in the Z, dZ-
independent sector. Then this procedure is repeated as many
times as needed until all leftover MNL terms cancel except
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for the cohomological terms producing MNL physical ver-
tices (see Sect. 6).

Note that the interpolating homotopy can be treated as
certain generalization of the general homotopy of [17].

5 Moderately non-local B; 1

To compute the MNL form of Y"(w, C, C, C) vertex we
have to find a MNL B3. This is the aim of this section. In the
sequel we use notations of [17]
Uz, 7) = I(D)I(T),
DWw) = dvé(v),

V(a(n)) := ﬁ@(ai)D (1 - Xn:(xi) .
i=1

i=1

[(w) =0(m)o(1 —v),

G.D

Equation for B]" in the mixed sector resulting from (2.5)
has the form (4.27). To obtain MNL B3 we need the rh.s.
of (4.27) to be of that class. Straightforwardly, using Sj >
and By of [12], one can make sure that this is true for
[S{, BJ1.« + [S}, BJ1., while [S;", Cl. is not MNL. The
key observation of this paper is that, as we show now, there
exists an alternative Sg " such that [S7", C], is MNL.

5.1 87"

ng " is determined by (4.25). One can make sure straight-
forwardly that [dS. T C]y is both spin-local and MNL. The
problem is that all spin-local terms of [dS;’ T C1, have differ-
ent structure and it is not clear how to find such a solution for
S7" that [Sy", C1, be spin-local. However, since [dS}", Cl.
is MNL, the interpolating homotopy of Sect. 4.2 allows us to
find such S" that [S", C], is MNL as well.
Indeed, one can see that

— (ST, ST}, = "4—” Oz, DIER'QY) — E(Q?1Q)]

T

CCkk, (5.2)
Q) =120 — (1 = D[ pila.
QL =77 — (1 - Dpla, (5.3)
Q=120 — (1 = Dp2la.
Q% =1tZa — (1 — D[ pila (5.4)

Applying IH to the rA.s. of (5.2) one finds S5 in the form
(3.28). Namely, one can see that

(ST, sM, =d % / V(o ()O(r. HEQID)

T70(2)

CCkk (5.5)
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_m

i (5.6)

/ d[C(z, ‘E)]V(O‘(Z))E(QK_?)CC](/;,
)
Qo =724 — (1 = D)[—01p1 +02p2]a,
Q4 =724 — (1 = D[—02p1 + 01 p2]s- (5.7

Differentiation of [I(z, 7) in (5.6) yields

V(U(Z))[D(l — DIEEQ Q)
175 (2)

+D(1 — f)l(r)E(ms'z’)]CCklE, (5.8)

where @, = 74, S_Z/d = Zg , while the (weak) terms with

D(7) or D(7) vanish because, e.g.,

D(t)D(1 — 01 — 62)dRQ,dQ“

~dtd(o] + 03)dordo18(t)8(1 — o1 — ) prap2® = 0.

As aresult, (5.8) just equals to —iﬁBé7 *Y — inBzﬁ *y while
Eq. (4.25) acquires the form

2idsy" =—d[%ﬁ/ O(, f)V(a(z))E(mQ)]CCk/E

tT0(2)
(5.9)
allowing to set
i = % / O(z, 7) V(e 2)EQIQ)CChE.  (5.10)
170 (2)

By construction, S;’ n (5.10) is spin-local, while [Sg '_’, Cl«
is MNL. Indeed, consider for instance the exponent of S +C
in the form (4.1), i.e.,

- Lo o
expi(...+EP’/pi”pja—i-zP”pio‘pjd). (5.1D)

Equation (5.10) straightforwardly yields by virtue of Eq. (5.7)

P2l_sm0=0, P iz =01,

PB|iio0 = —02,

P2 _i0=0, Blictzo = 02,

PPl _sg = —o1. (5.12)

Thanksto A(1—o|—o0%) onthe rh.s. of Eq. (5.10) inequalities
(4.4) hold true.

5.2 dB}"

Substituting S1,W1, B> (A.1)-(A.9), S> (5.10) we obtain
using (5.1)

e __m
16
tT0(2)

E(Q|Q)CCCkk,

1 T
552 1 O(r, T)V(0(2))

(5.13)

Q¥ =1z —(1—=v)[-o1(p1 + p2) + p3 + p21°,

QY = 72— (1 =) o2 (p1 + p2) + p3 + P24, (5.14)
—%C w« Sy = % Oz, H)V (0 (2))
170 (2)
E(Q|Q)CCCkk, (5.15)
Q" =1 =(1=1)[=p1 —p2 + 02(p3 + p2)1“,
QY = 779 —(1—-D)[—p1—p2 + o1(p3 + p)1%.  (5.16)
1 nn _
—2—3" * S’7 Te O(z, T)V(0(2)
70 (2)
E(Q|Q)CCCkk, (5.17)
Q" = 1z%—(1=1)[—01(p1 + p2) + p2 + p31%,
Q% = 72% —(1-1)[-p1 — p21*, (5.18)
2878 =" [ 0@ ove)
T70(2)
E(Q|Q)CCCkk, (5.19)
Q¥ =1 —(1=0)[—p1—p> +02(P3 + p2)1°,
QY =729 —(1—1)[p2 + p3l°, (5.20)
—%Bg*sf - 'Zg Oz, 7)Y (0 (2))
t70(2)
E(Q|Q)CCCkk, (5.21)
Q% =z —(1—1)[-p1 —p21%,
QY = 2% —(1-D)[~a1(p1 + p2) + P2 + p31%,  (5.22)
2818 =" [ 0@ ove)
70 (2)
E(Q|Q)CCCkk, (5.23)
Q% =z —(1—1)[p2 + p3l*,
Qf =t —(1-D)p1—p2 + o2 (p3 + )%, (5.24)

As mentioned in Sect.5.1, the zh.s.’s of Egs. (5.13) and
(5.15) are MNL. Straightforwardly one can check that the
r.h.s.’s of Egs. (5.17),(5.19), (5.21) and (5.23) are also MNL.
Indeed, consider for instance the rh.s. of (5.23). According
to Egs. (3.29)—(3.32) the exponent is

expi ((fz — (1 =DIp2+ p3Dp(y + p)P

> pipph )

3>j>i>1
X expi((fZ —A=D=p1—p2
+o2(p3 + PN+ p)f — Y ﬁiﬂﬁf)'

3>j>i>1

(5.25)

@ Springer



1154 Page 10 of 22

Eur. Phys. J. C (2023) 83:1154

Discarding the 7, 7, y and y-dependent terms one is left with

i — pappsf — 02ﬁ3f;131’3 +d- Uz)ﬁz,gﬁ'f)

Since the coefficients in front of p;g pf and p; ) ﬁf satisfy

inequalities (4.4) S? * Bg is MNL. Note that it is also spin-
local.

That the r.h.s.’s of Eqs. (5.17), (5.19) and (5.21) are MNL
can be checked analogously. Once dB;’ " is shown to be MNL
one can look for MNL B3 applying IH.

5.3 Solving for moderately non-local Bg n

Applying IH to the sum of (5.17) and (5.21) and then of (5.19)
and (5.23), using (4.16) one can see that the terms (5.13) and
(5.15) cancel out and (4.27) yields using notation (5.1)

dB! — ’17_2 [aoeoveepvee)] 620
v(2)tTo(2)
—d[[(z, f)]V(V(Z))V(G(Z))}
[E(§21 121) — E(Q» |s'22)]CCCkIE, (5.27)
where
Qf = 12" — (I = O[—2(p1 + p2)*
+(1 —vo1)(p3 + p2)°l,
Qf =7z — (1 = D[-v1(p1 + p2)*
+(1 —vio)(ps + p2)°1, (5.28)
Q5 =12 = (1 = [=(1 = v202)(p1 + p2)*
+v2(p3 + p2)°1,
Qf 1= 72" — (1 = D=1 = vi2)(p1 + p2)*
+v1(p3 + p2)*1. (5.29)

Since it is shown that Egs. (5.17), (5.19), (5.21) and (5.23)
are MNL, by the reasoning of Sect. 4.1 all terms on the r:h.s.’s
of (5.26) and (5.27) are MNL as well. }

Equation (5.26) determines a part of Bg 7 with the inte-
grand containing (7, T) without derivatives. Following
[17], such terms will be referred to as ’bulk’ in contrast to
thouse with dU(z, 7) referred to as ’boundary’,

dO(z, 7) = [D(1) + D(1 — D)) + c.c. (5.30)

The terms proportional to D(1 — 7) or D(1 — 7) do not
contribute to (5.27) (are weakly zero in terminology of [17])
because of the lack of differentials. Indeed, consider for
instance the 2{-dependent term with ~ D(1 — 7). Due to
(3.29) along with (5.28), (5.1) it yields

.d78(1 — DI(T)V((2) V(e (2))(d2")?

(05092 QHEQY ... .. (5.31)
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Since non-weak terms of (d2!)2 must contain dz, modulo
weak terms it equals to

2 tfz+[=(1 =200 (p1 + p2) +v2(p3 + P21}
{rdz — (1 = D[d(v202)(p1 + p2)

o
+dva(ps + p)1) (5:32)
To be non-weak it must contain a factor of dordv, which is
absent in (5.32).
Hence non-zero "boundary’ terms are those proportional
to either D(7) or D(7). Firstly, consider the terms with D(7).
To see, that the sum of such terms is d—closed, it is useful to
make the following change of variables:

Z$i=1

(5.33)

viop :==§1, viop:=§&, v =§&3,

with €1, €1 (5.28). To change variables in the 2, Q> part
(5.29) we use the following cyclic permutation of (5.33)
v =&,

vioyp =&, viop =4§3,

Z&' =1.

As aresult, using notations (5.1), the D(7) —proportional part
of (5.27) acquires the form

(5.34)

I [VEGD@I@)|E@ 1Q0) - B 10 |CCCkE.
TT6(3)
(5.35)
where
Qf =12 = (1 = »)[-&(p1 + p)*
+(1-&60 -&)7") (s + p2)"]
Qf = —[-(1 - &)(p1 + 2)
+(1 =& (P + P, (5.36)
Qf =2 — (1 —n)- (1 - 660 —&)")
(p1+ p2)* +&1(p3 + p2)°],
& = —[=(1 = &)(p1 + p2)
+(1 =& (ps + 1" (5:37)

Analogously, changing the variables in the D(7) part of
(5.27) with Q, Q1 (5.28)
v = &3,

woy :=§1, o =&,

doE=1

and the cyclically transformed change of variables &3 —
& — & — & 1in Q) and 27 (5.29), we obtain

(5.38)
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! [VEeneum[E@ 1@ - @ (2]

16
T76(3)
CCCkk, (5.39)
where
Qf =1 — (1= D=1 — &) (p1 + p)*
+(1 =& (p3 + p2)°1.
Qf =172 — (1 - D[-&(p + p)°
+(1 = && 1 - &) (P + p)], (5.40)
Q) =1 = (1 =)= = &)(p1 + p2)*
+(1 = &) (p3 + p2)°,
Q=7 —(1-D[-( —&&0—E)"
(1 + p)* + E1(p3 + p2)°1. (5.41)

One can easily make sure that the expressions (5.35) and
(5.39) are d-closed. For instance, applying d to (5.39) one
can see that the only potentially non-zero term is that with

D(1 — 7). However, Egs. (5.40), (5.41) yield [E(Ql 1) —

E(Q2, |§22)] ‘ . = 0. The case of (5.35) is analogous.

Applicatiorn_ of IH of Sect.4.2 to the MNL pairs of (5.35)
and (5.39) brings the boundary’ part of Eq. (5.46) to the
form

Md{ / V(a(2))V(E(3))[—D(f)l(f)E(Q3IS_Zs)

16
a(2)TTéE(3)
+D(0)[(T)E(S2 |S_24)]CCCkIE} , (5.42)
where
Qf=1z"-(1—-1)
[+t 61630 07
(p1 + p2)*”
ot — g6 —e0™) + ot} (s + p2)°].
Qf == —[-(1=&)(p1 + p2)
+(1 = &D(p3 + p2)1%, (5.43)
Q= —[=(1 =&)(p1 + p2)* + (1 = &) (p3 + p2)°]
& : =72~ (1-D) - {m e rar(1-E160—6) )
(1 + p2)*
+lan( —ga0 - 8™ +ati | (53 + )1
(5.44)

Equations (5.26) and (5.42) yield the following final result
for MNL Bj:
BY" = BY"|pik + By |pna.
i nm
B7777 I
3 |bik T
v(2)tTto(2)

x [E(Ql 18 —E(Q |§22)]CCCk/E,

Uz, HV((2) V(e (2)

(5.45)

B g = 16 V(@@2)V(EQR)

«(2)T7E(3)
X [D(f)l(f)E(Qs 193) —D(0)I(7)

E(Q, |§z4)]ccc1d€ (5.46)
with 1, Q; (5.28), 22, 22 (5.29), 23, Q3 (5.43) and Q4, Q4
(5.44). BY"|pix (5.45) and BJ"|pnq (5.46) are MNL by

construction. This allows us to construct the MNL vertex
T (w, C,C,C).

6 Moderately non-local vertex Y (w, C, C, C)

According to Eq.(3.27) the vertex Y"(w, C, C, C) in the
zero-form sector can be represented in the form

7 ni i
T, C,C.C) =Tyece + Yewce

+TCCwC + TCCCw 6.1

with the subscripts referring to the orderings of the product
factors.

As a consequence of consistency of the HS equations,
though having the form of the sum of Z-dependent terms,
the rh.s. of (4.28) must be Z, d Z-independent. Hence in the
vertex analysis we discard the dZ-dependent terms which
are weakly zero anyway.

In this section we present the final form of the MNL ver-
tices Y7 wece and TC wcc- lechnical details are elaborated in

Appendices D and E, respectively. The vertices T »c and

Tgc Co, €an be worked out analogously. (Note that these can

be obtained from the vertices T(chcc and T - by the HS
algebra antiautomorphism [23,29,30].)
The sketch of the calculation scheme is as follows.
Firstly, we write down the rh.s. of Eq. (4.28) for
Y (w,C, C, C). To this end we use the previously known
W1 , W1 , B” and B'7 rewritten in the form (3.28) in Appendix

A, MNL B; 7 of Sect. 5, Wzm7 obtained in Appendix B in such

a way that [Wzm', Cl, is MNL, and the spin-local vertices
Y (w, C, C) written in the form (3.10) with p = 8 = 0 in
Appendix C, and their conjugated.

Plugging these terms into the r.A.s. of (4.28) one can make
sure that the resulting expressions have the form of Ansatz
(3.28) and are MNL for every ordering of w and C’s.

Let us emphasize that the full expression for Y (w, C, C,
C) (4.28) must be Z-independent for each ordering. In prin-
ciple, one could find manifestly Z-independent expression
by setting for instance Z = 0. The result would not be man-
ifestly MNL, since t and T would not be zero. According to
Z-dominance Lemma, the Z dependence can be eliminated
by adding to the integrand d-exact expressions giving zero
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upon integration in the sector in question sothat 7 =7 =0
in the end. For this we will again use IH of Sect. 4.2.

Namely, for each ordering, picking up an appropriate pair
of terms from the rh.s. of (4.28) we apply IH dropping the
corresponding d-exact part. For the leftover terms, that are
MNL, this procedure is repeated as many times as needed
until all of them cancel except for some cohomological ones
producing the physical vertices.

The resulting MNL vertices are presented in the next sub-
sections. Note that it may not be manifest that they are indeed
MNL. The easiest way to see this is to prove inequalities (4.4)
at the first step of calculations then using repeatedly the sim-
ple inequality

A+ (1 —a)B|+ |aA"+ (1 —a)B'| <a(|A|+ |A'])
+(1—a)(IB|+|B']), €0, 1]

U]
6.1 Y, e

According to (4.28)
T wcce = =Wy lwee) % C = (W |ue)
*B) — (W/'|luc) * By
—w* BY" —dyB}"|wcce — dx B lwcce — diB) loccc-
6.2)

Using IH and formulae (5.45), (5.46), (A.1), (A.3), (A.7),
(A.9), (B.1), _(C.3) one obtains from Eq. (6.2) moderately
non-local Y"|,ccc,

Tlucce =21 / D@D
TTv(2)a(2)E(3)
x [E(91 121) — E(Q |§22)]wccc1<1€
+% D(T)D(E) 2
E()a2)v(2)0 (2)
x [E(sz3 193) + E(S4 |§z4)]wccc1</€
(6.3)
where
m1 = V@2)Vw2)V(EQR)),
n2 =V(BR2))HOVOQ2)V(e(2)V(x(2))
with V (5.1), and
2% 1= — [~z + wilaaia(l — €07 + &Dpo
—fa&(1 — &)+ &) (p1 + p2)
+Ha1éa(1 — &) + &} (p3 + p2)]°,
Q% = —[—(1 — vi1&) po — (1 — &)
(p1+ p2) + (A —=&D(p3 + p2)]”, (6.4)
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D" = —[-(1 —vi&)po — (1 — &)
(p1+ p2) + A =& (ps + p2)]°,
DY =~ + g + k(1 — £
po — (&3 + &1 — &N (1 + p2)

+Haod -+l G+ . ©639)
Q3% = —p1[—(1 — va02a2) po
—(1 —wvaz)p1 + (=v1 +v2a2) p2
—vp3]® — p3©,
Q3% == —[—(1 — ova1) po — 2 (1
+52) + (3 + P17, (6.6)
Q% == —[—=(1 — o2a1) po
—az(p1 + p2) + (p3 + p2)1°,
Q4% == —Bi[—(1 — n02@2) po
—(I —wva)pr + (a2 +1) = 1)
P2 —vip3l® — pac. (6.7)
62 Y
According to (4.28),
T coce = C % (W) |uce) — (W3 coc)
*C — (W] s B] + W' s BD)|cucc
—dy Bgﬁlc(ucc —dyB)lcocc — deQﬁ|CwCC~ (6.8)

Using IH and formulae (5.45), (5.46), (A.1), (A.3), (A.5),
(A.7), (A.9), (B.1), (B.5) and (C.3), (C.4) one obtains from
Eq. (6.8) moderately non-local Ycucc

i nn -
Coce = 16 / D(0)D(T) a1
TTv(2)a(2)(3)

X [E(91 121) — E(Q |§22)]chc1c1€

+12 [ DOD@W[EE@ )
78(2)a2)v(2)o (2)
+E(24 |S4) — E(Q25|$25) — E(Q6 |§26)]Ca)CCkIE
(6.9)
with

p1 = V@)V @2)VER)),
p2 = V(BQ2)HV©(2)V(e(2)V(x(2)
and
@ 1= [ilwer (1 - &)~ + 81
—{a1&2( - &N~ +&Dpo
—{a15( = &N+ &)(p1 + p2)
Hootr(1 - &)~ + &)+ p2)]
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01 = —[1 (1 — &) — (1 — &) fo

—(1=&)(p1 + ) + (1 —EDB3 + )%, (6.10)
Q% 1= —[(v (1 =&) — (1 =&))po — (1 = &3)

(p1+ p2) + 1 =& (p3 + p2)]°,
&% =~ s — &) + &)

—{&3 +aaer(1 =&)D" Do

—(& + el — &) Y1 + )

Haner(1— &)~ + &) (B3 + )1, (6.11)
Q3% :=~[va—o1lpo—0o1p1 +02p2 + p3)“,
Q3% i= {1 (a1lo1 —vi1po—a102p1 + @101 p2 + p3)

+Ba a1 po—ay pr—a1 p2 + a2 p3)} (6.12)
Q4" ==—p1(a1lo1—vilpo—a102p1 + @101 p2 + p3)

+B2 (1 po—ay p1—ay pa + a2 p3)}”,
Q4% := «(va—011po—01p1 + 022 + p3)%, (6.13)
Q5% :=H(voy—1)po—p1—vip2 +v2p31%,
Q5% = () + f2(-o1 —020212)) PO

—opp1 + {—hroav2

+a1}py + {Broavy + a1} p3l%, (6.14)

Q% = (a1 + 201 —020212)) Po
-y p1 + {(Baoava + ar}pr + {Baazvy + a1} p3l®,
(6.15)

Q6% = —{(va02—1)po—p1—Vv1 p2 + v2p31%.
nn
6.3 Yeoc,ce

According to (4.28),
T ccoc = C* (W) |cwc) — (W) |ccw)
*C + (B;7 * Wln + B; * Wln)|CCwC
—dBY"lccoc — dx By lccoc — dx B lccwc - (6.16)

Using IH and formulae (5.45), (5.46), (A.1), (A.3), (A.9),
(A7), (A.9), (B.5), (B.11), (C.4), (C.5) one obtains from
Eq. (6.16) moderately non-local Yccwc ,

i nn _
Cewc = T D(t)D(7)
TTv(2)a(2)£(3)

x [E(91 191 — E(Q» |§22)]CCka1€
D(t)D(7) 12

T2 (2)v(2)o(2)

x[E(@3 193 + E(24 190) — EQ5105)
—E(Q |§z6)]cca)0k1€ (6.17)

with
u1 =V@2)VEQR2)V(EQ)),
u2 = V(BR2)HV@(2) V(e (2))V(a(2)),

@ i= - [(ergr(1 - &)~ + &)

—vifa1e( — &)+ &hpo
~{a1&2(1 — &)+ &) (p1 + p2)

Honbr(1 =)+ + )]

&% = —[((1 = &) —vi(1 — &) o
—(1 = &)(p1 + p2) + (1 — ED(P3 + P21,
% = —[((1—&) —vid=&)po— (1 —&3)
(p1+p2)+ (1 —&D(p3 + p2)]*,
D% = (1521 — 837 + 1)
—vi{83 + on&2(1 — &) o
—{&3 + 2621 — &) NP1 + p2)
Harea(1 — &)1+ &1 (p3 + 1%,
Q3% = (o1 + )
po—p1—o1p2 +o2p3]%,
3% :=Jon(1-Ba(o2 + v1) o
—(1—ayB1) p1+o2(Bi—02B2) pa+az (1-0282) p3 ],

(6.18)

(6.19)

(6.20)

Q4% :=ar(1=Ba(02 + v) po— (1—a281) pi

+ar(B1—0282) P2 + ar(1—0282) p3) ] ",
Qug =01 +v2)po—p1—0152 + 02 p31%, (6.21)
Q5% :==—(1—-o1v1)po

—v1(p1 + p2) + (p3 + p2)1%,
Q5% := (- + pro2 + fro1a2v)) o+ ()

~a2Bv2) p1 +it + Broavi ) o+ p31%, (6.22)

Q6% :=—{(a1+pr02 + fro1a2v1) po
Heap—anBova) p1+{—a1+Brazvi ) pr+az p3l®,

Q6% = A —av)po—vi(p1+p)+(p3 + p)1%.  (6.23)

nn
6.4 Yeccw

According to (4.28),

YT cccw = Cx (WD |ccw)
+B) % (W]lcw) + BY % (W]|cw)
+BY" xw — d,BY"|cccw
—dyBYccco — dx By lccco- (6.24)

Using IH and formulae (5.45), (5.46), (A.1), (A.5), (A.7),
(A.9), (B.11), (C.5) one obtains from Eq. (6.24) moderately
non-local Ycccw

nn -
Ycccw = 16 / D(0)D(T) 1
TTv(2)a(2)6(3)
x [E(Ql 191) + E(2 |s'22)]cccwk1€

nn _
T D(t)D(7) 2
72 (2)v(2)o (2)

x [E(s23 1$23) + E(S24 |Q4)]CCka1€, (6.25)
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with

w1 =V@2)Vw2)V(EQA)),
m2 = V(B2)V((2)V(e(2)V(a(2))

and
2 == [0 + et - &) +&1)po
—{a1&2(1 — &) + &) p1 + p2)”
Hent2(1 = &)~ + &) (ps + p2°]
QY := —[(v1 + v2(1 — &) po
—(1—&)(p1 + p2) + (1 — ED(p3 + p2)1,
(6.26)
Q% i= —[(v1 +v2(1 — &))po — (1 — &3)
(p1+ p2)+ (A =&)(p3+ p)]%,
QS = —[(v1 + nlwea(1 — &) + &) bo
xfa1&a(1 — €)™ + &} (p1 + p2)
+{opt - +alG+pr. 621
Q3% := —[(1 = ov)po — p1 — vip2 + v2p3l®,
Q3% = —(B2(1 —a1o1v2) po — (1 — a2 B2) P
+Ba(er — a1v2) o + fo(l — i) p3)* . (6.28)
Q4% = —(B2(1 — a1vaa)) po — (1 — a2B2) pi
+B2(az — av2) p2 + Bo(1 — ey v2) p3)°,
Q4% = —[(1 — o)) po — p1 —vap2 +vipsl®.  (6.29)

7 Conclusion

In this paper we introduce the concept of moderate non-
locality and calculate moderately non-local vertices Y7
(w, C, C, C) in the mixed n7n sector of HS gauge theory in
Ad Sy for all orderings of the fields w and C. Our calcula-
tion is based on the differential homotopy Ansatz of [17] for
the lowest order holomorphic deformation linear in 7 of the
perturbative analysis of the holomorphic sector. To solve the
problem we use the interpolating homotopy that preserves
moderate non-locality in the process of perturbative analysis
of the HS equations.

The degree of non-locality of vertices is expressed by the
coefficients P/ and P/ in front of, respectively, convolu-
tions p;iq p;* and pis p jd in the exponents E (3.29). Moder-
ately non-local vertices obey the inequalities | P/ | 4| P/ | <
1, while the usual star product C1(y, y) *Ca2(y, y) *C3(y, y)
yields |PY| + |PU| = 2. At the moment, moderately non-
local vertices are minimally non-local among known vertices
in the mixed 17 sector of the HS gauge theory. Note that the
usual spin-local vertices of [27] in the (anti)holomorphic sec-
tor form a subclass of moderately non-local vertices. Let us

@ Springer

also stress that our construction is manifestly invariant under
HS gauge symmetries.

The results of this paper raise a number of interesting
questions for the future study. The most important one is to
understand whether it is possible to improve further the level
of non-locality of HS theory by choosing appropriate field
variables. Another interesting problem is to compare the level
of non-locality of the moderately non-local vertices with that
deduced by Sleight and Taronna [18] from the Klebanov-
Polyakov holographic conjecture [2].

It is also important to extend the results of this paper to
the vertex Y"(w, w, C, C). Presumably, spin-local S;m and

Wzn " obtained in this paper lead to the special form of the
local bilinear nn—current deformation in the one-form sec-
tor, originally obtained in [28] using conventional homotopy
supplemented by some field redefinitions, that leads to the
current contribution to Fronsdal equations [31] in agreement
with Metsaev’s classification [32,33].

Moreover, the IH approach of this paper makes it possi-
ble to obtain the spin-local vertex Y i (w, w, C, C) such that
[Y"(w, w, C, C), Cly is MNL. (Note that [Y""
(w,w,C,C),Cly is not MNL for the spin-local vertex
Y"(w, w, C, C) obtained in [12].) This property is impor-
tant for the analysis of the contribution of the vertices Y7
to Fronsdal equations.

The sketch of the calculation is as follows. Equation (2.3)
yields

T (w, 0, C,C) =—(d W,
+Wisx Wi +deWo +wx Wy + Wo *a))inﬁ.
(7.1)

Plugging W[, W) (A.3), (A.5)), W, ((B.1), (B.5), (B.11))
into the r.h.s. of (7.1) along with Egs. (C.3)—(C.5) and their
conjugated one can make sure that T”ﬁ(a), w,C,C) (7.1)
is spin-local and [T"ﬁ(w, w, C, C), Cl, is MNL for every
ordering of w and C’s. Hence, to eliminate Z-dependence in
a way preserving MNL, one can again use IH of Sect.4.2.
This is work in progress.
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ons.org/licenses/by/4.0/. x I:D(.L. E(Q |S_21) + / V(a(2))
Funded by SCOAP3. SCOAP? supports the goals of the International ’

Year of Basic Sciences for Sustainable Development. a(2)

{ — D(0)I(D)E(Q]|Q)

i
W2 oCC =

Appendix A: S1, Wi, B; —D(f)l(r)E(Q3|Q3)}:|wCCkk, (B.1)

We rewrite S;,W; and B, obtained in [11,12] via £(..)  Where

defined in (3.12) and its conjugated 5_(...) (see also [17]) Q1% == 17% — (1 — )= + 1201) po
_ —o1p1 + o p2l®,
Si = —%/Tl(rw(sz)c sk — gffl(aé(s'nc *k, @t 1= 72 = (1 = D=1 + 102
(A.1) —o2p1 +o1p2]%, (B.2)
Q% = 1z%, Q% =3¢, (A.2) Q% = —[~(1 +v201)po

Wilwc = ﬂf H(D)EQ)wC * k o _-_<T1P1 +ozf72]°‘, ]
4r : Q% =77 - (1 - ‘[)Oll.[—(vl + 1202) Po
W / H(B)E@wC *k (A3) prtenl ®-3)
4 ’ ' QY =1 = (1 — Dl
" =1 +v201)po — o1p1 + 02 p2]%,
Q% 1= —[~(v1 + n102)po — a1 +o12l%, (B4
nmm

QY =1z — (1 — 1)(—0po)?,
QY =774 — (1 — T)(—0 po)¥ (A4)

0 Wil coc = | V@)V (2)
Wilce = — | 1(@)(1)EQ)Cw % k 16
41_ T Tv(2)o(2)
TO
i / H(E@)Cor 5 (AS) [D(r, 7)(E(Q20]Q0)+E(Q1 12D +E(22122))
4i ’ '
7,0 - =
@ — 1 — (1 — D)o p)® + / V@) [DEI®E®IR)
Q¥ = 778 — (1 — D)0 o), (A6) "
B! =% / 1(1)V (0 (2))E(R) CC *k, (A7) —D(fﬂ(f)E(QMQU}]Ckak, (B.5)
1
t0(2) h
Q¥ =1z - (1 =1)(02p2 — 011", (A.8) where
_ f/ _ _ _ Q o — o _ 1 _ _
Bl =1 / 1)V (o 2)EQ) CC *k, a9 o=t ’)[(a o1V1 + 0212) Po
0 (2) . Tan +oapal”,
QF = 724 — (1 — D) (022 — 01 p1)". (A10) S0 =T = (= Dl(=oavi + o)
po —o2p1 + o1 p2]%, (B.6)
Q1 =1z — (1 = »)[—(o1v2 +v) po — p11”,
Appendix B: W7 Q1 =72 — (A =Dl +w)po+ pl*,  (BI)
en :
ppendix ™ ™2 2 = 72% — (I = D)l(ow1 + v)po + pal”,
] _ S0 _ =20 1 =N T
Here we construct an appropriate W2m7 using S;m (5.10). ' =7z (1 =)= (o2v2 +vi)po — p1I”, (B.3)
& o __ o
One can make sure straightforwardly thatif dW," satisfies 5_23. = _(.[VZGZ —vio1lpo —o1p1 +02p2)",
(4.26) with S (5.10) then [dW}", C], is MNL by virte of 3% = 72" = (I = Da1([n201 — vi02]
Egs (A.1)—(A.9) and (5.10). Hence, using the technique of po — o2p1 + o1 p2)%, (B.9)
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Q4% = 12% — (1 — Dy ([n20y

—viozlpo — oap1 + o1 p2)7,

94‘5‘ = —([v202 — vi01]lpo — 01p1 + Uzﬁz)d, (B.10)
7 nm
T / V(o(2)V(»(2)
tTo)v(2)

x [D(r, DHEQ1121)

- / V(Ot(2)){D(T)l(f)E(QzIQz)JrD(f)l(T)

a(2)
E<93|s‘23)”
CCwkk, (B.11)
where
Q% =1 — (1 = D)[(v2 + vi02)
po—o1p1 + 022l
Q1% =17 = (1 = D[(va + vi07)
Po — oap1 + o1 p21%, (B.12)
Q% .= —[(1 —vio1)po — o1p1 + 02 p21%,
% = 77% — (1 = Deal(l — vi0)
po —o2p1 +o1p2]%, (B.13)
Q3% 1= 17" — (I = Daz[(1 — vi01)
po — o1p1 +o2pa]®,
Q3% := —[(1 = vi02) po — 021 + 01 p2]” (B.14)

with E (3.29).

Appendix C: Y"(w, C, C)
Plugging By (A.7) and W; from (A.3) and (A.5) into the
equation

d:C + [, Cly = —dBY — [0, BY].

—[W/,Cla+hc. +-- (C.1)

after some simple algebra one finds using IH and definitions
(3.30), (3.31)

d:C+ [0, Cle = Yoo+ Yo

+Yl e Fhe 4+, (C.2)
where
TZCC = % fD(r)V(aQ))V(p(Z))E(Ql)wCCk, (C.3)
7,p(2)
Tg‘wc = % /D(‘L’)V(G(2))V(p(2))5(92)Cka, (C4)
7,0(2)
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Y cw = % /]D)(‘C)V(a(2))V(p(2))5(§23)Cka (C.5)
7,0(2)
with
Q1 = —(p1 +01p2)po — 011 + 022, (C.6)
Qp = (—o1p1 + 0202)po — 01p1 + 022, (C.7)
Q3 = (p2+ p102)po — 01p1 + 022 (C.8)

Complex conjugated vertices Y are analogous.

Appendix D: Solving for T(Zﬁc cc in detail

Details of extraction of Ycycc (6.3) from Eq. (6.2) are pre-
sented in Sects. D.1-D.6.

D.1 W,ccxC

Taking into account W>|,cc (B.1) along with (B.2)—(B.4)
one obtains

i

_Wnﬁ C =
2 wCC * 16

/ V(e (2))V(v(2))
TTo(2)v(2)

X[— O(z, DEQ1121)

+ / V@@){DOHOE®3(%3)

«(3)

+1D>(f)l(r)E(s22|§22)}]wccc1<1€, (D.1)
Q1% = 2% — (1 = )[—(v1 + vp01)

po —o1p1 +o2p2 + p3l%,
Q1Y = % - (1 - D[—( +102)

po —o2p1 +o1p2 + p3l°, (D.2)
Q% == 2% — (1 — 1) (a1[-(v1 + v201)

po —o1p1 +o2p2l + p3)”,
Q¥ == —[—(v] +1202) po — 02P1

+o1p2 + p31%. (D.3)

Q3% 1 = —[—=(vi+v201) po—01 p1+0o2 p2+p31°,
% 1= 2% — (1 = D{a1[- (1 +1202)

po —oap1 + o121+ p3)”. (D.4)

The "bulk’ term of —W>|,cc * C (D.1), that depends on
Q1, Q1 (D.2) is canceled by the term of (d, + a)*)Bg”|blk
(D.9) with @,  (D.12) generated by d(6(o1)) .

The *boundary’ terms of W»|,,cc *C (D.1) are considered
in Sect. D.6.

One can easily make sure that all terms in (D.1) do satisfy
(4.4) thus being MNL.
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D.2 (W % BJ+W] % B))|wcce

According to Egs. (A.1)-(A.10), taking into account Egs.
(3.30),(3.31),(3.29),(5.1) one gets

—(W] % B + W] % BD)lwcce
ni 7
=1 / V(e (2)V2)O(z, )
tTv(2)0 (2)

X[E(Ql 191 + E(Q) |s'22)]wCCCk12, (D.5)
Q" =1z—0-1)[=po— p1 —o1p2 +02p3]*,
Q% =7z% — (1 = D) (—vipo + 2 + p3)°. (D.6)
Q% =1z = (1 = 1)(—Vv1po + p2 + p3)*,
Qa = 72% — (1 = D)[—po — p1 — 02p2 + 01 p3]°.
(D.7)

Note, that the terms on the rh.s. of (D.5) will be canceled
below by terms of (D.9) with €, Q2 (D.11) generated by
d(@(a1)0(a2)).

D3 (dx 4+ @%) By |piklocce

Using that dE = 0 one can see that Bg 7 (5.45) yields

—(dx + w*)32ﬁ|blk|wCCC = —%
x / (d{D(r, f)V(a(2))V(U(2))V(V(2))} (D.8)

72 (2)o2)v(2)

—d{0(@)8 (@000 (02) | D1 a1 — )

D — o1 — 02)0(z, T)V(»(2)) (D.9)
—d{0E DVe@)Vee)vee)
x[E(Ql 121) — E(Q |§22)]wCCCk/€, (D.10)
where
=12 = (1 = 1)[=(v2 + vi2)
po — a2(p1 + p2) + (1 — 201 (p3 + p2)1%,
QY 1= 774 — (1 — T)[— (2 + v1a1)
po—a1(p1 + p2) + (1 —aro)(p3 + p2)1%,  (D.11)
2 =12% = (1 = )= + vi(~0202))
po — (1 —a202)(p1 + p2) + aa(p3 + p2)1“,
QY =77 — (1 = D=1 + v (—a102))
po— (1 —ajo2)(p1 + p2) +a1(p3 + p)1%.  (D.12)

One can see that nontrivial "bulk’ terms of (D.9) either cancel
each other or cancel — Wl'7 * B; lwccc (D.6), — Wl'7 * B; D.7)
and the "bulk’ term of —W,""xC|,ccc (D.2). Hence all "bulk’
terms on the z.A.s. of (2.14) in the sector under consideration
vanish. The next step is to consider "boundary’ terms.

Note that since B 7 satisfies (4.4), DB} w, C, C, C) sat-
isfies it as well.

D4 (dy + @%) By |pnalwcce

From (5.46) along with (5.43), (5.44) it follows

—(dy + w*)Bgﬁlbndlwccc = % / d{ul
v (2)a(2)£(3)

x[DOIOE@s 193) — DOHDEQ4 124 ]

wCCCkk (D.13)

—nn16 DI —a1—a2)V(v(2))D(1—§1 -2 —&3)
TV (EB3)

xd{6(E)0E)0(E)0 @O |
x[D@UDE® 193) = DEOIDES: 1Q0)]

wCCCkk (D.14)
—nnl6 D(z)D(7) 1
T EQER)
x [E(s23 193) + E(S4 |§z4)]wccc1<1€ (D.15)

with ) = V(a(2))V(v(2))V(§(3)) and

Q4 i= 12 — (1= 1) [~ + vk — &)~ +&Dpo
—lenéa(1 = )7 + E}(p1 + p2)
Hezea(1 =) + &) s+ p2) |

Qf = —[—(v2 + vi(1 — &) jo
—(1 = &)(p1 + p2) + (1 — &) (p3 + p2)I%
(D.16)
Qf = —[—(2+vi(1 —&))po
—(1 =&)(p1+ p2) + 1 —&)(p3 + p)]%,
QY = 772% — (1 = D= + vi{i&
(1—&D)"" +&Dpo
—{o&2(1 — )7 + &) (py
+52) + fnta(l = )7 + 1} (B3 + pI".
(D.17)

One can see that the terms of (D.14) generated by
d{@(al)é‘(az)} cancel against the respective ’boundary’
terms of (D.10) by (5.33)-like changes of variables. The rest
nontrivial terms of (D.14), namely df(&;)-dependent ones,
will be considered in Sect. D.6.

Note, that cohomology terms (D.15) are represented in
Eq. (6.3) of Sect. 6.1.
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D.5 (deé7 +dezn)|wCCC

By virtue of (C.2), taking into account (C.3) and its conju-
gated, one obtains from (A.7) and (A.9)

_(de2r_] + deg)|wCCC

n
=16 /V(a(2))V(U(2))V(U(2))

ttv(2)o(2)
[ - DEIOE®) Q) + DEOIHE®: [92) ]
wCCCkk,

Q1% = —[-(1 — o2»)po — o2 p1 + o1 p2 + p31*

(D.18)

s‘zlo'z — 779
—(1 = D)[—a1(fo + p1 + p2) + 2 p31%,

Q¥ =1z - (1 - 1)
(po + p1 + p2) + az2p3l®

0% = [—(1 — 02v2) po — 021 + 01 p2 + p3l*.

(D.19)

(D.20)

These terms are considered in Sect. D.6. One can easily make
sure that (dx Bg + d, Bg) loccc (D.18) satisfies (4.4), thus
being MNL.

D.6 The rest cohomology terms

Here we consider the rest ’boundary’ terms at T = 0 depen-
dent on 2, Q of the form (D.3), (D.16) at & = 0 and (D.20),
as well as the "boundary’ terms at T = 0 dependent on 2, Q
of the form (D.4), (D.17) at £, = 0 and (D.19).
To obtain rest cohomology terms from those with 7 = 0
consider
nm dlpe
16 / { (D) V(a(2))V(a(2))

tTv(2)a(2)B(2)a(2)

V(v(2))V(ﬂ(2))E(Q|Q)wCCCkI€} (D.21)
with
Q= 127 — (1 - )| Bil—(1 = v202)po
—o1p1 + o2p2] + p3}
—prei(p1 + p2+ po) + 011,32173]0[
Q% = —[—(v1 + 1202) ‘
po —02(p1 + p2) + (p3 + p2)1°. (D.22)

Expression (D.21) is in the d Z-independent sector and hence
gives zero as an integral of an exact form. (Recall, that in this
sector we discard d Z-dependent weak terms.)
Differentiation in (D.21) gives the cohomology term (with
a sign “=7) of (6.3) that depends on Q3, Q3 (6.6) along with
all the rest "boundary’ terms with T = 0. Namely, the term
(~ d(6(B2))) equals to the term in (D.14) that depends on

@ Springer

Q3, Q3 (D.16) at £ = 0, the term (~ d(6(ay))) equals to
a part of —W,"" % C|yccc (D.1) that depends on @, € of
the form (D.3) while that (~ d(6(«7))) equals to the part of
—d, Bg lwccc (D.18) that depends on €2, Q (D.20). Note that
the term ~ d(6(B1)) is weak since Q%|g—o = 72% — (1 —
) p§.

Analogously, differentiation in the following expression

- [ apoieveeveen

tTv(2)a(2)B(2)o (2)

V(U(Z))V(/S(Z))E(Ql@)wCCCklE} (D.23)

with

QY = —[=(v1 +1202)po — 02(p1 + p2) + (p3 + p2)1%,
& = 72— (1= )| Brl—(1 = v200)
po —o1p1 + 02p2] + p3}

o
—Brea (51 + 2+ o) + 1o (D.24)
gives all the rest "boundary’ terms with = 0 plus a cohomo-
logical one. Namely we obtain the cohomology term (with
a sign “-”) of (6.3), that depends on 4, Q4 (6.7), along
with the term of (dy + w*)B]"|pnalwccc that depends on
Q4, Q4 (D.17) at & = 0, the term of Wa * Cl,ccc, that
depends on Q3, Q3 (D.4) and d, B} |,ccc, that depends on
Q1, Q1 (D.19). Note that the expressions (D.24) result from
the application of MNL preserving IH to — W, x C|,ccc and
—d, Bg lwccc, which are MNL (see (D.4), (D.19)).
Thus all cohomological terms in the sector oCCC are
extracted from Egs. (D.15), (D.21) and (D.23) yielding
T wccce (6.3).

Appendix E: Solving for TZZCC in detail

Details of derivation of Y¢,cc (6.9) from Eq. (6.8) are pre-
sented in Sects. E.1-E.8.

E1l Cx*x (Walucc)

Using W3 |,cc (B.1) along with (B.2)—(B.4) one obtains

C*(Wzlwcc)=% /Mm(r,f)E(Qus’z.)CwCCklE
70 (2)v(2)
(E.1)
- / i {DEIHDE®212)
TTo(2Qv(2)x(2)
+D(f)l(r)E(Q3\Q3)}CwCCk12 (E.2)
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with ) = V(e (2)V((2), p2=V(a(2),

Q% =12 — (1 — [ (v + v01)
po — p1 —o1p2 + oap3l”,
Q1% = 72% — (1 — B)[— (1 + v202)

po— p1 — o2p2 + o1 p3l”, (E.3)
D" = —[—(v1 + v201)po — p1 — o1p2 + 02 p3]%,
Q% =77 — (1 = D[—a1 (] + 1202)

po— 1 — 1022 + 01 p31°, (E4)
Q3" = 172" — (1 = »)[—a1 (v1 + v201)

po — p1 —ajo1p2 + o2 p3l”,
% = —[~(v1 +1202) po — p1 — 022

+o1p3]¢. (E.5)

Note that the term in C % (W2|,cc), that depends on 21, Qi
(E.3), is cancelled in Sect. E.4. The *boundary’ terms depen-
dent on Q5, 2 (E.4) and 3, €3 (E.5) are considered in
Sect. E.8.

E2 Wilcwc *xC
Using W3 |cwc (B.5) along with (B.6)—(B.10) one obtains

nn _ -
—Wacoe + € = =12 [ O, B {EQ0l0)

,7,0(2),0(2)

+E(Q112Q1) +E(Qz|§zz)}cwcc1</€, (E.6)
nn - =
- JumfpoioE@it
7,7,v(2),0(2),£(2)
—D(f)l(r)E(Q4|§z4)}cwCCk/E (E.7)
with 1 = V(@@ 2)V((?2)), w2 = V(x(2)),
Qo =1z — (1 — D[(—0o1v1 + 0212)
po — o1p1 + oapr + p3l%,
Q" = 77% — (1 — D)[(—o2v1 + T112) o
—oop1 + o1 pa2 + p3l’, (E.8)
Q% =12 — (1 = D)[(=o1v2 —v1)po — p1 + p3l°,
Q% =721 — (1 = Dl(o1v1 +v2)po + P2 + p31%,
(E.9)
DY =1—(1-1)
x[(o2v1 + v2)po + p2 + p31%,
DY =77—(1-17)
x[—(02v2 + v1) po — p1 + P31, (E.10)

Q3% = —([v202 — vio1lpo
—o1p1 +o2pr + p3)%,
Q3% = 77% — (1 — D{&1([v201 — vi02]

po— 02p1 +0152) + p3)’. (E.11)
Q= 17" — (1 = D){&1([v201 — v102]

po — o2p1 +o1p2) + p3l©,
Q% = —([va02 — via1]po

—o1p1 +02p2 + p3). (E.12)

Note that the £, ©2o dependent term (E.8) cancels against
that proportional to d[6(c1)] of dB" |pik|cwcc (E.17) that
depends on €2, 2 (E.23), while the terms dependent on
Q, Q(E.9) and (E.10) are considered in Sect. E.7. The terms
dependent on €2, Q (E.11) and (E.12) are considered in Sect.
E.8.

E3 (Wﬁ « B + W« Bj) lcoce

According to (A.5), (A.7) and (A.9)
— (W] % B] + W) % B])|cwcc

= _% 1 O, D[ E@11Q) - B9 |

t7p(2)0(2)

xCwC Ckk, (E.13)

with u = V(o (2))V(p(2)),
Q1 = 1% = (1 = D[=(po + p1) — p1p2 + P231%,
Q% =72 = (1 =D)(o1po + p2 + p3)*, (E.14)
Q" =1 = (1 = 1)(o1p0 + p2 + p3)%,
Qy=7t7—(1-1)
x[=(po + p2 + p1) + p1(p2 + p3)1%.
The term (E.13) is considered in Sect. E.7.

(E.15)

E4 diBs3lpiklcocc

Using that dE = 0 one can see that Eq. (5.45) yields
i
16
(4{oe D)
TTv(2)0(2)§(2)
~d{ui |0 D

~d{0G, B | rie) [E@i1Q) - E@212)]
wCCCkk,

with up = V(o (2)V((2)), p2 = V((2)),

Qf =1 — (1 = D[ (1 —vr01) — 12)
po —v2(p1 + p2) + (1 —vo)(ps + p2)1°,

QY =774 — (1 = DIE (1 — vio1) — v1)
po—vi(p1+ p2) + (1 —vio)(p3 + p2)1%,

—dBY |piklcoce = —

(E.16)

(E.17)

(E.18)

(E.19)

@ Springer
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Qf :=12% — (1 = D[(—(1 — v202) + &112)
po — (1 =v202)(p1 + p2) + va(p3 + p2)1°,
Qf =72 — (1 = DI(—(1 — vi02) + & vy)

po— (1 —vio2)(p1 + p2) +vi(p3 + p2)1%.  (E.20)

Non-zero terms of (E.17) are those that depend on
Q=0 =1z = (1 — D[(&102 — D) po —

(p1+ p2) + o2(p3 + p2)1°,
Qy 0 = T2% — (1 = D)

po+ (53 + p2)1* (E:21)
QY ln=0 =12% = (1 = D[EDpo + (p3 + p2)]%,
Qim0 = T2% — (1 = D[(E102 — 1)

po — (p1 + p2) + 02(p3 + p2)1%, (E.22)
Qg—0 = 12% — (1 — D[(E — 12)

po — v2(p1 + p2) + (p3 + p2)1%,
Q=0 = 72% — (1 — D[(E1 — v1)

po—vi(p1 + p2) + (3 + p)1%, (E.23)
Qfloy=0 = 12 — (1 = DI(—=1 + £112) po

—(p1+ p2) +valps + p2)1°,
Qom0 = 729 — (1 = D(—1 + £111)

po— (P1 + p2) +vi(ps + p2)1% (E.24)

Note, that the sum of the terms on the r.A.s. of (E.17) depen-
dent on (Q, Q1)|s=0 and (22, Q2)]s,=0 gives zero. The
term of (E.17), that depends on ©22|s,—0, $22|s=0 (E.24)
cancels the term of C * (W3|,cc) (E.3), while the term
that depends on 2|4, =0, Qlla] —o (E.23) cancels the term
of —Wacuc * C (E.6), that depends on €2, Q (E.9).

The non-zero *boundary’ terms of (E.18) are cancelled by
the respective terms of (E.26) from d{Q(oc] )9(052)} as can be
seen with the help of the (5.33)-like changes of variables.

The rest non-zero (€21, Q 1], ,=0-dependent terms of
(E.17) associated with (E.21), (E.22) are considered in Sect.
E.7.

E.5 dxBslpndlcwcc

From (5.46) along with_(5.43), (5.44) it follows

dx B3lpndlcwcc = _%
d[V(p(Z))V(V(Z))V(EG))

TPV Q)P Q)EB)
x []D)(f)l(t)E(Q3|§_23) + D(r)l(f)E(Q4|§z4)]}

x CwCCkk
_n
16
TT1(2)p(2)E(3)
xD(1-p1—p2) V(v (2))D(1-£1—&r—£3)

(E.25)
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xd{6(E)0 (€0 )0 (010 (02)
[D(f)z(r)E(Q3|§z3) + D(r)l(f)E(Q4|§z4)]
xCwC Ckk
/D(T)D(f)v(p(2))V(V(2))V(5(3))
TE()PEB)

[E(Q3|§23) - E(Q4|s'24)]c@ccm€,

(E.26)

(E.27)
2 = 2" — (1 = 1) [0l — 87! +61)

—{m&( —&n" +&hpo
—{m&( — &) +&)p1 + p2)

Hmb (=& + &) + )]

8% = [ (1 — &) — (1 — £3)
po— (1 —&3)(p1 + p2) + (1 — 1) (3 + p2)1°,
(E.28)

QY = [ (1 — &) — (1 — &)

po— (1 =&)(p1 + p2) + A —&D(p3 + p2)1*,
Q% =72 — (1 - DI {p162(1 — &)

+E1} — (&3 + o282 (1 — £ o

—{&3 + p2&2(1 — £ }(P1 + P2)

+Hor1e2(1 — &)1+ 61)(53 + p)1%.

Since d Z-dependent terms do not contribute to this sector
(are weak), d-exact terms (E.25) do not contribute to the final
result as well.

As mentioned above, the terms of (E.26) generated by
d{@(pl)e(pz)} cancel against non-zero *boundary’ terms of
(E.18) through (5.33)-like changes of variables. The rest non-
zero terms of (E.26) generated by d{9 (&1)0O (53)} are consid-
ered in Sect. E.8.

Note that the cohomology terms (E.27) are presented in
Sect. 6.2 as those dependent on €, € (6.10) and (6.11).

(E.29)

E6 d,Blcwcc

By virtue of (C.2), taking into account (C.3) and (C.4) and
their conjugates, one obtains from (A.7) and (A.9)

4(B]+ BY)lewce = 1o [ w[DoN@
TTE(2)0 (2)p(2)
{ - E@Q1IQ) + E(22(Q)}
+D (D)D) {E(Q3]23) — E(Q4|§24)}] CwCCkk
(E.30)

with 1 = V(0(2))V(p(2)V(£(2)) and

Q% =1 — (1 = )[o2po — o1p1
+o2p2 + o2 p3]*,
Q% = —[—(&1p2+ p1) Po



Eur. Phys. J. C (2023) 83:1154

Page 21 of 22 1154

—p1 — &7y + E2531%, (E31)
Q% =17 — (1 = D[~01po — o1 p1

—o1p2 + o2p3l®,
QY = —[(~&1p1 + &202)

po —&1p1 + &2p2 + p3l”, (E.32)
Q% = —[—(&1p2 + p1)po — P1

—&1p2 + & p3l”,
Qi =77—(1-1)

x[02po — 01 p1 + 02 (P2 + p3)1%, (E.33)
Q% = —[—(&1p1 — &202)Po

—&1p1 +&p2 + p3l”,
Qi =7%-(1-17)

x[—01po — o1p1 — 01 p2 + 02 p3]%. (E.34)

These terms are considered in Sect. E.S8.
E.7 Rest ’bulk’ terms

Taking into account that the leftover non-zero “bulk’ terms
of Sects. E.2-E.4 [(namely, those dependent on 2, Q (E.9),
(E.14), (E.21), (E.10), (E.15), (E.22)] are spin-local, one
can straightforwardly make sure that the sum of these terms
equals to a total differential that gives zero modulo the
boundary’ terms (E.36):

17

7 [ deeoveveevea)

tTp(2)EQ2)0(2)
(E.35)

-0 5 [Ve@pVe@)VEER))
[E(Q] %)) — E(92|§zz)}CwCCklE,

=1 = (1 = D[(k2p202 — 1)
po — p1+ p3 —o1(p3 + p)l”,
QY =779 — (1 - 1)
[E1p1 + &) po + (3 + p2)I%, (E.37)
2 =12 = (1 =D& 1p1 +&)po + (p3 + p2)*],
Qf =172 —(1—1)

[(E20202 — D) po — p1 + p3 — o1(p3 + p2)1*.

(E.36)

(E.38)

Note, that the terms (E.35) and (E.36) are spin-local.

Hence, at this stage, all "bulk’ terms cancel. We are left
with the “boundary’ terms of (E.36). The non-zero ones are
proportional to ID(t) or ID(7), namely those dependent on

QY lr=0 = —[(§20202 — Dpo — p1 + p3 — o1(p3 + p2)1%,

Qf =72 = =DIA =& p)po+ (p3+ P21, (E39)

Qf =1z — (1 =) = &1p2)po + (p3 + P2)]%,

QFl7=0 = —[(E2p200 — D) po — p1 + p3 — o1(p3 + p2)1%,
(E.40)

are considered in the next section.

E.8 Rest cohomology terms

Now we are in a position to consider non-zero ’bound-
ary’ terms of Sects. E.1, E.2, E.5, E.6 and E.7 contained
in Egs. (E.2), (E.7), (E.26), (E.30) and (E.36).

For instance, consider the terms with T = 0, i.e.,

1. Eq. (E.2) with ©, Q (E.4).

2. Eq. (E.7) with Q, Q (E.11).
3. The term of Eq. (E.26), generated by Q, Q (E.29) pro-
portional to D(1 — & — &)ID(&3) with

Q" = —[(o1(1 = &) — (D))po — (p1 + p2)
+( = &D(p3 + p)]°,
QY =7 — (1 = Dl(o1{—p2&2 + 1} — p2) o

—p2(p1 + p2) + (m1E2 + E1}(P3 + )1, (E41)

4. The non-zero term of Eq. (E.26), generated by €2, Q
(E.29) proportional to D(1 — o7 — & — &3) x D(&1) with

Q% = —[(o1 — &)po — &(p1 + p2) + (p3 + p2)1°,

Q¥ =77% — (1 = Dl(o101 — & + p2£2)) Po
—{& + p2&2}(p1 + p2) + p1(p3 + p2)]*.

5. Eq. (E.30) with ©,  (E.33) .
Eq. (E.30) with Q, Q (E.34).
7. Eq. (E.36) with ©,  (E.39).

o

I. Firstly, we observe that the sum of the terms Eq. (E.7)
with 2, Q(E.11), Eq. (E.26) with 2, €2 (E.42) and Eq. (E.30)
with Q, Q (E.34) acquires the form

nn _ _ -
E / (dID(0) 1 18)] ~ DED ) E@ID)]
T2 (2)0(2)p(2)
CwCCkk, (E.43)
where 1 = V(B(2))V(0(2)V (6 (2))V (@ (2)),
Q% = —([p2 — o1]lpo — o1 p1 + 02p2 + P3)°
QY =77 — (1 = D{Bi(ailor — p1]
po — @102p1 + @101 p2 + p3)
+B2(—a1 po — a1 p1 — 1 pa + a2 p3)}e. (E.44)

Since (E.44) was obtained by application of IH to (E.34)
and (E.11), the cohomology term of (E.43) satisfies the con-
dition (4.4), i.e., is MNL. It is represented on the zA.s. of
Eq. (6.9) Q3, Q3 (6.12).

@ Springer

(E.42)



1154 Page 22 of 22

Eur. Phys. J. C (2023) 83:1154

II. Secondly, noticing that the following expression is
exact, thus giving zero in the d Z-independent sector upon
integration,

—’Z—Z / d(D(r)MG(f)O(l - f)E(sz|§z)) CwCCkk,
1TB(2)0 (2)a(2)p(2)
(E.45)
with u = V(B(2))V(p(2))V(c(2))V(x(2)) and
Q% =[—(—p202+ 1) po — p1 — p1p2 + p2p31*
Q% = 77% — (1 — D[B1a1 po
—Brazp1 + Bray(p2 + p3)
+B2(02 — 020202 — a2) po — {Bra2}(P1
+52) + Bol—a2p2 + 1}(p3 + p2)1%, (E.46)

we observe that the differentiation yields a sum of the terms
of Eq. (E.2) with 2, Q (E.4), Eq. (E.26) with 2, Q (E.41),
Eq. (E.30) with 2, €2 (E.33) plus the following one:

_m

16 D(r)V(B2)V(p(2)
TTQER)a(2)p(2)
V(o (2))1(%)E(Q|§2)) CwCCkk (E.47)
with
Q¥ = [~(=p202 + D)po — p1 — p1p2 + p2p31%,
Q¥ =77 — (1 = DI — oo po + (p3 + p2)]*
(E.48)

plus the cohomology term represented with the minus sign
in Eq. (6.9) with ©, Q (6.14).

Note that to obtain (E.46) we apply IH to (E.33) and
(E.41), hence preserving MNL.

III. Finally, applying IH to the terms (E.47) with €, Q
(E.48) and (E.36) with Q, € (E.39), we obtain the following
exact form that does not contribute to the vertex

% / d(D(t)ue(f)e(l—f)E(mQ))

tT(2)a(2)a(2)p(2)

CwCCkk (E.49)

with u = V(B(2))V(p(2))V(0(2))V(a(2)) and

QY 1= —[(a1p20202 + a2 0202 — 1)
po — p1+ p3— p1(p3 + p2)1%,
Q% =77 — (1 = DI — Bro)po + (p3 + p2)1* .
(E.50)

The sector of terms with T = 0 is considered analogously.
The_ﬁnal results are presented on the r.4.s. of Eq. (6.9) with
Q, Q (6.13) and (6.15).
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