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Abstract We show that the f (R)-gravity theories with
constant Ricci scalar in the Jordan/Einstein frame can be
described by Einstein or Einstein–Maxwell gravity with
a cosmological term and a modified gravitational con-
stant. To obtain the rotating axisymmetric solutions for the
Einstein/Einstein–Maxwell gravity with a cosmological con-
stant, we also propose a modified Newmann–Janis algorithm
which involves the non-complexification of the radial coor-
dinate and a complexification of the polar coordinate. Using
the duality between the two gravity theories we show that
the stationary or static solutions for the Einstein/Einstein–
Maxwell gravity with a cosmological constant will also be
the solutions for the dual f (R)-gravity with constant Ricci
scalar.

1 Introduction

The general theory of relativity (GR) is widely accepted as
the fundamental theory of spacetime and gravity. Despite
predicting numerous observational tests at large distances
and late time scales (Infrared regime) to match the measure-
ments from solar system tests, GR has gone through several
challenges from the observational and theoretical viewpoints.
Cosmological observations pertaining to cosmic microwave
background (CMB), Type Ia supernovae and several oth-
ers indicate that the Universe has undergone two phases of
cosmic acceleration namely inflation and dark energy that
occurred at early and late times respectively [1–5]. GR, in
its original form, is unable to explain these phases of cos-
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mic acceleration. Cosmological constant used to parametrize
the recent accelerated expansion of the Universe is plagued
by hierarchy problems in particle physics [6]. Beyond its
inconsistencies with cosmological and astrophysical data,
GR also presents numerous theoretical weaknesses. Most
prominently, GR struggles in the Ultraviolet spectrum, espe-
cially when interpreting the physics of black holes and cos-
mological singularities at short distances and small time
intervals. This is due to the fact that GR is a 2-derivative
action which poses problems of renormalizability at the quan-
tum level. The non-renormalizability of GR has spurred inter-
est in higher derivative gravity theories, often referred to as
modified gravities.

A simple yet consequential model for modified gravity
is the f (R) gravity theory in which the Lagrangian density
is modified to be an arbitrary analytic function of the Ricci
scalar [7,8]. The significance of higher-order terms in the
f (R) gravity Lagrangian can be attributed to the fact that
they can descend from the low energy limit of String/M-
theory [9]. The simplest f (R)-gravity with R2 correction
can give rise to a phase of inflation which was first proposed
and explored by Starobinsky [10]. There are numerous f (R)

gravity models to explain the cosmic inflation [11–23] and
current accelerated expansion of the Universe [24–32]. In
addition to that f (R) gravity theories also has been inves-
tigated in explaining the singularity problem arising in the
strong gravity regime [33–42], galaxy rotation curves [43–
51], detection of gravitational waves [52–63] and many more.

The current era of gravitational wave astronomy has pre-
sented us with the possibility of investigating physics of
extremely compact objects, such as black holes and neutron
stars [64]. This has opened new prospects for observing and
testing theoretical models in the strong gravity regime. As
a platform for theories that explain cosmic acceleration and
inflation, it is of paramount importance to explore and test
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f (R) theories of modified gravity. The study of the proper-
ties of black hole solutions in these scenarios can provide
strong gravity tests for these theories and may hint toward
significant deviations from the GR. This knowledge of black
hole space-time can be obtained from solutions to the field
equations, which, although easy to find analytically in Gen-
eral Relativity (GR), is a non-trivial task in modified gravity
theories. Since most astrophysical objects are considered to
be spinning, there is an interest in finding rotating black hole
solutions for f (R) theories. Several black hole solutions in
modified gravities with or without matter have been studied
previously. Outside of f (R) theories [65–70] such studies
involve finding the black holes solutions for Gauss-Bonnet
Gravity, Lovelock, non-local, and other modified theories
studied in [71–77].

It is well known that f (R) gravity in Jordan frame can
be recast as a non-minimally coupled scalar-tensor gravity
theory in the Einstein frame by means of a conformal trans-
formation [78,79]. Thus for a problem formulated for f (R)

gravity, the usual approach is to first solve the simpler field
equations of motion in the Einstein frame and then use a
conformal transformation to revert back to the Jordan frame.
Spherically symmetric black hole solutions of f (R)-gravity
theories with or without matter have been studied in the Ein-
stein/Jordan frame in [80,81]. Although this conformal trans-
formation of higher order gravity to scalar-tensor gravity is
in general plausible, it does not shed enough information
about the physical relevance of these two theories in differ-
ent frames. This discrepancy is related to the fact that using a
conformal transformation to go from one frame to the other
the stability of the solutions and their physical meaning can
completely change. This leads to several physical constraints
which has to be imposed on the form of the function f (R) in
order to have stable solutions in both the Einstein and the Jor-
dan frame [82]. Here the stability of the black hole solutions
refers to their existence conditions/physical constraints. This
is different from the usual stability analysis which involves
a perturbative approach of considering small deviations of
the metric and other fields describing the action of modi-
fied gravity. Despite the ambiguities mentioned above, it has
been well establish that any f (R) gravity with constant Ricci
scalar is dual to the Einstein gravity with a cosmological and
an effective gravitational constants [83,84].

Motivated by the the above duality of f (R)-gravity in the
Jordan frame to scalar-tensor gravity in the Einstein frame,
in this work we have explored the description of constant
curvature f (R) gravity in the Einstein frame. We show that
the constant curvature f (R)-gravity in the Einstein frame is
indeed described by Einstein Gravity with a cosmological
and an effective gravitational constants at the level of the
action and field equations. In this work, we also examine
the possible static or stationary blackhole solutions for the

constant curvature f (R)-gravity with Maxwell field in the
Einstein frame.

In general it is not an easy task to obtain the rotating black
hole solutions in the modified or the simple Einstein grav-
ity models with various horizon topologies because of the
nonlinear nature of the field equations. It was observed by
Newman and Janis in the case of the Einstein equations that
a certain algorithm produces the Kerr solution from the cor-
responding non-rotating counterpart. This procedure is now
known as the Newman–Janis algorithm (NJA) [85,86]. This
algorithm has been widely used as a technique to generate the
Kerr-like rotating metrics from the corresponding static met-
rics, see [87–91]. This algorithm provides a way to generate
axisymmetric metrics from a spherically symmetric station-
ary seed metric through a particular type of complexification
of radial and time coordinates. Although this algorithm func-
tions effectively within the framework of classical General
Relativity (GR), the reason it yields the same result for the
Kerr metric in classical GR remains somewhat elusive. More-
over, it has been illustrated in [92–94] that the NJ algorithm is
not suitable for generating axisymmetric metrics in quadratic
gravity models. Furthermore, It is still unknown about the
applicability of the NJ algorithm to the other modified grav-
ity models. In this paper, we propose a modified version of
the NJ algorithm in order to generate stationary axisymmet-
ric blackhole solutions for various constant curvature f (R)

gravity models in the Einstein frame.
The article is organised as following. In Sect. 2, we review

the Jordan and Einstein Frames for modified gravity and
establish the duality between the constant curvature f (R)

gravity theories in Jordan frame to Einstein–Maxwell grav-
ity with a CC. Furthermore, we explicitly show this duality
for well-known examples. Section 3 deals with the modifica-
tion in Newmann–Janis Algorithm to generate the rotating
black hole solution for the Einstein gravity with CC. Finally,
we discuss our findings and draw conclusions in Sect. 4.

2 f (R) gravity in Jordan and Einstein frames

The standard form of the action for f (R) gravity in the so-
called Jordan frame is given by

SJ = 1

2κ

∫
d4x

√−g f (R) + SM , (1)

where κ = 8πG in natural units withG being the four dimen-
sional gravitational constant, f (R) is a generic function of
the Ricci scalar R, and SM is the usual matter contribution
to the action. Varying the above action with respect to the
metric results in the following Euler–Lagrange equations of
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motion

(gab� − ∇a∇b) F(R)+F(R)Rab−1

2
f (R)gab = κTab, (2)

where F(R) = f ′(R) and the matter stress-energy tensor
Tab is given by

Tab = − 2√−g

δSM

δgab
(3)

The following action describes the Einstein-Hilbert grav-
ity with a non-minimally coupled scalar field

SJ = 1

2κ

∫
d4x

√−g
(
F(φ)R − VJ (φ)

) + SM , (4)

where

VJ (φ) = φF(φ) − f (φ), (5)

is dynamically equivalent to the f (R) gravity action in (1).
This may be seen by considering the variation of the action
in (4) with respect to the metric and to the scalar field-φ(xμ)

which gives us the following Euler–Lagrange equations of
motion

(gab� − ∇a∇b) F(φ) + F(φ)Rab − 1

2
f (φ)gab = κTab,

F ′(φ)(R − φ) − F(φ) + f ′(φ) = 0. (6)

Now provided F ′(φ) �= 0 and F(φ) = f ′(φ) one gets
the constraint R = φ from the second equation of motion in
(6). Plugging back the constraint R = φ in the action (4) and
the equations of motion (6) one recovers the f (R) gravity
action and equations of motion. The action in (4) can now
be recast in the Einstein frame by considering the following
conformal transformation

g̃ab = F(φ) gab, (7)

where one must impose F(φ) > 0 for the regularity of the
given transformation. Given the new metric g̃ab, the action
for the f (R) gravity can now be written in the Einstein frame
as

SE =
∫

d4x
√−g̃

(
R̃

2κ
− 1

2
∇̃a φ̃ ∇̃bφ̃ − VE (φ̃)

)
+ S̃M ,

(8)

φ̃ =
√

3

2κ
ln [F(φ)], VE (φ̃) = VJ (φ)

F(φ)2 , (9)

R̃ = 1

F(φ)

(
R − 3

�F(φ)

F(φ)
+ 3

2

∇a F(φ)∇a F(φ)

F(φ)2

)
, (10)

where the quantities with the subscript (̃) are defined with
respect to the new g̃ab-metric. Moreover, under the transfor-
mation (7) the matter stress-energy tensor transforms as

T̃ab = Tab
F(φ)2 (11)

The conformal equivalence of f (R) gravity in the two
different frames as described above, must be accompanied
by certain consistency conditions. In particular, for the case
when the form of f (R) is described by a polynomial func-
tion of order greater than two, the correspondence between
the two conformal frames becomes many-to-one [82]. This
implies that there are multiple Einstein frame descriptions of
a single higher-order f (R) theory. As described in the intro-
duction, for a given higher-order f (R)-gravity in the Jordan
frame one has to consider F ′(R) > 0 and F(R) > 0 as the
necessary conditions for the existence of the corresponding
Einstein frame. These conditions are also required to ensure
the existence of a matter-dominated era in cosmological evo-
lution in a high curvature classical regime, as elucidated in
[82]. This motivates us to first consider the possible solutions
of the f (R) gravity in the Einstein frame. We also interpret
the equivalence of such solutions in the Einstein frame with
those in the Jordan frame.

2.1 Constant curvature black hole solutions for f (R)

gravity in Einstein frame

The action in (8) describes the f (R) gravity in the Einstein
frame. Considering the matter contribution coming solely
from the Maxwell field (Aa) i.e.,

S̃M = − 1

8κ

∫
d4x

√−g̃ F̃2, (12)

where F̃2 = F̃abF̃ab and F̃ab = ∇̃a Ab − ∇̃b Aa is the
electromagnetic field strength tensor.1 one can see that the
action in (8) describes an Einstein–Maxwell (EM) gravity
non-minimally coupled to a scalar field. The corresponding
Euler–Lagrange equations of the motion for the field φ̃, g̃ab,
and Aa can now be given as

R̃ab − 1

2
g̃ab R̃ −

(
∇̃a φ̃ ∇̃bφ̃ − g̃abVE (φ̃)

+F̃acF̃cb − 1

4
g̃abF̃2

)
= 0, (13)

∇̃a∇̃a φ̃ − δVE (φ̃)

δφ̃
= 0, (14)

∇̃a
(F̃ab) = 0. (15)

1 The electromagnetic field strength tensor in the Einstein frame is
related to the one in the Jordan frame by the transformation, F̃ab =
Fab/F(φ)2.
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Determining a general solution for the above equations of
motion is in general difficult when the scalar field φ̃ has a
dynamical (coordinate dependent) solution [95–100]. How-
ever, in the case when the scalar field φ̃ has a constant profile
then assuming,

φ̃ = C, F(φ) = e

√
2κ
3 C

, VE (φ̃) = �

κ
e−

√
2κ
3 C

, (16)

where C and � are some constants, it may be observed that
the action in (8) reduces to

SE = 1

2κ

∫
d4x

√−g̃

(
R̃ − 2�e−

√
2κ
3 C − 1

4
F̃2

)
,

= 1

2κ̃

∫
d4x

√−g

(
R − 2� − 1

4
F2

)
, (17)

which describes the Einstein–Maxwell (EM) gravity with a
cosmological constant (�) and a modified effective gravita-
tional constant (Gef f ) given by

Gef f = κ̃

8π
= Ge−

√
2κ
3 C

. (18)

The cosmological constant is related to the AdS or dS
length (L) as � = − 3

L2 or � = 3
L2 respectively. Depend-

ing on the sign of the cosmological constant, it is well
known that the EM-gravity with a cosmological constant
possesses several solutions namely, Reissner–Nordström
AdS/dS black hole and Kerr–Newmann AdS/dS black hole.
Moreover, for vanishing Maxwell field these solutions reduce
to Scwarzschild AdS/dS black hole and Kerr AdS/dS black
hole respectively. These black holes usually belong to the
constant R̃ (R̃ = 4�) solution space of the EM-gravity with
a cosmological constant. Given the constraints (16) together
with R̃ = 4�, (9) and (10), one can see that the curvature
R in the Jordan frame can be fixed to a constant value given
by2

R = R0 = 4�e−
√

2κ
3 C

, (19)

From the above result, it is straightforward to see that the
constant R̃ solution space of the EM-gravity with cosmolog-
ical constant maps to the constant R solution space of the
f (R)-gravity in the Jordan frame. In the next subsection, we
discuss the consistency conditions required to match the con-
stant Ricci scalar solution space in both the EM-gravity with
a cosmological constant and the f (R)-gravity in the Jordan

2 This value is comparable to form of the Ricci scalar for Buchdahl
inspired metric considered in [101]. The k = 0 case in Eq. (4) of [101]
corresponds to the constant Ricci scalar or φ̃ = constant case discussed
in this work. We find this connection interesting but a detailed analysis
is beyond the scope of this paper.

frame. We will also discuss several viable forms of the f (R)

function that satisfy the said conditions.

2.2 Constant curvature black hole solutions for f (R)

gravity in Jordan frame

The action describing the f (R) gravity in Jordan frame in (1)
where the matter contribution comes from a Maxwell field
(Aa) can be given as

SJ = 1

2κ

∫
d4x

√−g

(
f (R) − 1

4
F2

)
, (20)

where F2 = FabFab and Fab = ∇a Ab − ∇b Aa is the elec-
tromagnetic field strength tensor. The equations of motion for
the above action are given by (2) and the following Maxwell
equation

∇a(Fab) = 0, (21)

where the traceless Maxwell stress-energy tensor is given as

Tab = 2

κ

(
FacFcb − 1

4
gabF2

)
(22)

Considering the constant curvature scalar R = R0, the
trace of (2) leads to

R0 = 2 f (R0)

F(R0)
. (23)

which determines the curvature scalar in terms of the func-
tion f (R) as long as F(R0) �= 0. The condition that the
curvature scalar must assume constant real values restricts
the possible form of the f (R) function. This also implies
the possibility that some theories of f (R)-gravity can give
multiple real values of R0 while for others one may not have
a real constant value for the curvature scalar. Several models
of f (R)-gravity, where one can have a real constant value
for the curvature scalar, have been discussed in [102]. Thus
restricting to such theories of f (R)-gravity with a real con-
stant value for the curvature scalar, one can use (23) in (2) to
obtain

Rab − f (R0)

2F(R0)
gab = κ

F(R0)
Tab. (24)

The above equations of motion for the f (R)-gravity with
constant curvature scalar are reminiscent of the ones obtained
for the usual Einstein gravity with a cosmological constant

� = f (R0)

2F(R0)
, (25)

123



Eur. Phys. J. C (2023) 83 :1124 Page 5 of 12 1124

and an effective gravitational constant

Gef f = G

F(R0)
, (26)

which indicates a duality between the two different theories
captured by the same action in (17). To ensure the positivity
of the effective gravitational constant one has to impose the
following conditions

F(R0) > 0, F ′(R0) > 0, (27)

where the second conditions F ′(R0) > 0 is required for
a stable higher-order f (R)-gravity.3 We now discuss some
known models of f (R) gravity with constant scalar curvature
[102] and discuss which of them can be described by an
Einstein gravity with a cosmological constant. We also study
the stability conditions for their constant scalar curvature
solutions described by the following four-dimensional line
element

ds2 = −g(r) dt2 + dr2

g(r)
+ r2 d�2

k, (28)

where

d�2
k =

⎧⎪⎨
⎪⎩
dθ2 + sin2 θ dφ2, k = 1

dθ2 + dφ2, k = 0

dθ2 + sinh2 θ dφ2, k = −1

(29)

which represents the line element of a 2-sphere for k = 1, a
2-hyperboloid (H2) for k = −1, and flat 2-dimensional line
element for k = 0 respectively.

Case (I): f(R) = R − μ4/R model

This is one of the earliest models of f (R)-gravity proposed
in [103] to explain the positive acceleration of the expand-
ing Universe. Interestingly, this model reduces to the usual
Einstein gravity with f (R) = R for very large values of the
Ricci scalar. However, for small values of the Ricci scalar one
can not neglect the 1/R term implying a modified gravity in
this regime. The field equation for the Maxwell field is given
by (21) and for the metric it is given by(

1 + μ4

R2

)
Rab − 1

2

(
1 − μ4

R2

)
Rgab

+μ4 (gab� − ∇a∇b) R
−2 = 2

(
FacFcb − 1

4
gabF2

)
,

(30)

3 Note that the condition F ′(R0) > 0 comes from the requirement of

the positivity of,
dGef f
d R

∣∣∣
R=R0

which ensures the stability of the f (R)-

gravity.

For the constant-curvature vacuum solutions (∇a R = 0),
one has R = ±√

3μ2. Now on using the metric ansatz (28)
in (30), one can see that the only possible solution is the
Schwarzschild-AdS/dS black hole solution with

g(r) = k − �

3
r2 − M

r
, � = ∓

√
3

4
μ2 (31)

which is also a solution to the Einstein gravity with the cos-
mological constant (�). Here, it should be noted that for this
model of f (R)-gravity it is not possible to have Reisnner–
Nordstrom AdS/dS black hole solutions. Furthermore, the
stability conditions (27) in this case become

(
1 + μ4

R2

)∣∣∣∣
R=±√

3μ2
> 0,

(
−2μ4

R3

)∣∣∣∣
R=±√

3μ2
> 0 (32)

which shows that the condition F ′(±√
3μ2) > 0 is vio-

lated for both the Schwarzschild-AdS/dS solutions. In partic-
ular, for the Schwarzschild-dS solution, this violation implies
that this model suffers from the Dolgov-Kawasaki instability
[104]. To remove this instability from the Schwarzschild-dS
solution it was proposed in [105] to add an additional R2

term to the given model.

Case (II): f(R) = R + αRn model

The model of f (R) discussed before suffers from instability
problems in the strong gravity/small R regime but exhibits no
problems in the weak gravity/large R regime. Several viable
models of f (R)-gravity with no instability problems in the
weak gravity regime have been discussed in [105]. To resolve
such instability problems in a strong gravity regime, it was
proposed in [106] to consider the corrections proportional
to higher orders of curvature such as Rn for n > 1. This is
the motivation for considering the given f (R)-gravity model
here. Solving the the field equation (2) for the ansatz (28)
gives

g(r) = k − �

3
r2 − M

r
,

k = 2n(8�)1−n

2n − 4
, n �= 2,

� = 2
2

n−1
(
4n(n − 2) α

) 1
1−n (33)

which describes the metric for a Schwarzschild black hole
in the presence of a cosmological constant. Similar to the
previous case, one cannot obtain the charged solution, see
[102,106]. The stability conditions (27) in this case now
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reduce to

n − 1

n − 2
> 0,

n(n − 1)

4�(n − 2)
> 0 (34)

which shows that for n < 0 the Schwarzschild-AdS solution
(� < 0) is stable. However, for n > 2 the Schwarzschild-
dS solution (� > 0) solution is stable and free from the
Dolgov-Kawasaki instability.

Case (III): f(R) = R + λ exp (−ξ R) model

An interesting and promising model of f (R)-gravity can be
obtained by adding an exponential correction term of the
form λ exp (−ξ R), ξ ∈ R to the usual Einstein gravity.
Notably, this model was shown to agree with cosmological
observations related to the solar system and that of gravita-
tional lensing of galaxies and clusters [107–109]. Consider-
ing this form of f (R)-gravity in (2) one gets the correspond-
ing field equations with Tab as specified in (22). To determine
the solutions, we once again substitute the ansatz (28) for the
metric in the field equations (2) with the given form of the
f (R) function. This gives us the following

g(r) = k − �

3
r2 − M

r
+ Q

r2 , (35)

indicating that the line element in (28) represents the
Reisnner–Nordstrom AdS/dS black hole solutions. More-
over, one also has the following constraint relations

� = λe
2

Q−2 +2

2(Q − 2)
, ξ = e− 2(Q−1)

Q−2 (1 − Q)

λ
, (36)

which gives the cosmological constant (�) and the parameter
ξ in terms of λ which we consider as the only free parame-
ter in the theory. It is straightforward to see that on setting
Q = 0 (i.e., the case of vanishing Maxwell field) one can
also recover the usual Schwarzschild-AdS/dS solutions for
the f (R)-gravity. Now to understand the stability of these
solutions, we need to see in what regime the conditions (27)
are satisfied. In this case, the stability conditions now become

Q > 0,
(Q − 1)2

2�(Q − 2)
> 0, (37)

which shows that Reisnner–Nordstrom AdS or dS are stable
for Q < 2 or Q > 2 respectively. Whereas, for Q = 0 only
Schwarzschild-AdS solution is stable.

Case (IV): f(R) = R + η (logR) model

In this case, we consider the f (R)-gravity model with loga-
rithmic corrections. Such models involving the logarithm of

the Ricci scalar have been studied in the past to explain the
inflationary paradigm in cosmology (see [110] and reference
therein). Similar to the previous examples, solving the field
equations (2) with the choice of the given f (R) for the metric
ansatz (28) one gets the following

g(r) = k − �

3
r2 − M

r
+ Q

r2 , (38)

which represents the Reisnner–Nordstrom AdS/dS black
hole solutions. These black hole solutions are accompanied
by the following constraint relations

� = η

2
W

(√
e

2η

)
, Q = 1 + 1

2W
(√

e
2η

) , (39)

where W stands for the Lambert-W or the productlog func-
tion. The above constraints give the cosmological constant
and the charge in terms of η which is the only free parameter
in the theory. For this model of f (R)-gravity one can also
obtain the Schwarzschild-AdS/dS black hole solutions for
vanishing Maxwell field. Moreover, in this case, the stability
conditions (27) reduce to the following

2 − log
(
16�2

)
1 − log

(
16�2

) > 0,
1

log
(
16�2

) − 1
> 0 (40)

which shows that all of the black hole solutions are stable as
long as the condition, 2 > log

(
16�2

)
> 1 is satisfied.

In principle, one can consider a more general form of
the f (R) function combining the models discussed here
resulting in more exotic forms of f (R)-gravity [102,111,
111,112]. It may also be seen that for some models of con-
stant curvature f (R)-gravity only Schwarzschild-AdS/dS
black hole solutions are possible whereas for others it is
possible to obtain Reisnner–Nordstrom AdS/dS black hole
solutions also. This observation clearly implies a duality
between the constant curvature f (R)-gravity theories and
the Einstein–Maxwell gravity with a cosmological constant.
Having obtained the static spherically symmetric solutions
to the cases of f (R)-gravity one can now look for their rotat-
ing axisymmetric stationary solutions. In general, the way
to obtain such rotating solutions is to use the Newmann–
Janis algorithm. However, as described in the introduction
using the NJ algorithm for modified gravity theories intro-
duces pathologies in the resulting axially-symmetric metric
[92]. In the next section, we propose a modified NJ algorithm
for obtaining rotating solutions to Einstein–Maxwell gravity
with a cosmological constant. Then by exploiting the duality
described here, one can show that these rotating solutions for
Einstein–Maxwell gravity with a cosmological constant will
also be the solutions for the constant curvature f (R)-gravity
theories.
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3 Newmann Janis algorithm: Einstein gravity with
cosmological constant

The original Newman–Janis (NJ) algorithm was proposed as
a five-step procedure for generating new rotating axisym-
metric solutions from known static spherically symmet-
ric solutions (also known as seed metric) of the Einstein
equations [85,86,113]. In this section, we describe a mod-
ified Newman–Janis algorithm that generates rotating solu-
tions for Einstein gravity with a cosmological constant from
its known static spherically symmetric solutions. Here the
Schwarzschild or the Reissner–Nordström AdS/dS solutions
can be considered as the seed metrices for the Einstein grav-
ity with a cosmological constant. To describe the five steps
of the said algorithm for the present case, we start with the
following general spherically symmetric static seed metric

ds2 = −F(r) dt2+G(r)−1 dr2+H(r)
(
dθ2 + sin2 θ dφ2

)
.

(41)

which is used to generate the rotating solutions. Given the
above seed metric, the first step of the NJ algorithm is to
write it in terms of the Eddington–Finkelstein coordinates
(xμ = {u, r, θ, φ}) using the following transformation

du = dt − dr√
F G

. (42)

The second step of the algorithm involves expressing the
contravariant form of the seed metric in terms of a null tetrad,
eμ
a = {lμ, nμ,mμ, m̄μ} as:

gμν = lμnν + lνnμ − mμm̄ν − mνm̄μ, (43)

where

lμl
μ = mμm

μ = nμn
μ = lμm

μ = nμm
μ = 0,

lμn
μ = −mμm̄

μ = 1 (44)

with m̄μ being the complex conjugate of the mμ vector.
For the seed metric (41), the form of the null tetrad can be
obtained as

lμ = δμ
r ,

nμ = √
F/G δμ

u − (F/2) δμ
r ,

mμ =
(

δ
μ
θ + i

sin θ
δ
μ
φ

)
/
√

2H . (45)

Having obtained the null tetrad, the third step is to extend
the Eddington–Finkelstein coordinates (xμ) to a new set of
complex coordinates using the following transformation

dū → du + i a P(θ), dr̄ → dr − i a sin θ,

dφ̄ → dφ + i a Q(θ), θ → θ. (46)

where a is some constant and the old tetrad and metric
are recovered when one imposes the constraint, xμ = x̄μ

to the above coordinate transformation. Here it is to be
noted that the usual NJ algorithm for the Einstein gravity in
flat spacetime involves the complexification of only {u, r}-
coordinates. However, in the present case of Einstein grav-
ity with a cosmological constant, one requires an additional
complexification of φ-coordinate as well. Thus to summa-
rize, the effect of this transformation is to create a new metric
whose components are (real) functions of the complex coor-
dinates. For the modified NJ-algorithm being discussed her,
we will follow the approach adopted in [114–116]. On using
the transformation given in Eq. (46), the components F(r),
G(r) and H(r) of the metric (41) transform in to the new
functions A(r̄ , a), B(r̄ , a) and C(r̄ , a) respectively. We now
consider the following ansatz for the functions A, B and C

A(r̄) = A(r, θ) = �r (r) − a2 sin2 θ �θ(θ)

r2 + a2 cos2 θ
,

B(r̄) = B(r, θ) = 1

A(r, θ)
,

C(r̄) = C(r, θ) =
(
r2 + a2 cos2 θ

)
�θ(θ)

(47)

which is inspired by the Kerr-AdS metric where we match
its {uu} and {θθ} components with the functions A(r, θ) and
C(r, θ) respectively.

The fourth step in the algorithm is to write the trans-
formed null tetrad using the complex coordinate transfor-
mation introduced in (46) as

lμ = δ
μ
r ,

nμ = δ
μ
u − (A/2) δ

μ
r ,

mμ = 1√
2C

(
δ
μ
θ + ia

(
δ
μ
u P − δ

μ
r sin θ

) + i (csc θ + Q) δ
μ
φ

)
,

(48)

which on using the Eq. (43) yields the contravariant form of
the transformed seed metric with the following non vanishing
elements

guu = 2 a2 P2(θ)�θ (θ)

�(r, θ)
,

gur = gru = −1 − 2 a2 P(θ) sin θ �θ(θ)

�(r, θ)
,

guφ = guφ = 2 a P(θ) (csc θ + Q(θ)) �θ (θ)

�(r, θ)
,

grr = 2 �r (r)

�(r, θ)
, gθθ = 2 �θ(θ)

�(r, θ)

grφ = gφr = −2 a (1 + Q(θ) sin θ) �θ(θ)

�(r, θ)
,

gφφ = 2 (csc θ + Q(θ))2 �θ(θ)

�(θ)
, (49)
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Table 1 A table showing the dictionary between the f (R)-gravities and their duals. The parameters G and Gef f denote the gravitational constant
of f (R)-gravities and their duals respectively

f(R)gravity Dual Black hole solutions (AdS/dS ) Dictionary with Geff = G/F(4�)

R − μ4/R R − 2� Schwarzschild and Kerr � = ∓
√

3
4 μ2

R + αRn R − 2� Schwarzschild and Kerr � = 2
2

n−1 (4n(n − 2) α)
1

1−n

R + λ exp (−ξ R) R − 2� Schwarzschild and Kerr � = − λe
4 , ξ = 1

eλ

R − 2� − 1
4F2 Reisnner–Nordstrom and Kerr–Newmann � = λe

2
Q−2 +2

2(Q−2)
, ξ = e

− 2(Q−1)
Q−2 (1−Q)

λ

R + η log (R) R − 2� Schwarzschild and Kerr � = η
2 W

(√
e

2η

)

R − 2� − 1
4F2 Reisnner–Nordstrom and Kerr–Newmann � = η

2 W
(√

e
2η

)
, Q = 1 + 1

2W
( √

e
2η

)

where for brevity we have introduced the function �(r, θ) =(
a2 + 2 r2 + a2 cos 2θ

)
, in the above expressions. The line

element corresponding to the above-transformed metric can
now be given as

ds2 = 2a2�θ(θ) sin2 θ − �r (r)

�(r, θ)
du2 − 2 du dr

+ �(r, θ)

2 �θ(θ)
dθ2 + 2 a

P(θ)

csc θ + Q(θ)
drdφ

+ 2 a
2P(θ)

(
�r (r) − a2�θ(θ) sin2 θ

) − sin θ�(r, θ)

�(r, θ)(Q(θ) + csc θ)
dudφ

+4a2 sin θ P(θ) + �(r,θ)
�θ (θ)

+ 4P(θ)2
(
a4�θ (θ) sin2 θ−a2�r (r)

)
�(r,θ)

2(Q(θ) + csc θ)2 dφ2

(50)

which is nothing but the line element of a rotating-AdS black
hole solution in the Eddington–Finkelstein coordinates.

The fifth and final step of the algorithm is to go back
to Boyer–Lindquist coordinates (BLC) using the following
global coordinates transformations

du = dt − a2 + r2

�r (r)
, dφ = dφ − a S

�r (r)
. (51)

where S is a constant to be determined later on. The line
element of the rotating-AdS metric in BLC can now be given
as follows

ds2 = 2
(
a2�θ(θ) sin2 θ − �r (r)

)
�(r, θ)

dt2

+�(r, θ)

2�r (r)
dr2 + �(r, θ, a)

2�θ(θ)
dθ2

−4 a
sin2 θ

(
�θ(θ)

(
a2 + r2

) − �r (r)
)

S �(r, θ)
dt dφ

+
sin2 θ

(
2�θ(θ)

(
a2 + r2

)2 − 2a2�r (r) sin2 θ
)

S2 �(r, θ)
dφ2

(52)

where in deriving the above line element, we have consid-
ered that all the off-diagonal elements of the corresponding
metric should vanish except its {tφ} component. This further
gives us two constraint relations that determine the unknown
functions P(θ) and Q(θ) in terms of the functions �r and
�θ as

P(θ) = sin θ

�θ(θ)
(53)

Q(θ) = csc θ

(
−1 + S

�θ(θ)

)
, (54)

To this end, it is to be noted that the line element in
(52), derived from the modified Newman Janis algorithm
discussed here, has two unknown functions �r , �θ and a
constant S. One can fix these unknowns using the equations
of motion of Einstein–Maxwell gravity with a cosmological
constant whose action can be given as

S = 1

16πG

∫
d4x

√−g

(
R − 2� − 1

4
F2

)
, (55)

where G is the four-dimensional gravitational constant, �

is the cosmological constant. On solving the Einstein field
equations for the rotating metric given in Eq. (52), one can
determine the unknown functions �r (r), �θ(θ), and the con-
stant S as

�r (r) =
(
a2 + r2

) (
1 − �r2

3

)
− 2Gmr + Q2

�θ(θ) = 1 + �a2

3
cos2 θ, S = 1 + �a2

3
, (56)

where Q is the charge of the black hole and the cosmological
constant is related to the AdS or dS length (L) as � = − 3

L2

or � = 3
L2 respectively. Plugging the above form of the

functions �r (r), �θ(θ), and the constant S in eq.(52) it is
obvious to see that one gets the line element corresponding to
a Kerr–Newmann-AdS/dS black hole. The mass M and angu-
lar momentum J of the Kerr–Newmann-AdS/dS black hole
are related to the parameters m and a through the relations
M = m/�2, J = am/�2 respectively. One can also obtain
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the Kerr-AdS/dS black hole solution described by (52) and
(56) for Q = 0, to the Einstein gravity with a cosmological
constant by using the same algorithm.

Now going back to the cases of f (R)-gravity discussed
before, for f (R) = R − μ4/R one can see that the Kerr-
AdS/dS black hole solution described by (52) and (56) for
Q = 0, is also a solution to the field equations (30) for vanish-
ing Maxwell field with the identification of the cosmological
constant (�) with the parameter μ given in (31) as before. In
the Table (1) we summarize the dualities of different f (R)-
gravities with constant Ricci scalar and their solutions with
Einstein gravity with a cosmological constant in the presence
or absence of Maxwell field.

4 Discussion and conclusion

In this paper, we use the conformal transformation to express
the f (R) gravity in the Jordan to Einstein frame. We find
that constant curvature f (R) gravity theories in the Jordan
frame are dual to Einstein–Maxwell gravity with a cosmolog-
ical constant or modification in effective gravitational con-
stant. We show the existence of the aforementioned duality
by giving specific examples of well-known f (R) gravity the-
ories. Table 1 shows the several f (R) gravity theories, their
dual and the effective gravitational constant (Gef f ). We fur-
ther use this fact to derive the rotating blackhole solutions
for generalized f (R) gravity with constant curvature. Pre-
viously, the Newman–Janis algorithm was used to generate
the rotating black hole solution for Einstein and modified
gravity. However, the NJ algorithm is only known to give
accurate rotating spacetimes for the Einstein gravity. We then
present a modified NJ algorithm to generate the axisymmet-
ric rotating spacetimes for Einstein–Maxwell gravity with
CC. Our modified NJ algorithm involves an additional com-
plexification of φ-coordinate to obtain the rotating spacetime
for Einstein gravity with �. This additional complexifica-
tion gives the tractable form of transformed rotating metric
with two unknown functions which are determined from the
field equations of the gravity theory under consideration. The
determination of these unknown functions in transformed
metric ensures that the resulting rotating solution is indeed a
solution of that particular theory.

We have presented our results for the modified gravity the-
ories assuming the constant curvature solutions. However, we
believe that one can also map the solutions of f (R)-gravity
with dynamical Ricci scalar to those of the EM-gravity non-
minimally coupled to a scalar field in the Einstein/Jordan
frame. We also plan to explore the implications of such dual-
ity between two different gravitational theories in the context
of gauge/gravity duality [117]. We leave these interesting
avenues for future works.
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